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ABSTRACT Accumulating data suggest that some bat species host emerging viruses 
that are highly pathogenic in humans and agricultural animals. Laboratory-based studies 
have highlighted important adaptations in bat immune systems that allow them to 
better tolerate viral infections compared to humans. Simultaneously, ecological studies 
have discovered critical extrinsic factors, such as nutritional stress, that correlate with 
virus shedding in wild-caught bats. Despite some progress in independently understand­
ing the role of bats as reservoirs of emerging viruses, there remains a significant gap 
in the molecular understanding of factors that drive virus spillover from bats. Driven by 
a collective goal of bridging the gap between the fields of bat virology, immunology, 
and disease ecology, we hosted a satellite symposium at the 2024 American Society for 
Virology meeting. Bringing together virologists, immunologists, and disease ecologists, 
we discussed the intrinsic and extrinsic factors such as virus receptor engagement, 
adaptive immunity, and virus ecology that influence spillover from bat hosts. This article 
summarizes the topics discussed during the symposium and emphasizes the need for 
interdisciplinary collaborations and resource sharing.
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A cross the mammalian order, bats and rodents are the most diverse (1), with the 
bat order (Chiroptera) consisting of more than 1,470 species in over 20 families (2). 

Bats are keystone species of global ecosystems and perform essential ecological roles 
such as pollination, seed dispersal, and pest control. However, some bat species are also 
recognized as reservoir hosts of zoonotic viruses. These viruses include filoviruses [e.g., 
Ebola virus (EBOV) and Marburg virus (MARV)], henipaviruses (e.g., Hendra virus and 
Nipah virus), coronaviruses (CoVs) (e.g., SARS-CoV-like, SARS-CoV-2-like, and MERS-CoV-
like viruses), and lyssaviruses (e.g., rabies virus) (Fig. 1A). Interestingly, bat species 
infected with MARV and Nipah virus (3, 4), or other closely related viruses, experience 
low levels of observable pathology and do not show clinical signs of disease, although 
some exceptions exist. Tacaribe virus causes a fatal infection in experimentally infected 
Jamaican fruit bats (Artibeus jamaicensis) (5), rabies virus can cause lethal infection in 
experimentally infected common vampire bats (Desmodus rotundus) (6), and Lloviu virus 
(LLOV) is speculated to cause lethal disease in infected Schreibers’ long-fingered bats 
(Miniopterus schreibersii) (7). Thus, understanding the molecular factors that enable bats 
to better tolerate viral infections (Fig. 1B), along with determining extrinsic ecological 
factors that influence virus shedding in bats (Fig. 1C), will inform strategies to prevent 
virus spillover and future consequential outbreaks and pandemics.

Holistically studying factors that influence virus infection and shedding in bats will be 
best accomplished using a One Health approach. One Health is a concept that recognizes 
and emphasizes the interconnectedness of animal, human, and environment health. The 
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FIG 1 Studying bats using a One Health lens. (A) Some bat species are recognized as reservoir hosts of zoonotic viruses, 

including filoviruses, paramyxoviruses, and CoVs. The interaction of the CoV spike protein with cellular receptors is primarily 

mediated through the RBD. (1) Replication incompetent, vesicular stomatitis virus (VSV) pseudotyped viruses engineered 

with a generic CoV spike backbone and a replaceable RBD have been used to identify cellular receptors utilized by various 

sarbecoviruses and merbecoviruses. (2) Reverse genetics is an alternative approach to study the pathogenic potential of 

newly emergent viruses. Mühlberger et al. have developed this approach to generate infectious clones for LLOV, where a 

chimeric minigenome system complementing the missing genome ends of LLOV with the homologous regions from closely 

related filoviruses was used. LLOV isolates were used to evaluate virus replication in human and bat cell lines, along with 

the evaluation of pathogenicity in animal models. (B) Despite harboring viruses that are pathogenic in humans, infected 

bats do not show overt signs of disease. Research on bat immunity can help us understand the molecular factors that are 

involved in viral tolerance. One approach to studying bat immunity is the use of comparative genomic techniques and 

mechanistic characterization of cell signaling pathways and virus–host interactions. These approaches have demonstrated 

that some bat species have positively selected for genes within non-immune gene containing loci of their genomes to 

tolerate virus infections. The adaptation of new technologies to study bat immunology, such as scRNA-seq, has been 

critical for investigating immune cell populations without the need for cross-reactive reagents. (C) An important factor to 

prevent virus spillover from bats is understanding the intrinsic and extrinsic ecological factors that affect virus shedding in 

these mammals. Long-distance migration may function as a stressor for bats, as the energetic cost for undertaking such 

movements could weaken immune function. Migration occurs across bat families, and field studies that interrogate diverse 

metrics of glucocorticoid and immune activity across the annual cycle are needed to better understand how long-distance 

movements impact stress physiology, immune activity, and virus shedding in migratory bats. (D) Biosurveillance of bat 

populations is crucial for identifying and monitoring host species that may harbor pathogens. (3) Sero-surveillance, whether 

through detection of binding or neutralizing antibodies, can be a powerful tool for emerging zoonotic virus surveillance, 

circumventing challenges of detecting viral nucleic acid or virus isolates from sub-clinically infected wildlife hosts. Laing et al. 

have developed antigen-based multiplex serology assays to detect zoonotic viruses in bats, non-human animals, and humans 

(Continued on next page)
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concept of One Health is particularly relevant for zoonotic pathogens, including viruses 
that originate in bats. For example, a recent study by Eby et al. (8) demonstrated that 
land-use change and climate change are altering bat residency, which is driving food 
shortages and clusters of virus spillover.

During the bat satellite symposium held at the 2024 American Society for Virology 
meeting, bat virologists, immunologists, and disease ecologists came together to share 
updates on their research, followed by a panel discussion on future directions for the 
fields. Here, we summarize key discussions from the satellite symposium (Table 1).

BATS AND THEIR VIRUSES

Since the emergence of SARS-CoV in 2002, MERS-CoV in 2012, and SARS-CoV-2 in 2019, 
thousands of related CoVs have been identified by genome sequencing of samples 
collected from diverse wildlife species and geographic locations (9–14). Unfortunately, 
due to the multitude of challenges with isolating viruses, many of the discovered 
viruses remain uncharacterized, leaving critical knowledge gaps about their potential 
to infect humans (15). To address this seemingly intractable problem, Letko et al. (15–18) 
developed a scalable approach to study CoV spike-mediated cell entry, which remains 
critical to understanding a virus’ ability to jump cross-species molecular barriers (Fig. 1A). 
Since the interaction with cellular receptors is primarily mediated through the receptor-
binding domain (RBD) within the CoV spike protein, a generic CoV spike backbone with 
a replaceable RBD was generated (17). Unlike the whole spike, the gene sequence for an 
RBD can be synthesized in 4–6 days for as little as US$120. With this approachable and 
cost-effective tool, Letko et al. (17) tested almost a dozen RBDs for less than the cost of 
synthesizing one full CoV spike gene. In their proof-of-concept study with the Sarbeco­
virus subgenus, which includes SARS-CoV and SARS-CoV-2, they developed a panel of 
chimeric spikes with RBDs from 30 sarbecoviruses representative of every natural, unique 
RBD that has been published to date (17). This panel revealed large numbers of viruses 
with human cell compatibility—some with known receptors and some with completely 
unknown routes of entry. The approach was also rapid, allowing for the characterization 

Fig 1 (Continued)

and are constructing sero-epidemiology models to elucidate spillover drivers. (4) Accurate identification of host species is 

essential for effective biosurveillance. DNA barcoding is a common molecular method for species identification, involving 

voucher specimen which can additionally be used for the generation of cell lines for in vitro work. The accuracy of DNA 

barcoding can be enhanced by ancillary ecological data, such as echolocation calls.

TABLE 1 2024 American Society for Virology bat satellite symposium program

Speaker Session title

Elke Mühlberger Assessing pathogenic potential and risk factors of newly 
discovered bat-derived filoviruses

Michael Letko Functional viromics of betacoronavirus entry
Hannah Frank Virus-driven selection and immunogenic evolution in 

bats
Eric Laing Sero-surveillance as a tool to identify most probable 

bat hosts and population-level prevalence of zoonotic 
viruses

Kendra Phelps Capturing ancillary ecological data during field 
biosurveillance – getting the most bat for your buck

Daniel Becker Bat long-distance migration, immunity, and viral 
dynamics in the wild

Vincent Munster, Stephanie Seifert, Tony 
Schountz, and Arinjay Banerjee

Open discussion on where the bat virology and disease 
ecology fields are headed and how we may synergize 
our scientific efforts
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of the SARS-CoV-2 receptor in the laboratory, without having to acquire a virus isolate or 
patient samples, just 12 days after the genome was published in January 2020 (17).

In their most recent work, Letko et al. (16) applied this concept of testing synthesized 
spike fragments from the Merbecovirus subgenus, which includes MERS-CoV. Merbecovi­
ruses have been discovered in more bat species and over a wider geographic range 
compared to sarbecoviruses, potentially representing a greater zoonotic threat. The high 
sequence diversity among merbecoviruses is a significant challenge to the chimeric spike 
approach because there are few conserved amino acid stretches that flank the RBD in 
viruses of this subgenus. However, a pair of conserved glycine residues that delineated 
the exchangeable domain was identified, effectively allowing for the production and 
testing of 35 chimeric spikes representative of the published diversity for merbecoviruses 
(16). Screening of this panel against human and animal orthologues of known CoV 
receptors revealed known and new virus receptor interactions. Merbecovirus RBD clades 
were identified based on spike sequences and entry into Vero E6 and Huh-7.5 cell 
lines, resulting in four clades that can be applied to describe any merbecovirus. Clade 
1 viruses use dipeptidyl peptidase IV (DPP4), clade 2 viruses use human and ortholo­
gous angiotensin-converting enzyme 2 (ACE2) in reservoir species, clade 3 viruses use 
only orthologous ACE2 in reservoir species, and several clade 4 RBDs use an unknown 
receptor to infect human cells (16). ACE2 was identified as the receptor for the entire 
HKU5 complex of merbecoviruses, which has been an elusive virus–host interaction in 
the field for almost 20 years (16). Importantly, this information provides a new framework 
for studying merbecoviruses and the evolution of their diverse receptor usage. This 
ongoing work will also identify merbecoviruses that carry the highest level of human 
cell compatibility, which is crucial for pandemic preparedness and broad-spectrum 
therapeutic design.

In addition to CoVs, some bat species are reservoir hosts of filoviruses, a group of 
negative-sense RNA viruses. Some members of the Filoviridae family, including EBOV, 
Sudan virus, and MARV, cause severe disease in humans with high case fatality rates 
(19). Due to recent advances in high-throughput sequencing technologies, genomic 
sequences of unknown filoviruses have been found in various vertebrate species, 
including bats, snakes, and fish (7, 20–25). This includes LLOV that was first detected 
in carcasses of Schreibers’ bats in Spain in 2002 (7, 26), with recent isolation of the 
virus from Schreibers’ bats in Hungary in 2022 (27, 28). The emergence of LLOV in Spain 
and Hungary correlated with unexplained increased mortality among Schreibers’ bat 
colonies, including signs of respiratory distress, but it remains unclear if the fatalities 
were caused by LLOV infections (7, 29). The close relationship of LLOV to the highly 
pathogenic EBOV and MARV raises questions about its pathogenic potential for humans.

There are several challenges to studying the pathogenic potential of newly emergent 
viruses, such as LLOV. First, there might only be sequence information available but 
no isolates for infection studies. Second, while reverse genetics tools can be used to 
generate infectious clones based on published sequences, these sequences can be 
incomplete or erroneous. To address these issues, Mühlberger et al. (30) established 
a chimeric minigenome system for LLOV, where the missing genome ends for LLOV 
were complemented with the homologous regions from closely related filoviruses (Fig. 
1A). Based on the minigenome results, recombinant infectious LLOV (rLLOV) clones 
were generated and used to evaluate pathogenicity (Fig. 1A). Studies with rLLOV also 
included assessment of host and cell tropism, replication efficiency, and innate immune 
signatures in critical target cells of filovirus infection, including Schreibers’ long-fingered 
bat-derived kidney cells (SuBK12-08) and human-derived cell lines (31). Mühlberger et 
al. demonstrated that rLLOV can infect human cells, but it replicates slowly and fails 
to induce an inflammatory response in macrophages (31), in which the induction of 
an uncontrolled inflammatory response is a hallmark of fatal EBOV disease. These data 
were further supported by infection of interferon-α/β receptor knockout mice with 
authentic LLOV isolated from Schreibers’ long-fingered bats in Hungary (27), which did 
not show signs of disease (32). Together, these data suggest that LLOV poses a low 
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risk to human health. Furthermore, these data suggest a tractable workflow to assess 
the pathogenic potential of newly emergent viruses and identify bottlenecks, such as 
missing or erroneous sequence information that hamper work on these viruses.

BAT IMMUNITY

Compared to humans and mice, understanding of bat immunology is limited in part 
because of species diversity and a lack of animal models, resources, and reagents (Table 
2) (33). Much of the focus on bat immunology has been centered around the innate 
immune system (34–43). Additionally, a number of comparative genomic studies and 
functional characterizations have shown that bats have positively selected for genes 
within the non-immune loci of their genomes that are thought to help resist viruses 
(44–47). Although findings vary greatly between pathways and bat species, taken 
together, these studies suggest that bat immunity shares many of the fundamental 
signaling pathways that are found in humans, mice, and other mammals, with bat-spe­
cific adaptations that may aid in their resistance to or tolerance of viruses (48). However, 
even with these studies, much remains to be learnt about virus–host interactions in bats. 
Knowledge about the adaptive immune system of bats, especially B- and T-cell subsets 
and receptor repertoires is particularly limited when compared to knowledge of the bat 
innate immune system (48–50). Perhaps the biggest challenge in studying bat immunol­
ogy is understanding the differences in immunity and pathogen response between the 
over 1,470 bat species. Bats vary widely in their ecology, geography, and viral flora (15, 
51–53); all these factors have likely impacted the evolution of antiviral immunity. For 
example, straw-colored fruit bats (Eidolon helvum), found in the same geographic areas 
as EBOV, may have evolved to be refractory to EBOV infection (44). In addition, ACE2, 
DPP4, and other host proteins bound by CoVs are widely variable across bats (45). Due to 
constraints such as a paucity of captive colonies, traditional immunological reagents, and 
conservation concerns, most knowledge on bat immunity draws from a limited number 
of species (54).

Trends are changing as researchers adapt new technologies and existing tools to 
these non-model organisms (Fig. 1B). Next-generation sequencing techniques are often 
species-agnostic and have proven particularly useful for gaining insights into resistance 
of bats to infection. Transcriptomics has helped clarify bat responses to infections 
(61–64) and can be done from field samples (65). Long-read sequencing techniques 
have enabled the generation of reference bat genomes, along with insights into how 
gene loss and expansion may have impacted bat immunity and inflammation (66–69). 
Single-cell RNA sequencing (scRNA-seq) has been particularly useful for investigating 
immune cell populations without the need for antibodies specific to different cell types 
that are required in traditional flow cytometry analyses (61, 70, 71). Advances in the 
qualities of genomes and scRNA-seq have also yielded significant insights into bat B- 
and T-cell receptor repertoires (49), including the finding that bats in the Vespertilioni­
dae family, the largest bat family, have two, independent, functional immunoglobulin 
heavy chain loci (72). Similarly, proteomics has provided additional insights into the bat 
immune phenotype in the wild and in response to viral infection (73–75). Additionally, 
as interest in bat immunology has increased, more institutions are establishing captive 
colonies for in vivo work, and researchers are creating primary cell cultures from a wider 
variety of species to test hypotheses in vitro (76, 77). These emerging methods will 
enhance knowledge not only of the fundamental components of bat immune systems, 
particularly the adaptive immune systems that are not well studied, but also of how 
conserved these mechanisms are across diverse bat species. Finally, a better understand­
ing of how reservoir bat species better tolerate viral infections may one day pave the 
path for bat-inspired antiviral therapeutics for humans (54).

ECOLOGICAL PHYSIOLOGY

One of the central hypotheses to explain when and where bats actively shed viruses 
focuses on the role that physiological stress may play in disrupting tolerance of infection 
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(78–80). Early work demonstrated links between stressors such as pregnancy and food 
scarcity with Hendra virus seropositivity in little red flying foxes (Pteropus scapulatus) (81), 
with more recent work showing food shortages interact with displacement of pteropid 
bats into novel habitats to predict seasonal pulses of Hendra virus shedding (82). 
Such patterns are likely explained by linkages among energetic demands, glucocorti­
coids, and immunity (Fig. 1C). Like any vertebrate, bats use glucocorticoids to increase 
energy mobilization and reallocation to meet immediate demands, but this can occur 
at the expense of physiological processes like the immune response (83, 84). However, 
the immune mechanisms linking stressors and viral shedding in bats remain poorly 
understood (85), and such work has focused predominantly on food scarcity with less 
attention to other energetic demands of bats in the wild (86, 87).

Long-distance migration—defined as the seasonal, two-way movement of individuals 
between reproductive and wintering grounds (88)—has been established as a stressor 
in other taxa such as birds (89), where the energetic costs of preparing for or undertak­
ing such movements can weaken immune function and allow chronic infections to 
reactivate (90, 91) (Fig. 1C). In contrast, such impacts of migration for bats have not 
been adequately explored. Migration occurs across bat families but is most common in 
the Vespertilionidae and Molossidae, where certain species seasonally migrate between 
100 and 2,000 kilometers (92, 93). To date, studies of bats have shown that the energy 

TABLE 2 Resources available for bat-related research

Resource Description

Bat1K Project An initiative to generate and annotate genomes for all living bat species
Bat Conservation International An organization committed to conserve the world’s bats and their ecosystems through 

research
Bat Eco-Interactions A platform for scientists to investigate bats and their role in our environment
Bat One Health A forum for scientists interested in the connections between environmental change and 

health, where the goal is to understand pathogen emergence from bats
Batnames.org A dynamic resource for the most up-to-date bat taxonomy, including number of bat 

species recognized
ChiroVox The largest public library of bat calls currently available (55)
A Coalesced Mammal Database of Intrinsic and Extrinsic 

Traits
A comparative data set of ecological and life history traits among mammals (56)

Database of Bat-Associated Viruses A comprehensive, up-to-date database of viruses detected in bats (57)
DarkCideS 1.0 A global database of bat caves and species, providing geographical location, ecological 

status, species traits, and parasites and hyperparasites (58)
EuroBaTrait 1.0 A species-level trait database of bats in Europe, including genetic composition, physiology, 

morphology, acoustic signature, roost type, diet, etc (59)
Global Union of Bat Diversity Networks A community of bat researchers focused on enhancing research addressing bat 

diversification and sustainability
Global South Bats A community of bat researchers in the Global South coming together to find solutions to 

common bat conservation challenges
The Global Virome in One Network data set The largest open-access database on vertebrate–virus associations (60)
Latin American and Caribbean Bat Conservation Network A network of 25 countries in Latin America and the Caribbean that promotes research and 

bat conservation
North American Society for Bat Research A group that facilitates communication and collaboration among scientists, educators, and 

the public to promote the study and conservation of bats
WildTrax An open data platform for environmental sensors, helping contribute data to the broader 

NABat program and international assessments
Eptesicus fuscus kidney cells (EfK3B) Immortalized kidney cell line available through Kerafast (#CVCL_GZ34)
R. aegyptiacus fetal cells
(R06E)

Immortalized fetal cell line available through BEI Resources (#NR-49168)

Tadarida brasiliensis lung cells
(TbLu–1)

Primary lung-derived cell line available through ATCC
(#CCL-88)
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demands of migration can equal that of reproduction (94), where switching from the 
pre-migratory to migratory season occurs alongside adjusted allocations in different 
arms of the immune response (95), and that some measures of immunity differ between 
migratory and non-migratory individuals (96, 97). Field studies that interrogate diverse 
metrics of glucocorticoid and immune activity at fine time intervals across the annual 
cycle are needed to better understand if these long-distance movements function 
as a stressor in bats. Such work could be further advanced by adopting multi-omics 
approaches relevant to bats (65, 73) and by ultimately assessing biomarkers of enrich­
ment in relation to viral positivity (74). These studies could then guide experimental 
approaches, such as by using glucocorticoid levels seen during migration in the field 
to inform in vitro or in vivo challenge studies that test effects on immunity and virus 
replication (33, 85). Methods used to study flying animal movement, including wind 
tunnels and the Motus Wildlife Tracking System (98), could also be used to quantify how 
migratory timing and duration affect bat stress physiology, immune activity, and viral 
shedding.

Animal migration has long been recognized as an important factor in shaping 
infectious diseases (99), and long-distance migration of bats in particular has the 
potential to affect where and when human exposure to zoonotic viruses is likely (100, 
101). There remains an important need to understand how these seasonal, energeti­
cally costly movements affect immunology and the downstream implications for viral 
transmission and spatial spread (102). Robustly assessing when and how migration 
influences how bats tolerate zoonotic viruses is critical to better understand virus–host 
interactions and improve the ability to predict transmission risks.

BIOSURVEILLANCE AND BAT SPECIES IDENTIFICATION

In recent years, Nipah virus, EBOV, and MARV have been detected outside their historic 
ranges (103–107). While zoonotic transmission events leading to disease outbreaks are 
rare, these events highlight the challenges of rapid diagnostic confirmation and outbreak 
mitigation. In practice, there is a limited window of opportunity during which viruses 
are actively shed from a host. Evidence indicates that certain species of bats, such 
as Pteropus spp. and Eidolon spp. are hosts of henipaviruses, and Rousettus spp. and 
Mops spp. are hosts of filoviruses (4, 25, 108–117). However, many virus–host relation­
ships remain less-defined, such as the case of EBOV (118, 119), which weakens early 
warning detection and global health security. Detection of viremia or virus shedding 
from bats is rare, especially for filoviruses, which are seldom identified via molecular 
analysis of non-lethally collected blood and mucosal samples. This makes it difficult to 
detect active infections without knowing a priori when they occur. In contrast, wildlife 
hosts may have detectable antibodies against specific pathogens for months or years 
following productive infection. Thus, measurement of virus-specific immunoglobulin G 
(IgG) antibodies provides indirect detection of previous infections and thus an alternate 
form of zoonotic virus surveillance (Fig. 1D), which can be leveraged to infer viral 
transmission dynamics in wildlife populations (120). Though it is important to note that 
in experimentally MARV-infected Egyptian fruit bats (Rousettus aegyptiacus), virus-spe­
cific IgG antibodies detected by enzyme-linked immunosorbent assay or microneutrali­
zation rapidly waned with bats losing detectable neutralizing antibodies in roughly 3 
months, thus highlighting potential differences between field- and lab-based studies 
and perhaps also between bat species and virus types (121).

Most statistical approaches to interpreting serosurveillance data are limited to 
single-antigen analysis, which limits understanding of bat immunology and virus 
circulation within bat populations and communities. Furthermore, expected and 
unexpected antibody cross-reactivity frequently confounds conclusions from both single 
and multiple-antigen assays. For example, orthoebolavirus-positive antisera are highly 
cross-reactive with protein antigens from heterotypic EBOVs (122). Antigenic cartogra­
phy permits visualization and an understanding of the relationship among viruses based 
on antigenicity instead of phylogenetics (123). Antigenic maps have been widely used 
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within influenza and SARS-CoV-2 studies to aid in guiding effectiveness of ancestral 
infection and vaccine-induced immunity against novel variants and strains (124–127). 
The development of antigenic maps for other priority zoonotic viruses, such as filoviruses 
and henipaviruses, could aid in establishing expectations of cross-reactivities between 
genetically characterized viruses (128) and assist in the rapid identification of antigeni­
cally novel viruses that are currently genetically undiscovered. Access to and serological 
testing of confirmed post-infection or post-immunization sera would be a first step 
toward understanding the serogroup relationships.

Laing et al. (129–131) have developed antigen-based multiplex serology assays to 
detect and identify zoonotic viruses and develop models that highlight underlying 
seasonal patterns of virus circulation and drivers of virus release in bat host populations, 
which are being used in active biosurveillance projects. New approaches such as phage 
immunoprecipitation sequencing (PhIP-seq) can facilitate a complete antibody profile of 
an individual’s virome (132–134). However, cross-assay comparisons of peptide-based 
PhIP-seq and antigen-based multiplex tests will be necessary to validate epitope 
selection and interpretation of sero-surveillance. Ultimately, serosurveillance is useful 
for building sero-epidemiological models to elucidate the drivers and processes of virus 
transmission, estimating force-of-infection for zoonotic viruses, and providing valuable 
prevalence data to develop spatiotemporal spillover distributions and interfaces with 
sufficient resolution to inform mitigation strategies.

Biosurveillance of bat populations is crucial for identifying and monitoring host 
species that may harbor pathogens (135). Despite its importance, several gaps hinder the 
effectiveness of current biosurveillance efforts, particularly validation of the taxonomic 
assignment of bat species from which diagnostic samples were collected for pathogen 
screening, limited integration of ancillary ecological data to improve species identifica-
tion and to provide context for interpreting bat-pathogen dynamics, and a lack of data 
sharing on publicly accessible databases.

Accurate identification of host species is essential for effective biosurveillance. DNA 
barcoding is the most commonly used molecular method for confirmation of species 
identification (136); however, conclusions about species identification based solely on 
a few hundred base pairs may lack the reliability needed to accurately differentiate 
closely related species (137). An example of this are two sibling bat species, the lesser 
mouse-eared bat (Myotis blythii) and the greater mouse-eared bat (Myotis myotis) (138), 
which are thought to undergo cryptic hybridization in areas where they coexist, such as 
Türkiye (139). To enhance the accuracy of species identification in bat biosurveillance, it 
is essential to complement host DNA barcoding with ancillary ecological data that can 
be easily collected in a field setting, such as echolocation calls (Fig. 1D). Echolocation 
calls are species-specific for most bat species and can provide an additional layer of 
confirmation for species identification (51), which can be particularly useful in areas 
where barcoding may fall short. Echolocation data can provide valuable insights into bat 
behavior, such as foraging patterns, roosting habits, and migration routes (51), which 
is informative for identifying high-risk areas for pathogen transmission. Furthermore, 
echolocation detectors are more affordable and compact, with some like the Echo 
Meter Touch (Wildlife Acoustics) costing as little as US$179 and function using most 
smartphones and tablets, making detectors easily obtainable for bat biosurveillance 
studies.

A voucher specimen is a preserved whole-body organism and/or associated samples 
that serve as a verifiable and permanent record of a species occurrence from a spe­
cific location and at a specific time (140). The goal is for each voucher specimen 
to be a holistic specimen, where frozen tissues, as well as biological and diagnostic 
samples are collected in addition to dried skin and skeleton to maximize the amount 
of information collected from a single euthanized individual (141). Holistic voucher 
specimens preserved during field sampling and deposited for long-term storage in 
curated collections represent a pre-existing tool that can aid in pandemic preparedness, 
in addition to the identification of host species when zoonotic spillover events occur 
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(Fig. 1D) (142). If voucher specimens are preserved during field sampling, the origin of 
zoonotic diseases and viral spillover events could be more accurately and easily assessed. 
For infectious disease research, this ability to verify the host species identity coupled 
with ancillary ecological data is incredibly important in determining how pathogens can 
infect humans and the possible routes of transmission (143).

While the collection of diagnostic samples for molecular screening of viruses is 
often the primary focus of wildlife biosurveillance, taking a One Health approach by 
collecting ancillary ecological data can better inform virus-host dynamics. Combining 
host barcoding with echolocation and other ecological data types, such as holistic 
voucher specimens, with molecular screening for potential pathogens will create a more 
robust and comprehensive One Health approach to better inform transmission risk and 
develop intervention strategies (Fig. 1D). Moreover, sharing ecological ancillary data 
such as depositing voucher specimens in curated collections, publishing echolocation 
recordings, or uploading species occurrence records (e.g., ~4,300 individual occurrence 
records from the Western Asia Bat Research project published on the Global Biodiversity 
Information Facility) in publicly accessible databases benefits the scientific community 
including wildlife biosurveillance studies (144, 145).

FUTURE DIRECTIONS FOR THE FIELD

The fields of virology, immunology, and disease ecology have made steady progress 
to better understand disease tolerance and virus transmission in bats. However, during 
the symposium, it was evident that the lack of interdisciplinary collaborations between 
the three fields has left critical knowledge gaps that can only be addressed by larger 
multi-disciplinary studies. For example, studies have identified stressors in wild-caught 
bats that correlate with virus shedding, but the lack of molecular studies impedes our 
understanding of how and when infected bats shed viruses. Furthermore, biosurveillance 
studies have identified multiple novel viruses in bat species, but the lack of mechanistic 
studies has left gaps in our understanding of viral pathogenesis, transmission, and 
disease tolerance in these bats and other susceptible species. Indeed, for a holistic 
understanding of disease tolerance and viral shedding in bats, there is a need to develop 
large interdisciplinary, collaborative studies, for which we need to develop resource-shar­
ing platforms and funding mechanisms (Table 2).

There is also a need to study viruses and other microorganisms that are pathogenic in 
bats. Current research efforts are predominantly focused on bat-associated viruses with 
zoonotic potential. Thus, research on viruses that cause disease in bats, such as Tacaribe 
virus, is largely limited. In addition, non-viral microorganisms, such as bacteria, have not 
been extensively studied in bats, although microbiome profiling has been performed in 
some bat species, and some bacterial taxa (such as bartonellae and mycoplasmas) have 
been more robustly studied in bats (146–148). Furthermore, there is limited research on 
the ecological overlap of bat species and other animals. Studying the environment along 
with the animals and their microbes using a One Health lens will lead to a more holistic 
understanding of interactions that occur between various animal species, including bats 
and their microbes, and lead to the discovery of extrinsic factors that influence pathogen 
shedding in wildlife.

Bat research has been slow over the last two decades largely due to the lack of 
molecular tools and cross-reactive reagents that would enable researchers to compre­
hensively study immunity and infection in the over 1,470 bat species. Indeed, the need to 
develop a resource-sharing platform along with interdisciplinary funding opportunities 
was strongly highlighted during the closing panel discussion (Table 2). The conclud­
ing session once again highlighted the need to bridge the gap between field- and 
laboratory-based studies to better understand how bats tolerate virus infections, along 
with discovering and characterizing the intrinsic and extrinsic factors that lead to virus 
shedding in bats. In summary, the field of bat research is rapidly growing, and this area of 
research presents a unique opportunity for trainees to hone their skills in applying One 
Health solutions to zoonosis and wildlife conservation.
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