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Abstract
This paper describes new approaches to the solution of a sequence of large linear
systems of equations or large linear least squares problems with the same matrix and
several right-hand side vectors that represent data. We consider both the situations
when the matrix of the systems to be solved is fairly well-conditioned and when
the matrix is very ill-conditioned. In the latter case regularization is applied. We are
concerned with the situation when the matrix is too large to make the application of
direct solution methods possible or attractive. Our solution methods apply flexible
Arnoldi or flexible Golub-Kahan decompositions. These decompositions allow the
solution subspace computed during the solution of a seed system to be expanded
by residual vectors that are computed during the solution of subsequent systems.
Computed examples illustrate the competitiveness of the proposed methods.

Keywords Ill-posed problems · Iterative methods · Flexible Krylov subspaces ·
Tikhonov regularization

1 Introduction

We are concerned with computing solutions of a sequence of linear least-squares
problems of the form

min
x (i)∈Rn

∥
∥
∥Ax (i) − b(i)

∥
∥
∥ , i = 1, 2, . . . , k, (1)

where A ∈ R
m×n , with m ≥ n, is a large matrix and the vector b(i) ∈ R

m represents
data that may be contaminated by measurement errors, e(i) ∈ R

m , which we will refer
to as “noise”. Throughout this paper ‖ · ‖ denotes the Euclidean vector norm or the
spectral matrix norm. When m = n, the least-squares problems (1) reduce to linear
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systems of equations; we will solve systems with m > n and m = n in the same
manner.

When thematrix A is of small tomoderate size, it is attractive to use a direct solution
method that computes a factorization of A. We will assume that the matrix A is so
large that the computationof its factorization is infeasible or unattractive and, therefore,
focus on iterative solution methods. The methods described are most efficient when
the data vectors b(i), i = 1, 2, . . . , k, are fairly close, but this is not required for the
applicability of the methods. For notational simplicity, we will assume that the vectors
b(i) in (1) are scaled to be of unit Euclidean norm. This scaling affects the stopping
criteria used for the iterative methods described in this paper. It is straightforward to
allow arbitrary scalings of the b(i) when it is appropriate.

The solutions of a sequence of linear systems of equations with the same matrix
A and different vectors b(i) has received considerable attention in the literature. This
problem was first studied by Parlett [26] and Saad [30], who consider the situation
when the matrix A is symmetric and positive definite. This case also is investigated
by Abdel-Rehim et al. [1], Calvetti and Reichel [6], and Chan andWan [7]. Simoncini
and Gallopoulos [34] discuss the situation when the matrix A is square, nonsingular,
and nonsymmetric.

If A stems from the discretization of an ill-posed problem, the matrix may be so
ill-conditioned that Tikhonov regularization has to be used; see [12].We consider both
the situations when the matrix A is not very ill-conditioned and when A is severely
ill-conditioned. Here the conditining is measured by the condition number, i.e., by the
quotient of the largest and smallest singular values of A.

A popular solution approach for systems of equations (1) with a large symmetric
symmetric positive definite, and not very ill-conditioned, matrix A is the application
of a conjugate gradient-type method. Here the approximate solution of one of the
systems, commonly referred to as the seed system, say Ax (1) = b(1) is computed, and
then approximate solutions of the remaining systems Ax (i) = b(i), i = 2, 3, . . . , k, are
calculated by applying Galerkin projections into the Krylov subspace determined by
the conjugate gradient method. The accuracy of the approximate solutions of the latter
systems is, if necessary, enhanced by carrying out further iterations with the conjugate
gradient method applied to these systems; see Abdel-Rehim et al. [1] for a discussion
on computational aspects of this solution approach. Analogous solution methods can
be used when A is a fairly general square nonsingular matrix; see Simoncini and
Gallopoulos [34].

We present new approaches to the efficient solution of sequences of least-squares
problems or linear systems of equations (1). Our approaches apply a flexible Arnoldi
method or a flexible Golub-Kahan method to generate solution subspaces that contain
residual vectors determined when when solving the problems (1). We believe the use
of this kind of solution subspaces to be new. The first step of our methods for solving
the problems (1) is to solve a seed system, say

min
x∈Rn

∥
∥
∥Ax − b(1)

∥
∥
∥ . (2)
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Denote the computed solution by x (1). We then seek to determine the solution of
the next system,

min
x∈Rn

∥
∥
∥Ax − b(2)

∥
∥
∥ , (3)

by using the solution subspace generated when solving the seed system and, if nec-
essary, expand this solution subspace by vectors that represent residual errors for the
system (3). Specifically, assume first that the matrix A ∈ R

m×n is square and non-
singular, and that using the solution subspace determined when solving (2) does not
yield a residual vector of small enough norm. This solution subspace then is enriched
with the residual vector

r (2) = b(2) − Ax (1). (4)

Enrichment is accomplished within the framework of the flexible GMRES method
described by Saad [31]. Each step of the flexible GMRESmethod yields a new residual
vector, which is included in the next solution subspace. This process is continued until
an acceptable approximate solution x (2) of the system (3) is obtained.We then proceed
to solve the system

min
x∈Rn

∥
∥
∥Ax − b(3)

∥
∥
∥ (5)

by using the solution subspace determined for the solution of (3) and, if necessary,
enrich the solution subspacewith residual vectors for the system (5). The computations
are continued in thismanner until all k systems (1) have been solved.We remark that the
solution subspace can be re-initialized, i.e., we discard the available solution subspace,
if a basis for the solution subspace cannot be stored in the available computer storage.
We have not encountered this issue in the computed examples reported in Section 6.

The flexible GMRES method is based on the flexible Arnoldi decomposition. If
the matrix A is severely ill-conditioned, as it will be in some of applications that we
consider, then we combine the flexible Arnoldi method with Tikhonov regularization.

When the matrix A ∈ R
m×n in (2) is rectangular with m > n, we first compute

an approximate solution x (1) of the least-squares problem (2) by a suitable number of
steps of Golub-Kahan bidiagonalization applied to A with initial vector b(1), and then
calculate an approximate solution of (3) by enriching the solution subspace determined
when solving (2) by the residual

r (2) = AT b(2) − AT Ax (1)

of the normal equations associated with the least-squares problem (3) in case enrich-
ment is necessary; the superscript T denotes transposition. The enrichment of the
solution subspace by the vector r (2) requires the application of a flexible Golub-
Kahan decomposition method. Flexible Golub-Kahan decomposition methods have
been described by Lampe et al. [21] and more recently by Chung and Gazzola [8]. We
will use a slightmodification of the latter method to solve the sequence of least-squares
problems (1). The computations proceed analogously as in the situation when the
matrix A is square, i.e., the least-squares problem (3) is solved by enriching the solution
subspace with residual vectors for the normal equations associated with subsequently
computed approximate solutions of (3) when a sufficiently accurate approximate solu-
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tion cannot be found in the available solution subspace. Having computed a sufficiently
accurate approximate solution x (2) of (3), we proceed to solve the least-squares prob-
lems (1) for i = 3, 4, . . . , k in a similar manner.

Our solution methods reuse and possibly expand solution subspaces that have been
determined during the solution of the problems (1) for i = 1, 2, . . . , s − 1 when
solving the problem i = s for s = 2, 3, . . . , k. Hence, these solution methods may be
considered particular recycling methods. Recycling methods have received consider-
able attention in the literature; see, e.g., [2, 18, 35]. Our methods expand the solution
subspaces by residual vectors. This expansion approach also is used in [4, 21, 22]
for the solution of Tikhonov minimization problems in general form and nonlinear
generalizations thereof.

The need to solve a sequence of systems (1) arises in a variety of applications. For
instance, when seeking to solve a boundary value problem for a partial differential
equation in three space-dimensions and the matrix A that represents the discretized
differential operator requires a very large amount of computer storage, calculating the
solution by solving a sequence of problems in two-space dimensionsmay be attractive.
This situation is illustrated by Abdel-Rehim et al. [1]. Also, when solving problems
of the form

min
X∈Rn×k

‖AX − B‖F , (6)

where A ∈ R
m×n , m ≥ n, and B = [b(1), b(2), . . . , b(k)] ∈ R

m×k with m, n, and k
large, and ‖ · ‖F denotes the Frobenius norm, it may be attractive to compute each
column of the solution matrix X = [x (1), x (2), . . . , x (k)] ∈ R

n×k independently. This
yields the least-squares problems (1) that require less computer storage to solve than
the solution of (6) by an iterative method; see Simoncini and Gallopoulos [34] for a
discussion of this situation.

We are interested in the situations when the matrix A ∈ R
m×n , m ≥ n, is fairly

well conditioned or when the matrix stems from the discretization of an ill-posed
operator equation. The latter situation arises, for instance, when one seeks to restore
video frames or some other sequence of related images that have been contaminated
by blur and noise; see, e.g., Bentbib et al. [3] and Pasha et al. [27] for discussions
and illustrations. In these applications often m = n, and k is the number of video
frames or images. The matrix A represents a discretization of a blurring operator and,
generally, is severely ill-conditioned; the data vectors b(i), i = 1, 2, . . . , k, represent
blur- and noise-contaminated images. We remark that the straightforward solution of
the problems (6) by a truncated block GMRES method, where truncation yields a
regularized approximate solution, may give computed approximate solutions of (1) of
poor quality when the number of systems, k, is large, because the block Hessenberg
matrix determined by the block GMRES method may be quite ill-conditioned. This
can lead to numerical instability issues due to the noise in B; see [24] for a recent
discussion. In this situation it is better to solve the systems (1) separately.

This paper is organized as follows. Section 2 describes our solution approach when
the matrix A is square and fairly well conditioned. In Section 3, we consider the situ-
ation when A stems from the discretization of an operator with an unbounded inverse.
Then A, typically, is severely ill-conditioned and, therefore, approximate solutions of
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(1) are determinedwith the aid of Tikhonov regularization. Section 4 is concernedwith
the situation when the matrix A ∈ R

m×n is rectangular, with m ≥ n, and fairly well-
conditioned. Each subproblem is solved by Golub-Kahan bidiagonalization applied to
a seed system followed by flexible Golub-Kahan decomposition applied to the remain-
ing problems. Section 5 describes the use of this solution technique complemented by
Tikhonov regularization when the matrix A is very ill-conditioned. A few computed
examples are presented in Section 6. Finally, Section 7 contains concluding remarks.

2 Solution of a sequence of linear systems of equations with a square
fairly well-conditionedmatrix by flexible Arnoldi decomposition

This section is concerned with the situation when the matrix A ∈ R
n×n in (1) is fairly

well-conditioned. The least-squares problems (1) reduce to linear systems of equations

Ax = b(i), i = 1, 2, . . . , k.

We ignore possible “noise” in the right-hand side vectors in this section since the
matrix is assumed to be fairly well-conditioned. The noise therefore will not propagate
into the computed solution enough to significantly destroy the quality of the latter.

The first linear system, Ax = b(1), is referred to as the seed system. Application
of E1 steps of the Arnoldi process to A with initial vector b(1) gives the Arnoldi
decomposition

AVE1 = VE1+1HE1+1,E1 , (7)

where the columns of the matrix VE1+1 ∈ R
n×(E1+1) form an orthonormal basis for

the Krylov subspace

KE1+1(A, b(1)) = span
{

b(1), Ab(1), . . . , AE1b(1)
}

,

and VE1+1e1 = b(1)/‖b(1)‖. Here and throughout this paper e1 = [1, 0, . . . , 0]T
denotes the first principal axis vector. Thematrix VE1 ismade up of the first E1 columns
of VE1+1 and the matrix HE1+1,E1 ∈ R

(E1+1)×E1 is of upper Hessenberg form, i.e., all
entries below the subdiagonal vanish. We tacitly assume that the decomposition (7)
exists and that the matrix HE1+1,E1 is of full rank. This is the generic situation. Further
details on the Arnoldi decomposition can be found in [32, Chapter 6], where also the
GMRES method for the solution of the seed system is discussed. How to handle the
(unusual) situation when the matrix HE1+1,E1 is rank-deficient is considered in [29].

Let x = VE1 y for y ∈ R
E1 . In iteration E1, the GMRES method applied to the

seed system with initial approximate solution x = 0 solves the least-squares problem

min
x∈KE1 (A,b(1))

∥
∥
∥Ax − b(1)

∥
∥
∥ = min

y∈RE1

∥
∥HE1+1,E1 y − ‖b1‖e1

∥
∥ , (8)

where the right-hand side is obtained by substituting the decomposition (7) into the
left-hand side; see, e.g., [32, Chapter 6] for further details. Denote the approximate
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solution of the small least-squares problem on the right-hand side of (8) by y(1) ∈ R
E1 .

This gives the approximate solution x (1) = VE1 y
(1) of the large least-squares problem

on the left-hand side. We choose the number of iterations E1 so that x (1) satisfies

∥
∥
∥Ax (1) − b(1)

∥
∥
∥ =

∥
∥
∥HE1+1,E1 y

(1) − ‖b(1)‖e1
∥
∥
∥ ≤ δ, (9)

where δ > 0 is a user-chosen tolerance.
Consider for the moment the Arnoldi decompositions

AV� = V�+1H�+1,�, � = 1, 2, . . . , E1,

where the matrix V� consists of the first � columns of VE1+1 and the matrix H�+1,�
is the leading (� + 1) × � principal submatrix of HE1+1,E1 . The columns of V� form
an orthonormal basis for the Krylov subspace K�(A, b(1)). In iteration �, for � =
1, 2, . . . , E1, GMRES solves the least-squares problem

min
x∈K�(A,b(1))

∥
∥
∥Ax − b(1)

∥
∥
∥ = min

y∈R�

∥
∥
∥H�+1,�y − ‖b(1)‖e1

∥
∥
∥ (10)

by computing the solution y(1)
� of the minimization problem on the right-hand side

and then determining the solution x (1)
� = V�y

(1)
� of the left-hand side problem, in a

similar manner as equation (8) is solved.

Theorem 1 Define the residual vectors

r (1)
� = b(1) − Ax (1)

� , � = 1, 2, . . . , E1.

These vectors belong to the Krylov subspace KE1+1
(

A, b(1)
)

.

Proof For every � = 1, 2, . . . , E1, the vector x (1)
� lives in the Krylov subspace

K�

(

A, b(1)
)

. Hence, the vector r (1)
� −b(1) is in the subspace AK�

(

A, b(1)
)

and, there-

fore, the vector r (1)
� belongs to the Krylov subspace K�+1

(

A, b(1)
)

. ��
The above theorem shows that the solution subspace for GMRES when solving (8)

is made up of the residual vectors determined by GMRES when solving the systems
(10) for � = 1, 2, . . . , E1. This suggests that the span of residual vectors also may
be a good choice of solution subspace when the span is not a Krylov subspace. The
methods in this paper use this kind of solution subspaces and computed examples
presented in Section 6 illustrate that spans of residual vectors indeed make up suitable
solution subspaces.

After having solved the seed system (9) by GMRES to desired accuracy, we have
the approximate solution x (1)

E1
, which we henceforth will denote by x (1). We turn to

the solution of the linear system of equations

Ax = b(2). (11)
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If the vector b(2) is very close to b(1), then an accurate approximate solution may be
available in the subspaceKE1(A, b(1)) (which is indicated by the fact the the inequality
(13) below hold). We therefore solve

min
y∈RE1

∥
∥
∥AVE1 y − b(2)

∥
∥
∥ . (12)

The solution of (12) can be evaluated by solving the small least-squares problem

min
y∈RE1

∥
∥
∥HE1+1,E1 y − V T

E1+1b
(2)

∥
∥
∥ .

Denote the solution by y(2)
E1

. Then x (2)
E1

= VE1 y
(2)
E1

is an approximate solution of
(12). Assume first that the inequality

∥
∥
∥Ax

(2)
E1

− b(2)
∥
∥
∥ ≤ δ (13)

holds. Then we accept x (2)
E1

as a solution of (11), which we henceforth denote by x (2),
and continue on to the linear system of equations

Ax = b(3).

We remark that in order for x (2) to be an accurate approximation of the solution
of (3), it is generally required that the columns of the matrix VE1+1 be numerically
orthogonal. Therefore we implement Arnoldi’s method with re-orthogonalization.

We turn to the situation when inequality (13) does not hold. Then we compute
the residual vector (4). This vector is orthogonalized against the available solution
subspace and normalized to give the vector

v = r (2) − VE1V
T
E1
r (2)

‖r (2) − VE1V
T
E1
r (2)‖ ∈ R

n,

where we assume that the vector r (2) −VE1V
T
E1
r (2) does not vanish. This is the generic

situation. The solution subspace range(VE1) is enriched with the vector v. Define the
matrix

ṼE1+1 = [VE1, v] ∈ R
n×(E1+1).

Its orthonormal columns span the new solution subspace. The recursion formulas
for the flexible Arnoldi process yield an upper Hessenberg matrix H̃E1+2,E1+1 ∈
R

(E1+2)×(E1+1) and a matrix ŨE1+2 ∈ R
n×(E1+2) with orthonormal columns such

that
AṼE1+1 = ŨE1+2 H̃E1+2,E1+1; (14)

see Saad [31] for details, where also the closely related flexible GMRES method is
described. For the convenience of the reader, we provide Algorithm 1 that describes
the flexible Arnoldi process. It is implemented with re-orthogonalization.

123



Numerical Algorithms

Algorithm 1 Flexible Arnoldi process.

Input: A ∈ R
n×n , b( j) ∈ R

n for 1 ≤ j ≤ k, number of steps s
Output: Ṽk ∈ R

n×k , H̃k+1,k ∈ R
(k+1)×k , and Ũk+1 ∈ R

m×( j+1)

1 Set ũ1 = b( j)/‖b( j)‖ for some j ∈ {1, 2, . . . , k}
2 for k = 1, 2, . . . , s do
3 Specify ṽk
4 q = Aṽk
5 for i = 1, 2, . . . , k do
6 h̃i,k = qT ũi and q = q − h̃i,k ũi
7 end
8 h̃k+1,k = ‖q‖ and ũk+1 = q/h̃k+1,k
9 end

Algorithm 1 allows the vectors ṽk to be fairly arbitrary. This requires storage of
the matrix Ũk+1. However, in our applications of the algorithm many of these vectors
are columns of the seed matrix VE1 . Therefore, many of the columns of Ũk+1 agree
with columns of VE1 and, hence, do not have to be explicitly stored. For simplicity
of exposition, we ignore this aspect in the description of Algorithm 1. Moreover,
the vectors ṽk either are provided as input or computed during the execution of the
algorithm. The algorithm as described carries out s steps and only picks one data
vector b( j).

Using the decomposition (14), the flexibleGMRESmethod solves theminimization
problem

min
x∈span(ṼE1+1)

∥
∥
∥Ax − b(2)

∥
∥
∥ (15)

with solution x (2)
E1+1. This solution can be evaluated by first solving the small mini-

mization problem

min
y∈RE1+1

∥
∥
∥H̃E1+2,E1+1y − Ũ T

E1+2b
(2)

∥
∥
∥ (16)

with solution y. Then x (2)
E1+1 = ṼE1+1y. This follows from (14). When exploiting the

relation between the minimization problems (15) and (16) in finite-precision com-
putation, it is important that the columns of ŨE1+2 be numerically orthonormal. We
therefore implement the flexible Arnoldi process with re-orthogonalization.

Introduce the residual vector

r (2)
E1+1 = b(2) − Ax (2)

E1+1

and append it, after orthogonalization to range(ṼE1+1) and normalization, to thematrix
ṼE1+1 to give thematrix ṼE1+2. The flexibleGMRESmethod nowgives a new approx-
imate solution to (11). We continue in this manner to enlarge the solution subspace
until we have determined a decomposition

AṼE2 = ŨE2+1 H̃E2+1,E2 , (17)
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where thematrices ṼE2 ∈ R
n×E2 and ŨE2+1 ∈ R

n×(E2+1) have orthonormal columns,
H̃E2+1,E2 ∈ R

(E2+1)×E2 is of upper Hessenberg form, and

min
x∈span(ṼE2 )

∥
∥
∥Ax − b(2)

∥
∥
∥ ≤ δ.

We now turn to the solution of (5) and proceed analogously as described above
when solving (3). The decomposition (17) is expanded for every system of equations
to be solved. When all systems (1) have been solved, we have the decomposition

AṼEk = ŨEk+1 H̃Ek+1,Ek , (18)

for some integer Ek > 0. The details of the computations are described by Algorithm
2.

We remark that to keep the amount of computer storage needed bounded, the solu-
tion subspace can be re-initialized when its dimension is larger than a user-specified
parameter dimmax. We will not dwell on this issue because re-initialization was not
required in the computed examples described in Section 6.

3 Solution of a sequence of linear systems of equations with a square
severely ill-conditionedmatrix by flexible Arnoldi decomposition

In this section the matrix A ∈ R
n×n is severely ill-conditioned. We therefore apply

Tikhonov regularization to determine approximate solutions of the linear systems of
equations (1). Tikhonov regularization replaces the solution of these systems with the
solution of regularized least-squares problems

min
x∈Rn

{∥
∥
∥Ax − b(i)

∥
∥
∥

2 + μ(i)
∥
∥
∥L(i)x

∥
∥
∥

2
}

, i = 1, 2, . . . , k, (19)

where the L(i) ∈ R
s×n are regularization matrices and the μ(i) > 0 are regularization

parameters. The number of rows smay be larger, smaller, or equal to n.Wewill assume
that the matrices L(i) are chosen so that null spaces of A and L(i) intersect trivially
for all i . Then the minimization problems (19) have unique solutions x (i) for every
μ(i) > 0 and i = 1, 2, . . . , k. In many applications, the matrices L(i) are chosen to be
discretizations of differential operators; see [12, 17] for discussions and illustrations.

The data vectors b(i) are assumed to be contaminated by noise. Since the matrix
A is very ill-conditioned, the noise in b(i) has to be taken into account during the
solution process. Straightforward solution of the problems (1) generally does not give
meaningful computed approximate solutions due to severe propagation of the errors
e(i) in the b(i) into the computed solutions. Let b(i)

true denote the unknown noise-free
vector associated with b(i), i.e.,

b(i) = b(i)
true + e(i), i = 1, 2, . . . , k. (20)
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Algorithm 2 Flexible Arnoldi for well-conditioned linear systems.

Input: A ∈ R
n×n , b( j), j = 1, 2, . . . k, and tol

Output: x( j) ∈ R
n , j = 1, 2, . . . , k

1 for i = 1, 2, . . . , n do
2 Carry out one step of Arnoldi: AVi = Vi+1Hi+1,i , with V1 = b(1)/‖b(1)‖
3 Solve ŷ = argminy∈Ri

∥
∥
∥Hi+1,i y − ‖b(1)‖e1

∥
∥
∥

4 Compute r (1)
i = b(1) − AVi ŷ

5 if ‖r (1)
i ‖ < tol then

6 x(1) = Vi ŷ
7 E2 = i
8 end
9 end

10 for j = 2, . . . , k do
11 u = 1

12 Solve ŷ = argmin
y∈RE j

∥
∥
∥H̃E j+u,E j y − Ũ T

E j+ub
( j)

∥
∥
∥

13 Compute r ( j)
u = b( j) − AṼE j ŷ

14 if ‖r ( j)
u ‖ < tol then

15 x( j) = ṼE j ŷ

16 E j+1 = E j
17 else

18 v =
(

r ( j)
u − ṼE j Ṽ

T
E j

r ( j)
u

)

/

∥
∥
∥r

( j)
u − ṼE j Ṽ

T
E j

r ( j)
u

∥
∥
∥

19 u = u + 1

20 ṼE j+u =
[

ṼE j+u−1, v
]

21 Carry out one step of flexible Arnoldi: AṼE j+u = ŨE j+u+1 H̃E j+u+1,E j+u

22 Solve ŷ = argmin
y∈RE j+u

∥
∥
∥H̃E j+u+1,E j+u y − Ũ T

E j+u+1b
( j)

∥
∥
∥

23 Compute r ( j)
u = b( j) − AṼE j+u ŷ

24 while ‖r ( j)
u ‖ ≥ tol do

25 v =
(

r ( j)
u − ṼE j+u Ṽ

T
E j+ur

( j)
u

)

/

∥
∥
∥r

( j)
u − ṼE j+u Ṽ

T
E j+ur

( j)
u

∥
∥
∥

26 u = u + 1

27 ṼE j+u =
[

ṼE j+u−1, v
]

28 Carry out one step of flexible Arnoldi: AṼE j+u = ŨE j+u+1 H̃E j+u+1,E j+u

29 Solve ŷ = argmin
y∈RE j+u

∥
∥
∥H̃E j+u+1,E j+u y − Ũ T

E j+u+1b
( j)

∥
∥
∥

30 Compute r ( j)
u = b( j) − AṼE j+u ŷ

31 end
32 x( j) = ṼE j+u ŷ

33 E j+1 = E j + u
34 end
35 end
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Let error bounds ∥
∥
∥e(i)

∥
∥
∥ ≤ δ, i = 1, 2, . . . , k, (21)

be known. We remark that this value of δ does not have to be the same as in (9). It is
straightforward to allow each error e(i) to have a different bound δ(i) > 0. Below we
will comment on the situation no bound for the errors e(i) is available.

We are interested in determining accurate approximations of the solutions of the
unavailable noise-free problems associated with the known noise-contaminated dis-
crete ill-posed problems (1). Thus, wewould like to solve the unavailable least-squares
problems

min
x∈Rn

∥
∥
∥Ax − b(i)

true

∥
∥
∥ , i = 1, 2, . . . , k,

and denote the solutions of minimal Euclidean norm by x (i)
true, i = 1, 2, . . . , k. The

regularization parameter μ(i) determines how sensitive the solution x (i) of (19) is to
the error e(i) in b(i), and how close x (i) is to the desired solution x (i)

true. A small value
of μ(i) makes the solution of (19) more sensitive to the error e(i) than a large value,
but an unnecessarily large value often results that the solution may lack details the
exact solution x (i)

true may possess.
The discrepancy principle dictates that the regularization parameter μ(i) > 0 be

chosen so that ∥
∥
∥Ax (i) − b(i)

∥
∥
∥ = τδ, i = 1, 2, . . . , k, (22)

where τ ≥ 1 is a user-specified parameter. We remark that if a bound δ in (21) is not
known, then so-called heuristic approaches can be used to determine a suitable value of
δ. These approaches include the L-curve criterion, cross validation, and generalized
cross validation; see, e.g., [12, 19, 20, 28] for discussions and illustrations of the
performance of heuristic methods.

The solution subspaces are determined similarly as in Section 2. Let the matrix
ṼEk be the same as in the decomposition (18). We replace the Tikhonov minimization
problems (19) by the low-dimensional minimization problems

min
y∈REk

{∥
∥
∥AṼEk y − b(i)

∥
∥
∥

2 + μ(i)
∥
∥
∥L(i)ṼEk y

∥
∥
∥

2
}

, i = 1, 2, . . . , k. (23)

These minimization problems can be simplified by using the decomposition (18)
and the QR factorizations

L(i)ṼEk = Q(i)
Ek
R(i)
Ek

, i = 1, 2, . . . , k,

where the matrix Q(i)
Ek

∈ R
n×Ek has orthonormal columns and R(i)

Ek
∈ R

Ek×Ek is upper
triangular. The following small minimization problems

min
y∈REk

{∥
∥
∥HEk+1,Ek y − Ũ T

Ek+1b
(i)

∥
∥
∥

2 + μ(i)
∥
∥
∥R

(i)
Ek
y
∥
∥
∥

2
}

, i = 1, 2, . . . , k, (24)

123



Numerical Algorithms

are equivalent to the problems (23). Let y(i)
Ek

∈ R
Ek denote the solution of the i th

minimization problem (24) with μ(i) determined by the discrepancy principle; see
below. The vectors y(i)

Ek
may, for example, be calculated by using the generalized

singular value decomposition of thematrix pair {HEk+1,Ek , R
(i)
Ek

}; see [10, 12].Cheaper
alternatives are described in [9, 17]. Then x (i)

Ek
= ṼEk y

(i)
Ek

is an approximate solution
of the i th Tikhonov minimization problem (23).

The discrepancy principle (22) can be evaluated according to

∥
∥
∥Ax

(i)
Ek

− b(i)
∥
∥
∥

2 =
∥
∥
∥AṼEk y

(i)
Ek

− b(i)
∥
∥
∥

2 =
∥
∥
∥ŨEk+1 H̃Ek+1,Ek y

(i)
Ek

− b(i)
∥
∥
∥

2

=
∥
∥
∥H̃Ek+1,Ek y

(i)
Ek

− Ũ T
Ek+1b

(i)
∥
∥
∥

2 +
∥
∥
∥b(i) − ŨEk+1Ũ

T
Ek+1b

(i)
∥
∥
∥

2
.(25)

The last term in (25) generally is very close to zero. In the computations reported
in Section 6, we ignore the last term and determine the regularization parameter μ(i)

so that ∥
∥
∥H̃Ek+1,Ek y

(i)
Ek

− Ũ T
Ek+1b

(i)
∥
∥
∥ = τδ.

Details of the computations are described by Algorithm 3.

4 Solution of a sequence of least-squares problems with a fairly
well-conditionedmatrix by flexible Golub-Kahan decomposition

This section differs from Section 2 in that the matrix A ∈ R
m×n in (1) is allowed to

be rectangular with m ≥ n, and the Arnoldi and flexible Arnoldi decompositions are
replaced byGolub-Kahan bidiagonalization andflexibleGolub-Kahan decomposition,
respectively. We outline the solution method but omit some details that can be inferred
from the discussion in Section 2.

Similarly as above, we refer to the least-squares problem in (1) with index i = 1
as the seed system. Application of E1 steps of Golub-Kahan bidiagonalization to A
with initial vector b(1) gives the Golub-Kahan decompositions

AVE1 = UE1+1BE1+1,E1 , ATUE1 = VE1B
T
E1,E1

, (26)

where the columns of the matrices UE1+1 ∈ R
m×(E1+1) and VE1 ∈ R

n×E1 are
orthonormal with UE1+1e1 = b(1)/‖b(1)‖. The matrix UE1 ∈ R

m×E1 is made up
of the first E1 columns of UE1+1. Moreover, the columns of VE1 form a basis for the
Krylov subspace

KE1

(

AT A, AT b(1)
)

= span
{

AT b(1), (AT A)AT b(1), . . . , (AT A)E1−1AT b(1)
}

.

The matrix BE1+1,E1 ∈ R
(E1+1)×E1 is lower bidiagonal with positive subdiago-

nal entries and BE1,E1 denotes its leading E1 × E1 submatrix. We assume that the
decompositions (26) with the stated properties exists. This is the generic situation.
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Algorithm 3 Regularized flexible Arnoldi for ill-conditioned linear systems.
Input: A ∈ R

n×n , b( j) ∈ R
n , L( j) ∈ R

s×n , j = 1, 2, . . . k, τ and δ

Output: x ( j) ∈ R
n , j = 1, 2, . . . , k

1 for i = 1, 2, . . . , n do
2 Carry out one step of Arnoldi: AVi = Vi+1Hi+1,i , with V1 = b(1)/‖b(1)‖
3 Compute QR factorization:

[

Q(1), R(1)
] = L(1)Vi

4 Solve ŷ = argminy∈Ri

{∥
∥
∥
∥

[
Hi+1,i

μ(1)R(1)

]

y −
[‖b(1)‖e1

0

]∥
∥
∥
∥

}

s.t
∥
∥Hi+1,i ŷ − ‖b(1)‖e1

∥
∥
2 = τ 2δ2

5 Compute r (1)
i = b(1) − AVi ŷ

6 if ‖r (1)
i ‖ ≤ τδ then

7 x (1) = Vi ŷ
8 E2 = i

9 end
10 end
11 for j = 2, . . . , k do
12 u = 1
13 Compute QR factorization:

[

Q( j), R( j)
] = L( j) ṼE j

14 Solve ŷ = argmin
y∈RE j

{∥
∥
∥
∥
∥

[
H̃E j+u,E j

μ( j)R( j)

]

y −
[

Ũ T
E j+ub

( j)

0

]∥
∥
∥
∥
∥

}

s.t
∥
∥
∥H̃E j+u,E j ŷ − Ũ T

E j+ub
( j)

∥
∥
∥

2 = τ 2δ2

15 Compute r ( j)
u = b( j) − AṼE j ŷ

16 if ‖r ( j)
u ‖ < τδ then

17 x ( j) = ṼE j ŷ

18 E j+1 = E j

19 else

20 v =
(

r ( j)
u − ṼE j Ṽ

T
E j
r ( j)
u

)

/

∥
∥
∥r

( j)
u − ṼE j Ṽ

T
E j
r ( j)
u

∥
∥
∥

21 u = u + 1
22 ṼE j+u = [

ṼE j+u−1, v
]

23 Carry out one step of flexible Arnoldi: AṼE j+u = ŨE j+u+1 H̃E j+u+1,E j+u

24 Compute QR factorization:
[

Q( j), R( j)
] = L( j) ṼE j+u

25 Solve ŷ = argmin
y∈RE j +u

{∥
∥
∥
∥
∥

[
H̃E j+u+1,E j+u

μ( j)R( j)

]

y −
[

Ũ T
E j+u+1b

( j)

0

]∥
∥
∥
∥
∥

}

s.t

∥
∥
∥H̃E j+u+1,E j+u ŷ − Ũ T

E j+u+1b
( j)

∥
∥
∥

2 = τ 2δ2

26 Compute r ( j)
u = b( j) − AṼE j+u ŷ

27 while ‖r ( j)
u ‖ ≥ τδ do

28 v =
(

r ( j)
u − ṼE j+u Ṽ T

E j+ur
( j)
u

)

/

∥
∥
∥r

( j)
u − ṼE j+u Ṽ T

E j+ur
( j)
u

∥
∥
∥

29 u = u + 1
30 ṼE j+u = [

ṼE j+u−1, v
]

31 Carry out one step of flexible Arnoldi: AṼE j+u = ŨE j+u+1 H̃E j+u+1,E j+u

32 Compute QR factorization:
[

Q( j), R( j)
] = L( j) ṼE j+u

33 Solve ŷ = argmin
y∈RE j +u

{∥
∥
∥
∥
∥

[
H̃E j+u+1,E j+u

μ( j)R( j)

]

y −
[

Ũ T
E j+u+1b

( j)

0

]∥
∥
∥
∥
∥

}

s.t

∥
∥
∥H̃E j+u+1,E j+u ŷ − Ũ T

E j+u+1b
( j)

∥
∥
∥

2 = τ 2δ2

34 Compute r ( j)
u = b( j) − AṼE j+u ŷ

35 end
36 x ( j) = ṼE j+u ŷ

37 E j+1 = E j + u

38 end
39 end
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Let x = VE1 y for y ∈ R
E1 . In iteration E1, the left-hand side decomposition (26)

yields

min
x∈KE1 (AT A,AT b(1))

∥
∥
∥Ax − b(1)

∥
∥
∥ = min

y∈RE1

∥
∥
∥BE1+1,E1 y − ‖b(1)‖e1

∥
∥
∥ . (27)

Denote the solution of the small least-squares problem on the right-hand side by
yE1 ∈ R

E1 . This gives the approximate solution x (1)
E1

= VE1 yE1 of the large least-
squares problem on the left-hand side of (27). We choose the number of steps E1 so
that x (1)

E1
satisfies

∥
∥
∥Ax

(1)
E1

− b(1)
∥
∥
∥ ≤ τδ. (28)

For notational simplicity, we will refer to the solution x (1)
E1

of (28) as x (1).
Consider the Golub-Kahan decompositions

AV� = U�+1B�+1,�, ATU� = V�B�,�, � = 1, 2, . . . , E1, (29)

where the matrix V� consists of the first � columns of VE1 , the matrices U�+1 and U�

are made up of the first � + 1 and � columns of UE1+1, respectively, and B�+1,� is the
leading (� + 1) × � submatrix of BE1+1,E1 . The columns of V� form an orthonormal
basis for the Krylov subspace K�(AT A, AT b(1)). In iteration �, for � = 1, 2, . . . , E1,
the decompositions (29) can be applied to solve the least-squares problems

min
x∈K�(A,b(1))

∥
∥
∥Ax − b(1)

∥
∥
∥ = min

y∈R�

∥
∥
∥B�+1,�y − ‖b(1)‖e1

∥
∥
∥ , � = 1, 2, . . . , E1, (30)

by computing the solutions y(1)
� of the small problems on the right-hand sides and then

determining the approximate solutions x� = V�y
(1)
� of the left-hand side problems in

a similar manner as equation (27) is solved. The proof of the following result is
analogous to the proof of Theorem 1.

Theorem 2 Define the solution vectors x (1)
� and the residual vectors for the normal

equations associated with the left-hand side of (30)

r (1)
� = AT b(1) − AT Ax (1)

� , � = 1, 2, . . . , E1.

These vectors belong to the Krylov subspace KE1+1
(

AT A, AT b(1)
)

.

Similarly as in Section 2, the above theorem suggests that the span of residual
vectors may be a good choice of solution subspace also when they do not span a
Krylov subspace.

After having solved the seed system (28) to desired accuracy, we have the approx-
imate solution x (1) and turn to the solution of the next least-squares problem, i.e., of
the problem (1) with index i = 2. A sufficiently accurate approximate solution of this
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system may live in the available Krylov subspace KE1(A
T A, AT b(1)). We therefore

solve
min
y∈RE1

∥
∥
∥AVE1 y − b(2)

∥
∥
∥ . (31)

Note that the product AVE1 already is known; see (26). The solution of (31) can be
determined by solving the small least-squares problem

min
y∈RE1

∥
∥
∥BE1+1,E1 y −UT

E1+1b
(2)

∥
∥
∥ .

Denote the solution by y(2)
E1

. Then x (2)
E1

= VE1 y
(2)
E1

is a solution of (31). If

∥
∥
∥Ax

(2)
E1

− b(2)
∥
∥
∥ ≤ τδ, (32)

then we accept x (2)
E1

as a solution of (31) and move on to compute a solution of the
next least-squares problem in the sequence (1). Note that, analogously to Section 2,
the columns of the matrix UE1+1 should be numerically orthogonal. We therefore
implement Golub-Kahan bidiagonalization with re-orthogonalization.

If inequality (32) does not hold, then we compute the residual vector

r (2)
E1

= AT b(2) − AT Ax (2)
E1

, (33)

which can be evaluated quite inexpensively as

r (2)
E1

= AT
(

b(2) −UE1+1BE1+1,E1 y
(2)
E1

)

.

Proposition 1 In exact arithmetic, the vector (33) is orthogonal to theKrylov subspace
KE1(A

T A, AT b(2)).

Proof This follows from the fact that the vector y(2)
E1

solves (31). We have

V T
E1
AT AVE1 y

(2)
E1

= V T
E1
AT b(2). Substituting x (2)

E1
= VE1 y

(2)
E1

into (33) shows that

V T
E1
r (2)
E1

= 0. ��

Since we are using computer arithmetic, we re-orthogonalize r (2)
E1

against the avail-
able solution subspace and normalize this vector to obtain

ṽE1+1 = r (2)
E1

− VE1V
T
E1
r (2)
E1

‖r (2)
E1

− VE1V
T
E1
r (2)
E1

‖
.

We assume that the vector r (2)
E1

− VE1V
T
E1
r (2)
E1

does not vanish. This is the generic
situation. The solution subspace range(VE1) is enriched by the vector ṽE1+1. Introduce
the matrix

ṼE1+1 = [VE1 , ṽE1+1] ∈ R
n×(E1+1).
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Using a slightmodification of theflexibleGolub-Kahanprocess described byChung
and Gazzola [8], we obtain the decompositions

AṼE1+1 = ŨE1+2M̃E1+1, AT ŨE1+1 = W̃E1+1 R̃
T
E1+1. (34)

The matrices of this decomposition are of the same sizes as the analogous matrices
obtained after E1+1 steps of standardGolub-Kahan bidiagonalization. Thus, ŨE1+2 ∈
R
m×(E1+2) has orthonormal columns with the matrix ŨE1+1 = UE1+1 from (26) its

leading m × (E1 + 1) submatrix, and the matrix M̃E1+1 ∈ R
(E1+2)×(E1+1) is of upper

Hessenberg form with leading (E1 +1)× E1 submatrix BE1+1,E1 . The matrix W̃E1+1
agrees with UE1+1 in (26) and R̃E1+1 ∈ R

(E1+1)×(E1+1) is upper triangular with
leading E1 × E1 submatrix BT

E1,E1
.

We would like to compute the solution of the large minimization problem

min
x∈range(ṼE1+1)

∥
∥
∥Ax − b(2)

∥
∥
∥ = min

y∈RE1+1

∥
∥
∥AṼE1+1y − b(2)

∥
∥
∥ , (35)

which is equivalent to the small minimization problem

min
y∈RE1+1

∥
∥
∥M̃E1+1y − Ũ T

E1+2b
(2)

∥
∥
∥ .

The solution y(2)
E1+1 of the latter problem gives the solution x (2)

E1+1 = ṼE1+1y
(2)
E1+1

of (35). We compute the associated residual vector

r (2)
E1+1 = AT b(2) − AT Ax (2)

E1+1, (36)

which can be evaluated inexpensively as

r (2)
E1+1 = AT b(2) − AT ŨE1+2M̃E1+1y

(2)
E1+1,

wherewe note that the vector AT b(2) already has been calculated above. The following
result follows similarly as Proposition 1.

Proposition 2 In exact arithmetic, the vector (36) is orthogonal to the solution sub-
space range(ṼE1+1).

The residual vector r (2)
E1+1 is used to enrich the solution subspace ṼE1+1 similarly

as we expanded the solution subspace with the previous residual vector above. Thus,
let

ṽE1+2 = r (2)
E1+1 − VE1+1V T

E1+1r
(2)
E1+1

‖r (2)
E1+1 − VE1+1V T

E1+1r
(2)
E1+1‖

,

where we assume that r (2)
E1+1 − VE1+1V T

E1+1r
(2)
E1+1 �= 0. Introduce the matrix

ṼE1+2 = [VE1+1, ṽE1+2] ∈ R
n×(E1+2).
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Analogously to (34), we define the decompositions

AṼE1+2 = ŨE1+3M̃E1+2, AT ŨE1+2 = W̃E1+2 R̃
T
E1+2, (37)

where ŨE1+3 ∈ R
m×(E1+3) has orthonormal columns with leading m × (E1 + 2)

submatrix ŨE1+2, and the matrix M̃E1+2 ∈ R
(E1+3)×(E1+3) is of upper Hessenberg

form with leading (E1 + 2) × (E1 + 1) submatrix ME1+2,E1+1. Finally, the matrix
W̃E1+2 has leading principal submatrix W̃E1+1 and R̃E1+2 ∈ R

(E1+2)×(E1+2) is upper
triangular with leading submatrix RT

E1+1,E1+1. The details of the computations are
described by Algorithm 4.

We conclude this section by noting that the decompositions on the right in (34) and
(37) are not needed for the computations, only the decompositions on the left-hand
sides are used. The latter decompositions are determined by the matrices A and ṼE1+�,
which define ŨE1+�+1 and M̃E1+�+1. The decompositions on the left-hand sides are
QR factorizations of AT ŨE1+�+1. These observations lead directly to the following
result.

Theorem 3 The decompositions

AṼE1+� = ŨE1+�+1M̃E1+�+1, � = 1, 2, . . . ,

are flexible Arnoldi decompositions with the leading submatrices in the decomposition
determined by Golub-Kahan bidiagonalization.

5 Solution of a sequence of least-squares problems with a severely
ill-conditionedmatrix by flexible Golub-Kahan decomposition

The solution method of this section differs from the one described in Section 3 only
in that the flexible Arnoldi method is replaced by the flexible Golub-Kahan method.
Tikhonov regularization is applied similarly as in Section 3. We omit a detailed dis-
cussion of the method, but provide Algorithm 5 which shows the computations. This
algorithm is used for the computed examples in Section 6.

6 Computed examples

We illustrate the performance of the flexible Arnoldi (FA) and flexible Golub-Kahan
(FGK) methods, as well as their regularized variants, the regularized flexible Arnoldi
(RFA) and regularized flexible Golub-Kahan (RFGK) methods, when applied to
the solution of sequences of well-posed or ill-posed problems. We compare our
non-regularized methods to benchmark methods such as GMRES and a truncated
Golub-Kahan (truncated GK) method which is mathematically equivalent to LSQR.
The regularized variants, i.e., RFA and RFGK are compared to what we term ‘Arnoldi-
Tikhonov’ and ‘Golub-Kahan Tikhonov’ (GK-Tikhonov).We note regarding the latter
method that this is the most appropriate comparison instead of, e.g., LSQR, since all
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Algorithm 4 Flexible Golub-Kahan for well-conditioned linear systems.

Input: A ∈ R
m×n , b( j) ∈ R

m , j = 1, 2, . . . k, and tol
Output: x( j) ∈ R

n , j = 1, 2, . . . , k
1 for i = 1, 2, . . . , n do
2 Carry out one step of GK: AVi = Ui+1Bi+1,i , with U1 = b(1)/‖b(1)‖
3 Solve ŷ = argminy∈Ri

∥
∥
∥Bi+1,i y − ‖b(1)‖e1

∥
∥
∥

4 Compute r (1)
i = b(1) − AVi ŷ

5 if ‖r (1)
i ‖ < tol then

6 x(1) = Vi ŷ
7 E2 = i
8 end
9 end

10 for j = 2, . . . , k do
11 u = 1

12 Solve ŷ = argmin
y∈RE j

∥
∥
∥M̃E j+u,E j y − Ũ T

E j+ub
( j)

∥
∥
∥

13 Compute r ( j)
u = b( j) − AṼE j ŷ

14 if ‖r ( j)
u ‖ < tol then

15 x( j) = ṼE j ŷ

16 E j+1 = E j
17 else

18 v =
(

AT r ( j)
u − ṼE j Ṽ

T
E j

AT r ( j)
u

)

/

∥
∥
∥AT r

( j)
u − ṼE j Ṽ

T
E j

AT r ( j)
u

∥
∥
∥

19 u = u + 1

20 ṼE j+u =
[

ṼE j+u−1, v
]

21 Carry out one step of flexible GK: AṼE j+u = ŨE j+u+1 M̃E j+u+1,E j+u

22 Solve ŷ = argmin
y∈RE j+u

∥
∥
∥M̃E j+u+1,E j+u y − Ũ T

E j+u+1b
( j)

∥
∥
∥

23 Compute r ( j)
u = b( j) − AṼE j+u ŷ

24 while ‖r ( j)
u ‖ ≥ tol do

25 v =
(

AT r ( j)
u − ṼE j+u Ṽ

T
E j+u A

T r ( j)
u

)

/

∥
∥
∥AT r

( j)
u − ṼE j+u Ṽ

T
E j+u A

T r ( j)
u

∥
∥
∥

26 u = u + 1

27 ṼE j+u =
[

ṼE j+u−1, v
]

28 Carry out one step of flexible GK: AṼE j+u = ŨE j+u+1 M̃E j+u+1,E j+u

29 Solve ŷ = argmin
y∈RE j+u

∥
∥
∥M̃E j+u+1,E j+u y − Ũ T

E j+u+1b
( j)

∥
∥
∥

30 Compute r ( j)
u = b( j) − AṼE j+u ŷ

31 end
32 x( j) = ṼE j+u ŷ

33 E j+1 = E j + u
34 end
35 end
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Algorithm5Regularized flexibleGolub-Kahan for ill-conditioned linear systems.
Input: A ∈ R

m×n , b( j) ∈ R
m , L( j) ∈ R

s×n , j = 1, 2, . . . k, τ and δ

Output: x ( j) ∈ R
n , j = 1, 2, . . . , k

1 for i = 1, 2, . . . , n do
2 Carry out one step of GK: AVi = Ui+1Bi+1,i , with U1 = b(1)/‖b(1)‖
3 Compute QR factorization:

[

Q(1), R(1)
] = L(1)Vi

4 Solve ŷ = argminy∈Ri

{∥
∥
∥
∥

[

Bi+1,i

μ(1)R(1)

]

y −
[‖b(1)‖e1

0

]∥
∥
∥
∥

}

s.t
∥
∥Bi+1,i ŷ − ‖b(1)‖e1

∥
∥
2 = τ 2δ2

5 Compute r (1)
i = b(1) − AVi ŷ

6 if ‖r (1)
i ‖ ≤ τδ then

7 x (1) = Vi ŷ
8 E2 = i
9 end

10 end
11 for j = 2, . . . , k do
12 u = 1
13 Compute QR factorization:

[

Q( j), R( j)
] = L( j) ṼE j

14 Solve ŷ = argmin
y∈RE j

{∥
∥
∥
∥

[

M̃E j+u,E j

μ( j)R( j)

]

y −
[
Ũ T

E j+ub
( j)

0

]∥
∥
∥
∥

}

s.t
∥
∥
∥M̃E j+u,E j ŷ − Ũ T

E j+ub
( j)

∥
∥
∥

2 = τ 2δ2

15 Compute r ( j)
u = b( j) − AṼE j ŷ

16 if ‖r ( j)
u ‖ < τδ then

17 x ( j) = ṼE j ŷ
18 E j+1 = E j

19 else

20 v =
(

AT r ( j)
u − ṼE j Ṽ

T
E j

AT r ( j)
u

)

/

∥
∥
∥AT r ( j)

u − ṼE j Ṽ
T
E j

AT r ( j)
u

∥
∥
∥

21 u = u + 1
22 ṼE j+u = [

ṼE j+u−1, v
]

23 Carry out one step of flexible GK: AṼE j+u = ŨE j+u+1 M̃E j+u+1,E j+u

24 Compute QR factorization:
[

Q( j), R( j)
] = L( j) ṼE j+u

25 Solve ŷ = argmin
y∈RE j +u

{∥
∥
∥
∥

[

M̃E j+u+1,E j+u

μ( j)R( j)

]

y −
[
Ũ T

E j+u+1b
( j)

0

]∥
∥
∥
∥

}

s.t

∥
∥
∥M̃E j+u+1,E j+u ŷ − Ũ T

E j+u+1b
( j)

∥
∥
∥

2 = τ 2δ2

26 Compute r ( j)
u = b( j) − AṼE j+u ŷ

27 while ‖r ( j)
u ‖ ≥ τδ do

28 v =
(

AT r ( j)
u − ṼE j+u Ṽ T

E j+u A
T r ( j)

u

)

/

∥
∥
∥AT r ( j)

u − ṼE j+u Ṽ T
E j+u A

T r ( j)
u

∥
∥
∥

29 u = u + 1
30 ṼE j+u = [

ṼE j+u−1, v
]

31 Carry out one step of flexible GK: AṼE j+u = ŨE j+u+1 M̃E j+u+1,E j+u

32 Compute QR factorization:
[

Q( j), R( j)
] = L( j) ṼE j+u

33 Solve ŷ = argmin
y∈RE j +u

{∥
∥
∥
∥

[

M̃E j+u+1,E j+u

μ( j)R( j)

]

y −
[
Ũ T

E j+u+1b
( j)

0

]∥
∥
∥
∥

}

s.t

∥
∥
∥M̃E j+u+1,E j+u ŷ − Ũ T

E j+u+1b
( j)

∥
∥
∥

2 = τ 2δ2

34 Compute r ( j)
u = b( j) − AṼE j+u ŷ

35 end
36 x ( j) = ṼE j+u ŷ
37 E j+1 = E j + u
38 end
39 end

123



Numerical Algorithms

basis vectors from the Golub-Kahan process (26) need to be stored for reorthog-
onalizing against appended residual vectors when solving subsequent problems in a
sequence.When consideringwell-posed problems, the algorithms are terminatedwhen
the norm of the residual vector satisfies a tolerance criterion, while for linear discrete
ill-posed problems the algorithms are terminated when the discrepancy principle (DP)
is satisfied.

In our experiments with linear discrete ill-posed problems, we assume knowledge
of an upper bound for the error that contaminates the data vectors b(i); cf. (20) and
(21). The DP prescribes that an iterative method for the approximate solution of each
one of the problems (1) should be terminated as soon as an iterate satisfies (22). In our
experiments we let τ = 1.01 in (22) and track the relative residual norms

RRN
(

x (q,i)
)

=
∥
∥Ax (q,i) − b(i)

∥
∥

‖btrue‖ ,

where x (q,i) denotes the solution determined by the appropriate algorithm at iteration
q when solving problem i of (1), to determine when the DP is satisfied. To evaluate
the quality of the computed solutions, we compute the relative reconstructive error
(RRE) defined by

RRE
(

x (q,i)
)

=
∥
∥x (q,i) − xtrue

∥
∥

‖xtrue‖ .

We measure the computational effort required by the methods in our examples by
the number of iterations required. This measures the number of matrix-vector products
with A (and with AT , depending on the method).

When solving problems (1) with an ill-conditioned matrix A, we apply Tikhonov
regularization both with L = I and with L �= I . For problems in one space dimension,
we use the regularization matrix

L = L1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

which is the Laplacian matrix in one space-dimension. For examples in two space-
dimensions, we use the Laplacian matrix defined by

L = L1 ⊗ I + I ⊗ L1, (38)

where I is the identity matrix and ⊗ denotes the Kronecker product. The size of L is
such that left multiplication in Algorithms 3 and 5 is compatible; see [15] for details.

Wefirst consider the application of theArnoldimethod to problems (1)with a square
well-conditioned matrix from the MATLAB gallery and to problems with a very ill-
conditioned matrix obtained by a modification of an example from the Regularization
Tools toolbox [13]. We then turn to the testing of the FGK and RFGKmethods, where

123



Numerical Algorithms

for the former we consider a parallel beam tomography example and for the latter a
stream of blurred images from a video.

Parter Thefirst problemwe consider is obtained by using theMATLABgallerymatrix
parter. We set A ∈ R

4000×4000. This matrix is non-symmetric and very well-
conditioned; the conditioning number of A is κ2(A) ≈ 4.8. We pick 30 right-hand
sides obtained by

b(i) = Ax (i),

where x (i) is a uniform sampling of the function f (i)(t) = sin(σ (i)t) in [0, 2π ] and
σ (i) = 1+ i/30. We compare the performance of the FAmethod with that of GMRES
applied independently to each right-hand side, andmeasure theRRE and the number of
iterations carried out for each right-hand side. Table 1 reports RRE values and number
of iterations for a few right-hand side vectors b(i); the ones that are not reported are
very similar to the ones reported and therefore ommitted. Figure 1(a) shows the number
of iterations carried out for each right-hand side. We can observe that the GMRES
method gives more accurate approximate solutions with the chosen stopping criterion
than the FA method, but the latter also produces very accurate approximate solutions
and is much faster. Figure 1(a) shows the number of iterations required for the FA
method to be quite small after the first two problems (1) have been solved.

Shaw The matrix of this example is severely ill-conditioned. We construct the prob-
lems as follows. Discretize the integral equation discussed by Shaw [33] by a
trapezoidal rule. This yields a non-symmetric matrix A1 ∈ R

64×64. MATLAB code
for generating the matrix A1 is available at [23]. We then define A = A1 ⊗ A1 ∈
R
4096×4096. Note that to evaluate matrix-vector products with A, this matrix does not

have to be explicitly formed. We construct 30 exact solutions x (i) as the vectorized

Table 1 Parter example: RRE for FA and GMRES method at termination

Data vector i FA (It.) GMRES (It.)

1 6.4991 · 10−12 (77)∗ 6.4991 · 10−12(77)∗

4 9.0854 · 10−6 (19) 5.9404 · 10−12 (77)∗

7 7.0824 · 10−6 (8) 5.4526 · 10−12 (79)∗

10 4.4588 · 10−6 (1) 6.1025 · 10−12 (79)∗

13 2.0136 · 10−6 (1) 5.0512 · 10−12 (79)∗

17 5.6739 · 10−7 (3) 6.9302 · 10−12 (76)∗

20 1.6612 · 10−6 (1) 5.6197 · 10−12 (78)∗

23 1.8550 · 10−6 (3) 5.5773 · 10−12 (79)∗

26 1.4089 · 10−6 (6) 5.4669 · 10−12 (79)∗

30 3.8467 · 10−7 (2) 5.7744 · 10−12 (77)∗

The number of iterations for each method are given in parentheses. An asterisk, ∗, denotes the method with
the smallest RRE for each data vector b(i)
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Fig. 1 Comparison of GMRES and FA, and Arnoldi-Tikhonov and RFA. Number of iterations carried out
for each right-hand side. The red circles show results for the GMRES or Arnoldi-Tikhonov methods, the
blue asterisks display results for the FA andRFAmethodswith L equal to the identity, and the black triangles
report the results for RFA with L equal to the Laplacian. Panel (a) reports the results for the Parter example,
while panel (b) shows results for the Shaw example

versions of uniform samplings on a 64 × 64 grid of the functions

f (i)(s, t) = exp(−
(

s/σ (i)
s

)2 +
(

t/σ (i)
t

)2

θ(i)
) (sin(2s) + 2) ,

with (s, t) ∈ [−3, 3]2, σ (i)
s = 1 + i/30, σ (i)

t = 1
2 + i/30, and θ(i) = 1

2 + 2i/30. The
right-hand data vectors b(i) are defined by

b(i) = Ax (i) + η(i),

where η(i) is a vector that simulates the presence of noise in the data. Each entry of
η(i) is a realization of a Gaussian random variable with zero mean and fixed variance.
We scale the vectors η(i) such that

∥
∥
∥η(i)

∥
∥
∥ = 0.03

∥
∥
∥b(i)

∥
∥
∥ ,

i.e., each vector b(i) is contaminated by 3% noise.
We solve the problems (1) by the regularized flexible Arnoldi method of Section

3 and by solving each problem independently by the Arnoldi-Tikhonov method. The
latter is equivalent to applying lines 1-10 of Algorithm 3 to solve each one of the k
problems.

We let the regularization matrix L be the identity or be given by (38) and compare
the RFA method with the Arnoldi-Tikhonov applied separately to each vector b(i).
Table 2 and Fig. 1(b) report results obtained for these solution methods. Similarly
as above, Table 2 reports the RREs obtained for a few vectors representative vectors
b(i). We can observe that the RRE is smaller for the RFA method. The Laplacian
regularization matrix gives reconstructions of higher quality than the identity. This is
particularly true for the last slices. The computational cost is significantly smaller for
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Table 2 Shaw example: RRE for the RFA and Arnoldi-Tikhonov methods at termination

Slice no. RFA L =Identity (It.) RFA L =Lapl. (It.) Arnoldi-Tik. (It.)

1 1.6672 (23)∗ 1.6678 (23) 1.6678 (23)

4 0.2600 (1) 0.2438 (1)∗ 1.2756 (17)

7 0.1322 (4) 0.1047 (11)∗ 0.1418 (11)

10 0.0687 (13)∗ 0.1113 (10) 0.228 (5)

13 0.0509 (2)∗ 0.0862 (3) 0.0653 (7)

17 0.0830 (1) 0.0677 (3)∗ 0.1625 (4)

20 0.1182 (3) 0.0835 (1)∗ 0.1381 (9)

23 0.1584 (2) 0.1176 (1)∗ 0.1400 (16)

26 0.1999 (1) 0.1577 (1)∗ 0.2123 (10)

30 0.2520 (3) 0.2072 (1)∗ 0.3032 (9)

The number of iterations for each method are given in parentheses. An asterisk, ∗, denotes the method with
the smallest RRE for each slice

the RFA method than for the Arnoldi-Tikhonov method. This can be surmised from
the number of matrix-vector product evaluations required. Similarly as in the previous
example, the number of iterations is small for the larger indices i .

MRI Images This example considers the performance of the FGKmethod described by
Algorithm 4when applied to a sequence of linear parallel beam tomography problems.
We compare to the truncated GK method, which is equivalent to LSQR [25] and may
be summarized by lines 1-9 in Algorithm 4. In the underlying model, incident parallel
X-ray beams penetrate an object and the damping is recorded. The forward operation

Fig. 2 MRI image example: Reconstructions of slices 1, 4, 22, and 25 determined when the discrepancy
principle is satisfied for FGK and truncated GK methods and the true slices
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Table 3 MRI images example:
RRE at termination for the FGK
and truncated GK methods at
termination

Image no. FGK (It.) Trunc. GK (It.)

1 0.0842 (16)∗ 0.0842 (16)∗
4 0.0860 (14) 0.0859 (17)∗
7 0.0758 (10) 0.0740 (16)∗
10 0.0718 (9) 0.0713 (15)∗
13 0.0796 (9)∗ 0.0818 (15)

16 0.0814 (8)∗ 0.0815 (15)

19 0.0710 (8) 0.0708 (15)∗
22 0.0605 (7)∗ 0.0610 (14)

25 0.0507(7)∗ 0.0507 (14)∗

The number of iterations for each method are given in parentheses. An
asterisk, ∗, denotes the method with the smallest RRE for each image

is the application of the tomography operator to a sequence of images from the MRI
data set available through MATLAB’s Image Processing Toolbox. This produces a
sequence of sinograms that are stored in the vectors b(i), i = 1, 2, . . . , k.

We aim to recover the spatially varying attenuation coefficients of the object of
interest; see [5] for further details on the mathematical model. Using the vectorized
traverse image (i.e. top-down view) of size 128 × 128 from the MRI data set and the
default settings of the 2D X-ray tomography operator from the software package AIR
Tools II, the forward operator is represented by a matrix A ∈ R

32580×16384 that is
stored in sparse format, where 16384 = 1282. Further details on the forward problem
can be found in the [14]. The condition number of A is O(103) [11]. Thus this test
problem is fairly well-conditioned and regularization is not necessary. We consider

Fig. 3 MRI images example:RRNversus iteration number for theFGKmethod.The black dashed horizontal
line represents the termination level for each sequential subproblem according to the discrepancy principle
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Fig. 4 Video restoration example: (a) True frame 1 image (222× 302), (b) PSF (9× 9), (c) blurred and 1%
noised frame 1 (222 × 302)

noise contamination of 0.5% of the data vectors. The noise is represented by a vector
e ∈ R

32580 with normally distributed random entries with zero mean. The iterations
for each data vector are terminated with aid of the discrepancy principle.

We consider the recovery of a sequence of 9 CT images, which we will refer
to as slices, from the MRI data set with a gap of 3 slices to simulate the situation
where the right-hand sides may not be close in norm. A subset of the true slices
and their reconstructions are shown in Fig. 2. Tabulated results for both methods
are displayed in Table 3. The number of iterations for FGK was smaller than when
applying truncated GK to each subproblem independently. Figure 3 shows the RRN.
Each spike corresponds to a new image. After the seed problemwith the zero vector as
the initial approximate solution is solved, the relative residual norms for subsequent
images stay below 1. This illustrates the usefulness of not determining the images in
the sequence independently.

Contaminated video restoration Our final example considers the restoration of a
sequenceof blurred andnoise-contaminatedvideo frames from thexylophone.mp4
video available through MATLAB’s Computer Vision System Toolbox. Our task is to
recover a sequence of deblurred frames. Image deblurring problems are well known to
give matrices that are severely ill-conditioned. This suggests that flexible regularized
methods such as the ones outlined in Sections 3 and 5 should be used. We investigate
the application of the RFGK method as defined in Algorithm 5 with regularization
matrices given by the identity, i.e. L = I , as well as by the 2D Laplacian defined
(38). We compare this approach to the application of the GK-Tikhonov method to
each subproblem independently. This is a Tikhonov regularized method based on the
truncated GK method. It is defined by applying lines 1-10 of Algorithm 5. A related
method was first described in [16]. We terminate all methods with the DP for each
frame.

We construct a sequence of blurred images as follows. Start with an image of n1×n2
pixels and blur it by using a point spread function (PSF) of sizem1×m2 withm j < n j ,
j = 1, 2.We imposed reflective boundary conditions. Next, to simulate a real situation
we cut out the boundary from the blurred image of half the size of the PSF, i.e., of
size �m j

2 
. Noise is then added to each frame to obtain a sequence of problems of the
form by (1). For a detailed description of image deconvolution; see [15].
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For our example, we blur a sequence of the first 7 consecutive frames of the
\xylophone.mp4\video transformed into grayscale with a motion blur PSF of size
9× 9 pixels; see Fig. 4(b). We add 1% Gaussian noise. This particular blurring matrix
has a condition number larger than 105. The true first frame is shown in Fig. 4(a) and
(c) displays the associated blurred and noisy image. We depict a subset of the true
frames and their reconstructions in Fig. 5.

RRE values for each frame for the four methods considered are recorded in Table 4.
RFGK and GK-Tikhonov carry out the same number of iterations for the first frame.
For all seven slices considered, The RFGK-I method, i.e., the RFGK method with
L = I performed the best in terms of smallest RRE values attained, and required
the smallest total number of iterations to satisfy the DP. Given the relatively smooth

Fig. 5 Contaminated video restoration: Reconstructions of frames 1 and 7 obtained when the discrepancy
principle is satisfied for the three methods considered as well as the true frames
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Table 4 Contaminated video restoration: RRE for eachmethod at terminationwith the discrepancy principle

Slice no. RFGK-I (It.) GK-Tik.-I (It.) RFGK-L (It.) GK-Tik.-L (It.)

1 0.0571 (7)∗ 0.0571 (7)∗ 0.0576 (7) 0.0576 (7)

2 0.0531 (5)∗ 0.0574 (7) 0.0537 (5) 0.0579 (7)

3 0.0511 (3)∗ 0.0572 (7) 0.0513 (3) 0.0577 (7)

4 0.0507 (4)∗ 0.0559 (7) 0.0510 (4) 0.0564 (7)

5 0.0483 (4)∗ 0.0556 (7) 0.0488 (4) 0.0562 (7)

6 0.0494 (4)∗ 0.0570 (7) 0.0496 (4) 0.0576 (7)

7 0.0487 (3)∗ 0.0565 (7) 0.0488 (3) 0.0570 (7)

The number of iterations for each method are given in parentheses. An asterisk, ∗, denotes the method with
the smallest RRE for each slice

solution of this particular example compared to the solution of the Shaw problem,
we expected that RFGK-L method, i.e., the RFGK method with L the 2D Laplacian,
would not perform as well as RFGK-I. This is confirmed by the RRE values for each
frame obtained with the RFGK-I and RFGK-L methods. Selected reconstructions for
each method are shown in Fig. 5.

7 Conclusion

We have described several methods based on the flexible Arnoldi decomposition or the
flexibleGolub-Kahan decomposition to solve sequences of linear systems of equations
or linear least-squares problems with the same matrix. When the matrices involved
in the linear systems are very ill-conditioned, we employed regularization. Computed
examples show the proposed methods to outperform their non-flexible counterparts in
terms of both accuracy and computational cost.
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