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Nonlinearity parameter imaging in the frequency
domain

Barbara Kaltenbacher William Rundé€ll

Abstract

Nonlinearity parameter tomography leads to the problielentifying a coef-
ficient in a nonlinear wave equation (such as the Westervelt equation) modelling
ultrasound propagatidn.this paper we transfer this into frequency domain, where
the Westervelt equation gets replaced by a coupled system of Helmholtz equations
with quadratic nonlinearitid®ar the case of the to-be-determined nonlinearity co-
efficient being a characteristic functioamiunknownnot necessarily connected
domain D,we devise and test a reconstruction algorithm based on weighted point
source approximations combined with Newton’s miethodore abstract setting,
convergence of a regularised Newton type method for this inverse problem is proven
by verifying a range invariance conditiothefforward operator and establishing
injectivity of its linearisation.

key wordsnonlinearity parameter tomograpiwti-harmonic expansidestervelt
equationHelmholtz equatioaxtended sourcgmint sourcedewton’s methodange
invariance condition

1

Introduction

Nonlinearity parameter tomography [7, 9, 10, 21, 36, 41, 42, 43], is a technique for enhar
ultrasound imaging and amounts to identifying the spatially varying coefficient n = n(x)
in the Westervelt equation

pt— C4p — bdp=n(B)+ hin (0, T) x Q, (1)

from observations of the pressure

y(x, t) =p(x, t),(x, t) €Z x (0, T) (2)

on some manifold 2 immersed in the acoustic domain Q or attached to its boundary
2 < (); see [226,27,28]and the references theré&in(1l) p is the acoustic pressurerep X p.2, 1.1
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is the excitatiomnd the constants b >®> 0 are the speed and diffusivity of sound,
respectively. rep Y (19)

While uniqueness from the Dirichlet-to-Neumann operator has been established in [2],
our aim here is to reconstruct n from the single boundary measurement (2) like in [26, 27
28].

Here we wiltonsider this problem in the frequency domspired by the concept
of harmonic imaging [4, 40,[3@d4.to the quadratic nonlinearity appearing in the PDE,
this is not directly possible by the usual approach of taking the Fourier transform in time.
Rather, the idea is to use a multi-harmonic ansatz [24] as follows.

Assuming periodic excitations of the specific form h(xh )&% for some fixed
frequency w ahdE 12(Q; C) and inserting a multi-harmonic expansion for a time periodic
solptlon of (1) (that due to periodicity of h can be proven to exist and be unique) p(x, t) =
< i Hx)evt into (1),yields the infinite systemcofipled linear Helmholtz type
PDEs

m=1: — Bp— @+ 1wb)p =h — w2 Pt Psa
| — {2 }
me{2,...,M}un?bm— (& + iwmb)$, (3)
n R-1 x
= —sz nr PPm- +2 @ﬁk%m
=1 | k=m+2{27 }

P P
This is obtained by using the Cauchy product formula for tw@ sepies g‘-";o b =

oo}

k=0 0a b and relying on linear independence of the functions t 7—- exp(/ wt), that
is, comparing cqg:ffluents leading to the same multiple * of the fundamental frequency w.
Here the notation,_,,,,, means that thgindex takes steps of length two and thus runs
overm+ 2, m+ 4, m+6,...;analogously forhe equivalence @) to (1) holdsrep Y (1)
with M = «, as shown in [24Il'he fact that in place ad single Helmholtz equation
we have a system (in theory even an infinite one) reveals that nonlinearity actually helps
the identifiabilityl'his can be explained by the additionadrmation available due to
the appearance severahigher harmonics (similarly to seveoamhponents arising in
the asymptotic expansion in [3Q]practicethe under-braced terms are often skipped
and the expansion is only considered up to M = 2 or M = 3esggl18,Chapter 5].
This is due to the fact that the strength of the signal in these higher harmonics decreases
extremely quickiy fact in our reconstructions, only two of them will be of effective use
as the third harmonic only provides marginal improvement over the second one.

In our reconstructions in Sectiomw2,willfocus on the case of a piecewise constant
coefficient n =yp with a known constanf and an unknown domain & that (??)
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(upon skipping the under-braced terms) becomes rep Y (2)
A rep X p2, .26
m=1: 4o+ Kb =h

)-1 4
ME (2 ... MEPy+ mipn = Dxon?i,  ppu (4)

1

where g = s%wmb is the wave numbé&Ve do so for practical relevance (e.qg., locatiomn.2 (4)
of contrast agents such as microbubbles on a homogeneous background) and for expecte
better identifiability as compared to a gehamation n (although counterexamples to
uniqueness still exist cf., e.qg., [3, 29], for the Helmholtz equation as opposed to the Lapla
equation)TypicallyD g/ill not necessarily be connected but consist of a union of con-
nected components D ”é:lD~ that we will call inclusions or objects for obvious reasons.
Moreoverthroughout this paper we assume the sound speed ¢ to be known and con-
stant. For results (in the time domain formulation (1)) on simultaneous identification of
space dependent functions ¢ and n, we refer to [28].
We will consider (3) on a smooth bounded dom&indde={R, 3} with observations
on a subset of dQ and equip it with a boundary damping condition

ovPm + (ImwpB + P, = 0 on aQ (5)

with B, y = 0 so that the parameter (imwp + y) quantifies the damping properties of the
boundary - either for physioalfor computationpurposesin the latter senséhese rep Y (3)
are direct translations to frequency domazeraf and first order absorbing boundary
conditions in time domain, see, e.qg., the review articles [15, 17] and the references there
Indeed, these boundary attenuation conditions even allow us to skip the interior damping
and assume,kto be real valued, as has been shown in [23] in the time domain setting of
(1). We will do so by working with a real valued wave rRimtiee humerical tests of
Section 2.

In the case where the observation manifold is contained in the boundary of the domain
Q, we can choose between writing the data (2) as Dirichlet tndaetloe,impedance
condition (5), with,g= —(Imk + y)y, as Neumann trace

Ym=Pm OF Gn=9&Ppn INX, me{2,...,M}. (6)

In our numerical reconstructions we will also consider the practically relevant case of only
partial data being available with ¥ < 9Q being a strict Bobse¢hat according to the

first line in (4)that does not contain the unknowrobservations bfie fundamental
harmonicyor g are not expected to carry essential information on D and are therefore
neglected.

*Department of Mathematics, Alpen-Adria-Universit™at Klagbafbera.kaltenbacher@aau.at
{Department of Mathematics, Texas A&M University, Texas 7UBdall@math.tamu.edu
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2 A reconstruction method for piecewise constant n
and numerical results

We first of altonsider (4) for M = 2 and devise a reconstruction meésed,on the
approach in [29While the algorithms described below work in both 2-d anavé-d,
confine the exposition and our numeexpériments to two space dimensibmeur
numericatests we wilblso study the question whether taking into account another
harmonic M = 3 improves the results. A
Having computedffom the first equation in (2?) with given exbitéhi@problem
of determining n from the second equation in (??) reduces to an inverse source problem
for the Helmholtz equation .
4u + K%u =K?nf  inQ (7)

where u #,, K = Z—C“’, f= i rep X p.4, .1
In the case of a piecewise constant coefficient as considered here, (7) becomes

4u +Ku =R?xpf inQ. (8)

with f = n of . There exists a large body @fork on inverse source problems for the
Helmholtz equatiomwo particular examples for the case of extended sources as related
to our setting are [229]. We also point toe.q.,[1, 3, 6, 11, 13]for inverse source
problems with multi frequency data; however these do not cover the important special ca
of restricting observations to higher harmonics of a single fundamental frequency.

We here intend to follow the approach fronkik&fhere, as an auxiliary problem,
we will consider the Helmholtz equation with point sources

X0
4u+Ru= M6, inQ (9)
k=1

with & distributions located at poinrto6 more generally with a measure u € M(Q)

Cp(Q)* as right hand side
4u +Ku=pu inQ (10)

The PDEs (8), (9), (10) are equipped with impedance boundary conditions
ou + Ku =0 onoaQ. (11)

Results on well-posednesthaf forward problems (73,1) and (9)(11) can be found,
e.g., in [35, Section VIII] and [38, Section 2].

An essential fact connecting (8) and (9) is that for any solution w of the homogeneous
Helmholtz equation 4wk4v ™= 0 on Q, from Green’s second identity, written in the form
4 4

u (4w +K2w) — w (4u «3u) dx = u(@w + Kw) — w (u + Ku) ds
Q 50
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Z
au (Qw + Kw) ds (
a0 R
~ _Ikz U (aw + Kw) ds = K K Fwdx  for (8), (11) (12)
20 1k p_ Aw(S)  for (9), (11).
Combining this with a mean value identity for the Helmholtz equation rep X p.4, (13)
Z

1 wax =g+ 112280 o) (13)

1B (X0)| 5, (xo) (k r/2yr

for any r > 0, andyXE Q such that Bx,) € Q, and w solving 4w kW = 0 (see, e.g.,

[31] and the references therein), equivalence of (8), (9) in the case of constant backgrour
fis obtainedln (13), Jy» is the Bessel function of the first kivi@wed as an identityp Y (5)

of functionals acting on w, (13) reads (in our two dimensional setting d = 2) as

X8, (xo) = A&, on ker(4 +?%id)
K (14)
where A = 2/#(;—”

which makes the relation between inclusions as appearing in (8) with f = const. and point
sources as appearing in (9) obvioNiste that (13) remains valid in gasis a zero of

the Bessel functiop, in whichk? is an eigenvalue of the Laplacian with homogeneous
Dirichlet boundary conditions x4, cf.[31, Section 3]. rep X p.5,Lm2

Lemma 2.14ssume that D can be represented as the union of n disjoint discs or balls.
Then there exist n poin{s.S . ,,Sand valuesA. . . ,nAuch that forpusolving (8) and
Up solving (9) (both with boundary conditions(11)) the identity

Z Z

dulp (W + Kw) ds = a,Up(8,w + Kw) ds for allw € ker(4 +?id)
aQ aQ

holds. rep X p.5, 1.2

The method from [29] uses a Pad e approximation scheme (see [19], whicﬁe\‘/}vgéq)nspin
by [5]) for recovering point sources in the Laplace equation and a fixed point scheme
to extend this for finding point sources in the Helmholtz equatiohhi9)is proven
to converge in [2Bheorem 1flor sufficiently smallave numbersand the numerical
experiments there show that it works exceedingly svdllHowever, in ultrasonics, ~
is largeTransition from the Laplace point source problem to the Helmholtz point source
problem therefore does not seem to be feasible in that situéttavevertransition
from the Helmholtz point source problem (9) to the Helmholtz inclusion problem (8) is

IHere the functionakxy,) is identified with its Riesz representer in the Hilbert sp@be L
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still justified by Lemma2.1,in case ofcircular or sphericahclusions and a constant
background f.

In place of the Pad e approximation algorithm in [29], we employ the primal-dual activ
point PDAP algorithm from [&8],which we provide herfer the convenience tihfe
reader.It uses the forward operator M{Q) » L (%), u 7- duls, > where u solves
(10), (11) and its Banach space adjoihthé algorithm aims at solving the minimisation
problem

1
uerpﬂ}(r)\) ika.,u — gl(z(z) + Okufyq) s.t.u solves (10), (11)

with some regularisation parameter 6 > 0 (whose value actually does not matter much, d
to one-homogeneity of the regularisation fpnctional), which in case of Z being a discrete s
can be shown to have a solution of the form JL«8, for some coefficientsAR

and points, S Q.The method can be motivated by gradient descent for this minimisation
problem in a generalised sense of non-smooth convex Steatysig.from u= 0 the

method first proposes a new source lo&t&M) corresponding to a maximum of the

norm of the current dual varidl#eF&(F (i — g).The new point is added to the support

of the current iterate fihe algorithm as described in [38] also contains a point removal
step, which we skip here, tholigh.stopping criterion, a sufficient decrease (by a factor

of 10° in our computations) of the primal-dual gap is used. rep X p.5, .19

Algorithm PDAP: rep Y (0), (7)
Fori=1,2,3,...

1. Compute &= FXF 1 — g); determirfg € argmaxq|&(x)|

2.5et (4, ....,.5:=suppyu &6'};
. P
3. compute a minimigére R of j(A) := kF }_; Abs; — gR

. P .
4.Set gt =" ¢, k0s;

This also yields the number n of point sources. rep Y (9)
Combining this with the other elements from the method irWf@@Jrrive at the
following scheme in case of constant background f.

Algorithm O:

P
Given boundary flux g 59 "L;gp. arising from the m unknown objecti®ach of
which is the union of discs) with f = const.

P
(i) Identify n = " n- = m equivalent point sourceasd weightsAaccording to
Lemma 2.1 using Algorithm PDAP.
This also yields a decomposition g = g}_; g5, Of the given data;

21 2(3) regularity ofthe flux (in spite othe low WA9(Q), g < 4%; regularity of) is obtained by
bootstrapping from the homogeneous impedance conditions in case of Z <€ 9Q; otherwise, an assumption
of the source domain to be at distance from Z needs to be imposed in order to be able to invoke interior
elliptic regularity.
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(ii) Determine the radii of equivalent discs from wdightssalving the identity (14)
forr. rep Y (8)
Merge these discs into m objaets:discs belong to the same object if their inter-
section is nonempty;

Assigning discs and therewith equivalent point sources to gbjectyg, for
ke{l1,...,n}e {lg, oo, mE {1, . p- ;Jn also yields a decompositiotihef
givendatag =g = ",g, whereg= ) gpts, -

(iii) For each objecD:, * € {1, ..., m3eparatelydetermine the objetdtoundary
parametrised by a curvefgppm moment matching (12)dafa g, using a New-
ton iteration;

As a starting value for each curvindiii) we use the disc with the centroid of they (21)
union ofdiscs belonging to the *-th object as a center and the radius corresponding to
the sum ofveights within the "-th object via (1Alernatively to (iii}pne could use
algorithms from computational geometry for determining the boundary of a union of discs
see, e.qg., [14, 16] and the citing literature.

In case of variable background f as relevant h&tg,arid/or a set D that is not a
finite union of disdd)e representation by equivalent discs is not exact and therefore the
decomposition of the data according to objects is not valid Weythhemefore replace
(iii) by a simultaneous Newton based matching of the flux data g (not of its moments) to t
flux data computed from forward simulations according to the collection of parametrised
object boundarie¥/e can still regard the discs obtained by (ii) as good starting guesses
for Newton’s method and thus proceed as follows.

Algorithm 1: >
given boundary flux g = ", 0. arising from the m unknown objects D

P
(i) Identify n = "_;n- = m point sources.&nd weightsAby applying Algorithm
PDAP; rep Y (9)

(ii) Determine disc radii from weigptsyAresolving the identity (14) for r.
Merge discs to m objedwo discs belong to the same object if their intersection is
nonempty;

(iii) For all objects B *~ € {1, ..., m}, simultaneously, determine the object boundaries
parametrised by curvebygmatching the combined observational data (6), using a
Newton iteration.

The choice of a starting value fomq(iii) is the same as in Algorithmramely a
disc with centre determined as centroid of all discs pertaining to the "-th object and radiu
determined by using the sum of weights in (14).
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2.1 Reconstructions

In this section we show reconstruction of piecewise constant nonlinearity coefficients with

supports being inclusions in the unit disk Q. rep X p.8/9
Our forward solvers for (711) (in the speciabses (8),(9bf (7)) rely on the fact

that with the fundamentsadlution to the Helmhotz equation G(x)Hg(k|x|) in two

space dimensions, (withld¢ing the Hankel function of order zero) the solution tep Y (10)

4uR +R2P° =f  inR2

can be determined by convolution G * fit thus remains to solve the boundary value
problem repY (11)
Qui+Ru=0 inQ, U+ K =g

with g = —au?* — KU”?, which we do by the integral equation approach described in [12,
Sections 3.1, 3.4], that easily extends to the case of impedance boundarylenditions.
solution to (7)11) is then obtained as u & #& (. We point to the fact that solving

the Helmholtz equation with large wave numbers is a challenging task and a highly active
field of researcéeee.qg.[32,34,37]and the references ther8ince our emphasis lies

on a proof of concept for parameter identification, we did not implement any of these higl
frequency solvers here.

In all our reconstructions it is apparent that the point source reconstruction algorithm
from [8, 38] combined with the equivelant discs approximation — that is, steps (i) and (ii)
in Algorithm 1 - provides an extremely good igiiess of the curves to be recovered.

This is essential for the convergence of Newton’s method in view of the high nonlinearity
of the shape identification problem.

repY (14)

Using the third harmonic M = 3The reconstructions in Figure 1 are obtained %y
following the steps of Algorithm 1 at wave nursb®0 and then carrying out another
Newton step with data from the third harmomical5 either{d) sequentiallysing
the result from= 10 as a starting value or, (e) applying Newton’s method simultaneously
tok = 10 and = 15.

The numerical results indicate that the additional information obtained from the next
(m = 3) harmonic does not yield much improvemmesis due to the lower - by two
to three orders of magnitude - intensity of the signal at that higher frequency and seems
to confirm the experimental evidence and common practice of skipping higher than secor
harmonics.

Reconstructions from partddta: In Figures 2,3 we show reconstructions from

partial data, quantified in terms of the relative arc length a of the observation boundary,
which is marked in greefhe quality appears to decrease only slightly with decreasipg, Fig.
amount ofiata,until at a certain point (between 30 and 40 per cefiteofullangle, rep v (13)
that is, of the whole boundary) the algorithm partially breaks down and fails tqefgrw(pﬂe

8



Figure 1: Reconstruction dhree (top row) or two (bottom row) inclusions from full

data: (a) point sources step (i) éfgorithm 1;(b) equivalent disks step (ii) Afgo-

rithm 1; (c) Newton with second harmonic; (d) Newton with third harmonic; (e) Newton
with second and third harmonigreen dotted line. . . observation bounedotted

lines. . . actual inclusion boundaries; magenta stars. . . reconstructed point sources; blue :
lines. . . boundary reconstructions

(@Z=1 (0)£=075 ()Z€=05 (d)&=04 (e)&=0.3

2n

Figure 2:Reconstruction of three inclusions from paaitegtop row:equivalent point
sources and diskbottom row:boundary curves from Newton’s methkedyend:see
caption of Figure 1
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Figure 3:Reconstruction afvo inclusions from partddta;top row: equivalent point
sources and diskbottom row:boundary curves from Newton’s methlajend:see
caption of Figure 1

of the objects completelhe ability of an inclusion to stay reconstructible from a low
amount of data is related to its weight according to the associatedhemighing to

(13) (using the object’s average radiubjgures 2 and 3 these weights@@225 for

the circleP.0692 for the cardiod and 0.0515 for the éllgasé&he position relative to
the measurement boundary clearly plays a role.

It may seem that simple completion of data from the measurement subarc to the entir
boundary should give similar results by for example using the Fourier series expansion.
Howeverthis analytic continuation step comes at a pfieee have N Fourier modes
over an arc of length a then this analytic continuation results from solving a system with
a matrix P (N, a) the conditioning of which can be computed anal@ficallyse the
condition number wilicrease with both N and decreasing valueof @, < 2m.In
fact this is a well-understood problem, see [39] where it has been shown that the conditic
number of P (N, a) is asymptotic (for large N ) to

2 +ji1 + cos a

oy ~ €N where y(a) = logfe—+—— —>", 15
N via) 2 _-"T+cosa (13)

This has been used in several inverse problems, see, e.qg., [20, 33].

Howeverin our situation the reconstructions are performing much better than the
above pessismistic estimate would suddaess.due to the fact that our reconstruction
does not rely on extending the boundary data but rather on directly applying our method
to the restricted flux g #. The additional information that the PDE model provides
clearly contributes to this inprovemehtch is also reflected in the condition number

10



1

of the Jacobian in Newton’s method versus the theoretical prediction for data completion
from [39]This can be seen in Table 1.

> | cond())| av [39]
0.75| 29.6 | 2.8e+2
0.5| 64.9 | 2.3e+5
0.4 73.7 | 1.8e+0]
0.3] 1733.8 2.6e+0¢

~

W

Table 1:Condition numbers of Jacobian in Newton’s method for a single inclusion using
9 basis functions versus condition number formula (15) for data completion with N = 9

@£=03 (b)L£=02 (@©£=01 (d£=0.09

Figure 4Reconstruction of two inclusions at different distancesetppvalent point
sources and diskbottom row:boundary curves from Newton’s methketyend:see
caption of Figure 1

Varying distance between objeétgure 4 shows reconstructions of two inclusior®.11, I.1
at several distance, given by the difference 6 in the phase of the centroid (in pebar qeerdi-
nates).The given data appears to allow distinction of objects veag Yot as they

do not overlapHowevergecreasing distance between them compromises the quality of
reconstructions.

11
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Figure 5:Reconstruction @ne inclusion at different distances from the boutmary;
row: equivalent point sources and difladdfom row:boundary curves from Newton’s
method;legendsee caption of Figure 1

Varying distance to boundaryigure 5 shows reconstructionsmé inclusion at

. . KqQ—Gictk, S
severatlistances from the boundaffhe relative error_— %" in the boundary

L 4(0,2m)

parametrisation after application of Newton’s meathod @twas (a) 0.2963 (b) 0.1@3X p.11, 1.7
(c) 0.1434lso visually, it is obvious that closeness to the observation surface significantly
improves the reconstruction quality.

Reconstruction from noisy datanally we study the impact of noise in the mea-
surements on the reconstruction quality, see Figure 6 for the case of thResyobjects.
larisation is mainly achieved by the sparsity prior incorporated via the PDAP point source
identification and this actually makes the process very stable with respect to perturbation
in the measurements up to noise levels of about three penggpdrtial data clearly

impacts this robustness and thus only works with noise levels of two per cent or less.

3 Convergence of Newton’s method

Similarly to the time domain setti@@Jone can prove that the all-at-once formulation

of this inverse problem (even with arbitrary M € N u {«}) satisfies a range invariance
condition, which, together with a linearised unigueness result, enables to prove convergel
of a regularised frozen Newton method.

12



[=)] w £ w N

10

Fe \P o \P o)

@é6=2% (bO)6=3% (c) %

%  (d) 3
5 0.

|2 O

2
0.

0]
a
21

N
Ul

T

Figure 6:Reconstruction @ahree inclusions from noisy ddibgy row: equivalent point
sources and diskbottom row:boundary curves from Newton’s methlajend:see
caption of Figure 1

We write the inverse problem of reconstructing n in (3) as a nonlinear operator equatic

Gm(np)=h me{l, ..., M} withp, ...ov)
Cobm=¥n me{l, ..., M}

for the model operators GQ x W — W (including the case M =  witA(N; V') in
place o), h, = h, h,, = 0 for m = 2 and the observation operatgr&d. (v, Y ).
Here Q, V, Y are the parameter, state, and data spaces.

The components Gof the modepart ofthe forward operator have the particular
structure

(16)

Gm(N,P) = Dnpm + Bn(P)n (17)
with D, € L(V, W) and Bp) € L(Q, W) linear for eqxck V' but depending nonlin-
early op."(This is different from [25], where we considered a sum of lineas(pperators B

in a single model equation rather than a system of model equations.) More concretely, in
our setting with the operators defined by

Z Z
Au= v7- VYu-Vvdx+y uvds
v oQ Z
Du= v7-b Vu-Vvdx + &8 + by) uvds, (18)
ZQ Z aQ
Mu= v7- uvdx+Bb uvds
Q aQ

13
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Dyp=-mMwM+ A+ 1 mwD, Cp=tr,

L CGn- +3 k=m+2:2Cien Ciem M = 0 (@) (19)
n oG MENU {x} (b)

Q=1*Q), V=HQ), W=L*Q), Y=L*3),

~c é@c

where the first sum over " is empty in the case rHef€elB, (D) : L2(Q) —» L %(Q) is rep X p.13, (1
to be understood as a multiplication operator and boundgtineSsLBI*(Q), [%(Q))
follows from the fact that?tf2) is continuously embedded (@) and therefore the
functions p as well as their products are*if)). Differentiability of thg, Bhappings
follows from their polynomial (in fact, quadratic) structure in our particular setting.

We consider both the case (a) that gives full equivalence to the Westervelt equation (1
and the simplification (b) that corresponds to skipping the under-braced terms in (3) and
is used in our numerical tests. rep X p.13, (1¢

The abstract structure (161,7) together with an extensiobhef dependency pf

.....

one to more generally establish a differential range invariance relation on a neighbourhoc
U of (/1) rep X p.13, (1¢

for all (~p), € U Ar(-p,€ & x V"' : F (~p) = F (o) = FLondo)r(~m)," (20)

for

F=(Gm Gi)meqr,.mp P = Bn)mer1,...m} (21)

r(~mp) = (F(~p), E(~p) e, M}
Indeed, with

0, s o X eBg ,
G (~oo)(dn, @) = Dndp_ + Frel (Po)db, ~ofh + Bm(po)dn,
n=1
and
rﬁq(ﬁ"n’) A=p’r\n - ﬁ),m
pe 1 . . X 0B o0 .
ri(~m) =/ — ,m+ Bn(o)™ Bm(p) — Bi(o) nm — o5, (Po)(Pm — Po,m) B,m
n=1

we obtain (20Jo this end, we assume thiatghosen such that foreachme {1, ..., M },
the operator B(fp) : Q = W is an isomorphismUnder this assumption andBif, is
Lipschitz continuously differentiabfm,dbhé& mapping ris close to the shifted identity
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operator in the sense that
kr(~p) = ((~0), = (o b)) kom xym
= Bm(P)™ Bm(p) — Ba(o) (Mn— Mm)

X
£ B (D) = Bolpo) = 2B (p) (B — o

< , ,m
M
n=1 0Pn meN Q

< Ckp —pokym kn — tKom + Ko —pokym

that is,
kr(~p) = ((~0), = (o fo))kom xvm < Ck(~n) = (o flo)Kom wym

(23)

repY (17)

for C > 0. Together with rig8) = 0, (23) implies that r is Fr echet differentiable at

(~orB) with derivativélrond) = ide, from which one can easily conclude.(:£28])

that
3¢ € (0, 1) VEU (S X) : kr(p),= r(0d) — (~n L B-ApHk«

< Gk(~n L, B AP )k«
in a sufficiently small neighbourhood U, @§)(~n

(24)

In our concrete setting (18here B (f) is the multiplication operator wikh:¢
mMPuwB m(Po(x)), the isomorphism property means thabhyst be chosen such that for
allm & N, 0 < infesseaPm(X) = supesscqoPm(x) < «. This is analogous$o the
tirqﬁ domain formulation [2(8]Nhiclﬁ,it is equivalent in case (ahere (pdt, x)¥ =
< i ex)ekt for po(t, x) = < o_ Podx)éWt , and where the corresponding

range invariance condition can be proven under the assumption
0 < infesgo,rjnfesgeam dt, X) < sSUPegSy r FUPESEaPm(X) < .

SinceB,, is polynomidlmore precisely quadratic) in its arguments and %3 ¥ a
Banach algebra, the operatgriBLipschitz continuously differentiable and we have the

following sufficient conditions in ternds fafr (22) (note that the factordwhcancel

rep X p.14, |.1

out, so we can replacg By B, in (22); moreover, we can exploit symmetry of the first

sum)
1 1%
— 5 (B —po)(p +po)m-
Bm(fo) 4 ._,
1 X o
i §k=m+2'2 P ey pHTm TRk (p _pO)HTm meN = (N;L= (Q))
I ' {z }
= Clq,j —nl\)k\/M
L X e b+ L B b -
= 5 (P =) P —)m-+ 5 P —10) i (B —b) o
Bm(Po) 4., ; |2k=m+2:2 (z ’ 2} meN v
< Ckp —pokym
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where the under-braced sum is skipped in case (b).

Since the artificial dependence of ~n on m is clearly unfavourable to uniqueness of thi

coefficient from the given data, we penalise it by aterth P ~n € Q rep Y (18)
Pv
1N “TIh
(P ~R)= mm — %’
n=1

where the weight¥?rin the 2 projection are introduced in order to enforce convergence
in case M = ».Note that the n independent target (n, n, . . .) is clearly not contained in
2(N; Q) but in the weighed spadé Q) with weights w n2. We here first of all aim

at finding a general n € Q #Q@). In case we want to reconstruct a piecewise constant
coefficient n, we can achieve this by, e.g., adding a total variation term to P .

This penalisation together with condition (20) allows us to rewrite the inverse problem

(16) as a combination of an ill-posed linear and a well-posed nonlinear problem

FA~o)? = h — F (o)
r(~m) =r (27)
P~n=20

for the unknowns €g) E @ x Q" x W (orin 2(N; Q) x2(N; Q) x4N; V) in case
M = «). Here (g:/p) € @' x VW is fixed and in (20) U ¢ @ W is a neighbourhood
of (u/Ph).
The following regularised frozen Newton method can then be shown to converge.

x5,1 € argmip kFAxo)(x — ) + F () — Bk} + ank~n k& + kP ~zk  (28)

where hi= h is the noisy data, » 0 as n - «, (e.g.a, = aq’ for some g € (0, 1)),
and we abbreviate x =d}=n, ”

An essentiaingredient ofthe convergence prosiverification ofthe fact that the
intersection ofhe nullspaces dfqx,) and of P is trivial [25,Theorem 2].For this

purpose, we require the following geometric condition on the observation manifold Z
!

X ,
forallj&€ N : b<¢j’-<(x) =0forallxe€e ==>b,=0forallkekK (29)
kEK]

in terms of the eigensystefn/}dg-e,\,,kem of the selfadjoint positive operator A defined
by (18). This means that the eigenfunctions should preserve their linear independence
when restricted to the observation manifold and trivially holds in 1-d/ whéros K
all j € N.

We will assume that the operators A, D, M have the same H-orthonormal eigenfunc-
tions 45 with the eigenvalugsofiM and g of D satisfying

&:Eandﬂ—i =>j=\. (30)

ACA TR TR
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This is the case, e.q., if B = 0 in (18), since then WitQ)HM=i& the identity D = bA
holds, and therefores:1, p = bA, so that (30) simply becorﬁes > == . rep Y (19)

Condition (30) is needed to prove the following linear mdependence result that will
play a role in the linearised uniqueness result TheorésrpBodf can be found in the
appendix.

Lemma 3.1Let (Y)jen, (Aj)en, (0)jen S C be sequence of strictly increasing nurmberg0)
such that30) holds.
Then

X nr

forallm €N : 0 =j=1 7 TRy y— /mwpcj == (¢; = 0 for alfj € N)

We are now in the position to prove uniqueness for the linearised protbliet,
besides being of interest on its own, is also an essential ingredient to the convergence pre
of Newton’s method.

Theorem 3.1For (21),(17), (19), with M = « and n independentof m (thatis,

P ~n = 0fp chosen such th@bm(x) = ¢(x) 4 for some ¢ € H(Q), ¢ 6= 0 almost
everywhere in Que C, fn :=Bmn(@) € C\ {0} for ath € N.

Then under the linear independence condition (29), with A, D, M simultaneously diago-
nalisable with (30), the linearisatfom, i) at np = 0 is injective.

Proof. Using the operators A, D, M as in (18) we can write the cdtwlitdexich, dp)
for = 0,00,m(x) = @(x) @, f m(@) as

[—nfuwM + A + 1 mw Dldp+ n*?wzfm(pgn = Oand tgdp_ = 0 for all m € N(31)
Using the diagonalisation by mearmefelgengmctpns ien kexi, by taking the H

inner product of31) with ¢, relyingondp =" 7, hdp, ¢in¢f and setting
a = hdn ¢,f{fy we can rewrite this as

1
| TIMPWPL + CAj mw;Q

X
MW

Jj=

a ¢ (xo) = 0 for allx€ £, m € N.
K

Since the entrie_g,nzwzuj +g2/\j g define an infinite generalised Hankélix which is
therefore nonsingular (see Lemma 3.1), this implies

X
0= &¢(x) forallj€E€Nxo € I

keki

Using (29)we conclude’<a= 0 forallj €N, k € K/ and thus dn = 0.Returning to
the first equation in (31) with dn = @ye to uniqueness tfe solution to this linear
homogeneous PDE with homogeneous boundary conditions, we also have dp = 0.
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According to [25, Theorem 2], we obtain the following

Theorem 3.2Let x" = (@) be a solution to (27) and Idbr the noise levdl =

ky’ — yk the stopping index= nJ{6) be chosen such that

nyo)—-1
ny6) -0, & day 5120 as6-0
j=0

with c as in (23Moreover, let the assumptions of Theorem 3.1 be satjsfigubsabh ~

such that25), (26) holds for @lin a neighbourhood pgf

(32)

Then there exists p > 0 sufficiently ssnah that for x€ By(x") < U the iterates

.....

kX8, 5 — X'kou xym = 0 as 6 » 0. In the noise free case 6 = B6) = » we have

kx, — Xkom xym = 0 asn — o,

Appendix

Proof of Lemma 3.1:

With w (t) := —fiw? + @A B + 1wpt, the premise of the lemma reads as

X
foralltef :meN}: 0= 4G.
j=1

P. Q

Thus, after multiplication WRhENW‘(t) and with W(t) :=

forallt€X :m e N} : 0=W().

1w Pk

Since WSis analytic, this implies that34/0 on all of GChoosingit = —5%
as the roots ofyywe obtain

Y
forallk €N : w(tex) g =0
6=k

A small side calculation yields that under condition (30), the roots of the;fanetions w

distinct for different j:

\/

Ak

t}'+=t‘+andr_=t‘_ = t]++§'_=t‘++f‘_andf++§'_=f."++t_

B _P

/\—j= and=5 =

A TN

=

which By (30) impliesj = .
Hence, .z w:(t+) 6= 0 and from (33) we concludethal for all k € N.

18

6 w:(t) ¢ we get

P,2< —Hk

(33)
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