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Abstract4

Nonlinearity parameter tomography leads to the problem ofidentifying a coef-5

ficient in a nonlinear wave equation (such as the Westervelt equation) modelling6

ultrasound propagation.In this paper we transfer this into frequency domain, where7

the Westervelt equation gets replaced by a coupled system of Helmholtz equations8

with quadratic nonlinearities.For the case of the to-be-determined nonlinearity co-9

efficient being a characteristic function ofan unknown,not necessarily connected10

domain D,we devise and test a reconstruction algorithm based on weighted point11

source approximations combined with Newton’s method.In a more abstract setting,12

convergence of a regularised Newton type method for this inverse problem is proven13

by verifying a range invariance condition ofthe forward operator and establishing14

injectivity of its linearisation.15

key words:nonlinearity parameter tomography,multi-harmonic expansion,Westervelt16

equation,Helmholtz equation,extended sources,point sources,Newton’s method,range17

invariance condition18

1 Introduction19

Nonlinearity parameter tomography [7, 9, 10, 21, 36, 41, 42, 43], is a technique for enhancing20

ultrasound imaging and amounts to identifying the spatially varying coefficient η = η(x)21

in the Westervelt equation22

ptt − c24p − b4pt = η(p2)tt + h in (0, T ) × Ω , (1)

from observations of the pressure23

y(x, t) = p(x, t), (x, t) ∈ Σ × (0, T ) (2)

on some manifold  immersed in the acoustic domain Ω or attached to its boundaryΣ24

Σ ⊆ Ω; see [2,26,27,28]and the references therein.In (1) p is the acoustic pressure,h rep X p.2, l.125
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is the excitation,and the constants b > 0,c > 0 are the speed and diffusivity of sound,1

respectively. rep Y (19)2

While uniqueness from the Dirichlet-to-Neumann operator has been established in [2],3

our aim here is to reconstruct η from the single boundary measurement (2) like in [26, 27,4

28].5

Here we willconsider this problem in the frequency domain,inspired by the concept6

of harmonic imaging [4, 40, 41].Due to the quadratic nonlinearity appearing in the PDE,7

this is not directly possible by the usual approach of taking the Fourier transform in time.8

Rather, the idea is to use a multi-harmonic ansatz [24] as follows.9

Assuming periodic excitations of the specific form h(x, t) = <(ĥ(x)eı tω ) for some fixed10

frequency ω andĥ  L∈ 2(Ω; C) and inserting a multi-harmonic expansion for a time periodic11

solution of (1) (that due to periodicity of h can be proven to exist and be unique) p(x, t) =12

<
P ∞

k=1 p̂k(x)eık tω into (1),yields the infinite system ofcoupled linear Helmholtz type13

PDEs14

m = 1 : − ω2p̂1 − (c2 + ı bω )4p̂1 = ĥ −
η
2
ω2

∞X

k=3:2

p̂k−1
2

p̂k+1
2

| {z }
m  {∈ 2, . . . , M } :− ω2m2p̂m − (c2 + ı mbω )4p̂m

= −
η
4
ω2m2

m−1X

`=1

p̂̀ p̂m−` +2
∞X

k=m+2:2

p̂k−m
2

p̂k+m
2

| {z }

.

(3)

This is obtained by using the Cauchy product formula for two series (
P ∞

i=0 ai)
P ∞

j=0 bj =15

P ∞
k=0

P k
`=0 à bk−` and relying on linear independence of the functions t 7→ exp(ı` tω ), that16

is, comparing coefficients leading to the same multiple ` of the fundamental frequency ω.17

Here the notation
P ∞

k=m+2:2 means that the index takes steps of length two and thus runs18

over m + 2, m + 4, m + 6, . . .; analogously for
P ∞

k=3:2. The equivalence of(3) to (1) holdsrep Y (1)19

with M = ∞, as shown in [24].The fact that in place ofa single Helmholtz equation20

we have a system (in theory even an infinite one) reveals that nonlinearity actually helps21

the identifiability.This can be explained by the additionalinformation available due to22

the appearance ofseveralhigher harmonics (similarly to severalcomponents arising in23

the asymptotic expansion in [30]).In practice,the under-braced terms are often skipped24

and the expansion is only considered up to M = 2 or M = 3 see,e.g.,[18,Chapter 5].25

This is due to the fact that the strength of the signal in these higher harmonics decreases26

extremely quickly.In fact in our reconstructions, only two of them will be of effective use27

as the third harmonic only provides marginal improvement over the second one.28

In our reconstructions in Section 2,we willfocus on the case of a piecewise constant29

coefficient η = η0χD with a known constant η0 and an unknown domain D,so that (??)30
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(upon skipping the under-braced terms) becomes rep Y (2)

rep X p2, l.26

1

m = 1 : 4 p̂1 + κ21p̂1 = ĥ

m  {∈ 2, . . . , M } :4 p̂m + m2κ2
mp̂m =

η0

4
χD m2κ2

m

m−1X

`=1

p̂̀ p̂m−`,
(4)

where κm = ω√
c2+ı mbω

is the wave number.We do so for practical relevance (e.g., locationrep X p.2 (4)2

of contrast agents such as microbubbles on a homogeneous background) and for expected3

better identifiability as compared to a generalfunction η (although counterexamples to4

uniqueness still exist cf., e.g., [3, 29], for the Helmholtz equation as opposed to the Laplace5

equation).Typically,D will not necessarily be connected but consist of a union of con-6

nected components D =
S m

`=1D` that we will call inclusions or objects for obvious reasons.7

Moreover,throughout this paper we assume the sound speed c to be known and con-8

stant.For results (in the time domain formulation (1)) on simultaneous identification of9

space dependent functions c and η, we refer to [28].10

We will consider (3) on a smooth bounded domain Ω ⊆ Rd, d  {∈ 2, 3} with observations11

on a subset of ∂Ω and equip it with a boundary damping condition12

∂νp̂m + (ımωβ + γ)ˆpm = 0 on ∂Ω (5)

with ,  ≥β γ  0 so that the parameter (ımωβ + γ) quantifies the damping properties of the13

boundary – either for physicalor for computationalpurposes.In the latter sense,these rep Y (3)14

are direct translations to frequency domain ofzero and first order absorbing boundary15

conditions in time domain, see, e.g., the review articles [15, 17] and the references therein.16

Indeed, these boundary attenuation conditions even allow us to skip the interior damping17

and assume κm to be real valued, as has been shown in [23] in the time domain setting of18

(1). We will do so by working with a real valued wave number ˜κ in the numerical tests of19

Section 2.20

In the case where the observation manifold is contained in the boundary of the domain21

Ω, we can choose between writing the data (2) as Dirichlet trace or,via the impedance22

condition (5), with gm = −(ımκ + γ)ym, as Neumann trace23

ym = p̂m or gm = ∂νp̂m in Σ, m  {∈ 2, . . . , M }. (6)

In our numerical reconstructions we will also consider the practically relevant case of only24

partial data being available with Σ  ∂⊆ Ω being a strict subset.Note that according to the25

first line in (4),that does not contain the unknown D,observations ofthe fundamental26

harmonic y1 or g1 are not expected to carry essential information on D and are therefore27

neglected.28

*Department of Mathematics, Alpen-Adria-Universit¨at Klagenfurt.barbara.kaltenbacher@aau.at
�Department of Mathematics, Texas A&M University, Texas 77843.rundell@math.tamu.edu
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2 A reconstruction method for piecewise constant η1

and numerical results2

We first of allconsider (4) for M = 2 and devise a reconstruction method,based on the3

approach in [29].While the algorithms described below work in both 2-d and 3-d,we4

confine the exposition and our numericalexperiments to two space dimensions.In our5

numericaltests we willalso study the question ofwhether taking into account another6

harmonic M = 3 improves the results.7

Having computed ˆp1 from the first equation in (??) with given excitationĥ, the problem8

of determining η from the second equation in (??) reduces to an inverse source problem9

for the Helmholtz equation10

4u + κ̃2u = κ̃2ηf̃ in Ω (7)

where u = ˆp2, κ̃ = 2ω
c , f̃ = 1

4p̂2
1. rep X p.4, l.111

In the case of a piecewise constant coefficient as considered here, (7) becomes12

4u + κ̃2u = κ̃2χD f in Ω. (8)

with f = η 0f̃ . There exists a large body ofwork on inverse source problems for the13

Helmholtz equation.Two particular examples for the case of extended sources as related14

to our setting are [22,29]. We also point to,e.g.,[1,3, 6, 11,13]for inverse source15

problems with multi frequency data; however these do not cover the important special case16

of restricting observations to higher harmonics of a single fundamental frequency.17

We here intend to follow the approach from [29].Like there, as an auxiliary problem,18

we will consider the Helmholtz equation with point sources19

4u + κ̃2u =
nX

k=1

λkδSk in Ω. (9)

with δ distributions located at points Sk, or more generally with a measure µ  M∈ (Ω) =20

Cb(Ω)∗as right hand side21

4u + κ̃2u = µ in Ω. (10)

The PDEs (8), (9), (10) are equipped with impedance boundary conditions22

∂νu + ı ũκ  = 0 on ∂Ω. (11)

Results on well-posedness ofthe forward problems (7),(11) and (9),(11) can be found,23

e.g., in [35, Section VIII] and [38, Section 2].24

An essential fact connecting (8) and (9) is that for any solution w of the homogeneous25

Helmholtz equation 4w + ˜κ2w = 0 on Ω, from Green’s second identity, written in the form26

Z

Ω
u (4w + κ̃2w) − w (4u + ˜κ2u) dx =

Z

∂Ω
u (∂νw + ı w̃κ ) − w (∂νu + ı ũκ ) ds
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the following relations hold1

Z

∂Ω
∂νu (∂νw + ı w̃κ ) ds

= −ıκ̃
Z

∂Ω
u (∂νw + ı w̃κ ) ds =

(
ıκ̃

R
D κ̃

2 f w dx for (8), (11)
ıκ̃

P n
k=1λkw(Sk) for (9), (11).

(12)

Combining this with a mean value identity for the Helmholtz equation rep X p.4, (13)2

1
|Br(x0)|

Z

B r (x0)
w dx = (Γd

2 + 1)
J d/2(˜ rκ )
(˜ r/κ 2)d/2

w(x0) (13)

for any r > 0, and x0 ∈ Ω such that Br(x0) ⊆ Ω, and w solving 4w + ˜κ2w = 0 (see, e.g.,3

[31] and the references therein), equivalence of (8), (9) in the case of constant background4

f is obtained.In (13), Jd/2 is the Bessel function of the first kind.Viewed as an identityrep Y (5)5

of functionals acting on w, (13) reads (in our two dimensional setting d = 2) as6

χB r (x0) = λδx0 on ker(4 + ˜κ2id)

where λ = 2rπ
J 1(˜ rκ )
κ̃

(14)

which makes the relation between inclusions as appearing in (8) with f  const.≡  and point7

sources as appearing in (9) obvious.1 Note that (13) remains valid in case ˜ rκ  is a zero of8

the Bessel function Jd/2, in which κ̃2 is an eigenvalue of the Laplacian with homogeneous9

Dirichlet boundary conditions on Br(x0), cf. [31, Section 3]. rep X p.5,Lm2.110

Lemma 2.1.Assume that D can be represented as the union of n disjoint discs or balls.11

Then there exist n points S1, . . . , Sn and values λ1, . . . , λn such that for uD solving (8) and12

up solving (9) (both with boundary conditions(11)) the identity13

Z

∂Ω
∂νuD (∂νw + ı w̃κ ) ds =

Z

∂Ω
∂νup (∂νw + ı w̃κ ) ds for allw  ker∈ (4 + ˜κ2id)

holds. rep X p.5, l.2

rep Y (6)

14

The method from [29] uses a Pad´e approximation scheme (see [19], which was inspired15

by [5]) for recovering point sources in the Laplace equation and a fixed point scheme16

to extend this for finding point sources in the Helmholtz equation (9).This is proven17

to converge in [29,Theorem 1]for sufficiently smallwave numbers ˜κ and the numerical18

experiments there show that it works exceedingly well for ˜ ≤κ  1.However, in ultrasonics, ˜κ19

is large.Transition from the Laplace point source problem to the Helmholtz point source20

problem therefore does not seem to be feasible in that situation.However,transition21

from the Helmholtz point source problem (9) to the Helmholtz inclusion problem (8) is22

1Here the functional χB r (x0) is identified with its Riesz representer in the Hilbert space L2(Ω)
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still justified by Lemma2.1,in case ofcircular or sphericalinclusions and a constant1

background f .2

In place of the Pad´e approximation algorithm in [29], we employ the primal-dual active3

point PDAP algorithm from [8,38],which we provide here,for the convenience ofthe4

reader.It uses the forward operator F :M(Ω)  L→ 2( ),Σ µ 7  ∂→ νu|Σ , 2 where u solves5

(10), (11) and its Banach space adjoint F∗. The algorithm aims at solving the minimisation6

problem7

min
µ M∈ (Ω)

1
2
k∂νu − gk2L 2( )Σ + kµkθ M(Ω) s.t. u solves (10), (11)

with some regularisation parameter  >θ  0 (whose value actually does not matter much, due8

to one-homogeneity of the regularisation functional), which in case of  being a discrete setΣ9

can be shown to have a solution of the form µ =
P n

k=1λkδSk for some coefficients λk ∈ R10

and points Sk ∈ Ω.The method can be motivated by gradient descent for this minimisation11

problem in a generalised sense of non-smooth convex analysis.Starting from µ1 = 0 the12

method first proposes a new source locationŜi ∈ Ω corresponding to a maximum of the13

norm of the current dual variable ξi = F∗(F µi − g).The new point is added to the support14

of the current iterate µi . The algorithm as described in [38] also contains a point removal15

step, which we skip here, though.As a stopping criterion, a sufficient decrease (by a factor16

of 10−6 in our computations) of the primal-dual gap is used. rep X p.5, l.19

rep Y (0), (7)

17

Algorithm PDAP:18

For i = 1, 2, 3, . . .19

1. Compute ξi := F∗(F µi − g); determinêSi ∈ argmaxx∈Ω|ξ(x)|20

2. Set (Si
1, . . . , S

i
n) := supp(µi)  {∪ Ŝi};21

3. compute a minimiser~λi ∈ Rn of j(~λ) := kF
P n

k=1λkδS i
k

− gk222

4. Set µi+1 =
P n

k=1λ
i
kδS i

k
23

This also yields the number n of point sources. rep Y (9)24

Combining this with the other elements from the method in [29],we arrive at the25

following scheme in case of constant background f .26

Algorithm 0:27

Given boundary flux g = gD =
P m

`=1gD` arising from the m unknown objects D` (each of28

which is the union of n` discs) with f  const≡ .29

(i) Identify n =
P m

`=1n` ≥ m equivalent point sources Sk and weights λk according to30

Lemma 2.1 using Algorithm PDAP.31

This also yields a decomposition g = gD =
P n

k=1 gptsk of the given data;32

2L2( ) regularity ofΣ the flux (in spite ofthe low W1,q(Ω), q < d
d−1 regularity ofu) is obtained by

bootstrapping from the homogeneous impedance conditions in case of Σ  ∂⊆ Ω; otherwise, an assumption
of the source domain to be at distance from  needs to be imposed in order to be able to invoke interiorΣ
elliptic regularity.
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(ii) Determine the radii of equivalent discs from weights λk by resolving the identity (14)1

for r. rep Y (8)2

Merge these discs into m objects:two discs belong to the same object if their inter-3

section is nonempty;4

Assigning discs and therewith equivalent point sources to objects gptsk  → gpts̀ ,j for5

k  {∈ 1, . . . , n},`  {∈ 1, . . . , m},j  {∈ 1, . . . , n`}, also yields a decomposition ofthe6

given data:g = gD =
P m

`=1g̀ , where g̀=
P n`

j=1 gpts̀ ,j .7

(iii) For each objectD`, `  ∈ {1, . . . , m},separately,determine the objectboundary8

parametrised by a curve q` from moment matching (12) ofdata g̀, using a New-9

ton iteration;10

11

As a starting value for each curve q` in (iii) we use the disc with the centroid of therep Y (21)12

union ofdiscs belonging to the `-th object as a center and the radius corresponding to13

the sum ofweights within the `-th object via (14).Alternatively to (iii),one could use14

algorithms from computational geometry for determining the boundary of a union of discs,15

see, e.g., [14, 16] and the citing literature.16

In case of variable background f as relevant here, cf.(4), and/or a set D that is not a17

finite union of discs,the representation by equivalent discs is not exact and therefore the18

decomposition of the data according to objects is not valid any more.We therefore replace19

(iii) by a simultaneous Newton based matching of the flux data g (not of its moments) to the20

flux data computed from forward simulations according to the collection of parametrised21

object boundaries.We can still regard the discs obtained by (ii) as good starting guesses22

for Newton’s method and thus proceed as follows.23

Algorithm 1:24

given boundary flux g = gD =
P m

`=1gD ` arising from the m unknown objects D`25

(i) Identify n =
P m

`=1n` ≥ m point sources Sk and weights λk by applying Algorithm26

PDAP; rep Y (9)27

(ii) Determine disc radii from weights λk by resolving the identity (14) for r.28

Merge discs to m objects:two discs belong to the same object if their intersection is29

nonempty;30

(iii) For all objects D̀, `  {∈ 1, . . . , m}, simultaneously, determine the object boundaries31

parametrised by curves q` by matching the combined observational data (6), using a32

Newton iteration.33

The choice of a starting value for q` in (iii) is the same as in Algorithm 0,namely a34

disc with centre determined as centroid of all discs pertaining to the `-th object and radius35

determined by using the sum of weights in (14).36
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2.1 Reconstructions1

In this section we show reconstruction of piecewise constant nonlinearity coefficients with2

supports being inclusions in the unit disk Ω. rep X p.8/93

Our forward solvers for (7),(11) (in the specialcases (8),(9),of (7)) rely on the fact4

that with the fundamentalsolution to the Helmhotz equation G(x) =ı
4H 1

0(˜|x|κ ) in two5

space dimensions, (with H1
0 being the Hankel function of order zero) the solution torep Y (10)6

4u R2
+ κ̃2uR2

= f in R2

can be determined by convolution uR2
= G  f∗  .It thus remains to solve the boundary value7

problem rep Y (11)8

4u d + κ̃2ud = 0 in Ω , ∂νud + ı˜uκ d = g

with g = −∂νuR2
− ı˜uκ R2

, which we do by the integral equation approach described in [12,9

Sections 3.1, 3.4], that easily extends to the case of impedance boundary conditions.The10

solution to (7),(11) is then obtained as u = uR2
+ ud. We point to the fact that solving11

the Helmholtz equation with large wave numbers is a challenging task and a highly active12

field of research,see,e.g.,[32,34,37]and the references therein.Since our emphasis lies13

on a proof of concept for parameter identification, we did not implement any of these high14

frequency solvers here.15

In all our reconstructions it is apparent that the point source reconstruction algorithm16

from [8, 38] combined with the equivelant discs approximation – that is, steps (i) and (ii)17

in Algorithm 1 – provides an extremely good initialguess of the curves to be recovered.18

This is essential for the convergence of Newton’s method in view of the high nonlinearity19

of the shape identification problem.20

rep Y (14)
Using the third harmonic M = 3:The reconstructions in Figure 1 are obtained by21

following the steps of Algorithm 1 at wave number ˜κ = 10 and then carrying out another22

Newton step with data from the third harmonic at ˜κ = 15 either:(d) sequentially,using23

the result from ˜κ = 10 as a starting value or, (e) applying Newton’s method simultaneously24

to κ̃ = 10 and ˜κ = 15.25

The numerical results indicate that the additional information obtained from the next26

(m = 3) harmonic does not yield much improvement.This is due to the lower – by two27

to three orders of magnitude – intensity of the signal at that higher frequency and seems28

to confirm the experimental evidence and common practice of skipping higher than second29

harmonics.30

Reconstructions from partialdata: In Figures 2,3 we show reconstructions from31

partial data, quantified in terms of the relative arc length α of the observation boundary,32

which is marked in green.The quality appears to decrease only slightly with decreasingrep X p.8, Fig.2

rep Y (13)

33

amount ofdata,until at a certain point (between 30 and 40 per cent ofthe fullangle,34

that is, of the whole boundary) the algorithm partially breaks down and fails to find onerep Y (12)35
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(a) (b) (c) (d) (e)

Figure 1: Reconstruction ofthree (top row) or two (bottom row) inclusions from full
data: (a) point sources step (i) ofAlgorithm 1;(b) equivalent disks step (ii) ofAlgo-
rithm 1; (c) Newton with second harmonic; (d) Newton with third harmonic; (e) Newton
with second and third harmonic;green dotted line. . . observation boundary;red dotted
lines. . . actual inclusion boundaries; magenta stars. . . reconstructed point sources; blue solid
lines. . . boundary reconstructions

(a) α
2π = 1 (b) α

2π = 0.75 (c) α
2π = 0.5 (d) α

2π = 0.4 (e) α
2π = 0.3

Figure 2:Reconstruction of three inclusions from partialdata;top row:equivalent point
sources and disks;bottom row:boundary curves from Newton’s method;legend:see
caption of Figure 1

9



(a) α
2π = 1 (b) α

2π = 0.75 (c) α
2π = 0.5 (d) α

2π = 0.4 (e) α
2π = 0.3

Figure 3:Reconstruction oftwo inclusions from partialdata;top row:equivalent point
sources and disks;bottom row:boundary curves from Newton’s method;legend:see
caption of Figure 1

of the objects completely.The ability of an inclusion to stay reconstructible from a low1

amount of data is related to its weight according to the associated weight λk according to2

(13) (using the object’s average radius).In Figures 2 and 3 these weights are:0.0725 for3

the circle,0.0692 for the cardiod and 0.0515 for the ellipse.Also,the position relative to4

the measurement boundary clearly plays a role.5

It may seem that simple completion of data from the measurement subarc to the entire6

boundary should give similar results by for example using the Fourier series expansion.7

However,this analytic continuation step comes at a price.If we have N Fourier modes8

over an arc of length α then this analytic continuation results from solving a system with9

a matrix P (N, α) the conditioning of which can be computed analytically.Of course the10

condition number willincrease with both N and decreasing values of α,0 <  <α  2π. In11

fact this is a well-understood problem, see [39] where it has been shown that the condition12

number of P (N, α) is asymptotic (for large N ) to13

cN  ∼ eγ(α)N where γ(α) = log

√
2 +

√
1 + cos α

√
2 −

√
1 + cos α

. (15)

This has been used in several inverse problems, see, e.g., [20, 33].14

However,in our situation the reconstructions are performing much better than the15

above pessismistic estimate would suggest.This is due to the fact that our reconstruction16

does not rely on extending the boundary data but rather on directly applying our method17

to the restricted flux g = ∂νp̂|Σ . The additional information that the PDE model provides18

clearly contributes to this inprovement,which is also reflected in the condition number19

10



of the Jacobian in Newton’s method versus the theoretical prediction for data completion1

from [39].This can be seen in Table 1.

α
2π cond(J) cN [39]

0.75 29.6 2.8e+2
0.5 64.9 2.3e+5
0.4 73.7 1.8e+07
0.3 1733.8 2.6e+08

Table 1:Condition numbers of Jacobian in Newton’s method for a single inclusion using
9 basis functions versus condition number formula (15) for data completion with N = 9

2

(a) θ
2π = 0.3 (b) θ

2π = 0.2 (c) θ
2π = 0.1 (d) θ

2π = 0.09

Figure 4:Reconstruction of two inclusions at different distances; top row:equivalent point
sources and disks;bottom row:boundary curves from Newton’s method;legend:see
caption of Figure 1

Varying distance between objects:Figure 4 shows reconstructions of two inclusionsrep X p.11, l.1

rep Y (15)

3

at several distance, given by the difference θ in the phase of the centroid (in polar coordi-4

nates).The given data appears to allow distinction of objects very well,as long as they5

do not overlap.However,decreasing distance between them compromises the quality of6

reconstructions.7
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(a) (b) (c)

Figure 5:Reconstruction ofone inclusion at different distances from the boundary;top
row: equivalent point sources and disks;bottom row:boundary curves from Newton’s
method;legend:see caption of Figure 1

Varying distance to boundary:Figure 5 shows reconstructions ofone inclusion at1

severaldistances from the boundary.The relative error
kq−qactkL 2(0,2π)

kqactkL 2(0,2π)
in the boundary2

parametrisation after application of Newton’s method at ˜κ = 10 was (a) 0.2963 (b) 0.1931rep X p.11, l.73

(c) 0.1434.Also visually, it is obvious that closeness to the observation surface significantly4

improves the reconstruction quality.5

Reconstruction from noisy data:Finally we study the impact of noise in the mea-6

surements on the reconstruction quality, see Figure 6 for the case of three objects.Regu-7

larisation is mainly achieved by the sparsity prior incorporated via the PDAP point source8

identification and this actually makes the process very stable with respect to perturbations9

in the measurements up to noise levels of about three per cent.Using partial data clearly10

impacts this robustness and thus only works with noise levels of two per cent or less.11

3 Convergence of Newton’s method12

Similarly to the time domain setting,[28]one can prove that the all-at-once formulation13

of this inverse problem (even with arbitrary M ∈ N  {∞}∪ ) satisfies a range invariance14

condition, which, together with a linearised uniqueness result, enables to prove convergence15

of a regularised frozen Newton method.16

12



(a) δ = 2 % (b) δ = 3 % (c) δ = 2 % (d) δ = 3 %
α
2π = 0.5 α

2π = 0.5

Figure 6:Reconstruction ofthree inclusions from noisy data;top row:equivalent point
sources and disks;bottom row:boundary curves from Newton’s method;legend:see
caption of Figure 1

We write the inverse problem of reconstructing η in (3) as a nonlinear operator equation1

Gm( ,η  p̂) = hm m  {∈ 1, . . . , M } with ˆp = (p̂1, . . . , ˆpM )
Cmp̂m = ym m  {∈ 1, . . . , M }

(16)

for the model operators Gm : Q × VM  → W (including the case M = ∞ with `2(N; V ) in2

place ofVM ), h1 = ĥ, hm = 0 for m ≥ 2 and the observation operators Cm  ∈ L(V, Y ).3

Here Q, V , Y are the parameter, state, and data spaces.4

The components Gm of the modelpart of the forward operator have the particular5

structure6

Gm( ,η  p̂) = Dmp̂m + Bm(p̂)η (17)

with Dm  ∈ L(V, W ) and Bm(p̂)  L∈ (Q, W ) linear for each ˆp  V∈ M but depending nonlin-7

early on ˆp. (This is different from [25], where we considered a sum of linear operators Bm(p̂)8

in a single model equation rather than a system of model equations.) More concretely, in9

our setting with the operators defined by10

Au = v 7→
Z

Ω
∇u · v dx∇  + γ

Z

∂Ω
u v ds

Du = v 7  b→
Z

Ω
∇u · v dx∇  + (c2β + bγ)

Z

∂Ω
u v ds,

Mu = v 7→
Z

Ω
u v dx + bβ

Z

∂Ω
u v ds

(18)

13



we take1

Dm = −m2ω2M + c2A + ı m  D,ω Cm = trΣ ,

Bm(p̂)(x) = m2ω2B̃m(p̂(x))

B̃m(~c) =

(
1
4

P m−1
`=1 c̀ cm−` + 1

2

P ∞
k=m+2:2ck−m

2
ck+m

2
M = ∞ (a)

1
4

P m−1
`=1 c̀ cm−` M ∈ N  {∞}∪  (b)

~c ∈ CM

Q = L2(Ω), V = H2(Ω), W = L2(Ω), Y = L2( )Σ ,

(19)

where the first sum over ` is empty in the case m = 1.Here Bm(p̂) : L2(Ω)  L→ 2(Ω) is rep X p.13, (18)2

to be understood as a multiplication operator and boundedness Bm(p̂)  L∈ (L2(Ω), L2(Ω))3

follows from the fact that H2(Ω) is continuously embedded in L∞ (Ω) and therefore the4

functions pm as well as their products are in L∞ (Ω). Differentiability of the Bm mappings5

follows from their polynomial (in fact, quadratic) structure in our particular setting.6

We consider both the case (a) that gives full equivalence to the Westervelt equation (1)7

and the simplification (b) that corresponds to skipping the under-braced terms in (3) and8

is used in our numerical tests. rep X p.13, (18)9

The abstract structure (16),(17) together with an extension ofthe dependency ofη10

that is, introducing an artificial dependency of η on m to ~η = (ηm)m {∈ 1,...,M }  ⊆ QM allows rep Y (16)11

one to more generally establish a differential range invariance relation on a neighbourhood12

U of (~η0, p̂0) rep X p.13, (19)13

for all (~ ,η  ˆp)  U r∈ ∃ (~ ,η  ˆp)  Q∈ M × VM : F (~ ,η  ˆp) − F (~η0, p̂0) = F0(~η0, p̂0)r(~ ,η  ˆp), (20)

for14

F = (Gm, Cm)m {∈ 1,...,M }, p̂ = (p̂m)m {∈ 1,...,M },

r(~ ,η  ˆp) = (r~ηm(~ ,η  ˆp), rp̂m(~ ,η  ˆp))m {∈ 1,...,M }.
(21)

Indeed, with15

G0
m(~η0, p̂0)(d , dη ˆp) = Dmdp̂

m
+

MX

n=1

∂Bm

∂ p̂n
(p̂0)dp̂

n
~η0,m + Bm(p̂0)dηm

and16

rp̂
m(~ ,η  ˆp) = p̂m − p̂0,m

r~η
m(~ ,η  ˆp) = ηm − η0,m + Bm(p̂0)−1 Bm(p̂) − Bm(p̂0) ηm −

MX

n=1

∂Bm

∂ p̂n
(p̂0)(p̂m − p̂0,m) η0,m

we obtain (20).To this end, we assume that p0 is chosen such that for each m  {∈ 1, . . . , M },17

the operator Bm(p̂0) : Q  W→  is an isomorphism.Under this assumption and ifBm is18

Lipschitz continuously differentiable at ˆp0, the mapping r is close to the shifted identity19

14



operator in the sense that rep Y (17)1

kr(~ ,η  ˆp) − ((~ ,η  ˆp) − (~η0, p̂0))kQM ×V M

= Bm(p̂0)−1 Bm(p̂) − Bm(p̂0) (ηm − η0,m)

+ B m(p̂) − Bm(p̂0) −
MX

n=1

∂Bm

∂ p̂n
(p̂0)(p̂m − p̂0,m) η0,m

m∈N QM

≤ Ckp̂ − p̂0kV M k  − η η0kQM + kp̂ − p̂0kV M ,

(22)

that is,2

kr(~ ,η  ˆp) − ((~ ,η  ˆp) − (~η0, p̂0))kQM ×V M ≤ Ck(~ ,η  ˆp) − (~η0, p̂0)k2
QM ×V M (23)

for C > 0. Together with r(~η0, p̂0) = 0, (23) implies that r is Fr´echet differentiable at3

(~η0, p̂0) with derivative r0(~η0, p̂0) = idX , from which one can easily conclude (cf.e.g.[28])4

that5

 ∃ cr ∈ (0, 1) ∀(~ ,η  ˆp)  U∈  (  X⊆ ) : kr(~ ,η  ˆp) − r(~η†, p̂†) − (~  − ~η η†, p̂ − p̂†)kX

≤ crk(~  − ~η η†, p̂ − p̂†)kX
(24)

in a sufficiently small neighbourhood U of (~η0, p̂0).6 rep X p.14, l.1

In our concrete setting (19),where Bm(p̂0) is the multiplication operator with φm :=7

m2ω2B̃m(p̂0(x)), the isomorphism property means that p0 must be chosen such that for8

all m ∈ N, 0 < infessx∈Ωφm(x) ≤ supessx∈Ωφm(x) < ∞. This is analogousto the9

time domain formulation [28]to which it is equivalent in case (a),where (p0 t(t, x))2 =10

<
P ∞

k=1φk(x)eık tω for p0(t, x) = <
P ∞

k=1 p̂0 k(x)eık tω , and where the corresponding11

range invariance condition can be proven under the assumption12

0 < infesst∈(0,T )infessx∈Ωp0 t(t, x) ≤ supesst∈(0,T )supessx∈Ωφm(x) < ∞.13

SinceB̃m is polynomial(more precisely quadratic) in its arguments and V = H2(Ω) is a14

Banach algebra, the operator Bm is Lipschitz continuously differentiable and we have the15

following sufficient conditions in terms ofp̂0 for (22) (note that the factors m2ω2 cancel16

out, so we can replace Bm by B̃m in (22); moreover, we can exploit symmetry of the first17

sum)18

1

B̃m(p̂0)

1
4

m−1X

`=1

(p̂ − p̂0)`(p̂ + p̂0)m−`

+
1
2

∞X

k=m+2:2

(p̂ − p̂0)k−m
2

p̂k+m
2

+ p̂0 k−m
2

(p̂ − p̂0)k+m
2

| {z }
m∈N l∞ (N;L∞ (Ω))

≤ Ckp̂ − p̂0kV M

(25)

19

1

B̃m(p̂0)

1
4

m−1X

`=1

(p̂ − p̂0)`(p̂ − p̂0)m−` +
1
2

∞X

k=m+2:2

(p̂ − p̂0)k−m
2

(p̂ − p̂0) k+m
2

| {z }
m∈N V M

≤ Ckp̂ − p̂0k2
V M

(26)

15



where the under-braced sum is skipped in case (b).1

Since the artificial dependence of ~η on m is clearly unfavourable to uniqueness of this2

coefficient from the given data, we penalise it by a term P ~   Qη ∈M rep Y (18)3

(P ~η)m = ηm −
P M

n=1 n−2ηn
P M

n=1 n−2
,

where the weights n−2 in the 2̀ projection are introduced in order to enforce convergence4

in case M = ∞.Note that the n independent target ( , , . . .η η ) is clearly not contained in5

2̀(N; Q) but in the weighed space `2
w(N; Q) with weights wn = n−2. We here first of all aim6

at finding a general   Qη ∈  = L2(Ω). In case we want to reconstruct a piecewise constant7

coefficient η, we can achieve this by, e.g., adding a total variation term to P .8

This penalisation together with condition (20) allows us to rewrite the inverse problem9

(16) as a combination of an ill-posed linear and a well-posed nonlinear problem10

F 0(~η0, p̂0)r̂ = h − F (~η0, p̂0)

r(~ ,η  ˆp) = r̂
P ~η = 0

(27)

for the unknowns (ˆr, ~ ,η  ˆp)  Q∈ M × QM × VM (or in 2̀
w(N; Q) × 2̀w(N; Q) × 2̀(N; V ) in case11

M = ∞). Here (~η0, p̂0)  Q∈ M × VM is fixed and in (20) U  Q⊆M × VM is a neighbourhood12

of (~η0, p̂0).13

The following regularised frozen Newton method can then be shown to converge.14

xδn+1 ∈ argminx U∈ kF0(x0)(x − xδn) + F (xδn) − hδk2
Y + αnk~  − ~η η0k2

QM + kP ~ kη2QM . (28)

where hδ ≈ h is the noisy data,αn → 0 as n  ∞→ , (e.g.αn = α0qn for some q ∈ (0, 1)),15

and we abbreviate x = (~ ,η  ˆp).16

An essentialingredient ofthe convergence proofis verification ofthe fact that the17

intersection ofthe nullspaces ofF 0(x0) and of P is trivial [25,Theorem 2].For this18

purpose, we require the following geometric condition on the observation manifold Σ19

for all j ∈ N :

 
X

k K∈ j

bkϕk
j (x) = 0 for all x ∈ Σ

!

=  b⇒ k = 0 for all k  K∈ j (29)

in terms of the eigensystem (ϕk
j , λj )j∈N,k K∈ j of the selfadjoint positive operator A defined20

by (18). This means that the eigenfunctions should preserve their linear independence21

when restricted to the observation manifold and trivially holds in 1-d, where #Kj = 1 for22

all j ∈ N.23

We will assume that the operators A, D, M have the same H-orthonormal eigenfunc-24

tions ϕkj with the eigenvalues µj of M and ρj of D satisfying25

ρj

λj
=
ρ̀
λ`

and
µj

λ2
j

=
µ`

λ2
`

 ⇒ j = `. (30)

16



This is the case, e.g., if β = 0 in (18), since then with H = L2(Ω), M is the identity, D = bA1

holds, and therefore µj = 1, ρj = bλj , so that (30) simply becomes1
λ2

j
= 1

λ2
`

 ⇒ j = `. rep Y (19)2

Condition (30) is needed to prove the following linear independence result that will3

play a role in the linearised uniqueness result Theorem 3.1.Its proof can be found in the4

appendix.5

Lemma 3.1.Let (µj )j∈N, (λj )j∈N, (ρj )j∈N ⊆ C be sequence of strictly increasing numbersrep Y (20)6

such that(30) holds.7

Then8

 

for allm ∈ N : 0 =
∞X

j=1

m2

−m2ω2µj + c2λj + ımωρj
cj

!

=⇒ (c j = 0 for allj ∈ N)

We are now in the position to prove uniqueness for the linearised problem,which,9

besides being of interest on its own, is also an essential ingredient to the convergence proof10

of Newton’s method.11

Theorem 3.1.For (21), (17), (19), with M = ∞ and  independentη of m (that is,12

P ~η = 0),̂p0 chosen such that̂p0,m(x) = φ(x) ψm for some   Hφ ∈ 2(Ω),  6φ = 0 almost13

everywhere in Ω, ψm ∈ C, fm := B̃m(~ψ) ∈ C \ {0} for allm ∈ N.14

Then under the linear independence condition (29), with A, D, M simultaneously diago-15

nalisable with (30), the linearisation F0(η0, p̂0) at η0 = 0 is injective.16

Proof. Using the operators A, D, M as in (18) we can write the condition F0(η0, p̂0)(d , dpη )17

for η0 = 0,p̂0,m(x) = φ(x) ψm, fm = B̃m(~ψ) as18

[−m2ω2M + c2A + ı m  Dω ]dp
m

+ m2ω2f m  dφ η = 0,and trΣdp
m

= 0 for all m ∈ N.(31)

Using the diagonalisation by means ofthe eigenfunctions (ϕk
j )j∈N,k K∈ j , by taking the H19

inner product of(31) with ϕkj , relying on dp
m

=
P ∞

j=1

P
k K∈ j hdp

m
, ϕk

j iHϕk
j and setting20

ak
j = hd  , η φ ϕkj iH we can rewrite this as21

m2ω2f m

∞X

j=1

1
−m2ω2µj + c2λj + ı m  ω ρj

X

k K∈ j

ak
j ϕ

k
j (x0) = 0 for all x0 ∈ Σ, m ∈ N.

Since the entries 1
−m2ω2µj +c2λj +ımωρj

define an infinite generalised Hankelmatrix which is22

therefore nonsingular (see Lemma 3.1), this implies23

0 =
X

k K∈ j

ak
j ϕ

k
j (x0) for all j ∈ N,x0 ∈ Σ.

Using (29),we conclude ak
j = 0 for all j ∈ N, k  K∈ j and thus dη = 0.Returning to24

the first equation in (31) with dη = 0,due to uniqueness ofthe solution to this linear25

homogeneous PDE with homogeneous boundary conditions, we also have dp = 0.26

17



According to [25, Theorem 2], we obtain the following1

Theorem 3.2.Let x† = (~η†, p̂†) be a solution to (27) and letfor the noise level ≥δ2

kyδ − ykY the stopping index n∗= n∗(δ) be chosen such that3

n∗(δ) → 0, δ
n∗(δ)−1X

j=0

cjα−1/2
n∗(δ)−j−1 → 0 as  δ → 0 (32)

with c as in (23).Moreover, let the assumptions of Theorem 3.1 be satisfied with ˆp0 chosen4

such that(25), (26) holds for allp̂ in a neighbourhood U ofp̂0.5

Then there exists  >ρ  0 sufficiently smallsuch that for x0  ∈ Bρ(x†)  U the iterates⊆6

(xδn)n {∈ 1,...,n∗(δ)} are well-defined by (28),remain in Bρ(x†) and converge in QM × VM ,7

kxδn∗(δ) − x†kQM ×V M → 0 as  δ → 0. In the noise free case δ = 0,n∗(δ) = ∞ we have8

kxn − x†kQM ×V M → 0 as n  ∞.→9

Appendix10

Proof of Lemma 3.1:11

With wj (t) := −µjω2 + c2λj t2 + ıωρj t, the premise of the lemma reads as12

for all t  {∈ 1
m : m ∈ N} : 0 =

∞X

j=1

1
wj (t) cj .

Thus, after multiplication with
Q

`∈Nẁ (t) and with W~c(t) :=
P ∞

j=1

Q
`6=j w`(t) cj we get13

for all t  {∈ 1
m : m ∈ N} : 0 = W~c(t).

Since W~cis analytic, this implies that W~c≡ 0 on all of C.Choosing tk± = − ıω
2c2

ρk∓
√

ρ2
k −µk

λk
14

as the roots of wk, we obtain15

for all k ∈ N :
Y

`6=k

ẁ (tk±) ck = 0 (33)

A small side calculation yields that under condition (30), the roots of the functions wj are16

distinct for different j:17

tj+ = t̀ + and tj− = t̀ − ⇒ tj+ + tj− = t̀ + + t̀− and tj+ + tj− = t̀ + + t̀−

⇒
ρj

λj
=
ρ̀
λ`

and
µj

λ2
j

=
µ`

λ2
`

,

which by (30) implies j = `.18

Hence,
Q

`6=k w`(tk±) 6= 0 and from (33) we conclude that ck = 0 for all k ∈ N.19

18
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