Cardiovascular Engineering and Technology (2024) 15:647-666 BMESEL%/I\IEIEIECRT\I\L‘G
https://doi.org/10.1007/513239-024-00741-2 SOCIETY
REVIEW q

Check for
updates

A Pseudo-Spectral Method for Wall Shear Stress Estimation
from Doppler Ultrasound Imaging in Coronary Arteries

Jimena Martin Tempestti' © - Saeyoung Kim?3 - Brooks D. Lindsey*** . Alessandro Veneziani'*

Received: 18 September 2023 / Accepted: 24 June 2024 / Published online: 5 August 2024
© The Author(s) under exclusive licence to Biomedical Engineering Society 2024

Abstract

Purpose The Wall Shear Stress (WSS) is the component tangential to the boundary of the normal stress tensor in an incom-
pressible fluid, and it has been recognized as a quantity of primary importance in predicting possible adverse events in
cardiovascular diseases, in general, and in coronary diseases, in particular. The quantification of the WSS in patient-specific
settings can be achieved by performing a Computational Fluid Dynamics (CFD) analysis based on patient geometry, or it can
be retrieved by a numerical approximation based on blood flow velocity data, e.g., ultrasound (US) Doppler measurements.
This paper presents a novel method for WSS quantification from 2D vector Doppler measurements.

Methods Images were obtained through unfocused plane waves and transverse oscillation to acquire both in-plane velocity
components. These velocity components were processed using pseudo-spectral differentiation techniques based on Fourier
approximations of the derivatives to compute the WSS.

Results Our Pseudo-Spectral Method (PSM) is tested in two vessel phantoms, straight and stenotic, where a steady flow of
15 mL/min is applied. The method is successfully validated against CFD simulations and compared against current techniques
based on the assumption of a parabolic velocity profile. The PSM accurately detected Wall Shear Stress (WSS) variations in
geometries differing from straight cylinders, and is less sensitive to measurement noise. In particular, when using synthetic
data (noise free, e.g., generated by CFD) on cylindrical geometries, the Poiseuille-based methods and PSM have comparable
accuracy; on the contrary, when using the data retrieved from US measures, the average error of the WSS obtained with the
PSM turned out to be 3 to 9 times smaller than that obtained by state-of-the-art methods.

Conclusion The pseudo-spectral approach allows controlling the approximation errors in the presence of noisy data. This
gives a more accurate alternative to the present standard and a less computationally expensive choice compared to CFD,
which also requires high-quality data to reconstruct the vessel geometry.
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Introduction

Wall shear stress (WSS) has been shown to trigger a
change in endothelial cells’ behaviors and is considered
important in the development of atherosclerosis in coro-
nary arteries [1, 2]. Coronary segments with low WSS are
linked with greater plaque progression and constrictive
vascular remodeling while segments with high WSS are
associated with increased plaque vulnerability by expan-
sive arterial remodeling [3-9].

A direct measurement of WSS is not possible, so Com-
putational Fluid Dynamics (CFD) is used to solve the
Navier—Stokes equations - describing the blood flow - in
reconstructed anatomical models from patient-specific
Computed Tomography (CT) angiography or Magnetic
Resonance Imaging (MRI) images [10]. The solution to
the Navier—Stokes equations provides complete velocity
and pressure information at any location in the coronary
artery. The outcome of CFD heavily relies on the quality
of the input data such as reconstructed vessel geometry
and proper boundary conditions, so it is crucial to acquire
accurate input information [11, 12]. Also, CFD analyses
can be time-consuming.

Since WSS can be computed from the gradient of veloc-
ity field distributions and blood viscosity, other research-
ers have used phase contrast MRI (PC-MRI) to measure
the velocity and then to estimate the WSS. For instance,
Oyre et al. estimated the WSS in a common carotid artery
by least-square fitting a three-dimensional paraboloid to
the velocity data. Next, the WSS was obtained by differen-
tiating the velocity quadratic functions and multiplying the
velocity gradient at the vessel wall by the dynamic blood
viscosity [13—15]. Since this method assumes parabolic
velocity flow profiles and does not consider non-radial
components of the velocity gradient, interpolation based
on piece-wise cubic Lagrangian basis functions was suc-
cessively used to further improve the fitting of the velocity
profiles [16—18]. However, because of the low spatial reso-
lution, WSS estimation using PC-MRI has currently been
limited to larger blood vessels such as a carotid artery,
carotid bifurcations, or abdominal aorta [11, 16, 19, 20].

Recently, ultrasound-based minimally invasive intravas-
cular velocity measurement devices have been developed
to image smaller arteries such as coronaries [21-24]. In
the future, intravascular ultrasound imaging devices may
potentially be used to derive WSS from direct velocity
measurements in coronary arteries.

The most straightforward way to estimate WSS using
ultrasound (US) Doppler velocimetry is to measure only
the peak velocity and estimate mean WSS from the stand-
ard Poiseuille-Hagen solution under the assumption of the
fully developed and parabolic flow profile and the vessel
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being axisymmetric [25, 26]. However, in situations where
the flow profile is not parabolic, this approach results in
a large error (maximum 55%) in WSS estimation [25, 27,
28].

To avoid this problem, recent developments in ultrasound
Doppler velocimetry have combined plane wave transmis-
sion with transverse oscillation techniques to estimate 2D
vector velocity at a higher spatial and temporal resolution,
thus for the estimation of WSS, local flow velocity measure-
ments near the wall are possible [29-32]. Wang et al. esti-
mated WSS in a human femoral artery from the tangential
stress tensor vector and used the rotation matrix to align
the tensors to the wall curvature, but have not validated this
approach with other imaging modalities [33]. Furthermore,
to account for both contributions from axial and lateral
velocities, Chee et al. used both components to calculate
the WSS in carotid artery bifurcation [34]. The performance
of this approach was compared only to reference values com-
puted from CFD in simple geometries and flow conditions.
In Ref. [35], the authors propose a method based on 2D US
measure, based on the assumption of a Poiseuille profile
projected along the tangential direction. The velocity is dif-
ferentiated by a finite difference procedure, evaluating the
velocity data in different positions and then retaining either
the average or the maximum to mitigate the impact of the
noise.

Another method for estimating local 2D velocity vector
and WSS using ultrasound is echo-Particle Image Veloci-
metry (PIV). Echo-PIV tracks contrast agent microbubbles
in flow by cross-correlating consecutive ultrasound B-mode
images. Using echo-PIV approach, the entire estimated
velocity profile was filtered and fitted using polynomial fit,
and WSS was calculated from the fitted velocity profile by
computing its gradient at the vessel wall in larger arteries
such as the aorta, brachial artery, or carotid bifurcation [25,
36—40]. Because in complex geometry, the general shape is
not known, a fit through only a few points near the wall was
instead used to estimate WSS [41]. However, these WSS
estimation approaches have not been validated against CFD
or other imaging modalities, nor have they been validated in
more complex geometries such as stenotic vessels.

The purpose of the present work is to introduce a new
method to calculate WSS using as input the ultrasound
velocity, where two “in-plane” velocity components (axial
and lateral) are available at a given section. Thus this method
is tailored for 2D velocity data without the need for assum-
ing flow profiles or relying on anatomical geometries derived
from imaging. The method is based on a Fourier approxima-
tion of the velocity data as opposed to polynomial fitting.
This approximation of the velocity and its gradient (gener-
ally referred to as the pseudo-spectral derivative) controls
the numerical errors, particularly in the presence of high-
frequency noise. We also incorporate the lateral velocity
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Fig. 1 Geometry and surface mesh of the stenotic vessel considered
in the present work

component available from 2D vector Doppler ultrasound
imaging and the shape of the wall in the WSS computation.

Our method is compared against methods based on the
Poiseuille-Hagen solution [25, 26, 35], and CFD simula-
tions. Both non-stenotic and stenotic vessels were tested.
CFD is used as the validation tool because it is largely con-
sidered the best reference standard for obtaining WSS [19].
We tested our method against synthetic measures extracted
from CFD that mimic the ultrasound data extraction to probe
the estimation in an ideal “noise-free” situation, assuming
that numerical errors in the CFD are generally much smaller
than measurement errors (as is the case for a fine mesh).
Finally, WSS results estimated from US imaging were com-
pared with the Poiseuille-based WSS estimation methods.
The results show that, in the absence of noise, all the meth-
ods can provide an excellent evaluation of the WSS, with
numerical errors comparable with the CFD estimation. How-
ever, in the presence of noise coming from a real measure-
ment campaign, the PSM is superior for its natural low-pass
filtering nature, leading to very good clinical accuracy.

The ultimate purpose of this research is to implement our
method in a forward-viewing intravascular ultrasound trans-
ducer to enable plaque vulnerability characterization inside
the coronary arteries for stratifying risks. A more extended
presentation of the results of our method in experimental
ex vivo settings that mimic stenotic vessels is reported in
Ref. [42].

Materials and Methods
US Experimental Setup

Two geometries of vessels with a length of 12 mm and a
diameter of 3.2 mm to mimic the physiological and patho-
physiological conditions in coronary arteries were prepared:
a straight vessel with eccentric stenosis of 54% diameter
stenosis (% DS) displayed in Fig. 1 and a straight vessel
without stenosis as the control case. This diameter of ves-
sel was selected because it corresponds to the diameter of

mimicking
phantom

Fig.2 Experimental setup. Flow is introduced into the vessel-mim-
icking phantom using the syringe pump and the flow is directed
towards the linear array ultrasound transducer which is placed at the
outlet of the phantom. The ultrasound transducer is connected to a
high frame rate ultrasound imaging system

a healthy human left anterior descending (LAD) coronary
artery [43], and this value of % DS is in the range of inter-
mediate severity of LAD (40-70%) [44], and this severity
of stenosis presents challenges to clinicians when stratify-
ing risk for patients with stable coronary artery [45, 46].
These geometries were first created in Solidworks [47] and
3D printed using a high-resolution StereoLithography Appa-
ratus (SLA) resin printer (FormsLabs Form 3+) with a layer
thickness of 25 pm. The printed geometries were placed on
a phantom container, and a tissue-mimicking material (7.5%
gelatin, 2% graphite as scattering particles, and 5% n-pro-
panol) was poured around [48]. When the material had set,
3D-printed coronary geometries were removed, leaving an
arterial lumen inside the phantom.

Each phantom was placed inside a tank filled with
degassed water. A high-frequency linear array transducer
(VisualSonics MS400, FUJIFILM VisualSonics, Inc.,
Toronto, Canada) was placed 1 mm from the outlet of the
phantom vessel. The transducer’s beam was facing toward
the flow, and the flow was introduced toward the transducer
using a syringe pump (PHD 2000, Harvard Apparatus, Hol-
liston, MA). The continuous and steady flow had a 15 mL/
min flow rate. This time-averaged velocity corresponds to
the mean physiological flow rates and velocities found in
LAD coronary arteries in adults [49, 50] (Fig. 2).

While the data sets in these studies were acquired using
a high-frequency linear array (Visualsonics MS 400),
in vivo data will require a forward-viewing, 20 MHz 2D
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Fig.3 Diagram showing the ultrasound image segmentation and processing. RF refers to Radio Frequency, SVD stands for Singular Value

Decomposition, and WSS represents Wall Shear Stress

intravascular ultrasound array, which we are currently build-
ing. Due to the decreased aperture size of the intravascular
array and the ability to position the intravascular array closer
to the region of interest in the artery, the spatial resolution
is approximately a factor of six worse according to simu-
lations [24]. Briefly, simulations of ultrasound imaging of
blood flow in a straight vessel at the same velocity used
in the presented studies indicate that spatial averaging due
to increased size of the point spread function results in an
overestimation of approximately 11% when using the intra-
vascular array, however, estimation error for other velocities
and flow rates have not yet been investigated [24].

US Imaging and Vector Doppler Velocity Estimation

An accurate velocity profile is needed to estimate WSS using
ultrasound data. In this project, a Doppler approach was
adopted, where images were obtained through unfocused
plane waves and transverse oscillation (to acquire both in-
plane velocity components). The linear array transducer was
connected to a high frame rate ultrasound imaging system
(Verasonics Vantage 256, Kirkland, WA, USA). To acquire
beamformed Radio Frequency (RF) data, unfocused plane
waves at a frequency of 23MHz were selected, employing
3-angle compounding (—15°, 0°,15°). The data was obtained
at a frame rate of 8,000 frames per second. In total, 200
frames were acquired, and the transmitting signals were set
with a two-pulse duration cycle. For each phantom, a series
of five data sets were collected. The segmentation process
is summarized in Fig. 3.

Post-processing was performed in MATLAB [51]. First,
the stationary phantom backgrounds were eliminated by
employing Singular Value Decomposition (SVD) to remove
the first, largest singular vector [52]. Next, to estimate the
lateral velocity, we introduced transverse oscillation by
applying a Gaussian filter centered around the desired lateral
oscillation frequency to the data in the Fourier domain [31,
53]. In particular, we adopted a wavelength A, and a band-
width o, equal to 0.0613 mm. Finally, to estimate the lateral
velocity component, a fourth-order autocorrelation estimator
was utilized. As for the axial velocity component, a standard
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cross-correlation estimator was employed. An ensemble size
of 200 was used, and the position of the wall was determined
using a sparse field method with a mask excluding the area
outside the vessel [39, 54]. Based on this approach, the pix-
els containing the wall were set to zero velocity so that only
the velocity values from Doppler data inside the wall were
used. For more details on ultrasound acquisition see [55].

Mathematical Modeling

The dynamic of an incompressible fluid with velocity u
and pressure p in a region of interest Q is described by the
incompressible Navier—Stokes equations

6]

P2+ pu-Vu+V-c+Vp=0
V-u=0

obtained by applying the conservation of momentum and
mass. Here p denotes the (constant) blood density and, for a
Newtonian fluid, the deviatoric stress tensor reads

o=—u(Vu+V'u) )

where u is the (positive) constant kinetic viscosity. In this
study, for our CFD testing, we will consider steady cases,
i.e. the solution of

pu-Vu+V-04+Vp=0
{72 g
The Wall Shear Stress (WSS) on a portion of the boundary
I' € 0Q is defined as the part of the normal component of
the deviatoric tensor o - n tangential to the boundary (here
n is the outward normal unit vector), and can be defined as

T=06-n—(n-0-n)n. 4)

To compute the WSS, one can either solve the Eq. (1), or
measure the velocity u and then apply (2, 4). In general, Eq.
(1) cannot be solved analytically, CFD is required. However,
in some special cases, we have the analytical solution, like
for a flow in a rectilinear, circular cylindrical domain under
a given pressure drop either constant in time (Poiseuille or
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Poiseuille-Hagen solution) or periodic in time (Womersley
solution) [56]. Assuming that the cylinder axis is along the
Cartesian x;-axis, the Poiseuille-Hagen solution reads

(R~ = ) ®)

up = uy =0, U= "5 17

where the index 1 refers to the velocity component along
x; (2 and 3 along the x, and x; directions respectively'), R
is the radius of the cylinder (where the velocity is zero by
virtue of non-slip conditions) and u,,,, is the axial velocity
function of the prescribed pressure drop. In this particular
case, the WSS reads

—3 =2y max ©6)

where r = 4 /x% + x% is the radial coordinate.

Adopting 7 to calculate the WSS of a generic flow sup-
posedly introduces a significant approximation of the real
value WSS, as lateral velocity components are neglected,
as well as the wall shape. This approximation has been tra-
ditionally adopted to estimate WSS from velocity measure-
ments, and ai: has been obtained by interpolating a quadratic
(or cubic) function to three (or four) points closest to the
wall where velocity was measured. The derivative in the
radial direction is calculated analytically from the interpo-
lated function [41]. Generally, the radial direction is approx-
imated with one of the cartesian ones. In this work, this
approach will be identified as the Poiseuille method.

In the study [35] mentioned above, the significance of
considering the radial component in WSS estimation was
demonstrated. Their method involves isolating the tangential
velocity component relevant to WSS by utilizing the dot
product of velocity components with a tangential unit vector.
The velocity rate of change is computed with a Finite Differ-
ence (FD) approach at multiple points near the vessel wall
and then either selecting the maximum value or computing
an average. Both the strategies aim at mitigating the pres-
ence of noise in the data and the approximation induced by
the assumption of a Poiseuille profile.

In contrast, our approach considers both radial and tan-
gential velocity components as well as the vessel’s shape
in Eq. (4) that inherently integrates these factors. Addition-
ally, we depart from the finite difference approach used by
Ref. [35], instead opting for a pseudo-spectral interpolation
technique. This method not only facilitates WSS calculation
but also effectively denoises the data, marking a significant
innovation in our approach. While our measures here are 2D
in-plane velocities, it is worth noting that our methodology,

1 We opt for the notation x,, x,, x; for x, y and z respectively, for the
sake of easiness of writing/reading the mathematical equations.
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Fig.4 In-plane boundary detection and Smooth-Loess MATLAB
interpolation on the profile of the stenotic vesel considered in the pre-
sent study. Here, n represents the outward normal unit vector to the
vessel wall

based on (4) and not (6) can be promptly extended to 3D
data sets. This will be a follow-up of the present work, that
is expected to increase the accuracy of the WSS estimates
in real geometries with significant out-of-plane velocity
components.

Boundary Extraction and Fitting

As stated in “US Imaging and Vector Doppler Velocity Esti-
mation” Sect., our velocity measures provide two in-plane
velocity components that we denote as lateral (u,) and axial
(u3). Data are expressed as point-wise measures of velocity
in the image pixels, with an 8.3-um resolution. This is the
distance between two pixels, i.e., two different measures of
velocity. We will call this distance 4.

Assuming no-slip conditions on the boundary, the vessel
wall was detected by the zero-velocity pixels. The identifi-
cation of these points provides a pixelized boundary with
artificial discontinuities that prevent the calculation of an
accurate continuous normal vector and ultimately a straight-
forward use of Eq. (4). We need, therefore, to use the points
to fit a regular curve to describe the boundary. The classical
LOESS (LOcally Estimated Scatterplot Smoothing) method
implements a local regression using weighted linear least
squares [57]. In particular, here we used the MATLAB built-
in function smooth with the option Loess [51]. We use poly-
nomials of order 2, with a 30%-data span (i.e., 30% of the
total data set was used to fit each local polynomial).

Figure 4 shows the boundary obtained for the profile of
the stenotic vessel from the US imaging (grey dots), the
interpolated smooth-Loess functions for the bottom- and

@ Springer



652

J. Martin Tempestti et al.

top-vessel walls (solid black lines), and corresponding
normal vectors (computed by differentiation) at different
locations (red arrows). Differences between discrete data
and interpolated function are almost imperceptible; none-
theless, the latter provides a continuous and smooth first
derivative.

Data Fitting and Numerical Differentiation

To compute the deviatoric stress tensor o one needs to cal-
culate the velocity gradient Vu with components du;/dx;,
i,j=1,2,3.

However, US imaging provides only in-plane velocities.
As mentioned earlier, the image plane is spanned by the
(x;,x3) coordinates, so only u; and u; are available. Corre-
spondingly, the available velocity gradient reduces to the
2 % 2 tensor with entries dui/dxj withi,j=1,3.

A possible approach for the computation of the deriva-
tives consists of performing a polynomial interpolation of
the velocity data close to the detected boundary and then
differentiating the polynomial on the boundary. In the case
of the Poiseuille approach, assuming that the radial direc-
tion coincides with the lateral one x;, one can compute the
quadratic polynomial interpolating the three velocity data
close to the boundary and then differentiate the polynomial
on the point closest to the boundary. Alternatively, a cubic
polynomial can be computed, including the point detected on
the boundary in the interpolation, where the velocity data,
by definition, are null.

The derivative required is trivially the derivative of the
quadratic or the cubic function in the two cases, respectively.
Notwithstanding its simplicity, this approach guarantees
accurate results for a small spatial resolution # when the
velocity data are accurate. In the presence of noise, the dif-
ferentiation increments the impact of the noise with a factor
h~1 (h is of the order of a few microns). See the discussion
in Appendix, inequality (12).

It is worth stressing that the binary discrete definition of
the boundary causes some loss of information at the loca-
tion where derivatives need to be calculated. For the sake
of exemplification, Fig. 5 shows two velocity profiles for u,
from the phantom vessel described in “US Experimental
Setup” Sect., at 2.0 and 6.5 mm along the x;-axis, respec-
tively. The velocity profiles are embedded in a longer seg-
ment spanning the in-plane data measured by the ultrasound.
The boundary of the vessel is represented by the end points
of the portion of the segment where the data are non-zero
(the so-called “support”). The black circles represent the
data. The inaccuracies of the identification of the bound-
ary exactly where the derivative needs to be computed are
apparent. This adds additional perturbation to the derivative
evaluation.
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Fig.5 Axial velocity profiles (u;) obtained from ultrasound imag-
ing (circle makers) and their representation using a truncated Fou-
rier Sine Series at five terms (red curve, N =5): a at position
x3 = 2.0mm, b at position x; = 6.5mm

Pseudo-Spectral Radial Derivatives The pseudo-spectral
approach we pursue here consists of computing a regular
function from the available data as a Fourier sum.

A regular function f(x) defined on a bounded interval
[a, b] can be represented by a sine Fourier series (see e.g.

[58]) f(x) = 21 cjy;(x) with
=

(L
ufj(x)—sm<b a(x a)),

UL Sy ”
D[l bmada T

If we replace the series with its truncation to the term N, we
obtain an approximation of f with

N

A = . ®)

Jj=1

These formulas stem from regarding f(x) in [a, b] as the por-
tion of a periodic function on the real axis, odd on a period
(that leads to a sine-only series).

This approximation is optimal, in the sense that in the
subspace of sinusoidal functions with maximum frequency
N, it is the best approximation of f (i.e., the error f — f,, is
orthogonal to fy,). As recalled in the Appendix, the decay of
the approximation error, particularly for regular functions, is
fast with N (larger is N and smaller is the error). For regular
functions, high accuracy is also obtained when we approxi-
mate f” with f, (see the Appendix).

However, in practice, this approach (called “spectral
derivative”) is not possible as the integrals for the coeffi-
cients ¢; requires the knowledge of f(x) while we have only
the measures of fin the pixels. For this reason, we resort to
a discrete version of the Fourier approximation where the
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integrals are replaced by quadrature formulas (such as the
trapezoidal rule) having the available data as quadrature
points. In this way,

b
/ fwjdx = Y Fwyx)w, ©)

where x, are the points where the measures are available, and
w, are the quadrature weights. This well-known approach
goes under the name of Discrete Fourier Transform (DFT)
[58].

Once the velocity profiles u, and u; are DFT approxi-
mated as a function of x, for each value of the axial coor-
dinate x5, we can estimate their derivatives along x; by the
analytical differentiation:

i=13 (10)

where ¢; are the Fourier coefficients computed by the DFT.
As we recall in the Appendix, the accuracy of the derivative
of the approximant computed with this approach (“pseudo-
spectral differentiation”) is very high for regular functions.

In practice, we can use this approach for the velocity
data in two ways,

1. on the entire data set retrieved in-plane in the rectangular
domain (extended approach), including the zero-velocity
points that do not correspond to physical points in the
domain of interest (i.e., externally to the support); in this
case, a and b are the limits of the plane of the data;

2. on the support, i.e., the portion where the profile is not
null (restricted approach), closed by the two endpoints,
i.e., the first pixels where the velocity is zero; in this
case, a and b are those endpoints.

The restricted approach works on a smaller data set. The
sine Fourier expansion relies on the periodic odd extension
of this function with better regularity properties to avoid
the Gibbs phenomenon [59]. Therefore, we opted for this
latter approach.

It is reasonable to assume that the measured velocity
is composed of a signal and a noise (see the Appendix).
Assuming that the noise v is purely random, in the absence
of systematic errors in the measurement devices, the spec-
trum of v has a minimal contribution at the low frequen-
cies, so the Fourier coefficients of the noise are generally
small for low values of j. Based on these considerations,
not only the Fourier truncation is an optimal approxima-
tion, but with an appropriate selection of the truncation
index N, it may provide a low-pass approximation quite
insensitive to the noise. These arguments will be tested in
our Results section.

Axial derivatives

Approximating u, and u; along the axial coordinate x; is
not trivial because the boundary of the vessel is not aligned
along the axial coordinate (unless we are in a circular cylin-
drical domain). For this reason, an accurate pseudospectral
fitting along the axial direction is problematic. Assuming
that the axial derivatives have a minor impact on the WSS
(we will discuss this point later), we opted for a finite dif-
ference approach after a suitable regularization of the data
for the sake of denoising. A moving average smoothing was
applied along x; with a 3%-data span, i.e., each smoothed
value corresponds to the average of neighbor data points,
and the length of the averaging interval is 3% of the total
data set.
A classical finite difference approach reads

ou; N u;(x;, X3 + h) — u;(%;,%3)

6_)63()_61’)_63) ~ h ,

i=1,3

and it was applied by selecting pair of points (X, X;) and
(X,,X; + h) close to the boundary. Since the boundary is, in
general, a nontrivial function of x;, the choice of these points
follows the profile in a way such that they are always inside
the vessel, so to rely on the available measures.

CFD solver

For the computation of the fluid in the domains of interest to
provide a reference solution for the WSS, we wrote a Python
code based on the Finite Element Library Fenics [60]. The
solver uses inf-sup compatible Taylor-Hood finite elements
P? — P'and a classical Newton linearization for the numer-
ical treatment of the nonlinear term. Simulations are run
under the steady regime with inflow boundary conditions
specifying a flow rate through the prescription of a parabolic
profile, while traction-free conditions are prescribed at the
outflow. The WSS is computed by projecting the derivatives
on a piecewise constant discontinuous Galerkin space, as
described in Ref. [60].
The code is available upon request to the authors.

Results

To test our method in practice, we consider two geometries,

1. acylindrical circular domain (Poiseuille-Hagen flow);

2. the stenotic geometry described in “Materials and Meth-
ods” Sect.—see Fig. 1.

In both cases, we assume a steady flow. For the comparative

purpose of the present work, steady flow is an excellent test.
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For clinical purposes, we will consider unsteady conditions
in the follow-up of the present work. In the former case, we
validate our results against (a) the analytical solution (6)
and (b) the Poiseuille method (using a quadratic interpola-
tion is exact in this case). As data to construct the WSS
pseudo-spectral approximation, we used both the analytical
velocity and the velocity obtained by CFD results, which
we may consider as data added by numerical errors playing
the role of noise.

In the stenotic case, the results of our method are com-
pared against (a) the solution computed by the CFD simula-
tions; (b) the Poiseuille method. The CFD-computed WSS is
considered in this case as the ground truth in the absence of
analytical solutions. We performed two tests: in the first one,
we used the CFD velocity as the source of data to be used for
both the Poiseuille and the pseudo-spectral WSS estimation.
In the second case, we used the real measures obtained by
the US, as described in “Materials and Methods” Sect. In
this case, we also compared our results against the method
proposed in [35] based on a FD approximation of the radial
derivative of the tangential velocity.

In order to reduce the numerical errors amplified by the
differentiation, in this stenotic case, results obtained by the
Poiseuille method were post-processed with a 25-point mov-
ing average smoothing.

Poiseuille Flow

We consider the Poiseuille flow in a pipe with radius
R = 1.632mm (a value similar to the one for the stenotic case
presented afterward), water viscosity 4 = 0.01g/(cm - 5),
and unit velocity at the center of the pipe of u,,,, = lcm/s.
Hence, Eq. (6) gives the constant benchmark value of
WSS= —0.0123Pa along the axis of the pipe.

Computational Fluid Dynamics

The Poiseuille flow case with a known analytical solution is
used to validate our CFD solver. The simulation error was
evaluated using two metrics on the WSS estimation: (1) the
L?-norm, and (2) the average difference (aka L'-norm).

The cylindrical domain (Fig. 6a) was represented by an
increasing number of linear tetrahedral elements, and after
imposing the Poiseuille flow boundary conditions, a para-
bolic flow distribution was obtained at each time (Fig. 6b).
The accuracy of the simulation was evaluated on the WSS
estimation, and in particular, the convergence towards the
analytical solution was studied with respect to the maximum
mesh edge length H (Fig. 6¢ and Table 1). In this particular
case, the discretization error for the finite element approxi-
mation of the Navier—Stokes equations is null because the
solution belongs to the same finite dimensional space of the
numerical approximation (quadratic for the velocity and
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Fig.6 Simulation of Poisseuille flow using CFD: a Mesh; b Numeri-
cal solution of the velocity field, ¢ CFD convergence computation,
where, the simulation error was evaluated using two metrics on the
WSS estimation: (1) the L>-norm €75, and (2) the average difference
€L

Table 1 Converge study based

on two WSS estimation metrics: H [mm] r2 cL

(1) the I2-norm £, and (2) the 200 0.01104  0.00399

average difference ¢ 0.110 0.00680  0.00189
0.063 0.00347  0.00075
0.032 0.00203  0.00036
0.029 0.00170  0.00029

linear for the pressure). The source of error comes from the
geometrical approximation of the cylinder with a mesh of
linear tetrahedra. The error on the velocity and the pressure
is quadratic with the mesh size [61]. The expected error for
the derivative of the velocity is, therefore, linear in 12 with
the mesh size H (see [58]). This linear behavior is confirmed
in the Table 1, see also Fig. 6¢. It is important to stress that
this is not a mesh-independence study: here we are just prob-
ing the consistency between the convergence theory and our
numerical results, so we are comparing the solutions with
different meshes with the exact solution. A mesh-independ-
ence study is carried out later.

WSS Estimation

From the CFD numerical solution, it is possible to extract
velocity values in a rectangular regular grid in a setting anal-
ogous to the one available from ultrasound imaging. Then,
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Fig. 7 Poiseuille flow WSS Top wall

estimation when R = 1.632mm, 0 Analytical solution
u=0.01g/(cm - ), and e CFD
Uy, = lem/s. Three differ- Poiseuille method
ent approaches are compared -0.005 |__Pseudo-spectral
against the analytical solu- T method
tion, WSS= —0.0123 Pa, i.e., ~
CFD, Poiseuille method, and 001
PSM. The latter is evaluated
using an increasing number of
harmonics:a N =5,b N = 10,
¢ N =40 0.0150 5 10
Xg [mm]

(a)

WSS can be estimated using Poiseuille-based methods and
PSM, pretending that the velocity data are measured. Similar
results are obtained when we use the analytical solution in
place of CFD results directly to generate the data, show-
ing that the numerical errors on the velocity field induced
by the approximated geometry are very small in this case.
Regardless of the source of the velocity data, either CFD
results, or analytical solution, an additional source of error is
introduced if the sample-velocity grid points do not coincide
with the wall position. Hence, for the sake of comparison,
in this idealized case, the grid spacing corresponds to the
ultrasound resolution, but the position of the wall is explic-
itly enforced.

In particular, using the H = 0.029-mesh, results trun-
cating the Fourier Series at 5, 10 and 40 harmonics (N)
are shown in Table 2 and in a red solid line in Fig. 7a—c,
respectively. The outputs are compared against the analyti-
cal solution (blue line), CFD computations (black mark-
ers), and the Poiseuille method (grey line). As expected,
CFD and the Poiseuille method overlapped to the analytical
solution and the PSM approaches the exact answer as the N
increases. The errors in the average WSS estimation shown
in Fig. 7a—c are 6.70e—2 (N =5), 2.54e—2 (N = 10) and
1.06e—2 (N = 40), respectively. At N = 40 the error of the
WSS is about two orders of magnitude larger than the result
obtained from the CFD simulation (2.9e—4, see Table 1).
This justifies using CFD as the ground truth in the absence
of analytical solutions.

Remark The function approximated, in this case, is quad-
ratic like the case considered in the Appendix with pseudo-
spectral approximation. Here, however, the number of points
used for the quadrature of the Fourier coefficients is limited
by the resolution of the data. This causes some degradation
of the accuracy for very high values of N (> 100), as the
frequencies considered oscillate very rapidly with respect
to the grid of available data.

15
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0 Top wall 0 Top wall
Analytical solution Analytical solution
e CFD e CFD
—Poiseuille method Poiseuille method
-0.005+ |__ Pseudo-spectral -0.005+ |__ Pseudo-spectral
—_ method —_ method
< £
[ S
-0.01¢ -0.01
-0.015 -0.015
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Table2 PSM: convergence (us is the exact solution,u; y its pseudo-
spectral approximation, and N is the number of harmonics used in the
truncated Fourier Series)

N 5 10 20 40

llus = us 2 0.0016 3.50E-04  4.51E-05 7.27E-06
duy _ Ouy 0.0344  0.0162 0.0058 0.0021
0xy ox3 |lp2

Stenotic Channel

The previous case clearly represents an academic test, as, in
general, coronaries are not perfectly cylindrical, particularly
in the presence of plaques. In this second test, we consider
the stenotic geometry described in “US Experimental Setup”
Sect., Fig. 1.

To investigate in detail the role of (1) the geometry in the
WSS estimation, and (2) the role of measurement errors,
we present two tests, one based on the CFD results, and the
other based on US Doppler measures.

A direct comparison of velocity data retrieved from CFD
and from measures pinpoints the presence of discrepancies
as the numerical velocity reaches 10 cm/s while the measures
yield a maximum velocity of 8 cm/s. For this reason, we
separate the analysis of the results in the two cases.

For the sake of a qualitative assessment, we notice how-
ever that in any case: (1) the maximum WSS occurs at the
narrowest section of the vessel, (2) the stenotic wall pre-
sents higher WSS than the straight wall, (3) after the sten-
otic section, there is a sudden drop in the WSS on the top
(stenotic) wall and a more gradual decrease on the bottom
(non-stenotic) wall.

More quantitatively, the WSS peak values are in the order
of 0.35 and 0.65 Pa for the bottom and top walls, respectively

WSS Estimation Based on CFD Velocity

We solved the Navier—Stokes equations in the stenotic geom-
etry with our CFD solver, using the boundary conditions
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Table 3 Mesh-independence test

Number of elements (x1000) //s WSS dSs Relative error Domain of integration
1000 0.799792
500 0.799794 2.50065E-06
320 0.799799 8.75228E-06
65 0.799793 1.25033E-06
13 0.799801 1.12529E-05
1000 0.698901
500 0.698902 1.10868E-06
320 0.698902 8.52833E-07
65 0.698896 8.27248E-06
13 0.698890 1.62891E-05
Number of elements (x1000) I [[V udv| Relative error
1000 0.398938
500 0.398571 9.20E-04
320 0.397665 3.19E-03
65 0.393270 1.42E-02
13 0.378110 5.22E-02
Fig.8 WSS obtained by Bottom wall
the Poiseuille and the PSM 08" (a) 08"
(N=5) using CFD data and ) e CED ’ ‘
benchmarked to CFD results: __ Poiseuille method | _Poiseuille method
a Bottom (non-stenotic) wall, 067 (,=0.0126) 067 | (e;=0.0500)
b Top (stenotic) wall, c—d oM fss PSM
velocity in the z-direction (the E 04t Jejﬂ, | (6,4=0.2000)
main stream runs from right T
to left). The average error ¢,
is computed by summing the 0.2}
absolute differences between
the estimated wall shear stress 0 ‘ ‘ ‘
(WSS) values obtained from 0 5 10 15
either the Poiseuille method (c)
or PSM and the WSS values = 2
fluid dynamics (CFD), divided < : : Ll : ! :
by the total number of available 0 5 10 15 0 5 10 15
data points X, [mm] X, [mm]
-10 -8 -6 -4 -2 0 -10 -8 -6 -4 -2 0

that reproduce the measurement settings. More details are
reported in [42]. Precisely, the velocity profiles at the inflow
along two orthogonal diameters were used to perform a
bivariate spline interpolation providing velocity data at the
inlet section. Null velocity conditions were prescribed at the
walls, while traction-free open boundary conditions were
prescribed at the outflow, i.e., pn — M(Vu + VTu) -n=0.
The CFD quantities presented in this manuscript correspond
to simulations obtained using a one-million-element mesh.
The convergence tests are summarized in Table 3, wherein
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the integral of the Wall Shear Stress (WSS) is computed
over both the entire geometry and the critical stenotic sec-
tion. The results show that, even if we used the 1 M-element
mesh, we would have obtained the same conclusion with a
mesh with 0.5M elements.

The velocity obtained in this way was used to generate
velocity data in the same plane used for US measures and
with the same resolution. The data were eventually used to
estimate the WSS. The latter was compared with the WSS
computed by the CFD solver.
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Fig.9 WSS obtained by
the Poiseuille and the PSM 08" (a)
(N=15) using CFD data and

benchmarked to CFD results: a
Bottom wall, b Top wall, c—d 06
velocity in the z-direction (the

main stream runs from right 3
to left) The average error e ; ©
is computed by summing the

absolute differences between 0.2F
the estimated wall shear stress
(WSS) values obtained from

Bottom wall

_(eL1:0,0126) 0.6

(e,,=0.0500)

Top wall

087 ©)

* CFD
Poiseuille method

e CFD
Poiseuille method
] (el_1 =0.0500)

PSM PSM

(e,,=0.0500)

either the Poiseuille method 0 5

or PSM and the WSS values (c)
obtained from computational
fluid dynamics (CFD), divided
by the total number of available

X, [mm]
o
o

data points 0 5 10 15 0 5 10 15
Xs [mm] X5 [mm]
-10 -8 -6 -4 -2 0 -10 -8 -6 -4 -2 0
Fig. 10 WSS obtained by the Bottom wall Top wall
Poiseuille and the PSM (N = 5) (a) (b)
using ultrasound data and o0gl| * CFD o0gl| * CFD
benchmarked to CFD results: a 7 | |Pseudo-spectral method * | |+Pseudo-spectral method
: ——Poiseuille method -

Bottom wall, b Top wall, c—d
velocity in the z-direction (the
main stream runs from right to
left)

—— Poiseuille method =

e
T — | —
= . ’ . ; P ]

-8 -6 -4

Figures 8 and 9 show WSS values obtained from the
PSM using 5 and 15 harmonics, respectively. Each figure
includes 4 plots: (a—b) WSS obtained from CFD (black
markers), from velocity using the Poiseuille (grey line)
and the PSM (red line); (c—d) top view of the CFD velocity
z-component, which helps to understand qualitatively the
WSS computations; the stenosis is located at 7 mm. The
figures present the result along the top and the bottom wall
of the geometry displayed in the panels (c—d).

The figures show, on one hand, that the Poiseuille
method accurately predicts the WSS when CFD velocity
is used as input. In this case, the neglected terms (axial
velocity, wall shape, and velocity variation in the axial

-2 0 -8 -6 -4 -2 0

direction) do not play a significant role. On the other hand,
as expected, the PSM underestimates the WSS computa-
tion when N = 5. The difference vanishes as the number
of harmonics increases (Fig. 9). The results of the two
numerical techniques at this point are the same.

WSS estimation based on US measures

Figures 10, 11, 12, and 13 present the results of the real
case when the velocity is obtained from US measures.
These figures differ in the number of harmonic selected
for the PSM, N = 5,8, 10, and 12, respectively. The impact
of measurement errors is apparent, particularly for the
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Fig. 11 WSS obtained by the Bottom wall
Poiseuille and the PSM (N = 8) (a)
using ultrasound data and 0gl | * CFD

benchmarked to CFD results: a | |-~——Pseudo-spectral method
Bottom wall, b Top wall, c—d 06+ gg 2:1“

velocity in the z-direction (the -- FD mean based on Proj,u
main stream runs from right 3 --=- FD max based on Projyau
to left). FD stands for Finite © — Poisenillomethiod

Difference and refers to the
methods in Ref. [35], using both
the strategy of averaging dif-
ferent measures or tagging the

Top wall
(b)
08!l ® CFD
| |Pseudo-spectral method T
FD mean =
06+ FD max. =5

---- FD mean based on Proj.u
---- FD max based on Proj,.u
| |——Poiseuille method

maximum velocity

Xy [mm] X3 [mm]
-8 6 -4 2 0 -8 - 4 2 0
Fig. 12 WSS obtained by the Bottom wall Top wall
Poiseuille and the PSM (N=10) (a) (b)
using ultrasound data and 0gll ¢ CFD 0gll ¢ CFD

- Pseudo-spectral method
——Poiseuille method

benchmarked to CFD results: a
Bottom wall, b Top wall, c—d
velocity in the z-direction (the
main stream runs from right to
left)

- Pseudo-spectral method
——Poiseuille method

3 7 5 6 7 9

20 () 27 @
£
T — | —
P == ; : ‘ ‘ ‘ ‘ S g ‘ ‘ ‘ ; ‘

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

X, [mm] X5 [mm]
-8 -6 -4 -2 0 -8 -6 -4 -2 0

Poiseuille-based methods. On the straight wall (bottom),
the peak WSS estimated by the Poiseuille is under-pre-
dicted (0.15 Pa) (dissipation error), and the position is
shifted downstream with respect to the narrowest section
(dispersion error). On the stenotic wall, the WSS estima-
tion does not provide any clear trend, and values oscillate
erratically with poor connection to the geometry of the
studied case.

In the PSM, when five harmonics are used (Figs. 10a-b),
the outcome is consistent in general with results based on
CFD velocity data (Figs. 8a—b), and the qualitative phenom-
enology is met. More specifically: (1) the maximum WSS is
aligned to the narrowest section of the vessel; (2) the stenotic
wall presents higher WSS than the straight wall; (3) after the
stenotic section, there is a sudden drop in the WSS on the
top wall and a more gradual decrease on the bottom wall.
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The WSS peak values are in the order of 0.25 and 0.35
Pa for the straight and stenotic walls, respectively, which
undershoots CFD estimations (0.35 and 0.65, respectively).
Nonetheless, undershooting was anticipated for two reasons.
First, the velocity magnitudes are smaller in the ultrasound
data than in the CFD simulation. Second, the truncation of
a Fourier series is expected to introduce dissipation errors,
as already happened when five harmonics were used in the
CFD case, when the maximum WSS were 0.30 and 0.45 Pa,
respectively.

Unlike the case when CFD velocity data is input, increas-
ing the number of harmonics makes minor improvements in
terms of accuracy (Figs. 12 and 13a, b). The lack of regular-
ity in the data and the noise prevent the convergence.

Visual inspection of the velocity profiles obtained with
the DFT helps identify a good value of N for the truncation.
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Bottom wall

(a)

Fig. 13 WSS obtained by the
Poiseuille and the PSM (N=12)
using ultrasound data and
benchmarked to CFD results: a
Bottom wall, b Top wall, c—d
velocity in the z-direction (the
main stream runs from right to
left)

|| e CFD
Pseudo-spectral method
—— Poiseunille method

Top wall
(b)

7‘ e CFD
‘w-»--»wPseudo-spectral method
|—Poiseuille method

3 8 5 7 9
oy (©) 2 (d)

T — 1 ————

X 2 i i " n 1 Y N " n 7
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

Xg [mm] Xg [mm]
-8 - -4 2 0 -8 6 -4 2 0

Table 4 Evaluation of method accuracy using L'-norm Error (e, ;) For the particular case under study, the comparison
N Bottom wall Top wall with CFD results reveals that adopting N = 8 minimized
the differences between the WSS benchmark values and
Poiseuille method ~~ PSM Poiseuille method  PSM ) ¢e obtained by the PSM. Tables 4 and 5 illustrate this
5 1.3377 0.1090  1.0861 0.3866 comparison using two metrics, respectively: (1) the average
8 0.1409 0.3002 error ele, and (2) the L2-Norm Error eLz.3 When N =8,
10 0.4458 0.2657 the average error obtained by the Poiseuille-based methods
12 0.7740 0.3156 is 9 times larger than the PSM error on the bottom wall,
15 1.3790 0.6754 and 3 times larger on the top wall. PSM features an error
of 0.14Pa on average from the CFD benchmark on the bot-
tom wall, and 0.30Pa on the top wall. The discrepancies are
Table 5 Evaluation of method accuracy using L?-norm error (e;,) accentuated after the narrowest section of the vessel. As we
N Bottom wall Top wall discuss more in detail in the next Section, this discrepancy
may potentially stem from the experimental setup. The trans-
Poiseuille method ~ PSM Poiseuille method ~ PSM ducer, positioned on the left side, measures flow from right
0.0221 0.0022  0.0139 0.0051 to left, resulting in signal decay as distance increases from
0.0026 0.00390 the transducer. The interference from the top wall may exac-
10 0.0079 0.0033 erbate this decay, particularly noticeable after the narrowest
12 0.0136 0.0042  section, possibly leading to velocity underestimation and
15 0.0241 0.0082 consequently underestimated WSS. This hypothesis requires

If unrealistic oscillations appear, fewer harmonics should be
recommended. Selecting the proper number of harmonics is
a trade-off between underestimating the WSS and introduc-
ing artificial oscillations at data discontinuities.

2 The average error e;; is computed by summing the absolute dif-
ferences between the estimated Wall Shear Stress (WSS) values
obtained from either the Poiseuille-based methods or PSM and the
WSS values obtained from computational fluid dynamics (CFD),
divided by the total number of available data points.

3 The L2-Norm Error e;, is computed by taking the square root of

the sum of squared differences between the estimated WSS values
obtained from either the Poiseuille method or PSM and the WSS val-

further investigation and verification.

For the sake of comparison, Figure 11 includes two addi-
tional methods for evaluating WSS using Finite Differences
(FD) to estimate the shear rate (du;/0r). In one approach
(green), the maximum shear rate, evaluated in the neighbor-
hood of each wall, is multiplied by the kinematic viscosity u
[62]. In the other approach (blue), an average of the neigh-
borhood shear rate is utilized. Specifically, in this case, the
average is calculated from the 6 data points closest to each

Footnote 3 (continued)

ues obtained from CFD, divided by the total number of available data
points.
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Bottom wall Top wall

(a) (b)
—Vu=duy
Vu = dju;

— (i,j € {1,3})

—Vu = Juy
Vu = dju;
(i,j € {1,3})

0 5 10 15 0 5 10 15
Xy [mm]

Fig. 14 Effect of dropping the lateral velocity component and axial
derivatives on WSS computation using the pseudo spectral method
truncated at 15 harmonics based on CFD-data: a Bottom wall, b Top
wall

wall [35]. Similar results are obtained when the computa-
tions employ the projected velocity onto the wall instead of
the axial velocity u; (dashed lines of the same correspond-
ing colors). In this particular case, the choice between using
the axial velocity u; or the projected velocity onto the wall
doesn’t seem to yield a noticeable difference in results. This
lack of distinction likely arises due to the experimental
setup, where the observation line passes through the axis
of the vessel. Additionally, it’s notable that results obtained
using the maximum shear rate method are comparable to
those obtained by the Poiseuille method, as both methods
differ only in their approach to evaluate the partial deriva-
tive ‘Z—‘:. The Poiseuille method appears smoother because
an average kernel was applied before plotting the results.
However, when using average values, a smoothing effect
occurs, which filters noise but also introduces error, resulting
in reduced estimations for the WSS.

Effect of Dropping the Lateral Component of Velocity

As the vessel geometry deviates from a perfect cylinder,
lateral components of velocity and variation of the velocity
in the axial direction appear. Although the axial velocity
and its variation in the lateral direction dominate the flow, in
principle, the remaining components should not be dropped.
In this Section, we present the effect of dropping those sec-
ondary components in practice.

Figure 14 compares the effect of including (red line) or
dropping (gray line) the du, /0x,, ou, /0x5, du;/0x; in the
PSM when CFD data is used as input and N = 15. Results
are almost identical; hence, for this particular case, one can
conclude that du;/0x; dominates the computation of the
WSS, and the remaining terms can be neglected, as done by
the Poiseuille method.

Analogously, Fig. 15 presents the same comparison when
ultrasound data is input and N = 5. In this case, some devia-
tion is observed in the stenotic wall (top wall), precisely at
the locations where the normal vector deviates from the unit
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Fig. 15 Effect of dropping the lateral velocity component and axial
derivatives on WSS computation using the pseudo spectral method
truncated at five harmonics based on ultrasound-data: a Bottom wall,
b Top wall

vector e,. Nonetheless, main trends, maximum and minimum
values are not significantly affected. We conclude that, in our
test, setting WSS~ pous /0x, is a reliable approximation. We
discuss this point further later on.

Discussion
Analytical and Noise-Free Data

When the data are retrieved from either the analytical solu-
tion or accurate CFD simulations, the Poiseuille-based
approach, based on polynomial interpolation, works prop-
erly. Results are accurate from both the mathematical and
the clinical points of view.

In the cases considered here, dropping the axial deriva-
tives of the radial and axial components and the axial deriva-
tive of the radial component did not significantly affect the
results. This was obviously expected in the Poiseuille flow
text case, where the dropped components are null. In the
stenotic case, this result is not trivial, yet quite evident.

With accurate data, the pseudo-spectral approach with an
appropriate number of harmonics matches the accuracy of
the polynomial interpolation.

The results obtained by including the axial component
and derivatives do not deviate significantly from the cases
when these components are dropped. However, it is worth
emphasizing that these conclusions correspond only to one
particular case when the axis of the (stenotic) pipe was rec-
tilinear. Hence, they should not be generalized, and a sys-
tematic study over a wide range of stenotic geometries is
needed for that purpose.

Real Data

When we apply the different methods to a real data set, the
performances are very different. Poiseuille-based methods
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Fig. 16 CFD velocity profiles
(blue) vs. US Data for different
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values of the axial coordinate: a 0 0 7
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(c)

suffer from the noise in the measures, to the point that the
WSS estimation looses reliability. This is particularly true
for the stenotic wall (top wall presented in Figs. 10, 11, 12,
and 13). Also the methods proposed in [35], being based on
the Poiseuille assumption and a FD approximation of the
derivatives (see Appendix), suffer from noise in the data,
even if the average of the evaluations potentially mitigate
this aspect.

On the contrary, the PSM provides results that reproduce
the pattern of the CFD results. The impact of the noise in
the estimation is apparent when we include more terms in
the truncated Fourier series. The selection of the value N of
the truncation should realize a trade-off between the accu-
racy and the denoising. In particular, the comparison of the
results for N = 5, 8, 10, 12, 15 shows that

1. the values N = 5 and 8 give good results on the straight
wall and an underestimation of the WSS on the stenotic
wall;

2. increasing the terms in the series improves the estima-
tion on the stenotic side but degrades it on the straight
wall.

X, [mm]

(d)

The WSS is lower on the straight side, so for a uniformly
distributed noise, we argue that the Signal-to-Noise Ratio
(SNR) is lower on this side. Correspondingly, the noise
shows up for a lower number of harmonics than for the sten-
otic side of the vessel.

This suggests that the choice of N may be related to the
position on the wall in correspondence with an estimation
of the SNR. We may notice, however, that the pattern of
the WSS is correctly captured on the stenotic side also for
N = 8, with a good localization of the WSS peak. We con-
clude that N = 8is a good choice for both sides, if we focus
only on the stenotic side N = 12 performs the best.

To understand better the discrepancies between the WSS
estimations and the CFD results, one needs to consider the
nature of the input data. Close-to-the-wall, data may be inac-
curate, and small measurement errors can drastically affect
the derivative estimation, particularly the one based on the
polynomial interpolation. Due to the segmentation in which
the pixels containing the wall were set to zero, ultrasound-
measured velocity values near the wall may not approach
zero smoothly, as one would expect, further contributing to
inaccuracies in the estimation of WSS. Along the same line,
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the PSM displays a systematic overestimation of the WSS
around 8 mm on the stenotic wall.

In Fig. 16, we report the CFD velocity profiles compared
with the US data. Here the stenotic side is on the right. The
discrepancy between the wall localization in the CFD and
the data on the stenotic side is apparent, as well as a sud-
den variation of velocity in the axial direction in some data
around the boundary. For low values of x; (Fig. 16a), the
difference is much smaller, than for x; around 8 mm. We
argue that this is the reason for the accuracy degradation in
this region. However, overall the pseudo-spectral approach
reveals to be a robust tool, able to filter the noise of the US
data and obtain a clinically accurate estimation of the WSS.

Use of Real Geometries

The technique proposed here can be promptly extended to
the case of 3D, extending the computation of the shear-
rate tensor to the out-of-plane components with the same
approach used for the axial velocity. However, currently we
have only 2D data and this potentially undermines the accu-
racy in real 3D geometries, in the presence of significant
out-of-plane velocity components. It is worth stressing that
this is a limitation of the available data, not of the methodol-
ogy per se. In the follow-up, we will consider 3D US data
for the WSS estimation using the PSM.

Conclusions and Perspectives

In this paper, a new approach for quantifying wall shear
stress (WSS) in coronary arteries using Doppler US imag-
ing is presented. WSS is a critical parameter for predicting
potential adverse events in cardiovascular and coronary dis-
eases. A reliable tool based on US data for the estimation of
the WSS is, therefore, an important contribution to avoiding
patient-specific CFD.

Our method aims to improve the accuracy of WSS estima-
tion by considering two factors. First, it takes into account
the directional variation of the two available velocity com-
ponents and vessel wall shape. Secondly, it copes with the
presence of measurement errors by using the Discrete Fou-
rier Transform (DFT) to interpolate the velocity data. The
conceptual novelty of our proposal relies mainly on using a
Fourier-based differentiation as opposed to classical poly-
nomial interpolation techniques that lead to classical FD
schemes (see Appendix). The advantage of the pseudo-
spectral method is that it relies on a harmonic analysis of the
data, so it naturally differentiates low and high-frequencies.
Since the noise in the data can be regarded as a high-fre-
quency perturbation, truncating the Fourier series introduces
naturally a de-noising filtering. To the best of our knowl-
edge, this approach was never used in the existing literature.

@ Springer

The approach was tested in two cases: a pipe with straight
walls (Poisseuille flow) and a stenotic case. The results
were compared against analytical solutions, Computational
Fluid Dynamics (CFD) results, and the Poiseuille method, a
methodology used in the literature that depends only on the
radial velocity of the closest three to four pixels to the vessel
wall. CFD-based WSS results were used as a benchmark.
Poiseuille-based methods are accurate under idealized con-
ditions but lack reliability when using ultrasound imaging
data. In contrast, the PSM is reliable also when using real
data, with proper calibration of the Fourier approximation.
In principle, the new method converges to the actual solu-
tion as the number of harmonics increases. However, when
using ultrasound imaging data, increasing the number of
harmonics introduces noise into the estimation, reducing the
overall accuracy.

With appropriate calibration of the Fourier series trun-
cation, the WSS pattern was reconstructed with very good
accuracy for what concerns the relevant information from
the clinical point of view. Nevertheless, PSM has clearly its
own limitations. It is not exact, since the computation of the
Fourier coefficients necessarily relies on numerical quadra-
ture. Also, the computations of the derivatives of the axial
velocity suffers from the approximations induced by the data
collection in the domain and not exactly on the boundary of
the coronary.

Upcoming research will involve extensive testing on more
complex and even patient-specific geometries [42], to assess
precisely the role of the axial component and derivatives in
the final WSS estimation. Should 3D data - including out-of-
plane components - be available, we will extend the approxi-
mation to the inclusion of the circumferential components of
the velocity. Another important topic will be the automatic
selection of the number N of harmonics to include, possibly
as a space-dependent function of the SNR. One possible
approach is to use artificial neural networks that have been
trained on CFD results from different stenotic geometries,
which could provide the user with an educated selection of
the parameter N.

Appendix A Recap of Approximation
and Differentiation Errors

In this Section, we recall some basic concepts of numerical
analysis for the interpolation of functions and for the cor-
responding differentiation.

Polynomial Interpolation

Let us recall some basic results of polynomial interpolation
(see e.g. [58]). Let us denote by L?([a, b]) the space of
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functions f'such that fa b F2(x)dx < oo (in the Lebesgue sense).

1/2
The corresponding norm reads ||f||,;> = < /, b fz(x)dx)
Let us denote by H; (x) the interpolating polynomial of the
values of fon equispaced nodes with step /& and degree k. We

assume that fis an L? function together with its first s (dis-
tributional) derivatives. Then, we can prove that

I =Tl 2 < CREMF Ny I = Pl < CRAFO e

Here, f denotes the derivative of order s of f. Also, here
and in the sequel C will denote a constant (not necessarily
the same in each occurrence) independent of the discretiza-
tion parameters (4 and k). In the case of the Poiseuille for-
mula, the interpolation currently adopted refers to either a
degree k = 2 on three nodes or k = 3 on four nodes (includ-
ing the point on the wall where the velocity is 0).

Notice that if the values of fused for the interpolation
are affected by noise, i.e. the interpolation relies on values
]NC,- = f; + v; where v, is a measurement error, it is possible to
prove that

max |HJ’§ - H]i| < Ajpmax |y

X f i
where A; (known as Lebesgue constant) scales with k like
2%+1 /(eklog(k)) (e is the Neper number).

Combining these results, we have that the approximation
error in the presence of noise reads

I = Tl <I = Tl + 0TS — T

<CHMYIFO ) + Ay VI max v,

where I is the length of the interpolation interval.

We are specifically interested in assessing the impact of
the noise on the derivative. Notice that the interpolating
polynomial can be written in the Lagrange form:

k _ k_ N7F
=Y fe, =270
J J
where j ranges on the interpolation nodes and

Hl,[;ej(x —X)

) = =————.
i Hl,l;&j(xj —xp)

We have therefore
!
k K\ _ ’
(=) = v
J

Specifically,

, 1
o=—e1 (x—x,). "
T g —x) 4 l,l;!j_,ll#m (in

Notice that the terms of the sum in Eq. (11), when evaluated
in the interpolating nodes (as we do for our estimation of the
WSS) do not vanish altogether simultaneously and scale like
K1 while the denominator scales like 4%, so that

X; |vi

/ max.
n’%—nﬁ) <c—17
|< S f < h

Setting |v,,,,,| = max; |v;|, we conclude
Y k[ £5) V|
(7 = TE) I < i+ e (12)

This inequality pinpoints the potential lack of robustness of
the derivative in the presence of noise, as / is related to the
resolution of the measurements (in our case, order of
microns), so it is generally quite small. In the presence of
purely random noise (no systematic errors), v; will be uncor-

related to v, , so the previous estimate cannot be improved.
. [V
The result is that the term

can significantly pollute the

quality of the approximation.
Pseudospectral DFT derivative

When we use the pseudospectral derivative, from the math-
ematical point of view we replace the derivative of the func-
tion with the derivative of its (generalized) discrete Fourier
series. This means that we write the original function with
the Fourier series

o0
f= Z Ci¥;
j=1

where 7 in our case, is the set of sinusoidal functions with
increasing frequency and

b
. fafu/jdx

= 13
= P (13)

with the integrals computed over the approximation interval.
N

If we replace f with the truncation fy = Y. c;y;, the error
j=1"

9]
reads ) c;y;. Since from the Fourier theory ¢; — 0 for
j=N+1 ’ ’
J — oo, the coefficient ¢, provides the leading term of the
approximation error.

In our approach, fis approximated by the truncated series
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-1.4 =

8 -187

N

Fig. 17 Difference between the quadratic function f(x) = x(x —2)
and its corresponding truncated sine  Fourier  series

N
=X ¢ sin(%x) as the number of terms N increases in the Fou-
=1

N_ N
I = ) &y

™=

J=1

where the ¢; are obtained by numerical quadrature of the
(13) involving the available measures. Specifically, we resort
here to the well-known Discrete Fourier Transform (DFT)
[58, 63].

The theoretical estimates available for the DTF deriva-
tive state that the error decays like N~"*+1 if a function is
differentiable r times in the interval of interest (including
the end-points), and its first derivative error decays like N~".
The convergence rate strictly depends on the regularity of
the function.

To exemplify these theoretical results, the quadratic func-
tion f(x) = x*> —2x in [0, 2] is selected to test the pseudo-
spectral derivative. Here, fis regarded as the portion in [0, 2]
of a periodic odd function.

Figure 17a shows in a logarithmic scale how

d(f.fy) = (/02 (r —f,\,)za’x>l/2 converges to zero as N

increases. This quantifies the error of the truncation. Simi-
larly, Fig. 17b shows the convergence of the difference
between their corresponding derivatives. The slopes of the
error in logarithmic scales confirm that the derivative errors
converge one order less than the values. The specific orders
(~ 2.4 and =~ 1.4) depend on the regularity of the periodic
replica of our function.

Figure 17c shows Dyatx=2 (where the coefficients are

computed with a trapezoidal quadrature formula), which
eventually converges to %(x = 2) = —-2.0. For example, the
derivative error is close to 20% for N = 1 and 5% for N = 5.

A significant advantage of the pseudo-spectral derivative
in this field is the robustness in the presence of noise. Spe-
cifically, we argue that, in the absence of systematic errors
(to be eliminated by accurate measurements devices and tun-
ing), the noise is a function v(x) with components in high
frequency, i.e.

@ Springer
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(c)

rier series (evaluated in the interval [0, 2]): a distance between func-
tions, b distance between function derivatives, ¢ Derivative value of
the truncated Fourier series at x = 0.

F=ftv=2G+d,
j=1

J

where the Fourier coefficients d] of the noise function v are
small for j small and high for large js. With this assumption,
we have, for an r-differentiable function,

(=1 ) e < (=11 s+ (Y = 1)
<ONT)+ | id,-w,’ Il

=1

Let us assume that the noise is negligible for j < M, i.e.,
dj ~ 0 for j < M. If we select N < M, we conclude that our
pseudo-spectral approximation is not affected by the noise.
More in general, from the practical point of view, the selec-
tion of N needs to realize the trade-off between the accuracy
(first term at the right-hand side of the last inequality) and
the robustness to the noise (second term). This is exactly
what we did in our WSS estimation from real measures.
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