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FRACTIONAL REGULARISATION OF THE CAUCHY
PROBLEM FOR LAPLACE’S EQUATION AND APPLICATION
IN SOME FREE BOUNDARY VALUE PROBLEMS

BARBARA KALTENBACHER AND WILLIAM RUNDELL

Abstract. In this paper we revisit the classical Cauchy problem for Laplace’s
equation as well as two further related problems in the light of regularisation of
this highly ill-conditioned problem by replacing integer derivatives with frac-
tional ones.We do so in the spirit of quasi-reversibility, replacing a classically
severely ill-posed partial differential equations problem by a nearby well-posed
or only mildly ill-posed oneln order to be able to make use of the known sta-
bilising effect of one-dimensional fractional derivatives of Abel type we work in
a particular rectangular (in higher space dimensions cylindrical) geonWéry.
start with the plain Cauchy problem of reconstructing the values of a harmonic
function inside this domain from its Dirichlet and Neumann trace on part of
the boundary (the cylinder base) and explore three options for doing this with
fractional operatorsThe two other related problems are the recovery of a free
boundary and then this together with simultaneous recovery of the impedance
function in the boundary conditio®ur main technique here will be Newton’s
method, combined with fractional regularisation of the plain Cauchy problem.
The paper contains numerical reconstructions and convergence results for the
devised methods.

Introduction

As its name suggests, the Cauchy Problem for Laplace’s equation has a long
history. By the early-middle of the nineteenth century it was known that prescribing
the values# on the boundarydQ of a domain Q where — « = 0 held, allowed#
to be determined uniquely within Q. There was a similar statement for “flux” or
the value of the normal derivative: the so-called Dirichlet and Neumann problems.
These problems held great significance for an enormous range of applications evident
at that time and provided solutions that depended continuously on the boundary
measurements. It was also recognised that frequently a case would arise where
part of the boundary is inaccessible and no measurements could be made there. In
compensation one could measure both the value and the flux at the accessible part:
the Cauchy problem. Since solutions of Laplace’s equation can be considered as
the real part of an underlying analytic function, analytic continuation still allowed
uniqueness of the solution. However, the continuous dependence on the boundary
data was lost; in fact in an extreme way.
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648 BARBARA KALTENBACHER AND WILLIAM RUNDELL

A famous reference to this state of affairs dates from the beginning of the twen-
tieth century when Hadamard singled such problems out as being “incorrectly set”
and hence unworthy of mathematical study, as they had “no physical significance."”
The backwards heat problem and the Cauchy problem were the prime exhibits
[17-19].

By the middle of the twentieth century such problems had shown to have enor-
mous physical significance and could not be ignored from any perspectiveMethods
had to be found to overcome the severe ill-conditioningDuring this period the sub-
ject was extended to general inverse problems and included a vast range of situations
for which the inverse map is an unbounded operator Examples of still foundational
papers from this period including applications are [11, 40-42].

One of the popular techniques dating from this period is the method ofuasi-
reversibilityf Latt‘es and Lions [36].In this approach the original partial differen-
tial equation was replaced by one in which the “incorrect” data allowed a well-posed
recovery of its solution. This new equation contained a parameter that allowed
for stable inversion for> 0 but, in addition (in a sense that had to be carefully
defined), solutions of the regularising equation converged to that of the original as

- 0. It is now recognised that the original initial suggested choices of that time
brought with them new problematic issues either because of additional unnatural
boundary conditions required or an operator whose solutions behaved in a strongly
different manner from the original that offset any regularising amelioration that
it offered. Thus, the method came with a basic and significant challenge: finding
a “closely-related” partial differential equation, depending on a parameter, that
could use the data in a well-posed manner for > 0 and also be such that its
solutions converged to those of the original equation as - 0.

In other words, the central issue in using quasi-reversibility is in the choice
of the regularising equation. Frequently, additional or modified initial/boundary
conditions have to be imposed to maintain well-posed problem for this new equation.
In the first case adding such conditions usually means taking a higher order operator
and this has been a dominant theme for the Cauchy problem. A common choice
is to use a bi-harmonic equation as the regularizer, that is, replace the Laplacian
with 2« + «=0. The fourth order operator suggested by Lattes and Lions
then utilizes the Cauchy valuesez(z<0) andu (z<0) effectively but requires also
derivative conditionswy(0<y) ande(1<) which are not known a priori. Despite the
obvious hurdle this was their original approach in [36] and has remained a common
formulation.

However, for numerical computation one needs a forwards problem solver and
this can often be modified to suit the purpose.  This was the approach taken in
[9] where mixed finite elements were used and in [32] where finite differences and
Carleman’s estimates were used. As we will see our choice of a fractional order
regularizing operator circumvents this issue.

In his various lectures, Hadamard noted, for example [19], that it is possible
to write the solution in the form of an integral equation and remarked that this
could lead to numerical methods. This has been taken up in various formulations
that include iterative methods. A notable paper is [33] and the algorithm they
put forward was later implemented numerically in [37].  Another, somewhat re-
lated, direction used the fact that in R? solutions of Laplace’s equation have an
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 649

obvious extension to an analytic function and solutions could be sought by ana-
lytic continuation augmented by a suitable regularisation scheme. The above ideas
lead naturally to converting the original problem to a moment problem and then
obtaining regularisation by truncation. Examples here are [12, 22].

Interesting and important from applications is the case when the region is an-
nular, for example a circular outer domain with a concentric, but not necessarily a
circular inner one. A conformal mapping can achieve this and this approach has of
course been followed. See, for example, [5]. This leads to the type of application
where one not only doesn’t know the boundary values on the interior curve but
this curve itself has to be determined. Further examples with important analytic
techniques can be found in [1, 8, 10].We will return to this situation shortly.

Returning to the idea of a quasi-reversibility method and seeking a regularizing
equation with many of the desired features and fewer drawbacks, here we will
follow recent ideas for the backwards heat problem and replace the usual derivative
in the “difficult” direction by a fractional derivative. In the parabolic case this
was a time fractional derivative and one of the first papers taking this direction
was [39]. It was later shown in [26] that the effectiveness of the method and the
choice of the fractional exponent used strongly depended on both the final time 7
and the frequency components in the initial time functionw o(z). This led to the
current authors proposing a multi-level version with different fractional exponents
depending on the frequencies inz ¢, which of course had also to appear in the
measured final time and were thus identifiable [28]. This “split frequency” method
will also be used in the current paper.

The advantage here is that such fractional operators arise naturally. The diffu-
sion equation in (2<) — coordinates results from a diffusive process in which the
underlying stochastic process arises from sampling through a probability density
functiong. Ifg function has both finite mean and variance then it can be shown
that the long term limit approaches Brownian motion resulting in classical deriva-
tives. This can be viewed as a direct result of the central limit theoremAllowing a
finite mean but an infinite variance can lead directly to fractional derivatives [29)].

However, while the use of time fractional derivatives and their behaviour in
resulting partial differential equations is now well understood, the same cannot be
said to the same degree for the case of space fractional derivatives. This statement
notwithstanding it can identify the standard derivative as a limiting situation of
one of fractional type. This makes such an operator a natural candidate for a
quasi-reversibility operator.
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650 BARBARA KALTENBACHER AND WILLIAM RUNDELL

In our case if Q is a rectangle with the
top side inaccessible but data can be mea-
sured on the other three sides then a basic

problem is to recover the solution(z<y) AU =0
by also measuring the ﬂuxg—}'“,’ at, say, the
bottom edge. In the usual language we |«(0%) =0 w(ly) =0

have Dirichlet data on the two sides and
Cauchy data on the bottom. We will con-
sider this problem as Problem 1 in Sec-
tion 1. w(2<0) =/ (z)
ty(20) =)

However there is a further possibility:
the top side may be a curve(z) and we

also do not know this curve — and want u=2~0
to do so. This is a classical example of a
free-boundary value problem and a typi- | «0%) =0 w(ly) =0

cal, and well-studied, example here is of
corrosion to a partly inaccessible metal
plate. This is our Problem 2 (cf.  Sec-
tion 2). uz<0) =/ (z)
wy(z<0) =g()

W YOu=0 z

In addition, while the original top
side was, say, a pure conductor or in-

sulator with either « = 0 or g—‘d =0 Au=0
there, this has now to be re-modelled
as an impedance condition where the | #(0%) =0 u(ly) =0

impedance parameter is also likely un-
known as a function of 2. Recovery
of both the boundary curve and the
impedance coefficient is the topic of Prob- w(z<0) =f(2)
lem 3 in Section 3. uy(2<0) =g(2)
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 651

Related to this are obstacle problems for elliptic problems in a domain Q that
seek to recover an interior object 22 from additional boundary data. This comes
under this same classification, albeit with a different geometry The boundary of2
can be purely conductive, or purely insulating, or satisfy an impedance condition
with a perhaps unknown parameter. The existing literature here is again extensive.
We mention the survey by Isakov [23] which includes not only elliptic but also
parabolic and hyperbolic equation-based problems. Other significant papers from
this time period are [1, 4, 10, 32, 43]a very recent overview on numerical methods
for the Cauchy problem with further references can be found in [8].

For our purposes we wish to take advantage of the geometry described earlier
where we are able, in some sense, to separate the variables and treat each of the
differential operator’s components in a distinct manner.

The structure of the paper is as follows. Each of the three Sections 1, 2, 3
first of all contains a formulation of the problem along with the derivation of a
reconstruction method and numerical reconstruction results. In Section 1, this is a
quasi-reversibility approach based on fractional derivatives; in Sections 2, 3 dealing
with nonlinear problems, these are regularised Newton type methods. Sections 1,
3 also contain convergence results. In particular, in Section 3 we verify a range
invariance condition on the forward operator that allows us to prove convergence
of a regularised frozen Newton method.

1. Problem 1: The plain Cauchy problems

We start with the most fundamental of the three problems to be studied in this
paper, namely the reconstruction of a harmonic function from its partial Cauchy
data.

Problem 1.1Given/,gin a domain Q and the following elliptic boundary value
problem on Q x (0<Z),

- u=- Xa—o'?)%u:O in Q x(0<Z)«
(1) w(<y) =0 ondQ X (0<Z)«

wz<0) =f(2)dyu(z<0) =g(z) z EQ«
findu(2<y) in the whole cylinder Q X (0<Z).

This is a classical inverse problem going back to before Hadamard [19] and there
exists a huge amount of literature on it. For a recent review and further references,
see, e.g., [8].

We will here study possible regularization by replacing the partial derivative in
the direction of data propagation (that is, they direction) by a fractional  one.
Alternatively to this unidirectional way of using fractional operators one might
think of fractional powers of the Laplacian. However, this does not appear to be
viable for this purpose, because it would require a nonlocal version of the data as
well, cf., e.g., [15], which cannot be extracted from the actually given data /,g.

To this end, we first of all derive a solution representation by expanding (<),
/¢ in terms of the eigenfunctionsg ; (with corresponding eigenvaluesAd ) of — x
on Q with homogeneous Dirichlet boundary conditions

dey) = 4@ D= fo@D A= g0

j=1 j=1 j=1

8
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652 BARBARA KALTENBACHER AND WILLIAM RUNDELL

where for ally €N

(2) 4 (y) =Ajy(9) =0 y €0L) 4 (0) =/ #(0)=gj>
Thus
(3) Wzy) = 4@ ()
j=1
where
— sinh( Jj»)
aj =fjcosh( Ay +yg; /1_]

(4) /

A i +9i — Ak —g —

= — Aiy) + — - Aiyp
> 7 exp( A y) > 7 exp(— Ajy)
Here the negative Laplacian — x on Q with homogeneous Dirichlet boundary

conditions can obviously be replaced by an arbitrary symmetric positive definite
operator .4 densely defined on a Hilbert space # (here # =Z %(Q)), in particu-
lar by an elliptic differential operator with possiblyz dependent coefficients on
ad-dimensional Lipschitz domain Q with homogeneous Dirichlet, Neumann or
impedance boundary conditions. The corresponding ejgensystem (4 @; )jen allows
to define, e.g., the square root of the operator A by .4v= ;°=1 /Tj V@i HE
and the scale of Hilbert space norms

o0

172
- cp: 2
(5) v H'U(Q) = /i]o 7/¢j H >
=1

1.1. Regularisation by fractiondifferentiationSince the values ofz have

to be propagated in they direction, starting from the data /,g aty = 0, the reason

for ill-posedness (as is clearly visible in the exponential amplification of noise in this

data, cf. (4)) results from thegderivative in the PDE. We thus consider several

options of regularising Problem 1.1 by replacing the second order derivative with

respect toy by a fractional one, in the spirit of quasi-reversibility [3, 13, 36, 44—46].

We note in particular [29, Sections 8.3, 10.1] in the context of fractional derivatives.
In order to make use of integer (Oth and 1st) order derivative data aty = 0,

we use the Djrbashian-Caputo (rather than the Riemann-Liouville) version of the

Abel fractional derivative. This has a left- and a right-sided version defined by

—l
ngv =/2-8 *032/‘ yDEZ/ =/l2-8 *&;Z‘L ¢
1
log(¥) = =—p—p—° T (y) =L —
2-8(¥) F2 —2),F 1 (9) =AL —y)
forB €(1<2), where *denotes the (Laplace) convolution. Note that the Laplace
transform of /_p is given by /_g(s) =s B=2 " Correspondingly, as solutions to

initial value problems for fractional ODEs, Mittag-Leffler functions, as defined by
(see, e.g., [29, Section 3.4])

- X
Ea,ﬁ (Z) = —— 2z €C-«
oo (@ +B)

fora> 0, andf ER will play a role.
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 653

While using the spectral decomposition

8

®) Ay = 4P g (o)
j=1

to approximate (3), (4) in the analysis, the computational implementation does not
need the eigenvalues and eigenfunctions of— x but relies on the numerical solution

of fractional PDEs, see (8), (12), (17), for which efficient methods are available, see,
e.g., [2, 24, 35, 38].

1.1.1. Left-sided Djrbashian-Caputo fractiodiativativeReplacingd ? by oZ2%
with 2a =2 amounts to considering, instead of (2), the fractional ODEs

0 2% (9) =Ajui(9) =0 y EOL)  «(0)=f; < (0) =g

whose solution by means of Mittag-Leffler functions (see, e.g., [29, Theorem 5.4])
yields

(7) 4" =/ Baar (A %) +9j yFra2 (A )
In view of the fact that £ 1(2) = cosh(‘/Z) and £ 2(2) = ﬁ#, this is consistent
with (4). It corresponds to replacing (1) by
- xu—0D%u=0 in Q x(0<£)¢
(8) w(<y) =0 ondQ X (0<L)«
Wz<0) =f(2)dyu(z<0) =g(z) z EQ>

1.1.2. Right-sided Djrbashian-Caputo fractideaivativeReplacingd 2 by , 2%
with 2@ =2 corresponds to replacing (2) by

y D% (9) = A (9) =0 y €O0L)  4(0) =/ < %(0) =g,
together with

From the identity
YR (L = 1)) = (fomza %y (1)) forw ; (1)) =u; (£ = 17) and /ip—zals) =52%72¢
we obtain the initial value problem

(ha-2a %y )(1) =Ajwy (1)) =0 n€WOL)  wj(0) =& « u;(0) =B »
Taking Laplace transforms yields

0wy (s) =0y +5207 — g () = 0

ie.,
5201—1 5201—2
' _ o i, .
(9) 0= gy = g
and for the derivative
J 2o
(10) 4 (s) =5 () ~By = o538 — g he
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654 BARBARA KALTENBACHER AND WILLIAM RUNDELL

From [29, Lemma 4.12] we obtain

a—k
LUF Bak (A7) (s) = ;2—_4 <k EqL 2>

=17 Braa W) = o

Inserting this into (9), (10) and evaluating at/7 =Z we obtain
/i =Boar (A POy — LBra2 (A L2%Vl
—g = —/ij [za_lEZalza (/ij Lza)ﬁj _EZOI,I(/ij Lza)ﬁj >
Resolving for fi; and replacing/Z byy we get

(11) aga) _ /fﬁéa,l(/ijyza) +gj£/E2a,2(/1j92a)
! Brar (A 22) ° = A 12 B 20 (A 2%) Bra 2 (M) 129)

This corresponds to considering, in place of (1), the fractional problem

- xu—yDP%u=0 in Q x(02)¢
(12) u(<y) =0 ondQ X (0<2)«
wz<0) =f(2)dyu(z<0) =g(z) 2z EQp

1.1.3. Factorisation ofthe LaplacianAn analysis of the two one-sided fractional
approximations ofd ; does not seem to be possible since it would require a stability
estimate for Mittag-Leffler functions with positive argument and index close to two.
While convergence from below of the fractional to the integer derivative holds at any
integer (thus also second) order, a stability estimate is not available. Therefore we
look for a possibility to reduce the problem to one with first ordery derivatives and
treat the inverse problem similarly to a backwards heat problem to take advantage
of recent work in this direction [28, 29]One way to do so is to factorise the negative
Laplacian so that the Cauchy problem becomes:

Given/,gin
- u=— xu—du= (4 — — x)(=d — — xu=0 inQx(0L):-
w(<y) =0 ondQ X (0<2)«
Wz 0) =f(2)dyuz0) =g(z) z EQ«
fli/ndu(zfy). Recall that the square root of the Laplacian is defined spectrally as
- xv= L A ve e
More precisely, withez + = %(u o - x _1c9y u) we get the representation

U=U4+ t+U_*
wherew +,u — can be obtained as solutions to the subproblems
Oyur — — xup =0 in Q x(0<Z)«
(13) ur(Y) =0 ondQ X (0<L)«
-1
ur(z0) =3(/(2) + — x 9(2)) = wso(2) 2 €Q
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and
Oy u— + ——Xu_ =0 in Q x(0<Z)«
(14) u- (<) =0 ondQ X (0<L)«
u-(20) =3/ (D)= = x da) zEQ

In fact, it is readily checked that if w«+ solve (13), (14) thenu =« 4+ +w# — solves
(1). The numerical solution of the initial value problem (14) and of the final value
problem for the PDE in (13) can be stably and efficiently carried out combining an
implicit time stepping scheme with methods recently developed for the solution of
PDEs with fractional powers of the Laplacian. See, e.g., [6, 7, 20].

Since —  is positive definite, the second equation (14) is well-posed, so there
is no need to regularise. The first one (13) after the change of variqblest =L —y,
wy (z¢) =u +(zy) becomes a backwards heat equation (but with  — 4 in place
of — x)
rwy + — xwy =0 in Q x(0<£)<
(15) we (<) =0 ondQ X (0<L)«

wi(zL) = Yf(@D) + = x da) z€Q

Regularising (15) by using in place ofd ¢ a fractional “time” derivative o ¢ with
a =1,a< 1 (while leaving (14) unregularised) amounts to setting

A f +gj 1 Aif—g —
(16) a = 1/7_91 -+ j/j_ g exp(— Aiy»

2 A Zaa(= Ai) 2 4

This corresponds to replacing (1) by«® =u _ +u%, whereu § (z¢) =w $ (<L —y),
withe — solving (14) andew § solving

oRus + — xuf=0 in Q x(02)¢
(17) (<) =0 ondQ X (0<2)«

D)= 3@+ = x o) z€w

This approach can be refined by splitting the frequency range;(jn into subsets
(P, +1200AK ., ien and choosing the breakpoint 4™ ; as well as the fractional
ordera ; for each of these subsets according to a discrepancy principle. For details,
see [28].

1.2. Reconstructions this section we compare reconstructions with the three
options (7), (11), (16) on a rectangular domain with Q = (0<1). The latter was
refined by the split frequency approach from [28] using the discrepancy principle
for determining the breakpoints and differentiation orders. While this method is
backed up by convergence theory (see Section 1.3), the same does not hold true
for the options (7) and (11). Indeed, not even stability can be expected to hold
from the known behaviour of the Mittag Leffler functions with positive argument,
in particular for (7). This becomes visible in the reconstructions in Figure 1. The
differentiation orders for (7), (11) were taken as the smallest (thus most stable)
ones obtained in (16).

In this simple one-dimensional setting for Q with known eigensystem, we can
simply evaluate the formulas (7), (11) and (16). In a higher dimensional setting,
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1.5 1.5 1.5 e
» . =\
% 4
i
1.0 1.04 i 1.0
0.5 0.5 0.5 j
0.0 0.0 0.0

T T T T 1 T T T T 1 T T T T 1
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 0.2 04 06 08 10

Figure 1. Reconstructions from formulas (7) (blue dotted), (11)
(red, dashed) and (16) (green, irregularly dashed) as compared to
the actual value (black, solid) from data with 1 per cent noise at
different distances from the Cauchy data boundary. Left: y = %,
Middle: = 2, Right: y = 1.

one would numerically solve (8), (12) and (14), (17) by combining one of the by
now well-established discretization methods for time-fractional derivatives such as
theZ ! scheme or convolution quadrature (see, e.g., [25] for a recent overview) with
a space discretization by, e.g., Galerkin finite elements; in case of (17), the latter
requires an implementation of the square root of the Laplacian, see, e.g., [6, 7, 20].

The relative Z2 errors over the whole domain were 050275 for (7), 050135 for (11),
1585971074 for (16).

The split frequency factorised Laplace approach also worked well ~ with much
higher noise levels, as can be seen in Sections 2.1 and 3.1, where it is intrinsically
used as part of the reconstruction algorithm. On the other hand, (7), (11) failed to
provide reasonable reconstructions at higher noise levels, which is to be expected
from a theoretical point of view.

1.3. Convergence of the schemé). We now provide a convergence analysis
of the method from Section 1.1.3. As usual in regularisation methods, the total
error can be decomposed into an approximation error and the propagated noise

(18) u—1u"% x = u—ud? x + 49 =% yp

Herew %% is the actual reconstruction from noisy data /¢ % leading to

(19) Bo=3P@) + = X L) with dlg—uso v <6

Using Y =72 2(0<Z; #°(Q)) with Z° as defined in (5) as the space for the sought-
after functionw, we can write the approximation error as
(20)
L= 1
u=d oo = . A7 & (1) — o (9) bay
j=1

/2

L = 1 _ _ 2 12
= -ﬁ+,j(y)-i/i}’—El(_ T Lor (= AY) —exp(= Aiy) dy -
j=1 a, J
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whereu 7;_,] (%) =u +0j exp( Ajy), and the propagated noise term as
(21)
6 L (@)
a
i =i o) = A7 & (9) ;d’y
0 j1
L & b 1 1/2
= +0,j ZJ+O ; —_dg/

0 jo1 I Bea (= AR)?

In view of (15), convergence follows similarly to corresponding results on reg-
ularisation by backwards subdiffusion [29, Section 10.1.3] using two fundamental
lemmas

* on stability, estimating Tif\ya) (LeEma 1.1) and B

* on convergence, estimating Zy1(— Aj*) —exp(— Ajy) (Lemma 1.2)
that we here re-prove to track dependence of constants on the final “time "f This
is important in view of the fact that as opposed to [29, Section 10.1.3], we consider
a range of “final time values”, that is, in our context,y values. In the following A
serves as a placeholder for ;.

Lemma 1.1Foralla €(0<1)

1

Proof. The bound (22) is an immediate consequence of  the lower bound in [29,
Theorem 3.25].

Lemma 1.2.Forany/ >0, A1 =0, a €(0<1)andp €[11= ) there exists
C= Aaop B = supy cro, 1) A@ o >0 withCla p % as in (6 ), such that
for anya €|ap< 1) and for alli> A,

™ .
da L= (o) S CAP(L-a) da 1p)) =1 —a)

23 A A
(23) for the functiomy, : [O(ﬁ - R defined byy (y) =Z 41 (—Ay*) —exp(—y)p

Proof. See Appendix A.

The estimates from Lemma 1.2 become more straightforward if the values ofy are
constrained to a compact interval not containing zero, as relevant for Problem 3.1
in Section 3. This also allows us to deriveZ® bounds onZ g, 1(—/1f) —exp(—/i v),
which would not be possible without boundingy away from zero, due to the singu-
larities of the Mittag-Leffler functions there.

Lemma 1. 3.Forany0</</<_ w0, A1 20, ao E(O 1)andp €[l ) there

exist constants= C(ao» /)> 0 asinlemma.2, C= C(aof/</)> 0 such that
for anya €[ap< 1) and for alll> /11

o) dy |y <1 —a) dydy | .5 <CA1—a)
for the functiomdy : [/ —» R defined by (y) :Eal( v%) —exp(—/]y)b

Proof. See Appendix A.
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658 BARBARA KALTENBACHER AND WILLIAM RUNDELL
Applying Lemmas 1.1, 1.2 in (18), (20), (21), we obtain the overall error estimate

a,6 . (a) .
(25)  w—d"" aoHo) S 4 TUT 200 H @)
5 a+1/2 5
+ Uy — U+0 Ho(Q) erﬁr(l —a') Uro —U+0 fo+1 (Q)(
where we further estimate the approximation error

(@) ) ; t .
u=u™ oo SC (1 =@) uy 120010 (q))

+L% (1 =@ (1 =@) &y 20y o () >

Under the assumptionw . € Z2(0<Z; AZ°+*1*VP(Q)), from Lebesgue’s Dominated

Convergence Theorem and uniform boundedness of (1 — a)l[(1 — @) asa 1,
as well as convergence to zero of Zy,1(—1%) —exp(—AJasa 1, we obtain
(a)

u—u L2(0,L:Ho(@Q) 0 asa 1.

In view of the fact that the data space in (19) is typically ¥~ =2(Q), considering
the propagated noise term, the Z° and Z°*! norms in estimate (25) reveal the
fact that even when aiming for the lowest order reconstruction regularity o = 0,
the data needs to be smoothed.

Due to the infinite smoothing property of the forward operator, a method with
infinite qualification is required for this purpose. We therefore use Landweber

iteration for defining a smoothed version of the dataz8, =+ by

(26) A = O — () — 48 )e A0 = 0«
where
(27) A=~ »)7°

with o €900 + 1= 1 and> 0 chosen so that A ;25 2 =1. In our imple-
mentation, we carried out the smoothing iteration for the most basic settingg = 0
and o= 1.

For convergence and convergence rates as the noise level tends to zero, we quote
(for the proof, see the appendix of [28]) a bound in terms of #4 (<) | 2(q) for some
fixed/ €(0<Z), wherewu 4+ is the unstable component of the solution according to

(13).
Lemma 1.4 A choice of
U.
(28) ix ~ 1% log Y L) (57)5 L2(@Q)
yields

5
U+Q — Uk L2(Q) =01 6¢

(29) 5 1
uro — U0 Hoq = C2l O log

for someXy <C, > 0 independent éand é

Thus, usingz 9, in place ofz +¢ in the reconstruction, we obtain the following
convergence result.
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 659

Theorem 1.1Let the exact solutiah of Problem.1 satisfy
d. ELA0<Z; HOF1HP(Q))

forsomeo = 0, p>1 and letthe noisy data satisfy19) with smoothed data
constructed as in Lemma. Further,assume that =a( 6) is chosen such that
a(6) = 1 andl(1 —a(6))6—- 0 asé- 0. Then u—u*O% .  1ioiqy = 0as
o- 0.

Since [(1 —=a@) ~(1 —a)"' as@ 1, the condition I'(1 —0(3))3—> 0 means that
a(6) must not converge to unity too fast as the noise level vanishes —a well-known
condition in the context of regularisation of ill-posed problems.

2. Problem 2: Reconstruction of an interface

Still considering a harmonic function and its Cauchy data on part of the bound-
ary, the task is now to determine an interface characterised by vanishing Neumann,
Dirichlet or impedance conditions. A by now classical reference for this problem is
[1]. The regularised solution of Problem 1.1 will serve as a building block in the
reconstruction scheme.

Problem 2.1Given/,gin

— =0 z €EQc y €(0q(2))¢
Bu(zy) =0 z €ER y €(04(2))-
wWz<0) =f(2)uy(z<0) =g(z) 2z EQ-

find : Q = (0<Z) such that one of the following three conditions (N)d ,« = 0 or
(D)u=0or (I)@ yu +pw =0 holds on the interface defined by, that is,

(30)
) 0=dvu(z(2)) =u y(2(2)) —Vx(2) <Wulz(z)) or 1
) (7)) or JxEQ/>
0=dsu(z(2)) + 1+&¥(z) dU2)u2(z))

In (30) we use the non-normalised outer normal directionVto arrive at a simpler
expression. Here and below Vyu(z<(z)) = (u x, (z(2))) L1, while Vx[w(z<(z))] =
Veulz{(2))+u y(z42)) Vx(z)) L, whered €91 20is the dimension of Q. More-
over, we make the a priori assumption that the searched for domain is contained in
the cylinder Q X (0<Z).

The operator Z determines the boundary conditions on the lateral boundary
parts, which may also be of Dirichlet, Neumann, or impedance type.
To emphasise dependence on the parametrisation,  we denote the domain as

well as the fixed and variable parts of its boundary as follows

) = Rzy) €EQX(0L): y €(0(2)) ¢
MNo() = M2(2): z €QY

F1 Q XﬂOO‘

() = Moy : 2 €X y €(042)) ¢

(31)
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660 BARBARA KALTENBACHER AND WILLIAM RUNDELL

(note that () depends on only weakly via its endpoint set(dQ)). With this
we can write the forward problem as
— u=0in2()-
u=fonl 1<
(32) Bu=0on ()
(N) du=0 or
D) «=0 or ] on [o()>

O dvu+pu=0

The full inverse problem naturally splits into two subproblems: The linear se-
verely ill-posed Cauchy problem on/Z)Z) (which is our Problem 1.1) and a well-
posed (or maybe mildly ill-posed) nonlinear problem of reconstructing the curve.
Thus a straightforward approach for solving Problem 2.1 would be to first solve a
regularised version of Problem 1.1 (e.g., in the way devised in Section 1) and then
applying Newton's method to recover from (30).

However, we follow a combined approach, writing Problem 2.1 as an operator
equation with the total forward operator/’, and applying a Newton scheme, in
which we make use of a regularised solution of Problem 1.1. Here the forward
operator is defined by

F: - w(<0)— g whereu solves (32)r

Its linearisation in the directionZ: Q — R of the parametrisation is given by
F()d=0 yuvé, , wherev solves
(33)

— v=0in2()«

v=0o0n I
Bv=0on ()
(N) dyefa(2) = Vx Ldz) Vulw(2)) or }
(D) oz(2)) = —uy(z(2))dz) or ) on Fo()

@O duz(2)+ 1+ d%(2) dU2)v(2(2)) = (C(u)d)(2)

where in the Neumann case (N) we have used the PDE to find the representation
given here and in the impedance case the boundary value function ' is defined by

(G(a)de) = Vx da) Vyelad(2))

- Nz Vde) _<VX(=Z.) u\r\xr Z U\ T\ T Z

Note that this is obtained in a similar manner to the formula for the shape de-
rivative [43, equation (3.1)], see also [21], and the identityds = 1 + #¥(z) dz
for the arclength parametrisations, but using "V in place ofV, as well as

B 0 c W) = —Vx(2) . 2) = L Uz
.Zh(,Z’) - Q](x) V( ) 1 V( ) WV( )D
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 661

(k) (k) —

Thus, computation of a Newton stepd =< "’ starting from some iterate

amounts to solving the system
(34)
— 2z=01inD()-

z=fonl 1¢
Bz=0on ()
2y =gonl 1¢
(N) dye(z(2) = Vx {dz) Vxu(z(z))) or‘|>
(D) Azd(2) = —uy(z(z))dz) ory om Mo()
D) dAz(2)+ 1+ Y (2) dU2)(2(2) = (G(u)d)(2)
(note thatz yob, —g=F() +£ ().
If we solve (a regularised version, cf. Section 1, of) the Cauchy problem on the
rectangular hold-all domain

- £=0inD(ZL) =Q x(0L)<
f=fonl 1

Bir=0onTl(2) =0Q x(0L)-
dyfi—g=0only

(35)

in advance, then by uniqueness of solutions to the Cauchy problem, .z coincides with

gon/)X). Therefore, in each Newton step it only remains to compute« k) —y
from the well-posed mixed elliptic boundary value problem (32) with = (%) and
update

D (0) = ) (2) ~ dla)-

whered is defined by (33) with fi 2 in place of 2z In the cases (N) and (I) this
requires solving a transport equation ford.

We now provide the explicit formulas in the (altogether two dimensional) case
of Q = (0<47). In doing so, we also discuss some numerical aspects.

In the Neumann case, we have
(36)

k+1
(N) *D) (g

1 X
= W)+ A (20 W (x)) . (& W (8)aE

1 X
i (2 W ()

If 7 denotes the lateral Dirichlet trace, then this also needs to be regularised, since
due to the identityu(0<y) = 0 =w(M<y), the partial derivativew x (<) has to
vanish at least at one interior pointz for eachy. To avoid problems arising from
division by zero, we thus solve a regularised version

= ©(2) + (& (&) — W (k& N (8) dér

M
(U+D — ) = argming . dA2(z)) —ZLldz)u x(2(2))] za’z’
M

F 4 (2P de +oa(d0) 2 da) D)
Ao
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662 BARBARA KALTENBACHER AND WILLIAM RUNDELL

with a regularisation parameter pil and a penalisation parameterg » enforcing our
assumption ofd to be known at the boundary points.

In the Dirichlet case, the Newton step computes as

@) D) ® (= () - e )

4y (e W ()

a formula that remains valid for higher dimensional Q. In case of lateral Dirichlet
conditions Zu =« = 0 we havew §,k) (040)) =u §,k) (M) = 0 and so would
have to divide by numbers close to zero near the endpoints. This can be avoided
by imposing Neumann conditions Zz =d ,« = 0 on the lateral boundary. Still,
the problem is mildly ill-posed and thus needs to be regularised for the following
reason. In view of the Implicit Function Theorem, the function, being implicitly
defined byw(z<{(2)) = 0, has the same order of differentiability asz. However,
(37) contains an additional derivative ofu as compared to. Obtaining a bound
onw ;k) in terms of ) from elliptic regularity (cf., e.g., [16]) cannot be expected
to be possible with the same level of differentiability.

In the impedance case, we have

Au)d=  Flaldd_ —b[«]

with
\[ S uz(2)) =u x(z(2)) if (2) =0¢
W) = | by (o) +u y(a(@)  otherwise:
(38) - ;
bld(@) = = 1+ (D2N2)uy(e12) + & Y2 Na)ula(2)
= V= W) + V5B (2) +12)? ula(2)
and

9(z) =dz) a](2) 4@%%@
Wz) =dsh(z ¥ (2) + 1+ (2U2)b(zc W (2))>
2) —

Thus the Newton step amounts to solving 2 X a(2)@(z) =), which yields

(39)
N K+ () — K 1 X o 0y p K
() (»Z“) = (x) Ta ™yl x) SXP T . W( ) /s _(0) [ ](0)
X
b[ ® ,u® ]
b H) e = S ga ds »
0 s

See Appendix B for details on the derivation of these formulas. Also here, due to
the appearance of derivatives of# and, regularisation is needed.

Expanding on the impedance case, in Section 3, we will prove convergence of a
regularised frozen Newton method for simultaneously recovering and y.

Remark2.1 (Uniqueness). In the Neumann casedsz = 0 on lo(), the linearisation
F7() is not injective since#’ () = 0 only implies thatd(z)u x(z<(2)) is constant.
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 663

There is nonuniqueness in the nonlinear inverse problem #’() = 0 as well, as the
counterexample / (z) = sin(mz<d/ ), g(z) = 0, wzy) =/ (z) shows; all horizontal
lines(z) =cforc ER™T solve the inverse problem.

In the Dirichlet casez = 0 on ' (), linearised uniqueness follows from the
formulaz(z<(2)) =  —wy(2(2))dz) providede , does not vanish on an open
subset I of [p(). The latter can be excluded by Holmgren's theorem, since— « =
0, together with the conditionsz = 0, y = 0 on g(), defines a noncharacteristic
Cauchy problem and therefore would implyz=0 onZX), a contradiction to/ = 0.
Full uniqueness can be seen from the fact that if and solve the inverse problem,
then on the domain enclosed by these two curves (plus possibly some [ boundary
part), u satisfies a homogeneous Dirichlet Laplace problem and therefore has to
vanish identically. This, on the other hand, would yield a homogeneous Cauchy
problem forz on the part J(min ¥ <) that lies below both curves and thus imply
that« vanishes identically there.  Again we would then have a contradiction to
S=0.

This uniqueness proof would also work with Neumann or impedance instead of
Dirichlet conditions on the lateral boundary I;.

For uniqueness in the impedance case, see also [34, Theorem 2.2].

2.1. Reconstructionskigure 2 shows reconstructions of(z) at 1 per cent noise

in the flux datag (with respect to theZ 2 norm). Here the actual curve was defined
by

(40) (z) = T(z) :=2(058 + 051 cos(27z))

withZ = 01, and the starting value was far from the actual curve (taken to be
constant aty = 0022).

The left panel shows the case of Dirichlet conditions on the interface No further
progress in convergence took place after iteration 5. The lateral boundary condi-
tions were of homogeneous Neumann type in order to avoid singularities near the

corners.
Uz) U(z) l(z)
0.09- . 0.09- 0.09-
0.08-\/, o.os-\/' o.os-\/
0.07-\/ 0.07- 0.074 :
0.064_ | 0.06] 0.06-
004 —— | o005 0.05
0.04- 1 0.04 0.04-
0.034 TR e ““0.03_ 0.034
0.024------------ T 0.024------------ Lt - - - 0.024 --------m--- P
0.01- 0.01- 0.01-
0.00 0.00 0.00

T T T T T T T T T T T T
0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0

Figure 2. Recovery of(2) from data in with 1% noise: Dirichlet
case (left), Neumann case (middle), impedance case (right)

In the middle and rightmost panels of Figure 2 we only show the first (green) and
second (blue) iterations as the latter was effective convergencdn the leftmost panel
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664 BARBARA KALTENBACHER AND WILLIAM RUNDELL
we additionally show iteration 3 (navy blue), iteration 4 (purple) and iteration 5
(red); the latter being effective convergence.

The relative errors at different noise levels are given in the second column of
Table 1.

Table 1. Relative errors for reconstructions of at several noise levels

-7 L2 < r L2(Q)
noise level || (D),Z =021 | (D),Z =005 | (N),Z =021 | (I),Z = 0p1
1% 0.0038 0.0158 0.0018 0.0077
2% 0.0084 0.0205 0.0093 0.0087
5% 0.0198 0.0380 0.0144 0.0110
10% 0.0394 0.0735 0.0563 0.0158

The same runs were also done with a larger distance Z and the actual curve still
according to (40). This resulted in the relative errors shown in column three of
Table 1.

The middle and right panels of Figure 2 show reconstructions of(z) in the case
of Neumann and impedance conditions (= 0r1) on the interface. The starting
value was again relatively far from the actual curve and there was again 1% noise
in the data. No further progress in convergence took place after iteration 2. For
the relative errors at different noise levels, see the last two columns of Table 1.

3. Problem 3: Reconstruction of an interface and the impedance
coefficient

Finally, we consider the problem of reconstructing both the interface character-
ized by a homogeneous impedance condition and the spatially varying impedance
coefficient. Again, the solution of Problem 1.1 as devised in Section 1 will serve as
a building block in the reconstruction procedure.

Problem 3.1 Given two pairs of Cauchy data (A1), (/292) in
z €Q y €(04(2))-
Buj (zy) =0 z €ER y €(04(2))-
U (z<0) =f; (2)c wy (z<0) =g(z) 2z EQ
forj=1<2,find: Q - (0<£) and p: Q- (0<o) such that
(41)
0 =28 yy =dsvj (24(2)) + "Nz)u (2(2))
=ty (z42)) —Vx(2) <Vy(24(2)) + "N2)yj(2(2)) 2 EQ-
where J/is the combined coefficient defined by J{z) = 1 + #¥(z) S} (2).

The setting is as in Problem 2.1 otherwise and using the notation (31) we rewrite
the forward problem as

— % =0

- % =0 in2()«

uj =f; on ¢

(42) o '
Buj =0 on ()«
Bryu =0 on MNo()>
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 665

Note thate j actually satisfies the Poisson equation on the hold-all domain/Z)(Z)
with a fixed upper boundary defined byZ =. We also point out that using the
weak form of the forward problem

u—f EH (D) = EHNQ): Bw=0o0nT3)c w=0onT1¢

and for all

(x)
wE€A (D) (VusT)endy+ Na)uso)(a (@) de =0

no derivative of nor ~ yis needed for computingz.
The forward operator #'= (/#'1</73) is defined by

£ = uy (20)— g () wherew ; solves (42),7 €< 2P

Its linearisation is defined by 7 ()[dd/] =v jy o,, wherev solves

- 4 =0 in2()

v =0 onlyc
Boj =0 on ()«
Bryy =Gy < "y)(ddy) on o()<

cf., (41), where
G < "Y)(ddp)(2)
(43) ==y (2(2)) —Vx(2) <Byy(2(2)) + N2)yy(2(2)) &
+ Vxdlz) <V%u(2(2) —dUz)u(z(2))>

Using the PDE we have the identity
Gy << "y)(ddy)
= Vx d2) Vxuj(2(2) —d2)" N2)uyy (24(2)) —dUz)y(21(z))>

Thus, computation of a Newton step (ddy) = (<_ (k) (d_}/(k)) starting from some
iterate ( (K < pK)) = (<)) amounts to solving the system

- 4= inZX)
2j :f j on r]_‘
(44) Bz =0 on () J EM20
Zy —g =0 on e« J

Bryg =Cu j<"Y)(ddy)  onTo)

(note thatzj =u; +v; andzjy &b, —g =7Fj() +£;()(ddy)).
Using the regularised (according to Section 1) solutionsjfiof the Cauchy problem
on the cylindrical hold-all domain

— § =0inD(Z) = Q x(0L)
g =/ onlqc
B =0 on (L) =dQ x(0<Z)«
iy —g =0on ;-

(45)
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666 BARBARA KALTENBACHER AND WILLIAM RUNDELL

this reduces to resolving the following system for (&@y) on I o()

Glur="Y)(ddy) =8 -y~

Gluz= "p)(ddy) =B -ytr

With the pre-computed regularised solutions £ of the Cauchy problem (45) one

(46)

can therefore carry out a Newton step by computing uj(-k) =uj from the well-posed
mixed elliptic boundary value problem (42) with =  *) 7/: # and updating

C(2) = W(2) —da)e P#(2) = 9 (2) —an)
withd,dy solving (46).
To obtain more explicit expressions for and@y from (46), one can apply an

elimination strategy, that is, multiply the boundary condition ond{) withw j+1 (2)
and subtract, to obtain

B-yviltz — B-yvatn = Vx- dV i — V- dVus —dY Uyl — thyln

=Vx- d WwWVxui— Vs —d Vi UxyVxur— Vil +V Uylz — byl
=V, dW -dp

with the Wronskian

(47) Wlw 1uz] i=u2() Vxur() —w() Vxua)

and where we have skipped the arguments (z) ofé 1, 2, 4. dy; and (24z)) of
u1,u 2 and its derivatives for better readability.
In the (altogether two dimensional) case of Q (0<47), with the abbreviation

Wk =g (K)o (1k) u (zk)], ,5’(’() =4 (k) (uz ] this yields the explicit formulas
A s
dz) = oy €XP -, *VBVW( s)ds o) (o)
X . X 56
+ o Hs) exp — W ® (9)dt  ds
with  4(2) = dpfa(zc ¥ (2))+ y‘“ )ty (2 <k>( )) & (2 ¥ (2))
= g hr(e W (2)+ PO (a(a ¥ (@) o (@ ® (2))¢

(k) k k)
) =g wpy ax Ao (o ’( ~d2)" W (2)uly (242)) ~h(2)
_ 1 d (k)
- u(lk) (x, (k) (x)) dax QI(—‘Z.)W (Z’)

Wy K
k . (X (x))
—d(z) })) Zély z4(z))+ % = Wx(k) (X)X —h(z) v

A similar elimination procedure will be useful in the proof of linearised uniqueness
in Section 3.2.2.

3.1. Reconstructionsn Figure 3 we show a simultaneous reconstruction of(z)
and }(z) obtained from excitations with f1(z) = 1 +2 +2? and f2(z) = 42%> —32°
(chosen to comply with the impedance conditions Zu =9 yu +u = 0 atz €A}
M=1).

Assuming the boundary values of and ~ )’to be known, we used them in our
(linear; in the concrete setting constant) starting guesses. The actual values are
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0.10, {(z) 14 Uz)
1.2 1
1.04¢ //
— actual
— reconstruction
0.05 T T T T 1 0.8 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3. Simultaneous recovery of(z) and ~ p(2)

shown in black (solid), the reconstructed in red, the starting guesses as dashed

lines.

The relative errors at different noise levels are listed in Table 2.

Table 2. Relative errors for reconstructions of and ~ y at several

noise levels

noise level -7 L2(Q) < T L2(Q) N]/—V L2(Q) < V L2(Q)
1% 0.0145 0.0251
2% 0.0152 0.0263
5% 0.0191 0.0355
10% 0.0284 0.0587

While the numbers suggest approximately logarithmic convergence and this is
in line with what is to be expected for such a severely ill-posed problem, our result
in Section 3.2 is about convergence only. Proving rates would go beyond the scope
of the objective of this paper.

3.2. ConvergenceProving convergence of iterative regularisation methods for
nonlinear ill-posed problems always requires certain conditions on the nonlinearity
of the forward operator. The one we will be able to verify here is range invariance
of the linearised forward operator [27], see (52). These can be verified for a slightly
modified formulation of the problem; in particular, instead of a reduced formulation
involving the parameter-to-state map as used in Section 3.1, we consider the all-at-
once formulation (involving a second copy of )

}N;i(zl]_“ N},i) :0:

(49) P(ure"pp) =0¢
P(ficjs) =0¢
where
)
u oy, = fj
N-- . cc " ley* _ﬁ < 4 13 4 ¢ 1/ =17
60) gy =2 g e | TETX LPAR) =Kk
E”VZﬁ'ﬁoO()

Licensed to Texas A & M Univ. Prepared on Fri May 30 11:18:52 EDT 2025 for download from IP 165.91.113.149.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



668 BARBARA KALTENBACHER AND WILLIAM RUNDELL

with a given value 0 on the subset £ € dQ of the boundary. The first component
of # means that we consider the Poisson equation on the hold-all domain/Z)(Z).
The penalty term defined by Zenforces both copies of ¥ to coincide in the limit of
the convergent Newton iterations.

3.2.1. Range invariance of the forward operatarforward operator 7 X ->Y
defined by #' (w2« "pi<jp) = (Fi(wi< "Wi)< F3(w2< " )»)) along with its linearisa-

tion
( )

— @j
du; b,
@jy“l
Bdu; &)
By, duj &) — Gy < "y)(ddy)
adé

(51)  F (o= ") (dyddy ;) =

and the operatorr = (» y17y27 7y17y2) defined so that [Z -y, — 2y, J +
Gluoj< 0<0,)( — o)7yj(wr<ur<"pi<js)) = 0, that is,

Tuj(ﬂl‘uz“ N}’i‘h) =uj —up; -
r(wuz<"Kejp) = — o

ryjlurcuz«"Yicjpp) =

)
X = wjyy(0) =Vx o(z) <Vwjy( o) +}0(2)uojy( o) ( — o)
+ Vx( = 0) <Vw,i( 0) + 4y() —Vx(z) <V()
+ U2y () = uy( o) =Vx o(z) <%z ( o) +j06(2)% (o)

7 €< X satisfies the differential range invariance condition

(52) for allf ETIE) EX =V2xX x (X2 : F(§=F(§) = F(&)HE)

in a neighborhood/ of the reference pointé ¢ := (wp,1%0,2¢ 0<J6,1< }6,2). Here we
use the abbreviation() for («())(2) =w(z<2)) and

Ei= (muz< "M pp)p

Since thew ; do not necessarily need to satisfy the PDE, we have to use the repre-
sentation (43) of G’ here.

Along with the identity (52), the convergence proof according to [27] requires an
estimate on the difference betweens and the shifted identity, which can be written
as

r(ultaz(( "M(}"é) — (Ul(UZ“ N}’i‘k) _(UO,l(UO,Z‘ Ot%llt%lz)

.
= 00 05K A+ + 211 ) o5 (B + T2 + 11T 2)< 0 <

<
Uo,2
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 669

with
5 =Y (4 () —wuoj(0) —W,ju,y( o) — o)

+¥0,j w,;() —uoi(0) —ujy(0)( = o)
Llj =uojy() —wuojy( o) —wojyy(0)( — o)
L1l = =Vx 0j <% wj() —uoj(0) —ujy( o) — o)
—Vx <% (4 —w,)() —(4 —uj)( o)
“Vx( = 0) <V uj() —uoj( o) +uj(o) —uj(0) »

This representation will allow us to estimater(§) — (& —&) in appropriate norms.
The function spaces are supposed to be chosen according to

Vewre (DL) X cWPQ) ni”®(Q) XV =LPQ)»
The fact that.X” continuously embeds intoZ * (Q) allows us to guarantee =< Z

for all with — o0 x small enough. In this setting, using

1
&(2(2)) —v(ze o(2))d= (2 o(2) +5((2) — o(2)))ds ((2) — o(2))

0

= O L p((y) ) — o(2)d
&(2(2)) —uv(z o(2) —oy(2c o(2))

1 1
= 0 by (2 o(2) +s s((2) — o(2)))sdsds ((z) — o))

= Yy - o)) ) — o(z) &

we can further estimate

4 oLe@ SV oLe@ %y ~Ujy L= @OL) T 0 L= (@
+ ¥ Wi tr@ @iy L= W) T 0 L® (@
+3 ) Lr@ @iy L= oWy~ 0i-@°
7 1) SEMP S wojyy = owy — 0 fe @
T Yyy Tuojyy L= @OW) T O0L=@ ¢
11} o) SV x oj LoV xtojyy 1= W)~ 0 b @
+V x eV xyjy =Vxuojy 1= ow)y — 0L
+Vx =Vxore@ Vxuwjy L=owy — 0L=@)

+V x4 (o) =Vxuwj( o) L@ »

Altogether, choosing o to be smooth enough and bounded away from zero on ¢

(53) —1 ELOO (Q)< u,jy U 0,j yy EWI'OO (D(Z))‘ j E%C 2&

uo, ( o)
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670 BARBARA KALTENBACHER AND WILLIAM RUNDELL

we have shown that

(54) HE) = (E=&) vaxx xxi12 =C E=& Gaxx xx 7y

for someC> 0. Referring to (53), note that in our all-at-once setting,z,; does not
necessarily need to satisfy a PDE, which (up to closeness toz ') allows for plenty
of freedom in its choice. Analogously to, e.g., [30, 31] this provides us with the

estimate

Jo EO-VD)WEENCSIV? xX x(XN2): A& —rf) —(E-&) x

95
(35) sq &-¢& x«

where£ T = ( % « Tejf<J7) is the actual solution.

3.2.2. Linearised uniquenedsesults on uniqueness of the nonlinear Problem 3.1
can be found in [4, 43]. In particular, linear independence of the functionsg 1,9 2 is
sufficient for determining both and ~ yin (41).

Here we will show linearised uniqueness, as this is another ingredient of the con-
vergence proof of Newton’s method.More precisely, we show that the intersection of
the nullspaces of the linearised forward operator #"(uo,1%q,2< 0 }6,1° }6,2) and the
penalisation operator Zis trivial. To this end, assume that#” (ug,1<%0,2¢ o< j0,1°6,2)
(duy duyddy <dy,)=0andP(dy |dy,) =0, where the latter simply means
ay, =dy, = a’}/ From the first four hnes in (51) we conclude thatdu; satisfies a
homogeneous Cauchy problem and therefore has to vanish onZ( ;) for 7 EqL 2
Thus, 5 ~y; di; = 0 and by an elimination procedure similar to the one that led to
(48) but using the representation (43) of ¢ we obtain

(56) 0 =Wu 1u3] <%d+ Fluw 1uz]din Q¢ d=0on 2

with /7 as in (47), wu 1uz] = —furyy() —Vx <V y() + "yeury))u 2() +
(w2yy() =V x <Wedy() + "Veuzy))w 1(). Thus, under the assumption that the
Wronskian 7 does noj vanish and that Z contains the inflow boundary

(57) @ EX: W Ir<0 $ci-

withy @ denoting the outward normal todQ, uniqueness of the solution to the
above boundary value problem (56) for a transport equation (that follows from the
method of characteristics, see, e.g., [14, Chapter 3, Section 3.2]) yieldsZ = 0 and
thereforedy = 0. Assuming that the Wronskian is bounded away from zero at the
exact solution

(58) Fe>0: W[T<u§fu£]$zc a.e. on Q
by a continuity argument therefore allows us to conclude linearised uniqueness when

linearising sufficiently close to the exact solution.

3.2.3. Convergence of Newton type schékirasow combine the results from Sec-
tions 3.2.1, 3.2.2 to prove convergence of two Newton type schemes for solving
Problem 3.1.
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 671

(a) Regularised frozen Newton with penalty.
We apply a frozen Newton method with conventional Tikhonov (and no fractional)
regularisation but with penalty Zas in [30, 31].

(59E So1 =€+ (K K +2 Pren )™ & (10 =F(§)) =P P +6n(&H—&)
where &' = 7 (&) and A~ denotes the Hilbert space adjoint of A”: X = Y and
X =H3" (D(L)? x H5(Q) x L?(Q)%«

Y = Z2(D(2)) x L2 (T1)? x L2(T2(2)) x Z2(Q) x Z3(3)

withs>d<2, s =1, whered E9¥1<2is the dimension of Q. The regularisation
parameters are taken from a geometric sequenceé&, =& @' for somed €(0< 1), and
the stopping index is chosen such that

(60) 2

(61) &) 2 0 and&zﬂé‘n*w)_l - 0asd = 0
whered is the noise level according to

(62) (RS39893) = (fiS29292) 12007200 <6

An application of [27, Theorem 2.2] together with our verification of range in-
variance (52) with (54) and linearised uniqueness yields the following convergence
result.

Theorem 3.1Leté& €U = 5,(&) for somep> 0 sufficiently small, assume that
(53), (57), (58), and M A)+ <A (P) hold and let the stopping index=7 (&)
be chosen according(@v).
Then the iterate$&)ne1,..n.5p are well-defined b§39), remain inBy(&)
and converge I (defined as if60)), & 5 —& x = 0asd- 0.

In the noise free cage= () 7x(0) = we have& —& x » 0 asn »o .

(b) Frozen Newton with penalty, applied to fractionally regularised prob-

lem.
Replace 7 7 in (50) by
( 0"‘7’ UL — 1/_ 27 . \
y “4j Ty XU
ayzl—j - _1/ XU—j_l
- Usj oo (f+ VX 19)

(63) A (wwju—j <)) > u_j‘pl 1/+ = x 9 < 7 ERL X

(Buw+j Bu - )dby1)

By (u+j +Z‘—/)'ﬁo

& —

whered [ w is the fractional DC derivative with endpoint 0 and " Ly) =u(Z —y),
cf. Section 1. Range invariance and linearised uniqueness can be derived anal-
ogously to the previous section (noting that the only nonlinear term is the one
in the next to last line and coincides with the one in (50)) and therefore we
can apply (59) with # in place of #’and conclude its convergence to a solu-
tion (] ™} w %% w®) < @t T — PTY of (49) with ﬁa(uﬂ < _j < ")) in place
of [*](uj « ")) for any ﬁxeda/ €(0<1). With the abbreviation

&= (U(ji,l‘uti 1‘ﬂ+2 T/ =)

we thus have the following convergence result.
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672 BARBARA KALTENBACHER AND WILLIAM RUNDELL

Corollary 3.1let& €U := B,(&1) for someo> 0 sufficiently small, assume
that (53), (57), (58), and M(A)+ <A (P) hold and let the stopping index=
nx(0) be chosen according(év). y ;

Then the iterate&°),e(1,...n.0) are well-defined Hp9) with 7 := F*©),

.....

remain in5,(&) and converge ¥ (defined as if60) with 73+ (D(Z))? replaced
by 3% (D(2))*) &5 —&T x » 0 asé& - 0. In the noise free casé = 0,
n«(6) = we have& — &1 y - 0asn »o .

It remains to estimate the approximation error (¥ — T<p&T —57) In Section 1
u

we have seen thata} =u 15 +u ij wherew ‘11; - _j =0 and

©

,T 1,17 1 1 Y R
”(:-,j (zw) T Uy (zy) =35 (i + ﬂﬂil‘) Ea1 (= Ary9) —exp( Aiy) @(2)>
i=1

Moreover, subtracting the two identitiesZ at jar z/_f_’} =0, Bty ”tr,j =0, we
arrive at the following differential algebraic system ford = *T — T,a’l =y =
~Vdh 1 (1) <Gd+d §d+u 'l 1 (T dy =0
Vit (1) <Wd+d §d+u'l ,( T)dy =03«

where

1
4 (z) = . Rulfy < T Pliae Na) +6( “(2) = T(2))) a0

.1 T oo, 2
B (2) = —Ru¥] —dy ;< T Phiae ¥ (2))e
Lu<"pizy) =uy(zy) =Vx(2) <%u(zy) + yuzy)>
Assuming that the Wronskian
t t T T
(64) Whi=u 4ol T) Vg 1 ( f) — i ( T) Vg 5( T)

and one of the factorse 7;_,1- ( 7) ofdy are bounded away from zero,

(65) F>0: S maX,/‘:,l( T)Milz( N> ae. on Qe

we can conclude existence of a constant > 0 independent ofa (note that 77" T and
U:,j do not depend ona) such that

2 2
: st . + ot
=T g+ T =V L2 SC 8 L2q SC WY —dh; caxiw)
j=1 j=1

and in the (altogether 2-dimensional) case Q = (0<47") where the transport equation
does not lead to a loss of regularity, even
2 2
3, 7 ; .t T
=T g+ PV o sC  § oo sC &) —di; caxu »
j=1 j=1

The latter can be estimated by means of Lemma 1.4 in Section 1.
Combining this with Corollary 3.1 we have the following convergence result.
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 673

Theorem 3.2.Assume(65) with 7" according64) and leta(6) - 0 as 6 -
0. Moreover,let the assumptions c(forollary3 1 hold fora =a(6) , and let

(éﬁ“”'é)ne{l ,,,,, nu(o)} be defined Hp9), (61) with 7 := #%®), Then

ey - )+ B Y g 08560 ifdimQ) = 2
g(*é(g)é - ) + n*?é)é V L2 —0 aso- 0 Ifdln"(Q) =1

Appendix A. Cauchy 1
Lemma A.1.For any/ll =0, a €(0<1) p E(1- 72 7 ) D= 1+ and the constant
(66) ,
p

Aap = Eyap 1= @+ (Co(@aR) + Ci(aaw)) L5 maxql- ﬁé"bc

with Co, C1 as in (70), the following estimate holds

sup L1 (AL~ Eo(AL) Lo <Aaph 1-a)s
A>Aq

Proof, Abbreviating
0u(9) = Y (W) =eap (B A) =P Bap (—AY)-

the quantity to be estimated ise/(y) ::Earl(—/ﬁy") —y“_lEa,a(—/A]y") =eq1(y) —
éa,a (¢). Using the Laplace transform identities

67 Lo)E) =EH e (Leap)(d) =St
=§FH- € = =
(67) (Lau)( (Leap)( e

I3

we obtain, for somefS €(a —1<) yet to be chosen,

75‘1_1_175@[—[3 -1 _ B-«a
([:w)(f)i;i—}—{“ */Ai+£a(éﬂ éﬂ

= (Leap)($) (Lo1-p)($) —(Loa-p)(S)

hence, by Young’s Convolution Inequality,

w Lp(0,) = €ap *91-8 —da-) Lr(O,) = €aB La(0,) 91-B —Pa—B Lr(0,])

provided % + % =1 +%).
For the first factor, under the condition

I3

1
68 1 =g<
(68) Ay
that is necessary for integrability near zero, we get

max 9 ‘W_1)+l/q

69 é ) = ZLap L= (R*
(69) aB La(0,]) aB L= (R*) (B—=1)g + 1}a

The second factor can be estimated by applying the Mean Value Theorem to the
functioné(y;af) = ga—p () as follows

01-8(0) — 8- (1) =6y 1) = Blys@) = 7 By &h) (1 @) = Ay &) (1 - @)
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674 BARBARA KALTENBACHER AND WILLIAM RUNDELL

where
Oy @) =y* P H@—p logly) = (@-P)
=ga-p (4) log(y) —(log I') (& = B)
for some ‘@ € (a< 1), with the digamma functiong = r? = (log ) , for which
% = F is known to be an entire function as is also the reciprocal Gamma function,
thus
(70) Co(aB) =sup H(E—Lh< @<  Ci(aB) =sup &(F—Lh< v
ac(a,1) acs(a,1)
Integrability neary = 0 of (% #~1)" and of (427B~1 log(»))" holds iff
1
71 1l =< =
(1) ST —a+p
and yields
(72) 91-8 —8a—g Lr(0) = _sup  H<@B) Lr,) (1 -a)
aE(a,1)
where

. . . maxﬁl‘%a_ﬁ_l)"'l/r
(73) G<aB) 1r,) =(Co(ab) + Ci(ap)) (@-B8-1)r+ 11 b

Conditions (68), (71) together with & €(a-< 1) are equivalent to

1 1 1 o i |
S=-4+-=1>1 —@and 1<f+ - <a+-
pr g9 T q P
which together with & €(a<1) leads to the assumption
1
->1-a
P

and the choice min90<1— O<ﬂ< a+
To minimize the factors

aleh) = (B =g+ 7Y a(ra -f) = (@=B-Vr+ 17

-1
7

Tl

n (69), (73) under the constraints (68), (71) and% +1=1 +% we make the choice
% =1=11+1 ) B =a<2 that balances the competing pairsg nB a-—-p
and arrive at

I
p
< =C ra — = B >
a(gh) =c 2 p) ]a_lﬂ%{

Proof of Lemma.2. To prove (23), we employ an energy estimate for the ode
satisfied byu(y) =Zq, 1(—/if) —exp(—/]y) =u 44 (%) —u 3 (),

dyv—i-/Aizz— —(dy —dy)ug 4 =: Jwr
wherew = —}(3% —dy) a1 (—Af) =Ba1(—AF) = Bau (=15 )0

lwe do not go for asymptotics with respect tol since we assumd to be moderately sized
anyway.
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 675

Testing with o( 7 R~ Lsign(e(7)),integrating from 0 toZ, and applying H¥lder’s
and Young's inequalities yields, after multiplication withp,
A Y A Y
(74) Sh+1 MTRIT<A S (T RdT-
0 0

in particular
= (0,]) —/’ P w LP(O,]) ¢ Ve = @ Le(0,])

for any # E(0<e]. The result then follows from Lemma A.1.

Proof of Lemma.3. For the second estimate, withe =e¢ 41 —e1,1 as in the proof

of Lemma 1.2, we have to boundd v = —)1(60,,0, —e1,1), where
1 1
Leaa —e11)(d) = 5 ¢
dv& A4E ( ( +¢)
+y-a _ $+y-1
Y /i +&7 ("Lﬁ £

forf<y> 0 withf +y<a yet to be chosen. In view of (67) we thus have
aq ~ €11 =61y *eap H@a-p-y —01-p-y) = €Ly *cap *dg>

Now, applying the elementary estimate

y
a*b =, ;)= sup a(y —2)0(2)dz
yE€(2,3) 0
y—1 y
= sup a(ly —2)0(2)dz + aly —2)l(2)dz
y€(2,3) 0 y—1

S a1 (q,3) 5L1(0,3—1)+ éLw(2—1,3) @ 110, 1)

for0< 1< 2 < 3, ah EZI(O‘ 3), (Z‘pl' 3) E[w( 1€ 3)7 5*2_ 1, 3) E[w( 2 —

1¢ 3), twice, namely witha =e 1,y, é=¢ o8, 1 =/B, 2 =/, 3 =/ and with
a=e qp, 6=d g, 1 =8, 2=2(B, 3 =/, along with Young's Convolution
Inequality, we obtain

evyx(@p * d [~y
S€ly ez €ap X 4d (T+ aﬁ*dw(zusnelv L1(0,)
=€y =y €aB 110798 L

t €ap L=z d_g L 1(0,/-I3) dg a3y € aB L1043 € 1y L1, -

Using this withS =y =a<3 and (cf. (72))
g 1) = sup  O£@aB) 1y (1 —a)¢
&€(a,1)

@ I (/_/3’/)- Sd,es};pl) 5(5&‘0’43) L= (/_/3’5 (1 —a’)c
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676 BARBARA KALTENBACHER AND WILLIAM RUNDELL
we arrive at the second estimate in (24) with (@0 /<) = sup 4e(q,,1) NAL),

Aaild) = evasz L= p)y Caad L10)]) S?pn O<aas) |1

+ era3 L10) CaaB Lepy  SWP OE@aAB) 107
20 Ge(a1)

+ €La3 10 €xa3 LO3) S(up) d<aaB) (- s>
ac(a,1 -

The first estimate can be shown analogously.

Appendix B. Cauchy 2
In the impedance case, using the PDE, the right hand side of (33) can be written

Au)d=d _(2) ux(2(2) — ¥ U)u(a(2))
tda) g w(z(@) = 1+ (@) (24a)
=% d2) w(e(2) — Y= Yo)ul(ad(2))

tdz) - 1+ (@N2)u(a(2) + & Y=L p2)u(z(2))

1+ ()2
=5 P(2) —a2)p(z) = §ldz) a[d(2)] —d2) bl(2)

Here using the impedance conditions on# that yield

(75)

w(2(2) =¥ U2)ul ()

—ux(2(2) + 5957 w(2(2) — (2)ux(a(2))

= mhgr w(e(@) + (Duy(ada)) =S = s du(aq(2))

r L u(a(2)) =u x(242)) it (2) =0

Ty i) tu y(ada)  else ol
In our implementation we use the last expression that is based on

ux () = ﬁ T+ (02NDulz(2) +u y(a{2)) i () =0

sincew x is difficult to evaluate numerically unless the boundary is flat (case (z) =
0). Moreover,

- 1+ @2ND)uy(z42) + & ¥Y=2 L U2)u(a(2))

1+ (x)2
(76)
= Y pa) + By (2) U (@) = bl ()
we have

(77) P(2) =dz) a[d(z)  a(z) =L (2)
with a, b as defined in (75), (76).
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FRACTIONAL REGULARISATION OF THE CAUCHY PROBLEM 677

Thus the Newton step in the impedance case reads as

X
k+1 I3 bl *,u® k) ., (k
1) kD (z) = W (g) —3® ,l}(k) g €Xp — . a{ T ,Z(“ }(s)a’s 20) af © " )(0)

X RESECECE
+ o H(s) exp — a[ @ ,g® ](t)df ds <
)
whereb(z) =d s8(z< ¥ (2)) + 1+ (22U2)8(z< ® (2))p>

In particular, with Neumann conditions on the lateral boundary &~ =o dyx under the
compatibility condition (0) = 0 we have a[<](0) =0 #(0<0)) =« x(0<0)) =0
and therefore

X X pp kg

k+1 k
@) ®D () = W (y) _m , os)exp =  rmgwy)dt ds
)

= W (@) ~do)-
where the value at the left hand boundary point can be computed by means of
1'Hospital’s rule as (skipping the argument [ %) 24K] for better readability)

Hz) =220z Y/ —b(2)d
lim d(z) = lim M: lim ¢ (z) — lim (2) —3(2)¢@( ): lim (z) —b(2)d2)
x=0 x50 a(z) x-0 a(z) x-0 a(z) x=0 a(z)
hence
1 Hz) b(x)
lim d2z) = lim = lim
B A T e
_ 2,(0, ¥ (0))+y(0)z(0, ¥ (0)) N
T ull (0, W (0)+( K y(0)+y(0) 2)utk (0, ® (0))
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