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Abstract
Purpose  The Wall Shear Stress (WSS) is the component tangential to the boundary of the normal stress tensor in an incom-
pressible fluid, and it has been recognized as a quantity of primary importance in predicting possible adverse events in 
cardiovascular diseases, in general, and in coronary diseases, in particular. The quantification of the WSS in patient-specific 
settings can be achieved by performing a Computational Fluid Dynamics (CFD) analysis based on patient geometry, or it can 
be retrieved by a numerical approximation based on blood flow velocity data, e.g., ultrasound (US) Doppler measurements. 
This paper presents a novel method for WSS quantification from 2D vector Doppler measurements.
Methods  Images were obtained through unfocused plane waves and transverse oscillation to acquire both in-plane velocity 
components. These velocity components were processed using pseudo-spectral differentiation techniques based on Fourier 
approximations of the derivatives to compute the WSS.
Results  Our Pseudo-Spectral Method (PSM) is tested in two vessel phantoms, straight and stenotic, where a steady flow of 
15 mL/min is applied. The method is successfully validated against CFD simulations and compared against current techniques 
based on the assumption of a parabolic velocity profile. The PSM accurately detected Wall Shear Stress (WSS) variations in 
geometries differing from straight cylinders, and is less sensitive to measurement noise. In particular, when using synthetic 
data (noise free, e.g., generated by CFD) on cylindrical geometries, the Poiseuille-based methods and PSM have comparable 
accuracy; on the contrary, when using the data retrieved from US measures, the average error of the WSS obtained with the 
PSM turned out to be 3 to 9 times smaller than that obtained by state-of-the-art methods.
Conclusion  The pseudo-spectral approach allows controlling the approximation errors in the presence of noisy data. This 
gives a more accurate alternative to the present standard and a less computationally expensive choice compared to CFD, 
which also requires high-quality data to reconstruct the vessel geometry.
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Introduction

Wall shear stress (WSS) has been shown to trigger a 
change in endothelial cells’ behaviors and is considered 
important in the development of atherosclerosis in coro-
nary arteries [1, 2]. Coronary segments with low WSS are 
linked with greater plaque progression and constrictive 
vascular remodeling while segments with high WSS are 
associated with increased plaque vulnerability by expan-
sive arterial remodeling [3–9].

A direct measurement of WSS is not possible, so Com-
putational Fluid Dynamics (CFD) is used to solve the 
Navier–Stokes equations - describing the blood flow - in 
reconstructed anatomical models from patient-specific 
Computed Tomography (CT) angiography or Magnetic 
Resonance Imaging (MRI) images [10]. The solution to 
the Navier–Stokes equations provides complete velocity 
and pressure information at any location in the coronary 
artery. The outcome of CFD heavily relies on the quality 
of the input data such as reconstructed vessel geometry 
and proper boundary conditions, so it is crucial to acquire 
accurate input information [11, 12]. Also, CFD analyses 
can be time-consuming.

Since WSS can be computed from the gradient of veloc-
ity field distributions and blood viscosity, other research-
ers have used phase contrast MRI (PC-MRI) to measure 
the velocity and then to estimate the WSS. For instance, 
Oyre et al. estimated the WSS in a common carotid artery 
by least-square fitting a three-dimensional paraboloid to 
the velocity data. Next, the WSS was obtained by differen-
tiating the velocity quadratic functions and multiplying the 
velocity gradient at the vessel wall by the dynamic blood 
viscosity [13–15]. Since this method assumes parabolic 
velocity flow profiles and does not consider non-radial 
components of the velocity gradient, interpolation based 
on piece-wise cubic Lagrangian basis functions was suc-
cessively used to further improve the fitting of the velocity 
profiles [16–18]. However, because of the low spatial reso-
lution, WSS estimation using PC-MRI has currently been 
limited to larger blood vessels such as a carotid artery, 
carotid bifurcations, or abdominal aorta [11, 16, 19, 20].

Recently, ultrasound-based minimally invasive intravas-
cular velocity measurement devices have been developed 
to image smaller arteries such as coronaries [21–24]. In 
the future, intravascular ultrasound imaging devices may 
potentially be used to derive WSS from direct velocity 
measurements in coronary arteries.

The most straightforward way to estimate WSS using 
ultrasound (US) Doppler velocimetry is to measure only 
the peak velocity and estimate mean WSS from the stand-
ard Poiseuille-Hagen solution under the assumption of the 
fully developed and parabolic flow profile and the vessel 

being axisymmetric [25, 26]. However, in situations where 
the flow profile is not parabolic, this approach results in 
a large error (maximum 55%) in WSS estimation [25, 27, 
28].

To avoid this problem, recent developments in ultrasound 
Doppler velocimetry have combined plane wave transmis-
sion with transverse oscillation techniques to estimate 2D 
vector velocity at a higher spatial and temporal resolution, 
thus for the estimation of WSS, local flow velocity measure-
ments near the wall are possible [29–32]. Wang et al. esti-
mated WSS in a human femoral artery from the tangential 
stress tensor vector and used the rotation matrix to align 
the tensors to the wall curvature, but have not validated this 
approach with other imaging modalities [33]. Furthermore, 
to account for both contributions from axial and lateral 
velocities, Chee et al. used both components to calculate 
the WSS in carotid artery bifurcation [34]. The performance 
of this approach was compared only to reference values com-
puted from CFD in simple geometries and flow conditions. 
In Ref. [35], the authors propose a method based on 2D US 
measure, based on the assumption of a Poiseuille profile 
projected along the tangential direction. The velocity is dif-
ferentiated by a finite difference procedure, evaluating the 
velocity data in different positions and then retaining either 
the average or the maximum to mitigate the impact of the 
noise.

Another method for estimating local 2D velocity vector 
and WSS using ultrasound is echo-Particle Image Veloci-
metry (PIV). Echo-PIV tracks contrast agent microbubbles 
in flow by cross-correlating consecutive ultrasound B-mode 
images. Using echo-PIV approach, the entire estimated 
velocity profile was filtered and fitted using polynomial fit, 
and WSS was calculated from the fitted velocity profile by 
computing its gradient at the vessel wall in larger arteries 
such as the aorta, brachial artery, or carotid bifurcation [25, 
36–40]. Because in complex geometry, the general shape is 
not known, a fit through only a few points near the wall was 
instead used to estimate WSS [41]. However, these WSS 
estimation approaches have not been validated against CFD 
or other imaging modalities, nor have they been validated in 
more complex geometries such as stenotic vessels.

The purpose of the present work is to introduce a new 
method to calculate WSS using as input the ultrasound 
velocity, where two “in-plane” velocity components (axial 
and lateral) are available at a given section. Thus this method 
is tailored for 2D velocity data without the need for assum-
ing flow profiles or relying on anatomical geometries derived 
from imaging. The method is based on a Fourier approxima-
tion of the velocity data as opposed to polynomial fitting. 
This approximation of the velocity and its gradient (gener-
ally referred to as the pseudo-spectral derivative) controls 
the numerical errors, particularly in the presence of high-
frequency noise. We also incorporate the lateral velocity 
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component available from 2D vector Doppler ultrasound 
imaging and the shape of the wall in the WSS computation.

Our method is compared against methods based on the 
Poiseuille-Hagen solution [25, 26, 35], and CFD simula-
tions. Both non-stenotic and stenotic vessels were tested. 
CFD is used as the validation tool because it is largely con-
sidered the best reference standard for obtaining WSS [19]. 
We tested our method against synthetic measures extracted 
from CFD that mimic the ultrasound data extraction to probe 
the estimation in an ideal “noise-free” situation, assuming 
that numerical errors in the CFD are generally much smaller 
than measurement errors (as is the case for a fine mesh). 
Finally, WSS results estimated from US imaging were com-
pared with the Poiseuille-based WSS estimation methods. 
The results show that, in the absence of noise, all the meth-
ods can provide an excellent evaluation of the WSS, with 
numerical errors comparable with the CFD estimation. How-
ever, in the presence of noise coming from a real measure-
ment campaign, the PSM is superior for its natural low-pass 
filtering nature, leading to very good clinical accuracy.

The ultimate purpose of this research is to implement our 
method in a forward-viewing intravascular ultrasound trans-
ducer to enable plaque vulnerability characterization inside 
the coronary arteries for stratifying risks. A more extended 
presentation of the results of our method in experimental 
ex vivo settings that mimic stenotic vessels is reported in 
Ref. [42].

Materials and Methods

US Experimental Setup

Two geometries of vessels with a length of 12 mm and a 
diameter of 3.2 mm to mimic the physiological and patho-
physiological conditions in coronary arteries were prepared: 
a straight vessel with eccentric stenosis of 54% diameter 
stenosis (% DS) displayed in Fig. 1 and a straight vessel 
without stenosis as the control case. This diameter of ves-
sel was selected because it corresponds to the diameter of 

a healthy human left anterior descending (LAD) coronary 
artery [43], and this value of % DS is in the range of inter-
mediate severity of LAD (40–70%) [44], and this severity 
of stenosis presents challenges to clinicians when stratify-
ing risk for patients with stable coronary artery [45, 46]. 
These geometries were first created in Solidworks [47] and 
3D printed using a high-resolution StereoLithography Appa-
ratus (SLA) resin printer (FormsLabs Form 3+) with a layer 
thickness of 25 μ m. The printed geometries were placed on 
a phantom container, and a tissue-mimicking material (7.5% 
gelatin, 2% graphite as scattering particles, and 5% n-pro-
panol) was poured around [48]. When the material had set, 
3D-printed coronary geometries were removed, leaving an 
arterial lumen inside the phantom.

Each phantom was placed inside a tank filled with 
degassed water. A high-frequency linear array transducer 
(VisualSonics MS400, FUJIFILM VisualSonics, Inc., 
Toronto, Canada) was placed 1 mm from the outlet of the 
phantom vessel. The transducer’s beam was facing toward 
the flow, and the flow was introduced toward the transducer 
using a syringe pump (PHD 2000, Harvard Apparatus, Hol-
liston, MA). The continuous and steady flow had a 15 mL/
min flow rate. This time-averaged velocity corresponds to 
the mean physiological flow rates and velocities found in 
LAD coronary arteries in adults [49, 50] (Fig. 2).

While the data sets in these studies were acquired using 
a high-frequency linear array (Visualsonics MS 400), 
in vivo data will require a forward-viewing, 20 MHz 2D 

Fig. 1   Geometry and surface mesh of the stenotic vessel considered 
in the present work

Fig. 2   Experimental setup. Flow is introduced into the vessel-mim-
icking phantom using the syringe pump and the flow is directed 
towards the linear array ultrasound transducer which is placed at the 
outlet of the phantom. The ultrasound transducer is connected to a 
high frame rate ultrasound imaging system
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intravascular ultrasound array, which we are currently build-
ing. Due to the decreased aperture size of the intravascular 
array and the ability to position the intravascular array closer 
to the region of interest in the artery, the spatial resolution 
is approximately a factor of six worse according to simu-
lations [24]. Briefly, simulations of ultrasound imaging of 
blood flow in a straight vessel at the same velocity used 
in the presented studies indicate that spatial averaging due 
to increased size of the point spread function results in an 
overestimation of approximately 11% when using the intra-
vascular array, however, estimation error for other velocities 
and flow rates have not yet been investigated [24].

US Imaging and Vector Doppler Velocity Estimation

An accurate velocity profile is needed to estimate WSS using 
ultrasound data. In this project, a Doppler approach was 
adopted, where images were obtained through unfocused 
plane waves and transverse oscillation (to acquire both in-
plane velocity components). The linear array transducer was 
connected to a high frame rate ultrasound imaging system 
(Verasonics Vantage 256, Kirkland, WA, USA). To acquire 
beamformed Radio Frequency (RF) data, unfocused plane 
waves at a frequency of 23MHz were selected, employing 
3-angle compounding ( −15◦ , 0◦ , 15◦ ). The data was obtained 
at a frame rate of 8,000 frames per second. In total, 200 
frames were acquired, and the transmitting signals were set 
with a two-pulse duration cycle. For each phantom, a series 
of five data sets were collected. The segmentation process 
is summarized in Fig. 3.

Post-processing was performed in MATLAB [51]. First, 
the stationary phantom backgrounds were eliminated by 
employing Singular Value Decomposition (SVD) to remove 
the first, largest singular vector [52]. Next, to estimate the 
lateral velocity, we introduced transverse oscillation by 
applying a Gaussian filter centered around the desired lateral 
oscillation frequency to the data in the Fourier domain [31, 
53]. In particular, we adopted a wavelength �x and a band-
width �x equal to 0.0613 mm . Finally, to estimate the lateral 
velocity component, a fourth-order autocorrelation estimator 
was utilized. As for the axial velocity component, a standard 

cross-correlation estimator was employed. An ensemble size 
of 200 was used, and the position of the wall was determined 
using a sparse field method with a mask excluding the area 
outside the vessel [39, 54]. Based on this approach, the pix-
els containing the wall were set to zero velocity so that only 
the velocity values from Doppler data inside the wall were 
used. For more details on ultrasound acquisition see [55].

Mathematical Modeling

The dynamic of an incompressible fluid with velocity u 
and pressure p in a region of interest Ω is described by the 
incompressible Navier–Stokes equations

obtained by applying the conservation of momentum and 
mass. Here � denotes the (constant) blood density and, for a 
Newtonian fluid, the deviatoric stress tensor reads

where � is the (positive) constant kinetic viscosity. In this 
study, for our CFD testing, we will consider steady cases, 
i.e. the solution of

The Wall Shear Stress (WSS) on a portion of the boundary 
Γ ⊂ 𝜕Ω is defined as the part of the normal component of 
the deviatoric tensor � ⋅ n tangential to the boundary (here 
n is the outward normal unit vector), and can be defined as

To compute the WSS, one can either solve the Eq. (1), or 
measure the velocity u and then apply (2, 4). In general, Eq. 
(1) cannot be solved analytically, CFD is required. However, 
in some special cases, we have the analytical solution, like 
for a flow in a rectilinear, circular cylindrical domain under 
a given pressure drop either constant in time (Poiseuille or 

(1)
{

�
�u

�t
+ �(u ⋅ ∇)u + ∇ ⋅ � + ∇p = 0

∇ ⋅ u = 0

(2)� = −�
(
∇u + ∇T

u

)

(3)
{

�(u ⋅ ∇)u + ∇ ⋅ � + ∇p = 0

∇ ⋅ u = 0.

(4)� ≡ � ⋅ n − (n ⋅ � ⋅ n)n.

Fig. 3   Diagram showing the ultrasound image segmentation and processing. RF refers to Radio Frequency, SVD stands for Singular Value 
Decomposition, and WSS represents Wall Shear Stress
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Poiseuille-Hagen solution) or periodic in time (Womersley 
solution) [56]. Assuming that the cylinder axis is along the 
Cartesian x3-axis, the Poiseuille-Hagen solution reads

where the index 1 refers to the velocity component along 
x1 (2 and 3 along the x2 and x3 directions respectively1), R 
is the radius of the cylinder (where the velocity is zero by 
virtue of non-slip conditions) and umax is the axial velocity 
function of the prescribed pressure drop. In this particular 
case, the WSS reads

where r ≡
√

x2
1
+ x2

2
 is the radial coordinate.

Adopting �P to calculate the WSS of a generic flow sup-
posedly introduces a significant approximation of the real 
value WSS, as lateral velocity components are neglected, 
as well as the wall shape. This approximation has been tra-
ditionally adopted to estimate WSS from velocity measure-
ments, and �u3

�r
 has been obtained by interpolating a quadratic 

(or cubic) function to three (or four) points closest to the 
wall where velocity was measured. The derivative in the 
radial direction is calculated analytically from the interpo-
lated function [41]. Generally, the radial direction is approx-
imated with one of the cartesian ones. In this work, this 
approach will be identified as the Poiseuille method.

In the study [35] mentioned above, the significance of 
considering the radial component in WSS estimation was 
demonstrated. Their method involves isolating the tangential 
velocity component relevant to WSS by utilizing the dot 
product of velocity components with a tangential unit vector. 
The velocity rate of change is computed with a Finite Differ-
ence (FD) approach at multiple points near the vessel wall 
and then either selecting the maximum value or computing 
an average. Both the strategies aim at mitigating the pres-
ence of noise in the data and the approximation induced by 
the assumption of a Poiseuille profile.

In contrast, our approach considers both radial and tan-
gential velocity components as well as the vessel’s shape 
in Eq. (4) that inherently integrates these factors. Addition-
ally, we depart from the finite difference approach used by 
Ref. [35], instead opting for a pseudo-spectral interpolation 
technique. This method not only facilitates WSS calculation 
but also effectively denoises the data, marking a significant 
innovation in our approach. While our measures here are 2D 
in-plane velocities, it is worth noting that our methodology, 

(5)u1 = u2 = 0, u3 =
umax

R2

(
R2 − x2

1
− x2

2

)

(6)�P ≡ �
�u3

�r
= −2�

umax

R

based on (4) and not (6) can be promptly extended to 3D 
data sets. This will be a follow-up of the present work, that 
is expected to increase the accuracy of the WSS estimates 
in real geometries with significant out-of-plane velocity 
components.

Boundary Extraction and Fitting

As stated in “US Imaging and Vector Doppler Velocity Esti-
mation” Sect., our velocity measures provide two in-plane 
velocity components that we denote as lateral ( u1 ) and axial 
( u3 ). Data are expressed as point-wise measures of velocity 
in the image pixels, with an 8.3-�m resolution. This is the 
distance between two pixels, i.e., two different measures of 
velocity. We will call this distance h.

Assuming no-slip conditions on the boundary, the vessel 
wall was detected by the zero-velocity pixels. The identifi-
cation of these points provides a pixelized boundary with 
artificial discontinuities that prevent the calculation of an 
accurate continuous normal vector and ultimately a straight-
forward use of Eq. (4). We need, therefore, to use the points 
to fit a regular curve to describe the boundary. The classical 
LOESS (LOcally Estimated Scatterplot Smoothing) method 
implements a local regression using weighted linear least 
squares [57]. In particular, here we used the MATLAB built-
in function smooth with the option Loess [51]. We use poly-
nomials of order 2, with a 30%-data span (i.e., 30% of the 
total data set was used to fit each local polynomial).

Figure 4 shows the boundary obtained for the profile of 
the stenotic vessel from the US imaging (grey dots), the 
interpolated smooth-Loess functions for the bottom- and 

Fig. 4   In-plane boundary detection and Smooth-Loess MATLAB 
interpolation on the profile of the stenotic vesel considered in the pre-
sent study. Here, n represents the outward normal unit vector to the 
vessel wall

1  We opt for the notation x
1
 , x

2
 , x

3
 for x, y and z respectively, for the 

sake of easiness of writing/reading the mathematical equations.
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top-vessel walls (solid black lines), and corresponding 
normal vectors (computed by differentiation) at different 
locations (red arrows). Differences between discrete data 
and interpolated function are almost imperceptible; none-
theless, the latter provides a continuous and smooth first 
derivative.

Data Fitting and Numerical Differentiation

To compute the deviatoric stress tensor � one needs to cal-
culate the velocity gradient ∇u with components �ui∕�xj , 
i, j = 1, 2, 3.

However, US imaging provides only in-plane velocities. 
As mentioned earlier, the image plane is spanned by the 
(x1, x3) coordinates, so only u1 and u3 are available. Corre-
spondingly, the available velocity gradient reduces to the 
2 × 2 tensor with entries �ui∕�xj with i, j = 1, 3.

A possible approach for the computation of the deriva-
tives consists of performing a polynomial interpolation of 
the velocity data close to the detected boundary and then 
differentiating the polynomial on the boundary. In the case 
of the Poiseuille approach, assuming that the radial direc-
tion coincides with the lateral one x1 , one can compute the 
quadratic polynomial interpolating the three velocity data 
close to the boundary and then differentiate the polynomial 
on the point closest to the boundary. Alternatively, a cubic 
polynomial can be computed, including the point detected on 
the boundary in the interpolation, where the velocity data, 
by definition, are null.

The derivative required is trivially the derivative of the 
quadratic or the cubic function in the two cases, respectively. 
Notwithstanding its simplicity, this approach guarantees 
accurate results for a small spatial resolution h when the 
velocity data are accurate. In the presence of noise, the dif-
ferentiation increments the impact of the noise with a factor 
h−1 (h is of the order of a few microns). See the discussion 
in Appendix, inequality (12).

It is worth stressing that the binary discrete definition of 
the boundary causes some loss of information at the loca-
tion where derivatives need to be calculated. For the sake 
of exemplification, Fig. 5 shows two velocity profiles for u3 
from the phantom vessel described in “US Experimental 
Setup” Sect., at 2.0 and 6.5 mm along the x3-axis, respec-
tively. The velocity profiles are embedded in a longer seg-
ment spanning the in-plane data measured by the ultrasound. 
The boundary of the vessel is represented by the end points 
of the portion of the segment where the data are non-zero 
(the so-called “support”). The black circles represent the 
data. The inaccuracies of the identification of the bound-
ary exactly where the derivative needs to be computed are 
apparent. This adds additional perturbation to the derivative 
evaluation.

Pseudo-Spectral Radial Derivatives The pseudo-spectral 
approach we pursue here consists of computing a regular 
function from the available data as a Fourier sum.

A regular function f(x) defined on a bounded interval 
[a, b] can be represented by a sine Fourier series (see e.g. 

[58]) f (x) =
∞∑
j=1

cj�j(x) with

If we replace the series with its truncation to the term N, we 
obtain an approximation of f with

These formulas stem from regarding f(x) in [a, b] as the por-
tion of a periodic function on the real axis, odd on a period 
(that leads to a sine-only series).

This approximation is optimal, in the sense that in the 
subspace of sinusoidal functions with maximum frequency 
N, it is the best approximation of f (i.e., the error f − fN is 
orthogonal to fN ). As recalled in the Appendix, the decay of 
the approximation error, particularly for regular functions, is 
fast with N (larger is N and smaller is the error). For regular 
functions, high accuracy is also obtained when we approxi-
mate f ′ with f ′

N
 (see the Appendix).

However, in practice, this approach (called “spectral 
derivative”) is not possible as the integrals for the coeffi-
cients cj requires the knowledge of f(x) while we have only 
the measures of f in the pixels. For this reason, we resort to 
a discrete version of the Fourier approximation where the 

(7)

�j(x) = sin

(
j�

b − a
(x − a)

)
,

cj =
∫ b

a
f�jdx

∫ b

a
�2
j
dx

=
2

b − a �
b

a

f�jdx.

(8)fN(x) ≡
N∑

j=1

cj�j(x).

Fig. 5   Axial velocity profiles ( u
3
 ) obtained from ultrasound imag-

ing (circle makers) and their representation using a truncated Fou-
rier Sine Series at five terms (red curve, N = 5 ): a at position 
x
3
= 2.0mm , b at position x

3
= 6.5mm
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integrals are replaced by quadrature formulas (such as the 
trapezoidal rule) having the available data as quadrature 
points. In this way,

where xq are the points where the measures are available, and 
wq are the quadrature weights. This well-known approach 
goes under the name of Discrete Fourier Transform (DFT) 
[58].

Once the velocity profiles u1 and u3 are DFT approxi-
mated as a function of x1 for each value of the axial coor-
dinate x3 , we can estimate their derivatives along x1 by the 
analytical differentiation:

where ĉj are the Fourier coefficients computed by the DFT. 
As we recall in the Appendix, the accuracy of the derivative 
of the approximant computed with this approach (“pseudo-
spectral differentiation”) is very high for regular functions.

In practice, we can use this approach for the velocity 
data in two ways, 

1.	 on the entire data set retrieved in-plane in the rectangular 
domain (extended approach), including the zero-velocity 
points that do not correspond to physical points in the 
domain of interest (i.e., externally to the support); in this 
case, a and b are the limits of the plane of the data;

2.	 on the support, i.e., the portion where the profile is not 
null (restricted approach), closed by the two endpoints, 
i.e., the first pixels where the velocity is zero; in this 
case, a and b are those endpoints.

The restricted approach works on a smaller data set. The 
sine Fourier expansion relies on the periodic odd extension 
of this function with better regularity properties to avoid 
the Gibbs phenomenon [59]. Therefore, we opted for this 
latter approach.

It is reasonable to assume that the measured velocity 
is composed of a signal and a noise (see the Appendix). 
Assuming that the noise � is purely random, in the absence 
of systematic errors in the measurement devices, the spec-
trum of � has a minimal contribution at the low frequen-
cies, so the Fourier coefficients of the noise are generally 
small for low values of j. Based on these considerations, 
not only the Fourier truncation is an optimal approxima-
tion, but with an appropriate selection of the truncation 
index N, it may provide a low-pass approximation quite 
insensitive to the noise. These arguments will be tested in 
our Results section.

(9)∫
b

a

f�jdx ≈
∑

f (xq)�j(xq)wq

(10)
𝜕ui

𝜕x1
≈

N∑

j=1

ĉj(ui)
𝜕𝜓j

𝜕x1
, i = 1, 3

Axial derivatives

Approximating u1 and u3 along the axial coordinate x3 is 
not trivial because the boundary of the vessel is not aligned 
along the axial coordinate (unless we are in a circular cylin-
drical domain). For this reason, an accurate pseudospectral 
fitting along the axial direction is problematic. Assuming 
that the axial derivatives have a minor impact on the WSS 
(we will discuss this point later), we opted for a finite dif-
ference approach after a suitable regularization of the data 
for the sake of denoising. A moving average smoothing was 
applied along x3 with a 3%-data span, i.e., each smoothed 
value corresponds to the average of neighbor data points, 
and the length of the averaging interval is 3% of the total 
data set.

A classical finite difference approach reads

and it was applied by selecting pair of points (x̄1, x̄3) and 
(x̄1, x̄3 + h) close to the boundary. Since the boundary is, in 
general, a nontrivial function of x3 , the choice of these points 
follows the profile in a way such that they are always inside 
the vessel, so to rely on the available measures.

CFD solver

For the computation of the fluid in the domains of interest to 
provide a reference solution for the WSS, we wrote a Python 
code based on the Finite Element Library Fenics [60]. The 
solver uses inf-sup compatible Taylor-Hood finite elements 
P2 − P1 and a classical Newton linearization for the numer-
ical treatment of the nonlinear term. Simulations are run 
under the steady regime with inflow boundary conditions 
specifying a flow rate through the prescription of a parabolic 
profile, while traction-free conditions are prescribed at the 
outflow. The WSS is computed by projecting the derivatives 
on a piecewise constant discontinuous Galerkin space, as 
described in Ref. [60].

The code is available upon request to the authors.

Results

To test our method in practice, we consider two geometries, 

1.	 a cylindrical circular domain (Poiseuille-Hagen flow);
2.	 the stenotic geometry described in “Materials and Meth-

ods” Sect.—see Fig. 1.

In both cases, we assume a steady flow. For the comparative 
purpose of the present work, steady flow is an excellent test. 
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For clinical purposes, we will consider unsteady conditions 
in the follow-up of the present work. In the former case, we 
validate our results against (a) the analytical solution (6) 
and (b) the Poiseuille method (using a quadratic interpola-
tion is exact in this case). As data to construct the WSS 
pseudo-spectral approximation, we used both the analytical 
velocity and the velocity obtained by CFD results, which 
we may consider as data added by numerical errors playing 
the role of noise.

In the stenotic case, the results of our method are com-
pared against (a) the solution computed by the CFD simula-
tions; (b) the Poiseuille method. The CFD-computed WSS is 
considered in this case as the ground truth in the absence of 
analytical solutions. We performed two tests: in the first one, 
we used the CFD velocity as the source of data to be used for 
both the Poiseuille and the pseudo-spectral WSS estimation. 
In the second case, we used the real measures obtained by 
the US, as described in “Materials and Methods” Sect. In 
this case, we also compared our results against the method 
proposed in [35] based on a FD approximation of the radial 
derivative of the tangential velocity.

In order to reduce the numerical errors amplified by the 
differentiation, in this stenotic case, results obtained by the 
Poiseuille method were post-processed with a 25-point mov-
ing average smoothing.

Poiseuille Flow

We consider the Poiseuille flow in a pipe with radius 
R = 1.632mm (a value similar to the one for the stenotic case 
presented afterward), water viscosity � = 0.01g∕(cm ⋅ s) , 
and unit velocity at the center of the pipe of umax = 1cm∕s . 
Hence, Eq. (6) gives the constant benchmark value of 
WSS= −0.0123Pa along the axis of the pipe.

Computational Fluid Dynamics

The Poiseuille flow case with a known analytical solution is 
used to validate our CFD solver. The simulation error was 
evaluated using two metrics on the WSS estimation: (1) the 
L2-norm, and (2) the average difference (aka L1-norm).

The cylindrical domain (Fig. 6a) was represented by an 
increasing number of linear tetrahedral elements, and after 
imposing the Poiseuille flow boundary conditions, a para-
bolic flow distribution was obtained at each time (Fig. 6b). 
The accuracy of the simulation was evaluated on the WSS 
estimation, and in particular, the convergence towards the 
analytical solution was studied with respect to the maximum 
mesh edge length H (Fig. 6c and Table 1). In this particular 
case, the discretization error for the finite element approxi-
mation of the Navier–Stokes equations is null because the 
solution belongs to the same finite dimensional space of the 
numerical approximation (quadratic for the velocity and 

linear for the pressure). The source of error comes from the 
geometrical approximation of the cylinder with a mesh of 
linear tetrahedra. The error on the velocity and the pressure 
is quadratic with the mesh size [61]. The expected error for 
the derivative of the velocity is, therefore, linear in L2 with 
the mesh size H (see [58]). This linear behavior is confirmed 
in the Table 1, see also Fig. 6c. It is important to stress that 
this is not a mesh-independence study: here we are just prob-
ing the consistency between the convergence theory and our 
numerical results, so we are comparing the solutions with 
different meshes with the exact solution. A mesh-independ-
ence study is carried out later.

WSS Estimation

From the CFD numerical solution, it is possible to extract 
velocity values in a rectangular regular grid in a setting anal-
ogous to the one available from ultrasound imaging. Then, 

Fig. 6   Simulation of Poisseuille flow using CFD: a Mesh; b Numeri-
cal solution of the velocity field, c CFD convergence computation, 
where, the simulation error was evaluated using two metrics on the 
WSS estimation: (1) the L2-norm �L2 , and (2) the average difference 
�L1

Table 1   Converge study based 
on two WSS estimation metrics: 
(1) the L2-norm �

L2
 , and (2) the 

average difference �
L1

H [mm] �
L2

�
L1

0.200 0.01104 0.00399
0.110 0.00680 0.00189
0.063 0.00347 0.00075
0.032 0.00203 0.00036
0.029 0.00170 0.00029
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WSS can be estimated using Poiseuille-based methods and 
PSM, pretending that the velocity data are measured. Similar 
results are obtained when we use the analytical solution in 
place of CFD results directly to generate the data, show-
ing that the numerical errors on the velocity field induced 
by the approximated geometry are very small in this case. 
Regardless of the source of the velocity data, either CFD 
results, or analytical solution, an additional source of error is 
introduced if the sample-velocity grid points do not coincide 
with the wall position. Hence, for the sake of comparison, 
in this idealized case, the grid spacing corresponds to the 
ultrasound resolution, but the position of the wall is explic-
itly enforced.

In particular, using the H = 0.029-mesh, results trun-
cating the Fourier Series at 5, 10 and 40 harmonics (N) 
are shown in Table 2 and in a red solid line in Fig. 7a–c, 
respectively. The outputs are compared against the analyti-
cal solution (blue line), CFD computations (black mark-
ers), and the Poiseuille method (grey line). As expected, 
CFD and the Poiseuille method overlapped to the analytical 
solution and the PSM approaches the exact answer as the N 
increases. The errors in the average WSS estimation shown 
in Fig. 7a–c are 6.70e− 2 ( N = 5 ), 2.54e− 2 ( N = 10 ) and 
1.06e− 2 ( N = 40 ), respectively. At N = 40 the error of the 
WSS is about two orders of magnitude larger than the result 
obtained from the CFD simulation (2.9e− 4, see Table 1). 
This justifies using CFD as the ground truth in the absence 
of analytical solutions.

Remark  The function approximated, in this case, is quad-
ratic like the case considered in the Appendix with pseudo-
spectral approximation. Here, however, the number of points 
used for the quadrature of the Fourier coefficients is limited 
by the resolution of the data. This causes some degradation 
of the accuracy for very high values of N ( > 100 ), as the 
frequencies considered oscillate very rapidly with respect 
to the grid of available data.

Stenotic Channel

The previous case clearly represents an academic test, as, in 
general, coronaries are not perfectly cylindrical, particularly 
in the presence of plaques. In this second test, we consider 
the stenotic geometry described in “US Experimental Setup” 
Sect., Fig. 1.

To investigate in detail the role of (1) the geometry in the 
WSS estimation, and (2) the role of measurement errors, 
we present two tests, one based on the CFD results, and the 
other based on US Doppler measures.

A direct comparison of velocity data retrieved from CFD 
and from measures pinpoints the presence of discrepancies 
as the numerical velocity reaches 10 cm/s while the measures 
yield a maximum velocity of 8 cm/s . For this reason, we 
separate the analysis of the results in the two cases.

For the sake of a qualitative assessment, we notice how-
ever that in any case: (1) the maximum WSS occurs at the 
narrowest section of the vessel, (2) the stenotic wall pre-
sents higher WSS than the straight wall, (3) after the sten-
otic section, there is a sudden drop in the WSS on the top 
(stenotic) wall and a more gradual decrease on the bottom 
(non-stenotic) wall.

More quantitatively, the WSS peak values are in the order 
of 0.35 and 0.65 Pa for the bottom and top walls, respectively

WSS Estimation Based on CFD Velocity

We solved the Navier–Stokes equations in the stenotic geom-
etry with our CFD solver, using the boundary conditions 

Fig. 7   Poiseuille flow WSS 
estimation when R = 1.632mm , 
� = 0.01g∕(cm ⋅ s) , and 
umax = 1cm∕s . Three differ-
ent approaches are compared 
against the analytical solu-
tion, WSS= −0.0123 Pa , i.e., 
CFD, Poiseuille method, and 
PSM. The latter is evaluated 
using an increasing number of 
harmonics: a N = 5 , b N = 10 , 
c N = 40

Table 2   PSM: convergence ( u
3
 is the exact solution,u

3,N
 its pseudo-

spectral approximation, and N is the number of harmonics used in the 
truncated Fourier Series)

N 5 10 20 40

‖‖u3 − u
3,N

‖‖L2 0.0016 3.50E-04 4.51E-05 7.27E-06
‖‖‖
�u

3

�x
3

−
�u

3,N

�x
3

‖‖‖L2
0.0344 0.0162 0.0058 0.0021
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that reproduce the measurement settings. More details are 
reported in [42]. Precisely, the velocity profiles at the inflow 
along two orthogonal diameters were used to perform a 
bivariate spline interpolation providing velocity data at the 
inlet section. Null velocity conditions were prescribed at the 
walls, while traction-free open boundary conditions were 
prescribed at the outflow, i.e., pn − �

(
∇u + ∇T

u

)
⋅ n = 0. 

The CFD quantities presented in this manuscript correspond 
to simulations obtained using a one-million-element mesh. 
The convergence tests are summarized in Table 3, wherein 

the integral of the Wall Shear Stress (WSS) is computed 
over both the entire geometry and the critical stenotic sec-
tion. The results show that, even if we used the 1 M-element 
mesh, we would have obtained the same conclusion with a 
mesh with 0.5M elements.

The velocity obtained in this way was used to generate 
velocity data in the same plane used for US measures and 
with the same resolution. The data were eventually used to 
estimate the WSS. The latter was compared with the WSS 
computed by the CFD solver.

Table 3   Mesh-independence test

Number of elements (x1000) ∬
S
WSS dS Relative error Domain of integration

1000 0.799792
500 0.799794 2.50065E-06
320 0.799799 8.75228E-06
65 0.799793 1.25033E-06
13 0.799801 1.12529E-05
1000 0.698901

500 0.698902 1.10868E-06

320 0.698902 8.52833E-07

65 0.698896 8.27248E-06

13 0.698890 1.62891E-05

Number of elements (x1000) ‖∬
V
u dV‖ Relative error Domain of integration

1000 0.398938
500 0.398571 9.20E-04
320 0.397665 3.19E-03
65 0.393270 1.42E-02

13 0.378110 5.22E-02

Fig. 8   WSS obtained by 
the Poiseuille and the PSM 
(N=5) using CFD data and 
benchmarked to CFD results: 
a Bottom (non-stenotic) wall, 
b Top (stenotic) wall, c–d 
velocity in the z-direction (the 
main stream runs from right 
to left). The average error eL1 
is computed by summing the 
absolute differences between 
the estimated wall shear stress 
(WSS) values obtained from 
either the Poiseuille method 
or PSM and the WSS values 
obtained from computational 
fluid dynamics (CFD), divided 
by the total number of available 
data points
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Figures 8 and 9 show WSS values obtained from the 
PSM using 5 and 15 harmonics, respectively. Each figure 
includes 4 plots: (a–b) WSS obtained from CFD (black 
markers), from velocity using the Poiseuille (grey line) 
and the PSM (red line); (c–d) top view of the CFD velocity 
z-component, which helps to understand qualitatively the 
WSS computations; the stenosis is located at 7 mm. The 
figures present the result along the top and the bottom wall 
of the geometry displayed in the panels (c–d).

The figures show, on one hand, that the Poiseuille 
method accurately predicts the WSS when CFD velocity 
is used as input. In this case, the neglected terms (axial 
velocity, wall shape, and velocity variation in the axial 

direction) do not play a significant role. On the other hand, 
as expected, the PSM underestimates the WSS computa-
tion when N = 5 . The difference vanishes as the number 
of harmonics increases (Fig. 9). The results of the two 
numerical techniques at this point are the same.

WSS estimation based on US measures

Figures 10, 11, 12, and 13 present the results of the real 
case when the velocity is obtained from US measures. 
These figures differ in the number of harmonic selected 
for the PSM, N = 5, 8, 10, and 12 , respectively. The impact 
of measurement errors is apparent, particularly for the 

Fig. 9   WSS obtained by 
the Poiseuille and the PSM 
(N=15) using CFD data and 
benchmarked to CFD results: a 
Bottom wall, b Top wall, c–d 
velocity in the z-direction (the 
main stream runs from right 
to left) The average error eL1 
is computed by summing the 
absolute differences between 
the estimated wall shear stress 
(WSS) values obtained from 
either the Poiseuille method 
or PSM and the WSS values 
obtained from computational 
fluid dynamics (CFD), divided 
by the total number of available 
data points

Fig. 10   WSS obtained by the 
Poiseuille and the PSM ( N = 5 ) 
using ultrasound data and 
benchmarked to CFD results: a 
Bottom wall, b Top wall, c–d 
velocity in the z-direction (the 
main stream runs from right to 
left)
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Poiseuille-based methods. On the straight wall (bottom), 
the peak WSS estimated by the Poiseuille is under-pre-
dicted (0.15 Pa) (dissipation error), and the position is 
shifted downstream with respect to the narrowest section 
(dispersion error). On the stenotic wall, the WSS estima-
tion does not provide any clear trend, and values oscillate 
erratically with poor connection to the geometry of the 
studied case.

In the PSM, when five harmonics are used (Figs. 10a–b), 
the outcome is consistent in general with results based on 
CFD velocity data (Figs. 8a–b), and the qualitative phenom-
enology is met. More specifically: (1) the maximum WSS is 
aligned to the narrowest section of the vessel; (2) the stenotic 
wall presents higher WSS than the straight wall; (3) after the 
stenotic section, there is a sudden drop in the WSS on the 
top wall and a more gradual decrease on the bottom wall.

The WSS peak values are in the order of 0.25 and 0.35 
Pa for the straight and stenotic walls, respectively, which 
undershoots CFD estimations (0.35 and 0.65, respectively). 
Nonetheless, undershooting was anticipated for two reasons. 
First, the velocity magnitudes are smaller in the ultrasound 
data than in the CFD simulation. Second, the truncation of 
a Fourier series is expected to introduce dissipation errors, 
as already happened when five harmonics were used in the 
CFD case, when the maximum WSS were 0.30 and 0.45 Pa, 
respectively.

Unlike the case when CFD velocity data is input, increas-
ing the number of harmonics makes minor improvements in 
terms of accuracy (Figs. 12 and 13a, b). The lack of regular-
ity in the data and the noise prevent the convergence.

Visual inspection of the velocity profiles obtained with 
the DFT helps identify a good value of N for the truncation. 

Fig. 11   WSS obtained by the 
Poiseuille and the PSM ( N = 8 ) 
using ultrasound data and 
benchmarked to CFD results: a 
Bottom wall, b Top wall, c–d 
velocity in the z-direction (the 
main stream runs from right 
to left). FD stands for Finite 
Difference and refers to the 
methods in Ref. [35], using both 
the strategy of averaging dif-
ferent measures or tagging the 
maximum velocity

Fig. 12   WSS obtained by the 
Poiseuille and the PSM (N=10) 
using ultrasound data and 
benchmarked to CFD results: a 
Bottom wall, b Top wall, c–d 
velocity in the z-direction (the 
main stream runs from right to 
left)
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If unrealistic oscillations appear, fewer harmonics should be 
recommended. Selecting the proper number of harmonics is 
a trade-off between underestimating the WSS and introduc-
ing artificial oscillations at data discontinuities.

For the particular case under study, the comparison 
with CFD results reveals that adopting N = 8 minimized 
the differences between the WSS benchmark values and 
those obtained by the PSM. Tables 4 and 5 illustrate this 
comparison using two metrics, respectively: (1) the average 
error eL12, and (2) the L2-Norm Error eL2.3 When N = 8 , 
the average error obtained by the Poiseuille-based methods 
is 9 times larger than the PSM error on the bottom wall, 
and 3 times larger on the top wall. PSM features an error 
of 0.14Pa on average from the CFD benchmark on the bot-
tom wall, and 0.30Pa on the top wall. The discrepancies are 
accentuated after the narrowest section of the vessel. As we 
discuss more in detail in the next Section, this discrepancy 
may potentially stem from the experimental setup. The trans-
ducer, positioned on the left side, measures flow from right 
to left, resulting in signal decay as distance increases from 
the transducer. The interference from the top wall may exac-
erbate this decay, particularly noticeable after the narrowest 
section, possibly leading to velocity underestimation and 
consequently underestimated WSS. This hypothesis requires 
further investigation and verification.

For the sake of comparison, Figure 11 includes two addi-
tional methods for evaluating WSS using Finite Differences 
(FD) to estimate the shear rate ( �u3∕�r ). In one approach 
(green), the maximum shear rate, evaluated in the neighbor-
hood of each wall, is multiplied by the kinematic viscosity � 
[62]. In the other approach (blue), an average of the neigh-
borhood shear rate is utilized. Specifically, in this case, the 
average is calculated from the 6 data points closest to each 

Fig. 13   WSS obtained by the 
Poiseuille and the PSM (N=12) 
using ultrasound data and 
benchmarked to CFD results: a 
Bottom wall, b Top wall, c–d 
velocity in the z-direction (the 
main stream runs from right to 
left)

Table 4   Evaluation of method accuracy using L1-norm Error ( e
L1

)

N Bottom wall Top wall

Poiseuille method PSM Poiseuille method PSM

5 1.3377 0.1090 1.0861 0.3866
8 0.1409 0.3002
10 0.4458 0.2657
12 0.7740 0.3156
15 1.3790 0.6754

Table 5   Evaluation of method accuracy using L2-norm error ( e
L2

)

N Bottom wall Top wall

Poiseuille method PSM Poiseuille method PSM

5 0.0221 0.0022 0.0139 0.0051
8 0.0026 0.0039
10 0.0079 0.0033
12 0.0136 0.0042
15 0.0241 0.0082

2  The average error e
L1

 is computed by summing the absolute dif-
ferences between the estimated Wall Shear Stress (WSS) values 
obtained from either the Poiseuille-based methods or PSM and the 
WSS values obtained from computational fluid dynamics (CFD), 
divided by the total number of available data points.
3  The L2-Norm Error e

L2
 is computed by taking the square root of 

the sum of squared differences between the estimated WSS values 
obtained from either the Poiseuille method or PSM and the WSS val- ues obtained from CFD, divided by the total number of available data 

points.

Footnote 3 (continued)
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wall [35]. Similar results are obtained when the computa-
tions employ the projected velocity onto the wall instead of 
the axial velocity u3 (dashed lines of the same correspond-
ing colors). In this particular case, the choice between using 
the axial velocity u3 or the projected velocity onto the wall 
doesn’t seem to yield a noticeable difference in results. This 
lack of distinction likely arises due to the experimental 
setup, where the observation line passes through the axis 
of the vessel. Additionally, it’s notable that results obtained 
using the maximum shear rate method are comparable to 
those obtained by the Poiseuille method, as both methods 
differ only in their approach to evaluate the partial deriva-
tive �u3

�r
 . The Poiseuille method appears smoother because 

an average kernel was applied before plotting the results. 
However, when using average values, a smoothing effect 
occurs, which filters noise but also introduces error, resulting 
in reduced estimations for the WSS.

Effect of Dropping the Lateral Component of Velocity

As the vessel geometry deviates from a perfect cylinder, 
lateral components of velocity and variation of the velocity 
in the axial direction appear. Although the axial velocity 
and its variation in the lateral direction dominate the flow, in 
principle, the remaining components should not be dropped. 
In this Section, we present the effect of dropping those sec-
ondary components in practice.

Figure 14 compares the effect of including (red line) or 
dropping (gray line) the �u1∕�x1 , �u1∕�x3 , �u3∕�x3 in the 
PSM when CFD data is used as input and N = 15 . Results 
are almost identical; hence, for this particular case, one can 
conclude that �u3∕�x1 dominates the computation of the 
WSS, and the remaining terms can be neglected, as done by 
the Poiseuille method.

Analogously, Fig. 15 presents the same comparison when 
ultrasound data is input and N = 5 . In this case, some devia-
tion is observed in the stenotic wall (top wall), precisely at 
the locations where the normal vector deviates from the unit 

vector e1 . Nonetheless, main trends, maximum and minimum 
values are not significantly affected. We conclude that, in our 
test, setting WSS≈ ��u3∕�x1 is a reliable approximation. We 
discuss this point further later on.

Discussion

Analytical and Noise‑Free Data

When the data are retrieved from either the analytical solu-
tion or accurate CFD simulations, the Poiseuille-based 
approach, based on polynomial interpolation, works prop-
erly. Results are accurate from both the mathematical and 
the clinical points of view.

In the cases considered here, dropping the axial deriva-
tives of the radial and axial components and the axial deriva-
tive of the radial component did not significantly affect the 
results. This was obviously expected in the Poiseuille flow 
text case, where the dropped components are null. In the 
stenotic case, this result is not trivial, yet quite evident.

With accurate data, the pseudo-spectral approach with an 
appropriate number of harmonics matches the accuracy of 
the polynomial interpolation.

The results obtained by including the axial component 
and derivatives do not deviate significantly from the cases 
when these components are dropped. However, it is worth 
emphasizing that these conclusions correspond only to one 
particular case when the axis of the (stenotic) pipe was rec-
tilinear. Hence, they should not be generalized, and a sys-
tematic study over a wide range of stenotic geometries is 
needed for that purpose.

Real Data

When we apply the different methods to a real data set, the 
performances are very different. Poiseuille-based methods 

Fig. 14   Effect of dropping the lateral velocity component and axial 
derivatives on WSS computation using the pseudo spectral method 
truncated at 15 harmonics based on CFD-data: a Bottom wall, b Top 
wall

Fig. 15   Effect of dropping the lateral velocity component and axial 
derivatives on WSS computation using the pseudo spectral method 
truncated at five harmonics based on ultrasound-data: a Bottom wall, 
b Top wall
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suffer from the noise in the measures, to the point that the 
WSS estimation looses reliability. This is particularly true 
for the stenotic wall (top wall presented in Figs. 10, 11, 12, 
and 13). Also the methods proposed in [35], being based on 
the Poiseuille assumption and a FD approximation of the 
derivatives (see Appendix), suffer from noise in the data, 
even if the average of the evaluations potentially mitigate 
this aspect.

On the contrary, the PSM provides results that reproduce 
the pattern of the CFD results. The impact of the noise in 
the estimation is apparent when we include more terms in 
the truncated Fourier series. The selection of the value N of 
the truncation should realize a trade-off between the accu-
racy and the denoising. In particular, the comparison of the 
results for N = 5, 8, 10, 12, 15 shows that 

1.	 the values N = 5 and 8 give good results on the straight 
wall and an underestimation of the WSS on the stenotic 
wall;

2.	 increasing the terms in the series improves the estima-
tion on the stenotic side but degrades it on the straight 
wall.

The WSS is lower on the straight side, so for a uniformly 
distributed noise, we argue that the Signal-to-Noise Ratio 
(SNR) is lower on this side. Correspondingly, the noise 
shows up for a lower number of harmonics than for the sten-
otic side of the vessel.

This suggests that the choice of N may be related to the 
position on the wall in correspondence with an estimation 
of the SNR. We may notice, however, that the pattern of 
the WSS is correctly captured on the stenotic side also for 
N = 8 , with a good localization of the WSS peak. We con-
clude that N = 8 is a good choice for both sides, if we focus 
only on the stenotic side N = 12 performs the best.

To understand better the discrepancies between the WSS 
estimations and the CFD results, one needs to consider the 
nature of the input data. Close-to-the-wall, data may be inac-
curate, and small measurement errors can drastically affect 
the derivative estimation, particularly the one based on the 
polynomial interpolation. Due to the segmentation in which 
the pixels containing the wall were set to zero, ultrasound-
measured velocity values near the wall may not approach 
zero smoothly, as one would expect, further contributing to 
inaccuracies in the estimation of WSS. Along the same line, 

Fig. 16   CFD velocity profiles 
(blue) vs. US Data for different 
values of the axial coordinate: a 
x
3
= 3.53mm ; b x

3
= 7.86mm ; 

c x
3
= 8.04mm ; d x

3
= 8.76mm

.
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the PSM displays a systematic overestimation of the WSS 
around 8 mm on the stenotic wall.

In Fig. 16, we report the CFD velocity profiles compared 
with the US data. Here the stenotic side is on the right. The 
discrepancy between the wall localization in the CFD and 
the data on the stenotic side is apparent, as well as a sud-
den variation of velocity in the axial direction in some data 
around the boundary. For low values of x3 (Fig. 16a), the 
difference is much smaller, than for x3 around 8 mm. We 
argue that this is the reason for the accuracy degradation in 
this region. However, overall the pseudo-spectral approach 
reveals to be a robust tool, able to filter the noise of the US 
data and obtain a clinically accurate estimation of the WSS.

Use of Real Geometries

The technique proposed here can be promptly extended to 
the case of 3D, extending the computation of the shear-
rate tensor to the out-of-plane components with the same 
approach used for the axial velocity. However, currently we 
have only 2D data and this potentially undermines the accu-
racy in real 3D geometries, in the presence of significant 
out-of-plane velocity components. It is worth stressing that 
this is a limitation of the available data, not of the methodol-
ogy per se. In the follow-up, we will consider 3D US data 
for the WSS estimation using the PSM.

Conclusions and Perspectives

In this paper, a new approach for quantifying wall shear 
stress (WSS) in coronary arteries using Doppler US imag-
ing is presented. WSS is a critical parameter for predicting 
potential adverse events in cardiovascular and coronary dis-
eases. A reliable tool based on US data for the estimation of 
the WSS is, therefore, an important contribution to avoiding 
patient-specific CFD.

Our method aims to improve the accuracy of WSS estima-
tion by considering two factors. First, it takes into account 
the directional variation of the two available velocity com-
ponents and vessel wall shape. Secondly, it copes with the 
presence of measurement errors by using the Discrete Fou-
rier Transform (DFT) to interpolate the velocity data. The 
conceptual novelty of our proposal relies mainly on using a 
Fourier-based differentiation as opposed to classical poly-
nomial interpolation techniques that lead to classical FD 
schemes (see Appendix). The advantage of the pseudo-
spectral method is that it relies on a harmonic analysis of the 
data, so it naturally differentiates low and high-frequencies. 
Since the noise in the data can be regarded as a high-fre-
quency perturbation, truncating the Fourier series introduces 
naturally a de-noising filtering. To the best of our knowl-
edge, this approach was never used in the existing literature.

The approach was tested in two cases: a pipe with straight 
walls (Poisseuille flow) and a stenotic case. The results 
were compared against analytical solutions, Computational 
Fluid Dynamics (CFD) results, and the Poiseuille method, a 
methodology used in the literature that depends only on the 
radial velocity of the closest three to four pixels to the vessel 
wall. CFD-based WSS results were used as a benchmark. 
Poiseuille-based methods are accurate under idealized con-
ditions but lack reliability when using ultrasound imaging 
data. In contrast, the PSM is reliable also when using real 
data, with proper calibration of the Fourier approximation. 
In principle, the new method converges to the actual solu-
tion as the number of harmonics increases. However, when 
using ultrasound imaging data, increasing the number of 
harmonics introduces noise into the estimation, reducing the 
overall accuracy.

With appropriate calibration of the Fourier series trun-
cation, the WSS pattern was reconstructed with very good 
accuracy for what concerns the relevant information from 
the clinical point of view. Nevertheless, PSM has clearly its 
own limitations. It is not exact, since the computation of the 
Fourier coefficients necessarily relies on numerical quadra-
ture. Also, the computations of the derivatives of the axial 
velocity suffers from the approximations induced by the data 
collection in the domain and not exactly on the boundary of 
the coronary.

Upcoming research will involve extensive testing on more 
complex and even patient-specific geometries [42], to assess 
precisely the role of the axial component and derivatives in 
the final WSS estimation. Should 3D data - including out-of-
plane components - be available, we will extend the approxi-
mation to the inclusion of the circumferential components of 
the velocity. Another important topic will be the automatic 
selection of the number N of harmonics to include, possibly 
as a space-dependent function of the SNR. One possible 
approach is to use artificial neural networks that have been 
trained on CFD results from different stenotic geometries, 
which could provide the user with an educated selection of 
the parameter N.

Appendix A Recap of Approximation 
and Differentiation Errors

In this Section, we recall some basic concepts of numerical 
analysis for the interpolation of functions and for the cor-
responding differentiation.

Polynomial Interpolation

Let us recall some basic results of polynomial interpolation 
(see e.g. [58]). Let us denote by L2([a, b]) the space of 
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functions f such that ∫ b

a
f 2(x)dx < ∞ (in the Lebesgue sense). 

The corresponding norm reads ‖f‖L2 ≡
�∫ b

a
f 2(x)dx

�1∕2

.
Let us denote by Πk

f
(x) the interpolating polynomial of the 

values of f on equispaced nodes with step h and degree k. We 
assume that f is an L2 function together with its first s (dis-
tributional) derivatives. Then, we can prove that

Here, f (s) denotes the derivative of order s of f. Also, here 
and in the sequel C will denote a constant (not necessarily 
the same in each occurrence) independent of the discretiza-
tion parameters (h and k). In the case of the Poiseuille for-
mula, the interpolation currently adopted refers to either a 
degree k = 2 on three nodes or k = 3 on four nodes (includ-
ing the point on the wall where the velocity is 0).

Notice that if the values of f used for the interpolation 
are affected by noise, i.e. the interpolation relies on values 
f̃i = fi + �i where �i is a measurement error, it is possible to 
prove that

where Λk (known as Lebesgue constant) scales with k like 
2k+1∕(ek log(k)) (e is the Neper number).

Combining these results, we have that the approximation 
error in the presence of noise reads

where I is the length of the interpolation interval.
We are specifically interested in assessing the impact of 

the noise on the derivative. Notice that the interpolating 
polynomial can be written in the Lagrange form:

where j ranges on the interpolation nodes and

We have therefore

Specifically,

‖f − Πk
f
‖L2 ≤ Chk+1‖f (s)‖L2 , ‖f � − p�

k
‖L2 ≤ Chk‖f (s)‖L2 .

max
x

|Πk
f
− Πk

f̃
| ≤ Λk max

i
|�i|

‖f − Πk

f̃
‖L2 ≤‖f − Πk

f
‖L2 + ‖Πk

f
− Πk

f̃
‖L2

≤Chk+1‖f (s)‖ + Λk

√
Imax

i
��i�,

Πk
f
=
∑

j

fj�j, Πk

f̃
=
∑

j

f̃j�j

�j(x) =

∏
l,l≠j(x − xl)

∏
l,l≠j(xj − xl)

.

(
Πk

f
− Πk

f̃

)�

=
∑

j

�j�
�
j
.

Notice that the terms of the sum in Eq. (11), when evaluated 
in the interpolating nodes (as we do for our estimation of the 
WSS) do not vanish altogether simultaneously and scale like 
hk−1 , while the denominator scales like hk , so that

Setting |�max| ≡ maxj |�j| , we conclude

This inequality pinpoints the potential lack of robustness of 
the derivative in the presence of noise, as h is related to the 
resolution of the measurements (in our case, order of 
microns), so it is generally quite small. In the presence of 
purely random noise (no systematic errors), �j will be uncor-
related to �j±1 , so the previous estimate cannot be improved. 

The result is that the term 
|�max|
h

 can significantly pollute the 
quality of the approximation.

Pseudospectral DFT derivative

When we use the pseudospectral derivative, from the math-
ematical point of view we replace the derivative of the func-
tion with the derivative of its (generalized) discrete Fourier 
series. This means that we write the original function with 
the Fourier series

where �j , in our case, is the set of sinusoidal functions with 
increasing frequency and

with the integrals computed over the approximation interval. 

If we replace f with the truncation fN =
N∑
j=1

cj�j , the error 

reads 
∞∑

j=N+1

cj�j . Since from the Fourier theory cj → 0 for 

j → ∞ , the coefficient cN+1 provides the leading term of the 
approximation error.

In our approach, f is approximated by the truncated series

(11)��
j
=

1∏
l,l≠j(xj − xl)

�

m

�

l,l≠j,l≠m
(x − xl).

|
(
Πk

f
− Πk

f̃

)�

| ≤ C
maxj |�j|

h
.

(12)‖
�
f − Πk

f̃

��

‖ ≤ Chk‖f (s)‖ + C
��max�
h

.

f =

∞∑

j=1

cj�j

(13)cj =
∫ b

a
f�jdx

∫ b

a
�2
j
dx
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where the ĉj are obtained by numerical quadrature of the 
(13) involving the available measures. Specifically, we resort 
here to the well-known Discrete Fourier Transform (DFT) 
[58, 63].

The theoretical estimates available for the DTF deriva-
tive state that the error decays like N−(r+1) if a function is 
differentiable r times in the interval of interest (including 
the end-points), and its first derivative error decays like N−r . 
The convergence rate strictly depends on the regularity of 
the function.

To exemplify these theoretical results, the quadratic func-
tion f (x) = x2 − 2x in [0, 2] is selected to test the pseudo-
spectral derivative. Here, f is regarded as the portion in [0, 2] 
of a periodic odd function.

Figure  17a shows in a logarithmic scale how 

d
(
f , fN

)
=
(∫ 2

0

(
f − fN

)2
dx
)1∕2

 converges to zero as N 
increases. This quantifies the error of the truncation. Simi-
larly, Fig. 17b shows the convergence of the difference 
between their corresponding derivatives. The slopes of the 
error in logarithmic scales confirm that the derivative errors 
converge one order less than the values. The specific orders 
( ≈ 2.4 and ≈ 1.4 ) depend on the regularity of the periodic 
replica of our function.

Figure 17c shows df̂N
dx

 at x = 2 (where the coefficients are 
computed with a trapezoidal quadrature formula), which 
eventually converges to df

dx
(x = 2) = −2.0 . For example, the 

derivative error is close to 20% for N = 1 and 5% for N = 5.
A significant advantage of the pseudo-spectral derivative 

in this field is the robustness in the presence of noise. Spe-
cifically, we argue that, in the absence of systematic errors 
(to be eliminated by accurate measurements devices and tun-
ing), the noise is a function �(x) with components in high 
frequency, i.e.

ΠN
f
=

N∑

j=1

ĉj𝜓j

where the Fourier coefficients dj of the noise function � are 
small for j small and high for large js. With this assumption, 
we have, for an r-differentiable function,

Let us assume that the noise is negligible for j < M , i.e., 
dj ≈ 0 for j ≤ M . If we select N < M , we conclude that our 
pseudo-spectral approximation is not affected by the noise. 
More in general, from the practical point of view, the selec-
tion of N needs to realize the trade-off between the accuracy 
(first term at the right-hand side of the last inequality) and 
the robustness to the noise (second term). This is exactly 
what we did in our WSS estimation from real measures.
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