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FRACTIONAL REGULARISATION OF THE CAUCHY
PROBLEM FOR LAPLACE’S EQUATION AND APPLICATION

IN SOME FREE BOUNDARY VALUE PROBLEMS

BARBARA KALTENBACHER AND WILLIAM RUNDELL

Abstract. In this paper we revisit the classical Cauchy problem for Laplace’s
equation as well as two further related problems in the light of regularisation of
this highly ill-conditioned problem by replacing integer derivatives with frac-
tional ones.We do so in the spirit of quasi-reversibility, replacing a classically
severely ill-posed partial di erential equations problem by a nearby well-posedff
or only mildly ill-posed one.In order to be able to make use of the known sta-
bilising e ect of one-dimensional fractional derivatives of Abel type we work inff
a particular rectangular (in higher space dimensions cylindrical) geometry.We
start with the plain Cauchy problem of reconstructing the values of a harmonic
function inside this domain from its Dirichlet and Neumann trace on part of
the boundary (the cylinder base) and explore three options for doing this with
fractional operators.The two other related problems are the recovery of a free
boundary and then this together with simultaneous recovery of the impedance
function in the boundary condition.Our main technique here will be Newton’s
method, combined with fractional regularisation of the plain Cauchy problem.
The paper contains numerical reconstructions and convergence results for the
devised methods.

Introduction

As its name suggests, the Cauchy Problem for Laplace s equation has a long’
history. By the early-middle of the nineteenth century it was known that prescribing

the values  u on the boundary  ∂  of a domain  whereΩ Ω − u = 0 held, allowed  u
to be determined uniquely within .Ω There was a similar statement for ux  or“fl ”
the value of the normal derivative: the so-called Dirichlet and Neumann problems.

These problems held great signi cance for an enormous range of applications evidentfi
at that time and provided solutions that depended continuously on the boundary

measurements. It was also recognised that frequently a case would arise where

part of the boundary is inaccessible and no measurements could be made there. In

compensation one could measure both the value and the ux at the accessible part:fl
the Cauchy problem. Since solutions of Laplace s equation can be considered as’
the real part of an underlying analytic function, analytic continuation still allowed

uniqueness of the solution. However, the continuous dependence on the boundary

data was lost; in fact in an extreme way.
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A famous reference to this state of a airs dates from the beginning of the twen-ff
tieth century when Hadamard singled such problems out as being incorrectly set“ ”
and hence unworthy of mathematical study, as they had no physical signi cance.“ fi ”
The backwards heat problem and the Cauchy problem were the prime exhibits

[17 19].–
By the middle of the twentieth century such problems had shown to have enor-

mous physical signi cance and could not be ignored from any perspective.fi Methods

had to be found to overcome the severe ill-conditioning.During this period the sub-

ject was extended to general inverse problems and included a vast range of situations

for which the inverse map is an unbounded operator.Examples of still foundational

papers from this period including applications are [11, 40 42].–
One of the popular techniques dating from this period is the method ofquasi-

reversibilityof Latt`es and Lions [36].In this approach the original partial di eren-ff
tial equation was replaced by one in which the incorrect  data allowed a well-posed“ ”
recovery of its solution. This new equation contained a parameter   that allowed

for stable inversion for   > 0 but, in addition (in a sense that had to be carefully

de ned), solutions of the regularising equation converged to that of the original asfi
→ 0. It is now recognised that the original initial suggested choices of that time

brought with them new problematic issues either because of additional unnatural

boundary conditions required or an operator whose solutions behaved in a strongly

di erent manner from the originalff that o set any regularising amelioration thatff
it o ered.ff Thus, the method came with a basic and signi cant challenge:fi ndingfi
a closely-related  partial“ ” di erentialff equation, depending on a parameter  , that

could use the data in a well-posed manner for   > 0 and also be such that its

solutions converged to those of the original equation as  → 0.

In other words, the central issue in using quasi-reversibility is in the choice

of the regularising equation. Frequently, additional or modi ed initial/boundaryfi
conditions have to be imposed to maintain well-posed problem for this new equation.

In the rst case adding such conditions usually means taking a higher order operatorfi
and this has been a dominant theme for the Cauchy problem. A common choice

is to use a bi-harmonic equation as the regularizer, that is, replace the Laplacian

with  2u + u = 0. The fourth order operator suggested by Lattes and Lions

then utilizes the Cauchy values  u(x, 0) and  u y(x, 0) e ectively but requires alsoff
derivative conditions  u x(0, y) and  u(1, y) which are not known a priori. Despite the

obvious hurdle this was their original approach in [36] and has remained a common

formulation.

However, for numerical computation one needs a forwards problem solver and

this can often be modi ed to suit the purpose.fi This was the approach taken in

[9] where mixed nite elements were used and in [32]fi where nite di erences andfi ff
Carleman s estimates were used.’ As we will see our choice of a fractional order

regularizing operator circumvents this issue.

In his various lectures, Hadamard noted, for example [19], that it is possible

to write the solution in the form of an integral equation and remarked that this

could lead to numerical methods. This has been taken up in various formulations

that include iterative methods. A notable paper is [33] and the algorithm they

put forward was later implemented numerically in [37]. Another, somewhat re-

lated, direction used the fact that in R2 solutions of Laplace s equation have an’
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 649

obvious extension to an analytic function and solutions could be sought by ana-

lytic continuation augmented by a suitable regularisation scheme.The above ideas

lead naturally to converting the original problem to a moment problem and then

obtaining regularisation by truncation. Examples here are [12, 22].

Interesting and important from applications is the case when the region is an-

nular, for example a circular outer domain with a concentric, but not necessarily a

circular inner one. A conformal mapping can achieve this and this approach has of

course been followed. See, for example, [5]. This leads to the type of application

where one not only doesn t know the boundary values on the interior curve but’
this curve itself has to be determined. Further examples with important analytic

techniques can be found in [1, 8, 10].We will return to this situation shortly.

Returning to the idea of a quasi-reversibility method and seeking a regularizing

equation with many of the desired features and fewer drawbacks, here we will

follow recent ideas for the backwards heat problem and replace the usual derivative

in the di cult  direction by a fractional“ ”ffi derivative. In the parabolic case this

was a time fractional derivative and one of the rst papers taking this directionfi
was [39]. It was later shown in [26] that the e ectiveness of the method and theff
choice of the fractional exponent used strongly depended on both the nal timefi  T
and the frequency components in the initial time function  u 0(x). This led to the

current authors proposing a multi-level version with di erent fractional exponentsff
depending on the frequencies in  u 0, which of course had also to appear in the

measured nal time and were thus identi able [28].fi fi This split frequency  method“ ”
will also be used in the current paper.

The advantage here is that such fractional operators arise naturally. The di u-ff
sion equation in (x, y) − coordinates results from a di usive process in which theff
underlying stochastic process arises from sampling through a probability density

function  ψ. If ψ function has both nite mean and variance then it can be shownfi
that the long term limit approaches Brownian motion resulting in classical deriva-

tives. This can be viewed as a direct result of the central limit theorem.Allowing a

nite mean but an in nite variance can lead directly to fractional derivatives [29].fi fi
However, while the use of time fractional derivatives and their behaviour in

resulting partial di erential equations is now well understood, the same cannot beff
said to the same degree for the case of space fractional derivatives.This statement

notwithstanding it can identify the standard derivative as a limiting situation of

one of fractional type. This makes such an operator a natural candidate for a

quasi-reversibility operator.
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u = 0

u(0, y) = 0 u(1, y) = 0

u(x, 0) =  f (x)

uy(x, 0) =  g(x)

In our case if  is a rectangle with theΩ
top side inaccessible but data can be mea-

sured on the other three sides then a basic

problem is to recover the solution  u(x, y)
by also measuring the uxfl ∂u

∂y at, say, the

bottom edge. In the usual language we

have Dirichlet data on the two sides and

Cauchy data on the bottom.We will con-

sider this problem as Problem 1 in Sec-

tion 1.

u = 0

.............................................................................................
..................

.....................
.........................

................................................................
...............

.............
..............

..................
..............................................................................................................

u(0, y) = 0 u(1, y) = 0

u(x, 0) =  f (x)

uy(x, 0) =  g(x)

C
∂u
∂ν = 0

However there is a further possibility:

the top side may be a curve  (x) and we

also do not know this curve  and want–
to do so. This is a classical example of a

free-boundary value problem and a typi-

cal, and well-studied, example here is of

corrosion to a partly inaccessible metal

plate. This is our Problem 2 (cf. Sec-

tion 2).

u = 0

............................................................................................
...................

.....................
.........................

................................................................
...............

..............
..............

...................
............................................................................................................

u(0, y) = 0 u(1, y) = 0

u(x, 0) =  f (x)

uy(x, 0) =  g(x)

C
∂u
∂ν + γ(C)u = 0

In addition, while the original top

side was, say, a pure conductor or in-

sulator with either u = 0 or ∂u
∂ν = 0

there, this has now to be re-modelled

as an impedance condition where the

impedance parameter is also likely un-

known as a function of x. Recovery

of both the boundary curve and the

impedance coe cient is the topic of Prob-ffi
lem 3 in Section 3.
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Related to this are obstacle problems for elliptic problems in a domain  thatΩ
seek to recover an interior object  D from additional boundary data. This comes

under this same classi cation, albeit with a di erent geometry.fi ff The boundary of  D
can be purely conductive, or purely insulating, or satisfy an impedance condition

with a perhaps unknown parameter. The existing literature here is again extensive.

We mention the survey by Isakov [23] which includes not only elliptic but also

parabolic and hyperbolic equation-based problems. Other signi cant papers fromfi
this time period are [1, 4, 10, 32, 43];a very recent overview on numerical methods

for the Cauchy problem with further references can be found in [8].

For our purposes we wish to take advantage of the geometry described earlier

where we are able, in some sense, to separate the variables and treat each of the

di erential operator s components in a distinct manner.ff ’

The structure of the paper is as follows. Each of the three Sections 1, 2, 3

rst offi all contains a formulation of the problem along with the derivation of a

reconstruction method and numerical reconstruction results. In Section 1, this is a

quasi-reversibility approach based on fractional derivatives; in Sections 2, 3 dealing

with nonlinear problems, these are regularised Newton type methods. Sections 1,

3 also contain convergence results. In particular, in Section 3 we verify a range

invariance condition on the forward operator that allows us to prove convergence

of a regularised frozen Newton method.

1. Problem 1: The plain Cauchy problems

We start with the most fundamental of the three problems to be studied in this

paper, namely the reconstruction of a harmonic function from its partial Cauchy

data.

Problem 1.1.Given  f , g in a domain  and the following elliptic boundary valueΩ
problem on Ω × (0, L),

(1)

 − u = − xu − ∂2
yu = 0 in Ω × (0, L),

u(·, y) = 0 on  ∂Ω × (0, L),

u(x, 0) =  f (x)  , ∂ yu(x, 0) =  g(x) x ∈Ω,

ndfi  u(x, y) in the whole cylinder Ω × (0, L).

This is a classical inverse problem going back to before Hadamard [19] and there

exists a huge amount of literature on it.For a recent review and further references,

see, e.g., [8].

We will here study possible regularization by replacing the partial derivative in

the direction of data propagation (that is, the  y direction) by a fractional one.

Alternatively to this unidirectional way of using fractional operators one might

think of fractional powers of the Laplacian. However, this does not appear to be

viable for this purpose, because it would require a nonlocal version of the data as

well, cf., e.g., [15], which cannot be extracted from the actually given data  f ,  g.
To this end, we rst of all derive a solution representation by expandingfi  u(·, y),

f ,  g in terms of the eigenfunctions  φ j (with corresponding eigenvalues  λ j ) of − x

on  with homogeneous Dirichlet boundary conditionsΩ

u(x, y) =
∞

j=1

uj (y)φj (x) , f (x) =

∞

j=1

fj φj (x) , g(x) =

∞

j=1

gj φj (x) ,
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652 BARBARA KALTENBACHER AND WILLIAM RUNDELL

where for all  j ∈N

(2) uj (y) −λj uj (y) = 0 y ∈(0, L) , uj (0) = f j , uj (0) = g j .

Thus

(3) u(x, y) =
∞

j=1

aj φj (x) ,

where

(4)

aj =  f j cosh( λj y) +  g j
sinh( λj y)

λj

=
λj fj + g j

2 λj
exp( λj y) +

λj fj − gj

2 λj
exp(− λj y).

Here the negative Laplacian − x on  with homogeneous Dirichlet boundaryΩ
conditions can obviously be replaced by an arbitrary symmetric positive de nitefi
operator A densely de ned on a Hilbert spacefi H (here H =  L 2( )),Ω in particu-

lar by an elliptic di erentialff operator with possibly  x dependent coe cients onffi
a  d-dimensional Lipschitz domain  with homogeneousΩ Dirichlet, Neumann or

impedance boundary conditions. The corresponding eigensystem (λj , φ j )j∈N allows

to de ne,fi e.g., the square root of the operator A by
√
Av = ∞

j=1 λj v, φ j H φj

and the scale of Hilbert space norms

(5) v Ḣ σ (Ω) :=

∞

j=1

λσj v, φ j
2
H

1/2
.

1.1. Regularisation by fractionaldi erentiation.ff Since the values of  u have

to be propagated in the  y direction, starting from the data  f ,  g at  y = 0, the reason

for ill-posedness (as is clearly visible in the exponential ampli cation of noise in thisfi
data, cf. (4)) results from the  y-derivative in the PDE. We thus consider several

options of regularising Problem 1.1 by replacing the second order derivative with

respect to  y by a fractional one, in the spirit of quasi-reversibility [3, 13, 36, 44 46].–
We note in particular [29, Sections 8.3, 10.1] in the context of fractional derivatives.

In order to make use of integer (0th and 1st) order derivative data at  y = 0,

we use the Djrbashian-Caputo (rather than the Riemann-Liouville) version of the

Abel fractional derivative. This has a left- and a right-sided version de ned byfi

0D
β
y v = h 2−β ∗∂2

yv, yD
β
L v

L
=  h 2−β ∗∂2

yv
L ,

h2−β(y) =
1

(2Γ −β)  y β−1 , vL (y) =  v(L − y)

for β ∈ (1, 2), where ∗denotes the (Laplace) convolution. Note that the Laplace

transform of h2−β is given by h2−β(s) =  s β−2 . Correspondingly, as solutions to

initial value problems for fractional ODEs, Mittag-Le er functions,ffl as de ned byfi
(see, e.g., [29, Section 3.4])

E ,α β (z) =
∞

k=0

zk

(Γ kα  + β)
z ∈C,

for  >α  0, and  β ∈R will play a role.
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 653

While using the spectral decomposition

(6) u(α) (x, y) =
∞

j=1

a
(α)
j φj (x)  ,

to approximate (3), (4) in the analysis, the computational implementation does not

need the eigenvalues and eigenfunctions of− x but relies on the numerical solution

of fractional PDEs, see (8), (12), (17), for which e cient methods are available, see,ffi
e.g., [2, 24, 35, 38].

1.1.1. Left-sided Djrbashian-Caputo fractionalderivative.Replacing  ∂ 2
y by 0D2α

y
with 2α ≈ 2 amounts to considering, instead of (2), the fractional ODEs

0D
2α
y uj (y) −λj uj (y) = 0 y ∈(0, L) , uj (0) =  f j , uj (0) = g j ,

whose solution by means of Mittag-Le er functions (see,ffl e.g., [29, Theorem 5.4])

yields

(7) a
(α)
j =  f j E2 ,α 1(λj y

2α) +  g j yE2 ,α 2(λj y
2α).

In view of the fact that  E2,1(z) = cosh(
√
z) and  E 2,2(z) =

sinh
√

z√
z , this is consistent

with (4). It corresponds to replacing (1) by

(8)

 − xu − 0D
2α
y u = 0 in Ω × (0, L),

u(·, y) = 0 on  ∂Ω × (0, L),

u(x, 0) =  f (x)  , ∂ yu(x, 0) =  g(x) x ∈Ω.

1.1.2. Right-sided Djrbashian-Caputo fractionalderivative.Replacing  ∂ 2
y by yD

2α
L

with 2α ≈ 2 corresponds to replacing (2) by

yD
2α
L uj (y) −λj uj (y) = 0 y ∈(0, L)  , uj (0) =  f j , uj (0) = g j

together with

uj (L) = āj , uj (L) = b̄j .

From the identity

yD
2α
L uj (L −η) = (h2−2α ∗wj )(η) for w j (η) = u j (L −η) and h2−2α(s) =  s

2α−2,

we obtain the initial value problem

(h2−2α ∗wj )(η)−λj wj (η) = 0 η∈(0, L)  , wj (0) = āj , wj (0) = −b̄j .

Taking Laplace transforms yields

s2αwj (s) − s2α−1āj +  s 2α−2b̄j −λj wj (s) = 0,

i.e.,

(9) wj (s) =
s2α−1

s2α −λj
āj −

s2α−2

s2α −λj
b̄j ,

and for the derivative

(10) wj (s) =  s wj (s) − āj =
λj

s2α −λj
āj −

s2α−1

s2α −λj
b̄j .
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From [29, Lemma 4.12] we obtain

L(ηk−1E2 ,kα (λη2α))(s) =
s2α−k

s2α −λj
, k  ∈{1, 2},

L(−η2α−1E2 ,α 2α(λη2α))(s) =
1

s2α −λj
.

Inserting this into (9), (10) and evaluating at  η =  L we obtain

fj =E2 ,α 1(λj L
2α)āj −LE2 ,α 2(λj L

2α)b̄j

−gj = −λj L
2α−1E2 ,α 2α(λj L

2α)āj −E2 ,α 1(λj L
2α)b̄j .

Resolving for āj and replacing  L by  y we get

(11) a
(α)
j =

fj E2 ,α 1(λj y2α) +  g j yE2 ,α 2(λj y2α)

E2 ,α 1(λj y2α)
2

−λj y2αE2 ,α 2α(λj y2α)E2 ,α 2(λj y2α)
.

This corresponds to considering, in place of (1), the fractional problem

(12)

 − xu − yD
2α
L u = 0 in Ω × (0, L),

u(·, y) = 0 on  ∂Ω × (0, L),

u(x, 0) =  f (x)  , ∂ yu(x, 0) =  g(x) x ∈Ω.

1.1.3. Factorisation ofthe Laplacian.An analysis of the two one-sided fractional

approximations of  ∂ 2
y does not seem to be possible since it would require a stability

estimate for Mittag-Le er functions with positive argument and index close to two.ffl
While convergence from below of the fractional to the integer derivative holds at any

integer (thus also second) order, a stability estimate is not available. Therefore we

look for a possibility to reduce the problem to one with rst orderfi  y derivatives and

treat the inverse problem similarly to a backwards heat problem to take advantage

of recent work in this direction [28, 29].One way to do so is to factorise the negative

Laplacian so that the Cauchy problem becomes:

Given  f ,  g in

 − u = − xu − ∂2
yu = (∂y − − x)(−∂y − − x)u = 0 in Ω × (0, L),

u(·, y) = 0 on  ∂Ω × (0, L),

u(x, 0) = f (x) , ∂ yu(x, 0) =  g(x) x ∈Ω,

ndfi  u(x, y). Recall that the square root of the Laplacian is de ned spectrally asfi√
− xv =

∞
j=1 λj v, φ j L 2(Ω)φj .

More precisely, with  u ± = 1
2(u ± √

− x
−1∂yu) we get the representation

u =  u + +  u − ,

where  u + ,  u − can be obtained as solutions to the subproblems

(13)

∂yu+ − − xu+ = 0 in Ω × (0, L),

u+(·, y) = 0 on  ∂Ω × (0, L),

u+(x, 0) = 1
2(f (x) + − x

−1
g(x)) =: u+0(x) x ∈Ω
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and

(14)

∂yu− + − xu− = 0 in Ω × (0, L),

u−(·, y) = 0 on  ∂Ω × (0, L),

u−(x, 0) = 1
2(f (x)− − x

−1
g(x)) x ∈Ω  .

In fact, it is readily checked that if u± solve (13), (14) then  u =  u + +  u − solves

(1). The numerical solution of the initial value problem (14) and of the nal valuefi
problem for the PDE in (13) can be stably and e ciently carried out combining anffi
implicit time stepping scheme with methods recently developed for the solution of

PDEs with fractional powers of the Laplacian. See, e.g., [6, 7, 20].

Since
√

− x is positive de nite, the second equation (14) is well-posed, so therefi
is no need to regularise. The rst one (13) after the change of variablesfi  t = L − y,
w+(x, t) =  u +(x, y) becomes a backwards heat equation (but with

√
− x in place

of − x)

(15)

∂tw+ + − xw+ = 0 in Ω × (0, L),

w+(·, t) = 0 on  ∂Ω × (0, L),

w+(x, L) = 1
2(f (x) + − x

−1
g(x)) x ∈Ω

Regularising (15) by using in place of  ∂ t a fractional “time  derivative” 0Dα
t with

α ≈ 1,   <α  1 (while leaving (14) unregularised) amounts to setting

(16) aαj =
λj fj +  g j

2 λj

1

E ,α 1(− λj yα )
+

λj fj − gj

2 λj
exp(− λj y)  .

This corresponds to replacing (1) by  uα =  u − +uα
+ , where  u α

+(x, y) =  w α
+(x, L −y),

with  u − solving (14) and  w α
+ solving

(17)

0D
α
t w

α
+ + − xw

α
+ = 0 in Ω × (0, L),

wα
+(·, t) = 0 on  ∂Ω × (0, L),

wα
+(x, L) = 1

2(f (x) + − x
−1
g(x)) x ∈Ω.

This approach can be re ned by splitting the frequency range (fi λj )j∈N into subsets

({λK i +1, . . . , λ K i+1 })i∈N and choosing the breakpoint  K i as well as the fractional

order α i for each of these subsets according to a discrepancy principle. For details,

see [28].

1.2. Reconstructions.In this section we compare reconstructions with the three

options (7), (11), (16) on a rectangular domain with  = (0Ω , 1). The latter was

re ned by the split frequency approach from [28]fi using the discrepancy principle

for determining the breakpoints and di erentiation orders.ff While this method is

backed up by convergence theory (see Section 1.3), the same does not hold true

for the options (7) and (11). Indeed, not even stability can be expected to hold

from the known behaviour of the Mittag Le er functions with positive argument,ffl
in particular for (7). This becomes visible in the reconstructions in Figure 1. The

di erentiation orders for (7),ff (11) were taken as the smallest (thus most stable)

ones obtained in (16).

In this simple one-dimensional setting for  with known eigensystem,Ω we can

simply evaluate the formulas (7), (11) and (16). In a higher dimensional setting,
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Figure 1. Reconstructions from formulas (7) (blue dotted), (11)

(red, dashed) and (16) (green, irregularly dashed) as compared to

the actual value (black, solid) from data with 1 per cent noise at

di erent distances from the Cauchy data boundary.ff Left: y = 1
3 ,

Middle: y = 2
3 , Right: y = 1.

one would numerically solve (8), (12) and (14), (17) by combining one of the by

now well-established discretization methods for time-fractional derivatives such as

the  L 1 scheme or convolution quadrature (see, e.g., [25] for a recent overview) with

a space discretization by, e.g., Galerkin nite elements;fi in case of (17), the latter

requires an implementation of the square root of the Laplacian, see, e.g., [6, 7, 20].

The relative  L 2 errors over the whole domain were 0.0275 for (7), 0.0135 for (11),

1.8597·10−4 for (16).

The split frequency factorised Laplace approach also worked well with much

higher noise levels, as can be seen in Sections 2.1 and 3.1, where it is intrinsically

used as part of the reconstruction algorithm. On the other hand, (7), (11) failed to

provide reasonable reconstructions at higher noise levels, which is to be expected

from a theoretical point of view.

1.3. Convergence of the scheme(16). We now provide a convergence analysis

of the method from Section 1.1.3. As usual in regularisation methods, the total

error can be decomposed into an approximation error and the propagated noise

(18) u −u ,α δ
X  ≤ u −u(α)

X + u(α) − u ,α δ
X .

Here  u ,α δ is the actual reconstruction from noisy data  f δ,  g δ leading to

(19) uδ+0 = 1
2(fδ(x) + − x

−1
gδ(x)) with uδ+0 − u+0 Y ≤ .δ

Using  X = L 2(0, L; Ḣσ( )) withΩ Ḣσ as de ned in (5) as the space for the sought-fi
after function  u, we can write the approximation error as

(20)

u − u(α)
L 2(0,L; Ḣ σ (Ω)) =

L

0

∞

j=1

λσj |uj (y) − u
(α)
j (y)|2 dy

1/2

=
L

0

∞

j=1

|u+,j (y)|2λσj
1

E ,α 1(− λj yα )2
E ,α 1(− λj y

α ) − exp(− λj y)
2
dy

1/2
,
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where  u †
+,j (y) =  u +0,j exp( λj y), and the propagated noise term as

(21)

u(α) − u ,α δ
L 2(0,L; Ḣ σ (Ω)) =

L

0

∞

j=1

λσj |u(α)
j (y) − u ,α δ

j (y)|2 dy
1/2

=
L

0

∞

j=1

|u+0,j −uδ+0,j |2 λσj
1

E ,α 1(− λj yα )2
dy

1/2
.

In view of (15), convergence follows similarly to corresponding results on reg-

ularisation by backwards subdi usion [29,ff Section 10.1.3] using two fundamental

lemmas

• on stability, estimating 1
E ,α 1 (− yλ α ) (Lemma 1.1) and

• on convergence, estimating E ,α 1(− λj yα ) − exp(− λj y) (Lemma 1.2)

that we here re-prove to track dependence of constants on the nal timefi “ ” l̄. This

is important in view of the fact that as opposed to [29, Section 10.1.3], we consider

a range of nal time values , that is,“fi ” in our context,  y values. In the following λ̂
serves as a placeholder for λj .

Lemma 1.1.For all α ∈(0, 1),

(22)
1

E ,α 1(−ˆyλ α )
≤ 1 + (1Γ −α)ˆyλ α.

Proof. The bound (22) is an immediate consequence of the lower bound in [29,

Theorem 3.25].

Lemma 1.2.For any l > 0, λ̂1 ≥ 0, α0 ∈ (0, 1) andp ∈ [1, 1
1−α0

), there exists

C̃ = C̃(α0, p, l̄) = supα ∈[α0 ,1) C(α , p, l̄) > 0 withC(α , p, l̄) as in (66), such that

for anyα ∈[α0, 1) and for allˆ  >λ λ̂1

(23)
dα L ∞ (0,l̄) ≤ C̃λ̂1/p (1 −α), dα L p (0,l̄) ≤ C̃(1 −α)

for the functiondα : [0, l̄] → R defined bydα (y) =  E ,α 1(−ˆ  yλ α ) − exp(−ˆ  yλ ).

Proof. See Appendix A.

The estimates from Lemma 1.2 become more straightforward if the values of  y are

constrained to a compact interval not containing zero, as relevant for Problem 3.1

in Section 3. This also allows us to derive  L∞ bounds on  E ,α 1(−ˆyλ α ) − exp(−ˆyλ ),

which would not be possible without bounding  y away from zero, due to the singu-

larities of the Mittag-Le er functions there.ffl

Lemma 1.3.For any0  < l < l < ∞ , λ̂1 ≥ 0, α0 ∈(0, 1) andp ∈ [1, 1
1−α0

), there

exist constants̃C = C̃(α0, p, l) > 0 as in Lemma1.2, Ĉ = Ĉ(α0, l, l) > 0 , such that
for anyα ∈[α0, 1) and for allˆ  >λ λ̂1

(24)
dα L ∞ (l,l) ≤ C̃(1 −α), ∂ydα L ∞ (l,l) ≤ Ĉλ̂(1 −α)

for the functiondα : [l, l] → R defined bydα (y) =  E ,α 1(−ˆ  yλ α ) − exp(−ˆ  yλ ).

Proof. See Appendix A.
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Applying Lemmas 1.1, 1.2 in (18), (20), (21), we obtain the overall error estimate

(25) u −u ,α δ
L 2(0,L; Ḣ σ (Ω))  ≤ u − u(α)

L 2 (0,L; Ḣ σ (Ω))

+ uδ+0 −u+0 Ḣ σ (Ω) + L α+1/2
√

2α+1
(1Γ −α) uδ+0 − u+0 Ḣ σ+1 (Ω) ,

where we further estimate the approximation error

u − u(α)
L 2(0,L; Ḣ σ (Ω)) ≤C̃ (1 −α) u†

+ L 2(0,L; Ḣ σ+1/p (Ω))

+  L α (1 −α) (1Γ −α) u†
+ L 2(0,L; Ḣ σ+1+1/p (Ω)) .

Under the assumption  u †
+ ∈ L2(0, L; Ḣσ+1+1/p ( )),Ω from Lebesgue s Dominated’

Convergence Theorem and uniform boundedness of (1 − α) (1Γ − α) as  α 1,

as well as convergence to zero of E ,α 1(−λ̂·α) − exp(−λ̂·) as  α 1, we obtain

u − u(α)
L 2(0,L; Ḣ σ (Ω)) → 0 as  α 1.

In view of the fact that the data space in (19) is typically  Y = L2( ), consideringΩ
the propagated noise term, the Ḣσ and Ḣσ+1 norms in estimate (25) reveal the

fact that even when aiming for the lowest order reconstruction regularity  σ = 0,

the data needs to be smoothed.

Due to the in nite smoothing property of the forward operator, a method withfi
in nite quali cation is required for this purpose.fi fi We therefore use Landweber

iteration for de ning a smoothed version of the datafi  u δ̃
+0 =  v (i ∗) by

(26) v(i+1) = v (i) −A(v(i) − uδ+0)  , v(0) = 0  ,

where

(27) A = μ( − x)−σ̃

with σ̃  ∈{ , σ σ + 1} ≥ 1 and   >μ  0 chosen so that A L 2→L 2 ≤ 1. In our imple-

mentation, we carried out the smoothing iteration for the most basic setting  σ = 0

and σ̃ = 1.

For convergence and convergence rates as the noise level tends to zero, we quote

(for the proof, see the appendix of [28]) a bound in terms ofu+(·, l) L 2(Ω) for some

xedfi  l ∈ (0, L), where  u + is the unstable component of the solution according to

(13).

Lemma 1.4.A choice of

(28) i∗∼ l−2 log
u+(·, l) L 2(Ω)

δ

yields

(29)

u+0 −uδ̃+0 L 2 (Ω) ≤ C1  ,δ

u+0 −uδ̃+0 Ḣ σ̃ (Ω) ≤ C2 l
−1 δ log

u+(·, l) L 2(Ω)

δ
=: δ̃

for someC1, C 2 > 0 independent ofl andδ.

Thus, using  u δ̃
+0 in place of  u +0 in the reconstruction, we obtain the following

convergence result.
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Theorem 1.1.Let the exact solutionu† of Problem1.1 satisfy

u†
+ ∈L2(0, L; Ḣσ+1+1/p ( ))Ω

for someσ ≥ 0, p > 1 and let the noisy data satisfy(19) with smoothed data
constructed as in Lemma1.4. Further,assume thatα =  α( δ̃) is chosen such that
α(δ̃)→ 1 and (1Γ −α(δ̃))̃δ→ 0 asδ→ 0. Then u − uα( δ̃),δ

L 2(0,L; Ḣ σ (Ω)) → 0 as
δ→ 0.

Since (1Γ −α) ∼ (1−α)−1 as  α 1, the condition (1Γ −α(δ̃))̃δ→ 0 means that

α(δ̃) must not converge to unity too fast as the noise level vanishes  a well-known–
condition in the context of regularisation of ill-posed problems.

2. Problem 2: Reconstruction of an interface

Still considering a harmonic function and its Cauchy data on part of the bound-

ary, the task is now to determine an interface characterised by vanishing Neumann,

Dirichlet or impedance conditions. A by now classical reference for this problem is

[1]. The regularised solution of Problem 1.1 will serve as a building block in the

reconstruction scheme.

Problem 2.1.Given  f ,  g in

 − u = 0 x ∈Ω  , y ∈(0, (x)),

Bu(x, y) = 0 x ∈∂Ω , y ∈(0, (x)),

u(x, 0) =  f (x) , u y(x, 0) =  g(x) x ∈Ω,

ndfi   : Ω → (0, L) such that one of the following three conditions (N)  ∂ νu = 0 or

(D)  u = 0 or (I)  ∂ νu +  uγ  = 0 holds on the interface de ned byfi  , that is,

(30)

(N) 0 =  ∂ ν̃u(x, (x)) =  u y(x, (x))  −∇ x(x) · ∇xu(x, (x)) or

(D) 0 =  u(x, (x)) or

(I) 0 =  ∂ ν̃u(x, (x)) + 1 +|∇x(x) |2γ(x)u(x, (x))

⎫
⎬

⎭
x ∈Ω.

In (30) we use the non-normalised outer normal direction ˜ν to arrive at a simpler

expression. Here and below∇ xu(x, (x)) = (u x i (x, (x))) d
i=1 , while∇ x [u(x, (x))] =

∇ xu(x, (x))+u y(x, (x)) ∇ x(x)) d
i=1 , where  d  ∈{1, 2}is the dimension of .Ω More-

over, we make the a priori assumption that the searched for domain is contained in

the cylinder Ω × (0, L).

The operator  B determines the boundary conditions on the lateral boundary

parts, which may also be of Dirichlet, Neumann, or impedance type.

To emphasise dependence on the parametrisation  , we denote the domain as

well as the xed and variable parts of its boundary as followsfi

(31)

D() = {(x, y) ∈Ω × (0, L) : y ∈(0, (x)) },
Γ0() = {(x, (x)) : x ∈Ω},
Γ1 = Ω  {× 0},
Γ2() = {(x, y) : x ∈∂Ω, y ∈(0, (x)) }
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(note that Γ2() depends on   only weakly via its endpoint set  (∂ )).Ω With this

we can write the forward problem as

(32)

 − u = 0 in  D(),

u = f on Γ 1,

Bu = 0 on Γ2(),

(N) ∂ν̃u = 0 or

(D) u = 0 or

(I) ∂νu + uγ  = 0

⎫
⎬

⎭
on Γ0().

The full inverse problem naturally splits into two subproblems: The linear se-

verely ill-posed Cauchy problem on  D(L) (which is our Problem 1.1) and a well-

posed (or maybe mildly ill-posed) nonlinear problem of reconstructing the curve  .
Thus a straightforward approach for solving Problem 2.1 would be to rst solve afi
regularised version of Problem 1.1 (e.g., in the way devised in Section 1) and then

applying Newton s method to recover’   from (30).

However, we follow a combined approach, writing Problem 2.1 as an operator

equation with the total forward operator  F , and applying a Newton scheme, in

which we make use of a regularised solution of Problem 1.1. Here the forward

operator is de ned byfi

F :  → uy(·, 0)− g where  u solves (32).

Its linearisation in the direction  d : Ω → R of the parametrisation   is given by

F ()d =  ∂ yv|Γ 1 , where  v solves

(33)
 − v = 0 in  D(),

v = 0 on Γ1,

Bv = 0 on Γ2(),

(N) ∂ν̃v(x, (x)) = ∇ x ·(d(x) ∇ xu(x, (x))) or

(D) v(x, (x)) = −uy(x, (x))d(x) or

(I) ∂ν̃v(x, (x))+ 1+|∇x(x) |2γ(x)v(x, (x)) = (G(u, )d)(x)

⎫
⎬

⎭
on Γ0(),

where in the Neumann case (N) we have used the PDE to nd the representationfi
given here and in the impedance case the boundary value function  G is de ned byfi

(G(u, )d)(x) := ∇ x d(x) ∇ xu(x, (x))

−γ(x)
∇ xd(x) · ∇x(x)

1 +|∇x(x) |2
u(x, (x)) + 1 +|∇x(x) |2uy(x, (x))d(x) .

Note that this is obtained in a similar manner to the formula for the shape de-

rivative [43, equation (3.1)], see also [21], and the identity  ds = 1 +|∇x(x) |2 dx
for the arclength parametrisation  s, but using ν̃ in place of  ν, as well as

xh(x) =
0

d(x)
, ν̃(x) =

−∇x(x)

1
, ν(x) =

1

1 +|∇x(x) |2
ν̃(x).
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Thus, computation of a Newton step  d = d (k) starting from some iterate  (k) =

 amounts to solving the system

(34)
 − z = 0 in  D(),

z =  f on Γ 1,

Bz = 0 on Γ2(),

zy = g on Γ 1,

(N) ∂ν̃z(x, (x)) = ∇ x ·(d(x) ∇ xu(x, (x))) or

(D) z(x, (x)) = −uy(x, (x))d(x) or

(I) ∂ν̃z(x, (x))+ 1+|∇x(x) |2γ(x)z(x, (x)) = (G(u, )d)(x)

⎫
⎬

⎭
on Γ0()

(note that  z y|Γ 1 − g =  F () +  F ()d ).
If we solve (a regularised version, cf. Section 1, of) the Cauchy problem on the

rectangular hold-all domain

(35)

 − z̄ = 0 in  D(L) = Ω × (0, L),

z̄ = f on Γ 1,

Bz̄ = 0 on Γ2(L) =  ∂Ω × (0, L),

∂y z̄ − g = 0 on Γ1

in advance, then by uniqueness of solutions to the Cauchy problem,  z coincides with

z̄ on  D(). Therefore, in each Newton step it only remains to compute  u (k) =  u
from the well-posed mixed elliptic boundary value problem (32) with   =  (k) and

update

(k+1) (x) =  (k) (x) − d(x),

where  d is de ned by (33) with ¯fi z in place of z. In the cases (N) and (I) this

requires solving a transport equation for  d.
We now provide the explicit formulas in the (altogether two dimensional) case

of  = (0Ω , M ). In doing so, we also discuss some numerical aspects.

In the Neumann case, we have

(36)

(N) (k+1) (x)

=  (k) (x) +
1

u
(k)
x (x, (k) (x))

x

0
∂ν̃ z̄( , ξ (k) (ξ)) dξ

=  (k) (x) +
1

u
(k)
x (x, (k) (x))

x

0
∂yz̄( , ξ (k) (ξ)) − (k) (ξ)∂x z̄( , ξ (k) (ξ)) d .ξ

If B denotes the lateral Dirichlet trace, then this also needs to be regularised, since

due to the identity  u(0, y) = 0 = u(M, y), the partial derivative  u x(·, y) has to

vanish at least at one interior point  x for each  y. To avoid problems arising from

division by zero, we thus solve a regularised version

( (k+1) − (k) ) = argmind 

M

0
∂ν̃z(x, (x)) − d

dx [d(x)u x(x, (x))]
2
dx

+
1

ρ1

M

0
d (x)2 dx +  ρ2(d(0) 2 +  d(M) 2)
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with a regularisation parameter 1
ρ1

and a penalisation parameter  ρ 2 enforcing our

assumption of  d to be known at the boundary points.

In the Dirichlet case, the Newton step computes as

(37) (D) (k+1) (x) =  (k) (x) −
z̄(x, (k) (x))

u
(k)
y (x, (k) (x))

,

a formula that remains valid for higher dimensional .Ω In case of lateral Dirichlet

conditions  Bu = u = 0 we have  u
(k)
y (0, (0)) =  u

(k)
y (M, (M )) = 0 and so would

have to divide by numbers close to zero near the endpoints. This can be avoided

by imposing Neumann conditions  Bu =  ∂ νu = 0 on the lateral boundary. Still,

the problem is mildly ill-posed and thus needs to be regularised for the following

reason. In view of the Implicit Function Theorem, the function  , being implicitly

de ned byfi  u(x, (x)) = 0, has the same order of di erentiability asff  u. However,

(37) contains an additional derivative of  u as compared to  . Obtaining a bound

on  u
(k)
y in terms of  (k) from elliptic regularity (cf., e.g., [16]) cannot be expected

to be possible with the same level of di erentiability.ff

In the impedance case, we have

G(u, )d = d
dx [a[, u]d] − b[, u]

with

(38)

a[, u](x) =

⎧
⎨

⎩

d
dxu(x, (x)) =  u x(x, (x)) if  (x) = 0,

1
(x)

γ(x)√
1+ (x) 2

u(x, (x)) +  u y(x, (x))) otherwise,

b[, u](x) = − 1 +  (x)2γ(x)uy(x, (x)) + d
dx

(x)√
1+ (x) 2

γ(x)u(x, (x))

=
(x)√

1+ (x) 2
3 γ(x) +

(x)√
1+ (x) 2

γ (x) +  γ(x) 2 u(x, (x))

and

φ(x) =  d(x) a[, u](x) a(x) =
b[ ,u]
a[ ,u] (x),

b(x) =  ∂ ν̃ z̄(x, 
(k) (x)) + 1 +  (x)2γ(x)z̄(x, (k) (x)).

Thus the Newton step amounts to solving d
dxφ(x) − a(x)φ(x) =  b(x), which yields

(39)

(I) (k+1) (x) =  (k) (x)− 1
a[ (k) ,u (k) ](x) exp −

x

0

b[ (k) ,u(k) ]
a[ (k) ,u(k) ](s) ds d(0) a[ (k) , u (k) ](0)

+
x

0
b(s) exp −

x

s

b[ (k) ,u(k) ]
a[ (k) ,u(k) ](t)  dt ds .

See Appendix B for details on the derivation of these formulas. Also here, due to

the appearance of derivatives of  u and  , regularisation is needed.

Expanding on the impedance case, in Section 3, we will prove convergence of a

regularised frozen Newton method for simultaneously recovering   and  γ.

Remark2.1 (Uniqueness). In the Neumann case  ∂ ν̃u = 0 on Γ0(), the linearisation

F () is not injective since  F ()d = 0 only implies that  d(x)u x(x, (x)) is constant.
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There is nonuniqueness in the nonlinear inverse problem  F () = 0 as well, as the

counterexample  f (x) = sin( x/Mπ  ), g(x) = 0, u(x, y) =  f (x) shows; all horizontal

lines  (x) ≡ c for c ∈R+ solve the inverse problem.

In the Dirichlet case  u = 0 on Γ 0(), linearised uniqueness follows from the

formula  z(x, (x)) = −uy(x, (x))d(x) provided  u y does not vanish on an open

subset  of Γ Γ0(). The latter can be excluded by Holmgren s theorem, since’ − u =

0, together with the conditions  u = 0,  u y = 0 on Γ0(), de nes a noncharacteristicfi
Cauchy problem and therefore would imply  u≡ 0 on  D(), a contradiction to  f = 0.

Full uniqueness can be seen from the fact that if   and  ̃solve the inverse problem,

then on the domain enclosed by these two curves (plus possibly some Γ2 boundary

part), u satis es a homogeneous Dirichlet Laplace problem and therefore has tofi
vanish identically. This, on the other hand, would yield a homogeneous Cauchy

problem for  u on the part  D(min {, }̃) that lies below both curves and thus imply

that u vanishes identically there. Again we would then have a contradiction to

f = 0.

This uniqueness proof would also work with Neumann or impedance instead of

Dirichlet conditions on the lateral boundary Γ2.

For uniqueness in the impedance case, see also [34, Theorem 2.2].

2.1. Reconstructions.Figure 2 shows reconstructions of  (x) at 1 per cent noise

in the ux datafl  g (with respect to the  L 2 norm). Here the actual curve was de nedfi
by

(40) (x) = †(x) :=  L(0.8 + 0.1 cos(2 xπ ))

with  L = 0.1, and the starting value was far from the actual curve (taken to be

constant at  y = 0.2L).

The left panel shows the case of Dirichlet conditions on the interface.No further

progress in convergence took place after iteration 5. The lateral boundary condi-

tions were of homogeneous Neumann type in order to avoid singularities near the

corners.
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Figure 2. Recovery of  (x) from data in with 1% noise: Dirichlet

case (left), Neumann case (middle), impedance case (right)

In the middle and rightmost panels of Figure 2 we only show the rst (green) andfi
second (blue) iterations as the latter was e ective convergence.ff In the leftmost panel
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we additionally show iteration 3 (navy blue), iteration 4 (purple) and iteration 5

(red); the latter being e ective convergence.ff
The relative errors at di erent noise levels are given in the second column offf

Table 1.

Table 1. Relative errors for reconstructions of   at several noise levels

− †
L 2(Ω) /

†
L 2(Ω)

noise level (D),  L = 0.1 (D), L = 0.5 (N),  L = 0.1 (I), L = 0.1
1% 0.0038 0.0158 0.0018 0.0077

2% 0.0084 0.0205 0.0093 0.0087

5% 0.0198 0.0380 0.0144 0.0110

10% 0.0394 0.0735 0.0563 0.0158

The same runs were also done with a larger distance  L and the actual curve still

according to (40). This resulted in the relative errors shown in column three of

Table 1.

The middle and right panels of Figure 2 show reconstructions of  (x) in the case

of Neumann and impedance conditions (γ = 0.1) on the interface. The starting

value was again relatively far from the actual curve and there was again 1% noise

in the data. No further progress in convergence took place after iteration 2. For

the relative errors at di erent noise levels, see the last two columns of Table 1.ff

3. Problem 3: Reconstruction of an interface and the impedance
coefficient

Finally, we consider the problem of reconstructing both the interface character-

ized by a homogeneous impedance condition and the spatially varying impedance

coe cient.ffi Again, the solution of Problem 1.1 as devised in Section 1 will serve as

a building block in the reconstruction procedure.

Problem 3.1.Given two pairs of Cauchy data (f1, g 1), (f2, g 2) in

− uj =0 x ∈Ω , y ∈(0, (x)),

Bu j (x, y) =0 x ∈∂Ω  , y ∈(0, (x)),

uj (x, 0) = f j (x) , ujy (x, 0) =gj (x) x ∈Ω

for j = 1, 2, ndfi   : Ω → (0, L) and γ̃ : Ω→ (0,∞ ) such that

(41)
0 =  B ,˜γuj :=∂ν̃uj (x, (x)) + γ̃(x)uj (x, (x))

=ujy (x, (x))  −∇ x(x) · ∇xuj (x, (x)) + γ̃(x)uj (x, (x)) x ∈Ω,

where γ̃ is the combined coe cient de ned by ffi fi γ̃(x) = 1 +|∇x(x) |2γ(x).

The setting is as in Problem 2.1 otherwise and using the notation (31) we rewrite

the forward problem as

(42)

− uj =0 in D(),

uj =fj on Γ1,

Buj =0 on Γ2(),

B,˜γuj =0 on Γ0().
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Note that  u j actually satis es the Poisson equation on the hold-allfi domain  D(L)

with a xed upper boundary de ned byfi fi  L ≥ . We also point out that using the

weak form of the forward problem

u − fj ∈H1
♦(D()) := {w ∈Ḣ1( ) :Ω Bw = 0 on Γ2() , w = 0 on Γ1}

and for all

w ∈H1
♦(D()) :

Ω

(x)

0
(∇ u· ∇w)(x, y) dy + γ̃(x)(u ·w)(x, (x)) dx = 0,

no derivative of   nor ˜γ is needed for computing  u.

The forward operator  F = (F 1, F 2) is de ned byfi

Fj :  → ujy (x, 0)− gj (x) where  u j solves (42),  j  ∈{1, 2}.
Its linearisation is de ned byfi  F j ()[d, dγ] = v j y|Γ 1 , where  v j solves

− vj =0 in D(),

vj =0 on Γ1,

Bvj =0 on Γ2(),

B,˜γvj =G(uj , , ˜γ)(d, dγ) on Γ0(),

cf., (41), where

(43)

G(uj , , ˜γ)(d, dγ))(x)

:= − uj yy (x, (x))  −∇ x(x) · ∇xuj y (x, (x)) + γ̃(x)uj y (x, (x)) d

+ ∇ xd(x) · ∇xuj (x, (x)) − dγ(x)uj (x, (x)).

Using the PDE we have the identity

G(uj , , ˜γ)(d, dγ)

= ∇ x d(x) ∇ xuj (x, (x)) − d(x)˜γ(x)ujy (x, (x)) − dγ(x)uj (x, (x)).

Thus, computation of a Newton step (d, dγ) = (d (k) , dγ (k) ) starting from some

iterate ( (k) , γ̃(k) ) = (, γ̃) amounts to solving the system

(44)

− zj = 0 in  D(),
zj = f j on Γ1,

Bzj = 0 on Γ2(),
zj y − gj = 0 on Γ1,
B,˜γzj = G(u j , , ˜γ)(d, dγ) on Γ0()

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

j  ∈{1, 2}

(note that  z j = u j +  v j and  z j y|Γ 1 − gj =  F j () +  F j ()(d, dγ)).

Using the regularised (according to Section 1) solutions ¯zj of the Cauchy problem

on the cylindrical hold-all domain

(45)

− z̄j =0 in  D(L) = Ω × (0, L),

z̄j =fj on Γ1,

Bz̄j =0 on Γ2(L) =  ∂Ω × (0, L),

z̄j y − gj =0 on Γ1,
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this reduces to resolving the following system for (d, dγ) on Γ 0()

(46)
G(u1, , ˜γ)(d, dγ) =B ,˜γ z̄1,

G(u2, , ˜γ)(d, dγ) =B ,˜γ z̄2.

With the pre-computed regularised solutions z̄j of the Cauchy problem (45) one

can therefore carry out a Newton step by computing  u
(k)
j =  u j from the well-posed

mixed elliptic boundary value problem (42) with   = (k) , γ̃ = γ̃(k) and updating

(k+1) (x) =  (k) (x) − d(x), γ̃(k+1) (x) = γ̃(k) (x) − dγ(x)

with  d, dγ solving (46).

To obtain more explicit expressions for  d and  dγ from (46), one can apply an

elimination strategy, that is, multiply the boundary condition on Γ0() with  u j±1 (x)
and subtract, to obtain

B ,˜γv1 u2 − B,˜γv2 u1 = u2∇ x · d ∇ xu1 − u1∇ x · d ∇ xu2 − d γ̃ u1yu2 − u2yu1

= ∇x · d u2∇ xu1 − u1∇ xu2 − d ∇ x u2y∇ xu1 − u1y∇ xu2 + γ̃ u1yu2 − u2yu1

=: ∇ x · dW − d β̃

with the Wronskian

(47) W [, u 1, u 2] :=  u 2() ∇ xu1() − u1() ∇ xu2()

and where we have skipped the arguments (x) of  b 1, b2, d, dγ, and (x, (x)) of

u1,  u 2 and its derivatives for better readability.

In the (altogether two dimensional) case of  = (0Ω , M ), with the abbreviation

W (k) :=  W [ (k) , u
(k)
1 , u

(k)
2 ], β̃(k) := β̃[ (k) , u

(k)
1 , u

(k)
2 ], this yields the explicit formulas

(48)

d(x) = 1
W (k) (x) exp −

x

0

β̃(k)

W (k) (s)  ds d(0)W (k) (0)

+
x

0
b̃(s) exp −

x

s

β̃(k)

W (k) (t) dt ds

with b̃(x) = ∂ν̃ z̄1(x, 
(k) (x))+ γ̃(k) (x)z̄1(x, 

(k) (x)) u
(k)
2 (x, (k) (x))

− ∂ν̃ z̄2(x, 
(k) (x))+ γ̃(k) (x)z̄2(x, 

(k) (x)) u
(k)
1 (x, (k) (x)),

dγ(x) = 1
u(k)

1 (x, (k) (x))
d

dx d(x) u
(k)
1x (x, (k) (x)) −d(x)˜γ(k) (x)u

(k)
1y (x, (x)) −b1(x)

= 1
u(k)

1 (x, (k) (x))
d

dx d(x)W (k) (x)

−d(x) γ̃(k) (x)u
(k)
1y (x, (x))+ d

dx
u(k)

1x (x, (k) (x))
W (k) (x) −b1(x) .

A similar elimination procedure will be useful in the proof of linearised uniqueness

in Section 3.2.2.

3.1. Reconstructions.In Figure 3 we show a simultaneous reconstruction of  (x)

and γ̃(x) obtained from excitations with  f 1(x) = 1 +  x +  x2 and  f 2(x) = 4x2 −3x3

(chosen to comply with the impedance conditions  Bu = ∂ νu + u = 0 at  x  ∈{0, M },
M = 1).

Assuming the boundary values of  and ˜γ to be known, we used them in our

(linear; in the concrete setting constant) starting guesses. The actual values are
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Figure 3. Simultaneous recovery of  (x) and ˜γ(x)

shown in black (solid), the reconstructed in red, the starting guesses as dashed

lines.

The relative errors at di erent noise levels are listed in Table 2.ff

Table 2. Relative errors for reconstructions of   and ˜γ at several

noise levels

noise level − †
L 2(Ω) /

†
L 2(Ω) γ̃− γ̃†

L 2(Ω) / γ̃†
L 2(Ω)

1% 0.0145 0.0251

2% 0.0152 0.0263

5% 0.0191 0.0355

10% 0.0284 0.0587

While the numbers suggest approximately logarithmic convergence and this is

in line with what is to be expected for such a severely ill-posed problem, our result

in Section 3.2 is about convergence only. Proving rates would go beyond the scope

of the objective of this paper.

3.2. Convergence.Proving convergence of iterative regularisation methods for

nonlinear ill-posed problems always requires certain conditions on the nonlinearity

of the forward operator. The one we will be able to verify here is range invariance

of the linearised forward operator [27], see (52). These can be veri ed for a slightlyfi
modi ed formulation of the problem; in particular, instead of a reduced formulationfi
involving the parameter-to-state map as used in Section 3.1, we consider the all-at-

once formulation (involving a second copy of γ̃)

(49)

F̃1(u1, , ˜γ1) =0,

F̃2(u2, , ˜γ2) =0,

P (γ̃1, γ̃2) =0,

where

(50) F̃j : (uj , , ˜γj ) →

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− uj

uj|Γ 1 − fj

uj y|Γ 1 − gj

Buj |Γ 2( )

B,˜γuj|Γ 0( )

|Σ − 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, j  ∈{1, 2}, P (γ̃1, γ̃2) := γ̃1 − γ̃2
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with a given value  0 on the subset Σ ⊆ ∂  of the boundary.Ω The rst componentfi
of F̃j means that we consider the Poisson equation on the hold-all domain  D(L).

The penalty term de ned byfi  P enforces both copies of γ̃ to coincide in the limit of

the convergent Newton iterations.

3.2.1. Range invariance of the forward operator.The forward operator F̃ : X → Y
de ned byfi F̃ (u1, u 2, , ˜γ1, γ̃2) = (F̃1(u1, , ˜γ1), F̃2(u2, , ˜γ2)) along with its linearisa-

tion

(51) F̃j (uj , , ˜γj )(duj , d, dγ j
) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− duj
duj |Γ 1

duj y|Γ 1

Bduj |Γ 2( )

B,˜γj duj |Γ 0( ) −G(uj , , ˜γ)(d, dγ)

d |Σ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and the operator  r = (r u 1, r u 2, r , r γ̃ 1, r γ̃ 2) de ned so that [fi B ,˜γj −B 0 ,γ̃0,j ]uj +

G(u0,j , 0, γ̃0,j )( − 0), r  jγ (u1, u 2, , ˜γ1, γ̃2)) = 0, that is,

ru j (u1, u 2, , ˜γ1, γ̃2) = u j − u0,j ,

r (u1, u 2, , ˜γ1, γ̃2) = − 0,

r  jγ (u1, u 2, , ˜γ1, γ̃2) =
1

u0,j ( 0)

× − u0,j yy ( 0)  −∇ x 0(x) · ∇xu0,j y ( 0) + γ̃0(x)u0,j y ( 0) ( − 0)

+ ∇ x( − 0)· ∇xu0,j ( 0) + uj y ()  −∇ x(x) · ∇xuj ()

+ γ̃(x)uj () − uj y ( 0)  −∇ x 0(x) · ∇xuj ( 0) + γ̃0(x)uj ( 0)

j  ∈{1, 2}, satis es the di erential range invariance conditionfi ff

(52) for all  ξ ∈U ∃r(ξ) ∈X :=  V 2 ×X × (X γ̃)2 : F̃ (ξ)− F̃ (ξ0) = F̃ (ξ0) r(ξ),

in a neighborhood  U of the reference point  ξ 0 := (u0,1, u 0,2, 0, γ̃0,1, γ̃0,2). Here we

use the abbreviation  u() for (u())(x) =  u(x, (x)) and

ξ := (u1, u 2, , ˜γ1, γ̃2).

Since the  u j do not necessarily need to satisfy the PDE, we have to use the repre-

sentation (43) of  G here.

Along with the identity (52), the convergence proof according to [27] requires an

estimate on the di erence betweenff  r and the shifted identity, which can be written

as

r(u1, u 2, , ˜γ1, γ̃2) − (u1, u 2, , ˜γ1, γ̃2) − (u0,1, u 0,2, 0, γ̃0,1, γ̃0,2)

= 0, 0, 0, 1
u0,1 ( 0) (I1 +  II 1 +  III 1),

1
u0,2 ( 0) (I2 +  II 2 +  III 2), 0

T
,
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with

Ij =γ̃j (uj () − u0,j ( 0) − γ̃0,j u0,j y ( 0)( − 0)

=γ̃j (uj − u0,j )() − (uj − u0,j )( 0) + (γ̃j − γ̃0,j )(u0,j () − u0,j ( 0))

+ γ̃0,j u0,j () −u0,j ( 0) −u0,j y ( 0)( − 0) ,

II j =u0,j y () −u0,j y ( 0) −u0,j yy ( 0)( − 0),

III j =  −∇ x 0,j · ∇x u0,j () −u0,j ( 0) −u0,j y ( 0)( − 0)

 −∇ x · ∇x (uj − u0,j )() − (uj −u0,j )( 0)

 −∇ x( − 0)· ∇x u0,j () − u0,j ( 0) +  u j ( 0) − u0,j ( 0) .

This representation will allow us to estimate  r(ξ) − (ξ− ξ0) in appropriate norms.

The function spaces are supposed to be chosen according to

V ⊆W 2,∞ (D(L)), X ⊆W 1,p( )Ω ∩L∞ ( )Ω , X γ̃ =  L p( )Ω .

The fact that  X continuously embeds into  L ∞ ( ) allows us to guaranteeΩ  ≤ L
for all   with − 0 X small enough. In this setting, using

|v(x, (x)) − v(x, 0(x))|=
1

0
vy(x, 0(x) +  s((x) − 0(x))) ds ((x) − 0(x))

 ≤ vy L ∞ (D( (̄ ))) |(x) − 0(x)|,

|v(x, (x)) − v(x, 0(x)) − vy(x, 0(x))|

=
1

0

1

0
vyy(x, 0(x) +  s s((x) − 0(x))) s ds ds ((x) − 0(x))2

 ≤ vyy L ∞ (D( (̄ ))) |(x) − 0(x)|2,
we can further estimate

Ij L p (Ω) ≤ γ̃j L p (Ω) uj y − u0,j y L ∞ (D(L)) − 0 L ∞ (Ω)

+ γ̃j − γ̃0,j L p (Ω) u0,j y L ∞ (D(L)) − 0 L ∞ (Ω)

+ 1
2 γ̃0,j L p (Ω) u0,j yy L ∞ (D(L)) − 0

2
L ∞ (Ω) ,

II j L p (Ω) ≤L1/p 1
2 u0,j yyy L ∞ (D(L)) − 0

2
L ∞ (Ω)

+ uj yy − u0,j yy L ∞ (D(L)) − 0 L ∞ (Ω) ,

III j L p (Ω) ≤∇ x 0,j L p (Ω)∇ xu0,j yy L ∞ (D(L)) − 0
2
L ∞ (Ω)

+ ∇ x L p (Ω)∇ xuj y  −∇ xu0,j y L ∞ (D(L)) − 0 L ∞ (Ω)

+ ∇ x  −∇ x 0 L p (Ω) ∇ xu0,j y L ∞ (D(L)) − 0 L ∞ (Ω)

+ ∇ xuj ( 0)  −∇ xu0,j ( 0) L ∞ (Ω) .

Altogether, choosing  u 0,j to be smooth enough and bounded away from zero on  0

(53) 1
u0,j ( 0) ∈L∞ ( )Ω  , u0,j y , u 0,j yy ∈W 1,∞ (D(L))  , j  ∈{1, 2},
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we have shown that

(54) r(ξ) − (ξ−ξ0) V 2×X ×(X γ̃ )2 ≤ C ξ− ξ0
2
V 2×X ×(X γ̃ )2

for some  C > 0. Referring to (53), note that in our all-at-once setting,  u0,j does not

necessarily need to satisfy a PDE, which (up to closeness to  u †) allows for plenty

of freedom in its choice. Analogously to, e.g., [30, 31] this provides us with the

estimate

(55)
∃cr ∈(0, 1)∀ξ∈U(⊆ V 2 ×X × (X γ̃)2) : r(ξ) − r(ξ†) − (ξ− ξ†) X

≤ cr ξ−ξ†
X ,

where  ξ † = (u†
1, u

†
2, 

†, γ̃†, γ̃†) is the actual solution.

3.2.2. Linearised uniqueness.Results on uniqueness of the nonlinear Problem 3.1

can be found in [4, 43]. In particular, linear independence of the functions  g 1, g 2 is

su cient for determining bothffi   and ˜γ in (41).

Here we will show linearised uniqueness, as this is another ingredient of the con-

vergence proof of Newton s method.’ More precisely, we show that the intersection of

the nullspaces of the linearised forward operator F̃ (u0,1, u 0,2, 0, γ̃0,1, γ̃0,2) and the

penalisation operator  P is trivial. To this end, assume thatF̃ (u0,1, u 0,2, 0, γ̃0,1, γ̃0,2)

(du1, du 2, d, dγ 1
, dγ

2
) = 0 and  P (dγ

1
, dγ

2
) = 0, where the latter simply means

dγ
1

=  dγ
2

=: dγ. From the rst four lines in (51) we conclude thatfi  du j satis es afi
homogeneous Cauchy problem and therefore has to vanish on  D( j ) for  j  ∈{1, 2}.
Thus,  B ,˜γj duj = 0 and by an elimination procedure similar to the one that led to

(48) but using the representation (43) of  G we obtain

(56) 0 =  W [, u 1, u 2]· ∇xd + !β[, u 1, u 2]d in Ω, d = 0 on Σ

with  W as in (47), !β[, u 1, u 2] = −(u1 yy()  −∇ x · ∇xu1 y() + ˜ uγ 1 y))u 2() +

(u2 yy()  −∇ x · ∇xu2 y() + ˜ uγ 2 y))u 1(). Thus, under the assumption that the

Wronskian  W does not vanish and that  contains the in ow boundaryΣ fl

(57) {x ∈∂  :Ω νΩ ·W < 0 } ⊆ Σ,

with  ν Ω denoting the outward normal to  ∂ ,Ω uniqueness of the solution to the

above boundary value problem (56) for a transport equation (that follows from the

method of characteristics, see, e.g., [14, Chapter 3, Section 3.2]) yields  d = 0 and

therefore  dγ = 0. Assuming that the Wronskian is bounded away from zero at the

exact solution

(58) ∃c > 0 : |W [ †, u †
1, u

†
2]| ≥c a.e. on Ω

by a continuity argument therefore allows us to conclude linearised uniqueness when

linearising su ciently close to the exact solution.ffi

3.2.3. Convergence of Newton type schemes.We now combine the results from Sec-

tions 3.2.1, 3.2.2 to prove convergence of two Newton type schemes for solving

Problem 3.1.
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(a) Regularised frozen Newton with penalty.
We apply a frozen Newton method with conventional Tikhonov (and no fractional)

regularisation but with penalty  P as in [30, 31].

(59)  ξ δ
n+1 =  ξ δ

n + (K K +P P +  εnI)
−1 K (hδ−F̃ (ξδn))−P P ξδn +  εn(ξ0−ξδn) ,

where  K = F̃ (ξ0) and  K denotes the Hilbert space adjoint of  K : X → Y and

(60)
X =  H 3+ (D(L))2 ×Hs( )Ω ×L2( )Ω 2,

Y = L2(D(L)) ×L2(Γ1)
2 ×L2(Γ2(L)) ×L2( )Ω ×L2( )Σ

2

with  s > d/2, s ≥ 1, where  d  ∈{1, 2} is the dimension of .Ω The regularisation

parameters are taken from a geometric sequence  εn = ε 0θn for some  θ ∈(0, 1), and

the stopping index is chosen such that

(61) εn∗(δ) → 0 and  δ 2/εn∗(δ)−1 → 0 as  δ → 0,

where  δ is the noise level according to

(62) (f δ1 , f
δ
2 , g

δ
1, g

δ
2) − (f1, f 2, g 2, g 2) L 2 (0,T ;L 2(Ω)) ≤ .δ

An application of [27, Theorem 2.2] together with our veri cation of range in-fi
variance (52) with (54) and linearised uniqueness yields the following convergence

result.

Theorem 3.1.Letξ0 ∈U := Bρ(ξ†) for some  >ρ  0 su ciently small, assume thatffi
(53), (57), (58), andN (K)⊥  ⊆N (P ) hold and let the stopping indexn∗ =  n ∗(δ)

be chosen according to(61).
Then the iterates(ξδn)n {∈ 1,...,n∗(δ)} are well-defined by(59), remain inBρ(ξ†)

and converge inX (defined as in(60)), ξδn∗(δ) −ξ†
X → 0 asδ→ 0.

In the noise free caseδ = 0, n∗(δ) =∞ we haveξn − ξ†
X → 0 asn  →∞ .

(b) Frozen Newton with penalty, applied to fractionally regularised prob-
lem.
Replace F̃j in (50) by

(63) F̃ α
j : (u+j , u −j , , ˜γj ) →

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂αy u
L
+j −

√
− xu

L
+j

∂yu−j −
√

− xu−j

u+j |Γ 1 − 1
2(f +

√
− x

−1
g)

u−j |Γ 1 − 1
2(f +

√
− x

−1
g)

(Bw+j , Bu −j )|Γ 2(L)

B,˜γ(u+j +  u −j )|Γ 0( )

|Σ − 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, j  ∈{1, 2},

where  ∂ α
y w is the fractional DC derivative with endpoint 0 and  u L (y) = u(L − y),

cf. Section 1. Range invariance and linearised uniqueness can be derived anal-

ogously to the previous section (noting that the only nonlinear term is the one

in the next to last line and coincides with the one in (50)) and therefore we

can apply (59) with F̃ α in place of F̃ and conclude its convergence to a solu-

tion (u ,α †
+1 , u

,α †
−1 , u

,α †
+2 , u

,α †
−2 , 

,α † , γ̃ ,α †
1 = γ̃ ,α †

2 ) of (49) with F̃ α
j (u+j , u −j , , ˜γj ) in place

of F̃j (uj , , ˜γj ) for any xedfi  α ∈(0, 1). With the abbreviation

ξα := (uα+,1, u
α
−,1, u

α
+,2, u

α
−,2, 

α , γ̃α1 = γ̃α2 ),

we thus have the following convergence result.

Licensed to Texas A & M Univ. Prepared on Fri May 30 11:18:52 EDT 2025 for download from IP 165.91.113.149.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



672 BARBARA KALTENBACHER AND WILLIAM RUNDELL

Corollary 3.1.Let ξα0 ∈U := Bρ(ξ ,α † ) for some  >ρ  0 su ciently small, assumeffi
that (53), (57), (58), andN (K)⊥  ⊆N (P ) hold and let the stopping indexn∗ =

n∗(δ) be chosen according to(61).
Then the iterates(ξ ,α δ

n )n {∈ 1,...,n∗(δ)} are well-defined by(59) with F̃ := F̃ α(δ) ,
remain inBρ(ξ†) and converge inX (defined as in(60) withH3+ (D(L))2 replaced
byH3+ (D(L))4) ξ ,α δ

n∗(δ) − ξ ,α †
X → 0 as δ → 0. In the noise free caseδ = 0,

n∗(δ) =∞ we haveξαn − ξ ,α †
X → 0 asn  →∞ .

It remains to estimate the approximation error ( ,α † − †, γ̃ ,α † −γ̃†). In Section 1

we have seen that  u †
j =  u 1,†

+,j +  u 1,†
−,j where  u ,α †

−,j − u1,†
−,j = 0 and

u ,α †
+,j (x, y) −u1,†

+,j (x, y) = 1
2

∞

i=1

(fij + 1√
λ i
gij ) 1

E ,α 1 (−
√
λ i yα )

− exp( λiy) φi (x).

Moreover, subtracting the two identities  B ,α † ,γ̃ ,α † u ,α †
+,j = 0, B † ,γ̃† u†

+,j = 0, we

arrive at the following di erential algebraic system forff  d =  ,α † − †,  dγ = γ̃ ,α † −γ̃†

−∇xu
†
+,1( †)· ∇xd + d

α
1 d + u

†
+,1( †) dγ =bα1 ,

−∇xu
†
+,2( †)· ∇xd + d

α
2 d + u

†
+,2( †) dγ =bα2 ,

where

dαj (x) =
1

0
I(u ,α †

+,j,y , 
,α † , γ̃ ,α † ; x, †(x) +  θ( ,α † (x) − †(x))) d ,θ

bαj (x) = − I(u ,α †
+,j −u†

+,j , 
,α † , γ̃ ,α † ;  x, ,α † (x)),

I(u, , ˜γ; x, y) =u y(x, y)  −∇ x(x) · ∇xu(x, y) + ˜uγ (x, y).

Assuming that the Wronskian

(64) W † :=  u †
+,2( †)∇ xu

†
+,1( †) − u†

+,1( †)∇ xu
†
+,2( †)

and one of the factors  u †
+,j (

†) of  dγ are bounded away from zero,

(65) ∃c > 0 : |W †| ≥c, max{|u†
+,1( †)|,|u†

+,2( †)|} ≥c a.e. on Ω,

we can conclude existence of a constant  C > 0 independent of  α (note that  W † and

u†
+,j do not depend on  α) such that

,α † − †
L 2(Ω) + γ̃ ,α † −γ̃†

L 2(Ω) ≤ C
2

j=1

bαj L 2(Ω) ≤ C̃
2

j=1

u ,α †
+,j −u†

+,j C(Ω×(l,L))

and in the (altogether 2-dimensional) case  = (0Ω , M ) where the transport equation

does not lead to a loss of regularity, even

,α † − †
C 1 (Ω) + γ̃ ,α † −γ̃†

C(Ω) ≤ C
2

j=1

bαj C(Ω) ≤ C̃
2

j=1

u ,α †
+,j −u†

+,j C(Ω×(l,L)) .

The latter can be estimated by means of Lemma 1.4 in Section 1.

Combining this with Corollary 3.1 we have the following convergence result.
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Theorem 3.2.Assume(65) withW † according(64) and letα(δ) → 0 as δ →
0. Moreover,let the assumptions ofCorollary 3.1 hold for α =  α(δ) , and let
(ξα(δ),δ

n )n {∈ 1,...,n∗(δ)} be defined by(59), (61) withF̃ := F̃ α(δ) . Then
"

α(δ),δ
n∗(δ) − †

L 2(Ω) + γ̃α(δ),δ
n∗(δ) − γ̃†

L 2(Ω) → 0 asδ→ 0 if dim( ) = 2Ω ,
α(δ),δ
n∗(δ) − †

H 1(Ω) + γ̃α(δ),δ
n∗(δ) − γ̃†

L 2(Ω) → 0 asδ→ 0 if dim( ) = 1Ω .

Appendix A. Cauchy 1

Lemma A.1.For anyλ̂1 ≥ 0, α ∈(0, 1), p ∈(1, 1
1−α ), p̂ := 1+ 1

p and the constant
(66)

C( , p,α l̄) := E , /α α 2 L ∞ (R+ )(C̃0( , /α α 2) + C̃1( , /α α 2)) p̂
α−p̂

p̂
max{1,

√
l̄}α−p̂,

withC̃0, C̃1 as in (70), the following estimate holds

sup
ˆ>λ λ̂1

E ,α 1(−λ̂·α )  −·α−1E ,α α (−λ̂·α ) L p (0,l̄) ≤ C( , p,α l̄) (1−α).

Proof. Abbreviating

gμ(y) = 1
(Γ μ) y

μ−1 , e ,α β (y) =  e ,α β (y; λ̂) =  y β−1E ,α β (−ˆyλ α ),

the quantity to be estimated is  w(y) :=  E ,α 1(−ˆyλ α )−yα−1E ,α α (−ˆyλ α ) =  e ,α 1(y)−
e ,α α (y). Using the Laplace transform identities

(67) (Lgμ)(ξ) =  ξ−μ , (Le ,α β )(ξ) =
ξα−β

λ̂ + ξα
,

we obtain, for some  β ∈(α− 1, α) yet to be chosen,

(Lw)(ξ) =
ξα−1 − 1

λ̂ + ξα
=

ξα−β

λ̂ +  ξα
(ξβ−1 − ξβ−α )

= (Le ,α β )(ξ) (Lg1−β)(ξ) − (Lgα−β )(ξ) ,

hence, by Young s Convolution Inequality,’

w L p (0,l̄) = e ,α β ∗(g1−β − gα−β ) L p (0,l̄)  ≤ e ,α β L q (0,l̄) g1−β − gα−β L r (0,l̄)

provided 1
q + 1

r = 1 + 1
p .

For the rst factor, under the conditionfi

(68) 1 ≤ q <
1

1 −β
,

that is necessary for integrability near zero, we get

(69) e ,α β L q (0,l̄)  ≤ E ,α β L ∞ (R+ )
max{1, l̄}(β−1)+1/q

((β− 1)q + 1)1/q
.

The second factor can be estimated by applying the Mean Value Theorem to the

function  θ(y;  , α β) := gα−β (y) as follows

g1−β(y) − gα−β (y) =  θ(y, 1) −θ(y; α) =
d

dα
θ(y; ,̃ α β) (1 −α) = θ̃(y; ,̃ α β) (1 −α),
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where

θ̃(y; ,̃ α β) =y α̃−β−1 1
Γ ( α̃−β) log(y)− Γ

Γ 2 ( α̃−β)

=gα̃−β (y) log(y) − (log )Γ ( α̃−β)

for some α̃ ∈ ( ,α  1), with the digamma function  ψ = Γ
Γ = (log ◦ )Γ , for which

ψ
Γ = Γ

Γ 2 is known to be an entire function as is also the reciprocal Gamma function,

thus

(70) C̃0( , α β) := sup
α̃∈( ,α 1)

|ψΓ ( α̃−β)|< ∞ , C̃1( , α β) := sup
α̃∈( ,α 1)

|1Γ ( α̃−β)|< ∞ .

Integrability near  y = 0 of (y α̃−β−1 )r and of (yα̃−β−1 log(y))r holds iff

(71) 1 ≤ r <
1

1 − α̃ +  β
and yields

(72) g1−β − gα−β L r (0,l̄) ≤ sup
α̃∈( ,α 1)

θ̃(·, ˜, α β) L r (0, ) (1 −α),

where

(73) θ̃(·, ˜, α β) L r (0, ) ≤ (C̃0( , α β) + C̃1( , α β))
max{1, l̄}(α−β−1)+1/r

((α−β− 1)r + 1)1/r
.

Conditions (68), (71) together with α̃ ∈( ,α  1) are equivalent to

1

p
=

1

q
+

1

r
− 1  > 1 − α̃ and 1  < β +

1

q
< α̃ +

1

p

which together with α̃ ∈( ,α  1) leads to the assumption

1

p
> 1 −α

and the choice min{0, 1− 1
q}<  < β α + 1

p − 1
q.

To minimize the factors1

c1(q, β) = ((β − 1)q + 1)−1/q , c2(r, α −β) = ((α−β− 1)r + 1)−1/r

in (69), (73) under the constraints (68), (71) and1
q + 1

r = 1 +1
p we make the choice

1
q = 1

r = 1
2(1 + 1

p), β = /α 2 that balances the competing pairs  q ↔r, β↔α −β
and arrive at

c1(q, β) =  c 2(r, α −β) =

#
1 + 1

p

α− 1 + 1
p

$ 1+ 1
p

.

Proof of Lemma1.2. To prove (23), we employ an energy estimate for the ode
satis ed byfi  v(y) :=  E ,α 1(−ˆyλ α ) − exp(−ˆyλ ) =  u ,α λ̂ (y) −u1,λ̂ (y),

∂yv + ˆvλ  = −(∂αy − ∂y)u ,α λ̂ =: ˆw,λ

where  w = −1
λ̂
(∂αy − ∂y)E ,α 1(−ˆyλ α ) =  E ,α 1(−ˆyλ α ) − yα−1E ,α α (−ˆyλ α ).

1We do not go for asymptotics with respect tol̄ since we assumēl to be moderately sized
anyway.
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Testing with |v(τ )|p−1 sign(v(τ )), integrating from 0 to  t, and applying H ölder s’
and Young s inequalities yields, after multiplication with’  p,

(74) |v(y)|p + λ̂
y

0
|v(τ )|p dτ ≤ λ̂

y

0
|w(τ )|p d  ,τ

in particular

v L ∞ (0,l̄) ≤ λ̂1/p w L p (0,l̄) , v L p (0,l̄)  ≤ w L p (0,l̄)

for any l̄ ∈(0,∞ ]. The result then follows from Lemma A.1.

Proof of Lemma1.3. For the second estimate, with  v = e ,α 1 − e1,1 as in the proof

of Lemma 1.2, we have to bound  ∂ yv = −λ̂(e ,α α − e1,1), where

L(e ,α α − e1,1)(ξ) =
1

λ̂ +  ξα
−

1

λ̂ +  ξ
=

ξ−ξα

(λ̂ + ξα)(λ̂ + ξ)

=
ξ1−γ

λ̂ + ξ

ξα−β

λ̂ + ξα
(ξβ+γ−α − ξβ+γ−1 )

for ,  >β γ  0 with  β +  < γ α yet to be chosen. In view of (67) we thus have

e ,α α − e1,1 =  e 1,γ ∗e ,α β ∗(gα−β−γ − g1−β−γ ) =: e1,γ ∗e ,α β ∗dg.

Now, applying the elementary estimate

a∗b L ∞ ( 2, 3 ) = sup
y∈( 2 , 3)

y

0
a(y − z)b(z) dz

= sup
y∈( 2 , 3)

y− 1

0
a(y − z)b(z)  dz +

y

y− 1

a(y − z)b(z) dz

≤ a L ∞ ( 1 , 3) b L 1(0, 3− 1) + b L ∞ ( 2− 1, 3) a L 1(0, 1)

for 0  < 1 < 2 < 3, a, b ∈L1(0, 3), a|( 1 , 3) ∈L∞ ( 1, 3), b|( 2− 1 , 3) ∈L∞ ( 2 −

1, 3), twice, namely with  a = e 1,γ , b =  e ,α β , 1 =  l/3, 2 =  l, 3 =  l and with

a = e ,α β , b = d g, 1 =  l/3, 2 = 2l/3, 3 =  l, along with Young s Convolution’
Inequality, we obtain

e 1,γ∗(e,α β ∗ dg) L ∞ (l,l)

≤ e 1,γ L ∞ (l/3,l) e ,α β ∗ dg L 1 (0,l) + e ,α β ∗ dg L ∞ (2l/3,l) e 1,γ L 1 (0,l)

≤ e 1,γ L ∞ (l/3,l) e ,α β L 1 (0,l) d g L 1 (0,l)

+ e ,α β L ∞ (l/3,l) d g L 1 (0,l−l/3) + d g L ∞ (l/3,l) e ,α β L 1 (0,l/3) e 1,γ L 1(0,l) .

Using this with  β = γ = /α 3 and (cf. (72))

dg L 1(0,l) ≤ sup
α̃∈( ,α 1)

θ̃(·, ˜, /α α 3) L 1(0,l) (1 −α),

dg L ∞ (l/3,l) ≤ sup
α̃∈( ,α 1)

θ̃(·, ˜, /α α 3) L ∞ (l/3,l) (1 −α),
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we arrive at the second estimate in (24) with Ĉ(α0, l, l) = sup α∈(α0 ,1) Č( , l, lα ),

Č( , l, lα ) = e1, /α 3 L ∞ (l/3,l) e , /α α 3 L 1(0,l) sup
α̃∈( ,α 1)

θ̃(·, ˜, /α α 3) L 1(0,l)

+ e1, /α 3 L 1(0,l) e , /α α 3 L ∞ (l/3,l) sup
α̃∈( ,α 1)

θ̃(·, ˜, /α α 3) L 1(0,l)

+ e1, /α 3 L 1(0,l) e , /α α 3 L 1(0,l/3) sup
α̃∈( ,α 1)

θ̃(·, ˜, /α α 3) L ∞ (l/3,l) .

The rst estimate can be shown analogously.fi

Appendix B. Cauchy 2

In the impedance case, using the PDE, the right hand side of (33) can be written

as

G(u, )d =d (x) ux(x, (x)) − (x)√
1+ (x) 2

γ(x)u(x, (x))

+  d(x) d
dx ux(x, (x)) − 1 + (x)2γ(x)uy(x, (x))

= d
dx d(x) ux(x, (x)) − (x)√

1+ (x) 2
γ(x)u(x, (x))

+  d(x) − 1 +  (x)2γ(x)uy(x, (x)) + d
dx

(x)√
1+ (x) 2

γ(x)u(x, (x))

= d
dxφ(x) − a(x)φ(x) = d

dx [d(x) a[, u](x)] − d(x) b[, u](x)

Here using the impedance conditions on  u that yield

(75)

ux(x, (x)) − (x)√
1+ (x) 2

γ(x)u(x, (x))

=  u x(x, (x)) +
(x)

1+ (x) 2 uy(x, (x)) − (x)ux(x, (x))

= 1
1+ (x) 2 ux(x, (x)) +  (x)uy(x, (x)) =

∂ τ̃ u(x, (x))
1+ (x) 2 = 1

1+ (x) 2
d

dxu(x, (x))

=

⎧
⎨

⎩

d
dxu(x, (x)) = u x(x, (x)) if (x) = 0,

1
(x)

γ(x)√
1+ (x) 2

u(x, (x)) + u y(x, (x))) else
=: a[, u](x).

In our implementation we use the last expression that is based on

ux(x, (x)) =
1

(x)
1 +  (x)2γ(x)u(x, (x)) +  u y(x, (x))) if (x) = 0,

since  u x is di cult to evaluate numerically unless the boundary is at (caseffi fl  (x) =

0). Moreover,

(76)

− 1 +  (x)2γ(x)uy(x, (x)) + d
dx

(x)√
1+ (x) 2

γ(x)u(x, (x))

=
(x)√

1+ (x) 2
3 γ(x) +

(x)√
1+ (x) 2

γ (x) +  γ(x)2 u(x, (x)) =: b[, u](x),

we have

(77) φ(x) =  d(x) a[, u](x) a(x) =
b[ ,u]
a[ ,u] (x)

with a, b as de ned in (75), (76).fi
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Thus the Newton step in the impedance case reads as

(I) (k+1) (x) =  (k) (x)− 1
a[ (k) ,u(k) ](x) exp −

x

0

b[ (k) ,u(k) ]
a[ (k) ,u(k) ](s) ds d(0) a[ (k) , u (k) ](0)

+
x

0
b(s) exp −

x

s

b[ (k) ,u(k) ]
a[ (k) ,u (k) ](t) dt ds ,

where  b(x) =  ∂ ν̃ z̄(x, 
(k) (x)) + 1 +  (x)2γ(x)z̄(x, (k) (x)).

In particular, with Neumann conditions on the lateral boundary  B =± ∂x under the

compatibility condition  (0) = 0 we have a[, u](0) =  ∂ τ̃(0, (0)) =  u x(0, (0)) = 0

and therefore

(I)  (k+1) (x) =  (k) (x) − 1
a[ (k) ,u(k) ](x)

x

0
b(s) exp −

x

s

b[ (k) ,u (k) ]
a[ (k) ,u(k) ](t) dt ds

=  (k) (x) − d(x),

where the value at the left hand boundary point can be computed by means of

l Hospital s rule as (skipping the argument [’ ’ (k)u(k) ] for better readability)

lim
x→0

d(x) = lim
x→0

φ(x)

a(x)
= lim

x→0

φ (x)

a (x)
= lim

x→0

b(x) − b
a (x)φ(x)

a (x)
= lim

x→0

b(x) − b(x)d(x)

a (x)
,

hence

lim
x→0

d(x) = lim
x→0

1

1 +
b(x)
a (x)

b(x)

a (x)
= lim

x→0

b(x)
a (x)+b(x)

=
z̄y (0, (k) (0))+γ(0) z̄(0, (k) (0))

u(k)
xx (0, (k) (0))+( (k) γ(0)+γ(0) 2)u (k) (0, (k) (0))

.
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