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ABSTRACT
The paper provides the �rst provable security analysis of the But-
ter�y Key Mechanism (BKM) protocol from IEEE 1609.2.1 standard.
The BKM protocol speci�es a novel approach for e�ciently re-
questing multiple certi�cates for use in vehicle-to-everything (V2X)
communication. We de�ne the main security goals of BKM, such
as vehicle privacy and communication authenticity. We prove that
the BKM protocol, with small modi�cations, meets those security
goals. We also propose a way to signi�cantly improve the protocol’s
e�ciency without sacri�cing security.
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1 INTRODUCTION
1.1 Motivation
V2X. Vehicle-to-vehicle (V2V) communication, where vehicles ex-
change messages with other vehicles (e.g., vehicle’s speed, head-
ing, braking status, etc.), along with other types of vehicle com-
munications, such as vehicle-to-infrastructure (V2I) and vehicle-
to-pedestrian (V2P), collectively known as vehicle-to-everything
(V2X), have the potential to signi�cantly improve safety and e�-
ciency of our transportation system. The U.S. Department of Trans-
portation (DOT) – National Highway Tra�c Safety Administration
(NHTSA) estimated that when fully deployed, V2V communications
can help prevent up to 592,000 crashes and save up to 1,083 lives
per year [22]. In 2017, the DOT proposed a rule [1] to mandate
the inclusion of V2V technology in light vehicles in the US. Even
though the proposed rule didn’t materialize into a mandate, in their
recent draft V2X deployment plan [5], the DOT has set short term
(2024 – 2026), medium term (2027 – 2029) and long term (2030 –
2034) goals that include a fully deployed national highway system,
6 vehicle manufacturers and 20 vehicle models to be V2X capable.

V2X communication has its own unique challenges and require-
ments:

• Privacy: Vehicles need protection from being tracked as they
are continuously sending sensitive information.
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• Trust: Vehicles need assurance that incoming messages are
from genuine senders that have been allowed to participate
in V2X.

• Resource constraints: Vehicles have limited resources in
terms of connectivity, compute, storage, etc.

IEEE Standards. To address the above, the IEEE Std 1609.2 [2]
speci�es digital certi�cate formats and the IEEE Std 1609.2.1 [4]
speci�es certi�cate management protocols. Both these standards
are the de facto speci�cations for securing V2X communications in
the US [3], and form the bases for speci�cations elsewhere including
Europe and China.

Vehicles are issued digital certi�cates that they use to digitally
sign messages so that the receiver of those messages can verify the
signatures and be sure that the messages are coming from a genuine
sender. Those certi�cates are designed to be pseudonym, i.e., the
certi�cates do not contain any identifying information, and instead
contain permissions to send certain types of messages. Vehicles are
also provisioned with not one but several concurrently valid and
seemingly unrelated certi�cates, so that they don’t need to use any
particular certi�cate for a prolonged period.

Butter�yKeyMechanism. The IEEE Std 1609.2.1 speci�es a novel
approach for requesting multiple certi�cates e�ciently through a
cryptographic protocol called the Butter�y Key Mechanism (BKM).

We brie�y and informally describe the protocol, also see Figure 1
for the pictorial description. The protocol involves three parties: an
end entity (EE), e.g., a vehicle, a registration authority (RA), and an
authorization certi�cate authority (ACA). The EE has two caterpillar
secret-public key pairs and two keys for pseudorandom functions,
where one is used for signing and the other for encryption. Using
the caterpillar secret keys and the pseudorandom function keys, the
EE creates two sets of cocoon secret keys, one set for signing and
the other for encryption. The RA, who gets the caterpillar public
keys and the pseudorandom function keys from the EE over a secure
channel, can create the corresponding sets of cocoon public keys
for signing and encryption.

Next, the RA permutes the cocoon public key sets from a large
number of EEs, and sends the permuted cocoon public keys to the
ACA. The ACA picks a random o�set for each caterpillar signing
key, creates the corresponding butter�y public key and a digital
certi�cate for it, encrypts all of these under the cocoon public key
for encryption, signs the ciphertexts, and sends those back to the
RA. The RA “un-permutes” the responses and forwards them to the
EE. The EE veri�es the signatures, decrypts the ciphertexts using
its cocoon secret key for encryption, and obtains the o�sets. Using
these, the EE computes the butter�y secret and public keys and
veri�es the certi�cates for the latter. We provide the protocol details
in Section 3.3.
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The butter�y key mechanism (cf. clause 9.3 in [4], and [14, 27])
has the following unique privacy and e�ciency features:

• The certi�cate requester needs to make just one request to
obtain essentially unlimited number of seemingly unrelated
pseudonym certi�cates.

• The certi�cate provider that includes two distinct entities,
registration authority and certi�cate authority, can’t tell if
any two pseudonym certi�cates belong to the same EE or
not, as long as the registration and certi�cate authorities do
not collude with each other or with other entities.

Despite its importance and being on the verge of a massive
deployment, the Butter�y Key Mechanism (BKM) protocol, stan-
dardized in IEEE Std 1609.2.1 has not been formally analyzed. The
works [14, 27] describe the protocol along with the intended secu-
rity and privacy properties, but do not provide a formal analysis.
Simplicio et al. [25] suggests an e�ciency improvement so that
EEs could avoid sending the encryption keys to the RAs as those
keys could be derived by the parties using the same key expansion
mechanism. Their security analysis is very informal.

1.2 Our Contributions
We provide the �rst provable security analysis of the Butter�y Key
Mechanism protocol.

Protocol Syntax and Description. We start with de�ning the
Butter�y Key Mechanism (BKM) protocol’s functionality (syntax)
in Section 3.2. Our syntax follows the �ow of the BKM as speci�ed
in IEEE Std 1609.2.1, hereafter referred as IEEE BKM, but is general
enough to capture the modi�cations we suggest and some new
protocols.

We then describe (in Section 3.3) the IEEE BKM following our
syntax.

Security De�nitions. Next, we provide the security de�nitions
for BKM protocols. Our security de�nitions capture two security
goals BKM protocols aim to achieve for end entities – privacy
(anonymity/unlinkability) and unforgeability (authenticity). For
both of these goals we consider di�erent threat models depending
on which parties are corrupted. We assume that EEs are honest
(though we do discuss what happens if some of their keys get
compromised). We consider the cases when either the RA or the
ACA are corrupted. We also consider the strongest case when both
RA and ACA are corrupted and colluding. In all these cases, we
make the following assumptions, which follow the setup in prac-
tice. The communication between EEs and the RA is private and
authenticated, and the communication between the RA and the
ACA is authenticated. EEs have what are called enrollment certi�-
cates, which they use to sign the requests to the RA. This helps
prevent impersonation attacks on EEs. The caterpillar keys of EEs
are always honestly generated and thus have the right distribution
and are independent from each other. Each EE is communicating
with a single RA, and each RA may talk to several ACAs. For each
corruption case, we consider attackers who learn all the public
information and everything the corrupted party knows. We assume
the attacker is active and can deviate from the protocol.

The goal of the attacker in the privacy experiment is to distin-
guish whether two butter�y public keys belong to the same EE

or two di�erent EEs. The goal of the attacker in the unforgeabilty
experiment is to forge a signature under any butter�y public key.
Security Analysis. Our main contribution is the security analysis
of IEEE BKM.
P������.We start with the goal of privacy. If both ACA and RA are
corrupted, then no privacy can be achieved by a BKM protocol1.
This is because the attacker (by corrupting the ACA) will know the
butter�y public keys and the corresponding certi�cates of the EE,
and (by corrupting the RA) to which EE the certi�cates are returned.
In particular, the attacker can link public keys and certi�cates to
EEs (whether they belong to the same EE or not, and moreover,
which public key is whose). Hence no EE privacy can be achieved.
And of course, the certi�cates cannot be trusted as they may have
been produced by the attacker on behalf of the ACA.

If only the RA is corrupted, then EE’s privacy depends on how
the corrupted RA deals with ACAs. If there are multiple ACAs and
EEs the RAworks with, then privacy in the strong sense cannot hold
as a malicious RA can do the following attack. Say, the corrupted
RA gets requests from EE1 and EE2, and each is expanded into
several cocoon keys using the expansion function. Then the RA can
send ACA1 all requests from EE1 and ACA2 all requests from EE2.
Later, the attacker will not be able to tell the EEs’ keys apart, but it
will be able to tell their certi�cates apart, as they will be signed by
di�erent ACAs.

If there is a single ACA for all the EEs that the RA services,
then privacy can hold. If there are multiple ACAs, and if RA sends
fractions of requests from each EE to several ACAs, then privacy
can hold within each EE-ACA batch. In practice, however, it is
extremely unlikely that an RA will use more than one ACA to
generate certi�cates. The most likely scenario is where a vehicle
manufacturer contracts a Security Credential Management System
(SCMS) provider, so there will be a one-to-one mapping between
the RA and the ACA. Our de�nition captures both cases.

To prove that privacy holds, we would like to use the fact that
the underlying public-key encryption scheme, ECIES is secure. But
the standard security (indistinguishability under chosen-plaintext
attack or IND-CPA) is not immediately su�cient for us. Since the
attacker breaking the protocol will see ciphertexts created under
di�erent but related cocoon keys (they are related because they
correspond to the same caterpillar key and the attacker knows that
key and the cocoon extensions), we need to rely on the security
of the base encryption scheme under a weak version of the notion
of related-key attack (RKA) [11, 12], where the related keys are
created by adding random o�sets to a single key.

It turns out that proving security requires an additional non-
standard notion of security for the base encryption scheme, the
property that captures inability to create ciphertexts which are valid
wrt di�erent keys. Such a property is called robustness. Robustness
of asymmetric encryption was studied by Abdalla et al. and Farshim
et al. [6, 17]. However, as we discuss in Section 5.2, their security
de�nitions are not immediately suitable for us. We provide the
de�nition of robustness capturing our setting, that we call target
robustness.

1It may be possible to construct a protocol with a slightly di�erent functionality but
serving the same general security goals using group signatures [16] or fair blind
signatures [26], but e�ciency is likely going to be an issue.
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Theorem 5.1 provides the formal bound stating that the generic
IEEE BKM (based on arbitrary underlying schemes) achieves pri-
vacy against the corrupted RA in the ideal cipher and random
oracle model, assuming that the base encryption scheme is IND-
CPA secure against additive RKA and is also target-robust, and the
signature scheme used by the ACA is UF-CMA secure.

Unfortunately, ECIES, the base encryption scheme used by IEEE
BKM is not known to be target-robust or secure in this sense of
additive RKA. The good news is that we can prove ECIES is secure
in these senses. In Theorem 6.1 we show that ECIES is IND-CPA
under additive RKA assuming hardness of the Hash Di�e-Hellman
problem and the IND-CPA security of the underlying symmetric
encryption scheme. We also prove that ECIES, with small modi�-
cations, satis�es target-robustness in the random oracle model (cf.
Theorem 6.2).

In case of corrupted ACAs, EEs’ privacy does hold assuming that
the honest RA sends each ACA the permuted requests containing
equal portion of each EE’s cocoon keys or there is only one ACA
for each EE. Theorem 5.2 states the result.

U�������������. We now turn to the goal of unforgeabil-
ity/authenticity. Consider the strongest model when both the RA
and ACA are corrupt. The adversary cannot compute the butter�y
secret keys as it does not know the caterpillar secret keys. But to for-
mally prove unforgeability we face the same issue we faced to prove
privacy, in that the standard (unforgeability under chosen-message
attack or UF-CMA) security of the base signature is not enough for
the proof to go through. What one would need is stronger security
for the base signature scheme such as unforgeability under related-
key attack (UF-RKA [11]). Such a notion requires unforgeability
to hold even if the attacker can observe signatures under related
keys. The relation we are concerned with is a speci�c one, where
random o�sets are added to the secret key.

In order to obtain BKM unforgeability under such additive RKA
attacks we need a very simple modi�cation to the protocol. The
change is as follows. In the current design, the ACA picks the
o�set A , and sends it (encrypted) to EE via RA. We propose to use
� (A , 2?:) instead of A in butter�y key generation, where � is a
hash function and 2?: is the cocoon public key of EE. The intuition
for this modi�cation is to prevent a corrupted ACA to gain any
advantage by picking A maliciously. Applying the hash makes the
result look random despite the choice of A , as long as hash inputs do
not repeat. The use of the cocoon public key is to prevent repeated
inputs. Even if the malicious ACA chooses the same A , the cocoon
keys will be distinct as the outputs of expansion functions will be
distinct (with overwhelming probability). Theorem 5.3 states that
the unforgeability of the generic (based on an arbitrary signature
scheme) IEEE BKM, with slight modi�cation, reduces to the additive
RKA security of the underlying signature scheme, in the ideal cipher
and random oracle models.

But is ECDSA signature scheme the protocol uses secure under
(additive) RKA? ECDSA has not been proven to be (additive) RKA
secure until the very recent work by Groth and Shoup [21], and
their results fortunately can be used to complete arguing security
of IEEE BKM.

Since we could prove unforgeability in the strongest corruption
model, we do not focus on the weaker models. We observe, however,

that in the case of honest ACA (and corrupted RA), unforgeability
holds without the protocol’s modi�cation.

We note that the modi�cations we suggest are only needed for
the proofs to go through, and we do not know of attacks on the
protocol without the modi�cations.

E�ciency Improvement. We propose a simple change to the
protocol that yields a signi�cant e�ciency improvement. More
speci�cally, we propose that the ACA can re-use randomness when
encrypting certi�cate responses using ECIES under di�erent cocoon
encryption keys. Observe that the �rst part of an ECIES ciphertext
is E⌧ , where E 2 Z@ has to be picked at random for each encryption.
We show that the ACA can re-use the same E across all ciphertexts.
This will result in reducing the computation in half (as the ACA
will have to perform only # + 1 scalar elliptic curve multiplications
as opposed to 2# , where # is the number of encryptions the ACA
performs) and signi�cantly reducing the communication (since E⌧
can be sent only once to each EE).

Kurosawa, Bellare et al. and Barbosa and Farshim [8, 10, 24]
studied the problem of secure randomness re-use. Bellare et al. [10]
de�ned the security notion for asymmetric multi-recipient encryp-
tion schemes (MRES) and proved that randomness can be safely
re-used across multiple DHIES encryptions under di�erent public
keys. Their result applies to ECIES as well, however, we cannot use
their result as is. The reason is the public keys in our application
are related, and the results of [8, 10] do not cover this case. We
show that the MRES with ECIES and randomness re-use is secure in
the setting with the related keys, assuming hardness of the Oracle
Di�e-Hellman problem and IND-CPA security of the underlying
symmetric encryption scheme (cf. Theorem 7.2). Finally, we show
that this is what we need for unlinkability of the modi�ed IEEE
BKM.

2 NOTATION AND PRELIMINARIES
2.1 Notation
For ; 2 N we denote by 1; the string of ; “1" bits. 01k...k0= de-
notes the string encoding of 01, ...,0= from which 01, ...,0= are
uniquely recoverable, e.g., concatenation. We use the bold font
x to denote the list (G1, . . . , G=) for any G . We assume that the
number of elements in the list is clear from the context. And
then G [8] = G8 is the 8th element in x. If S is a set then G

$
 (

denotes that G is selected uniformly at random from S. If A is
a randomized algorithm then ~

$
 A(G1, G2, ...) denote the op-

eration of running A on inputs G1, G2, ... and assigning output
to ~. For the syntax of any interactive protocol (algorithm) I
executed between party � and party ⌫, we use the convention:
(output�, output⌫)  [I� (input�),I⌫ (input⌫)]. If A is an algo-
rithm, then A ) G means that A outputs string G at the end of its
execution. By e�cient we mean algorithms that run in (expected)
polynomial-time in the length of their inputs, and make polynomial
number of queries of polynomial length.

2.2 Preliminaries
We recall the cryptographic primitives the BKM protocol uses and
their security de�nitions.
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D������ S���������. A digital signature scheme DS, associ-
ated with the message space MsgSp, consists of four algorithms
(G,K,S,V). The global info generation algorithm G takes as input
the security parameter 1_ and outputs the global info � . (For Di�e-
Hellman-based schemes the global info may include the group
description and the generator of the group.) The key generation al-
gorithmK takes as input the global information � that contains the
security parameter and possibly some other information and returns
a pair of public-secret key (?:, B:). The signing algorithm takes a
secret key B: and message< then returns a signature f . The veri�-
cation algorithm takes a public key ?: , a message<, and a signature
f , then returns a bit 1 indicating whether the signature is valid.
Correctness of the scheme requires that for any � output by G(1_),
(?:, B:)

$
 K(� ), and any< 2 MsgSp,V(?:,<,S(B:,<)) = 1.

For security, recall the following security experiment
Expuf-cma

DS
(A) associated with DS and adversary A . First, keys

are generated: � $
 G(1_), (?:, B:) $

 K(� ). Then A is given
?: and access to the oracle SB: (·) = S(B:, ·). In the end, A
outputs a message-signature pair (<,f). Expuf-cma

DS
(A) returns

1 i� V(?:,<,f) = 1 and < is in MsgSp and was not queried
to the SB: (·) oracle. The advantage Advuf-cma

DS
(A) is de�ned as

Pr
h
Expuf-cma

DS
(A) ) 1

i
.

A��������� E���������. An asymmetric encryption scheme AE,
associated with the message spaceMsgSp, is de�ned by four algo-
rithms (G,K, E,D). The global info generation algorithm G takes
as input the security parameter 1_ and outputs the global info � . The
key generation algorithm K takes as input the global information
� and returns a pair of public-secret key (?:, B:). The encryption
algorithm E takes a public key ?: and message< to return a ci-
phertext 2 . The decryption algorithm takes a secret key B: and a
ciphertext 2 to return a plaintext <. Correctness of the scheme
requires that for any any � output by G(1_), (?:, B:) $

 K(� ), and
any< 2 MsgSp, D(B:, E(?:,<)) =<. We will de�ne the security
notions we need later in the paper.

S�������� E���������.A symmetric encryption schemeSE, asso-
ciated with the message space MsgSp, consists of three algorithms
(K, E,D). The key generation algorithm K returns a secret key : .
The encryption algorithm E takes key : and message< to return a
ciphertext 2 . The decryption algorithm takes key : and a ciphertext
2 to return a plaintext<. Correctness of the scheme requires that
for any : $

 K and any< 2 MsgSp, D(:, E(:,<)) =<.
For security, we recall the ind-cpa de�nition. Let LR(·, ·,1) denote

the function that on inputs<0,<1 returns<1 . For an adversary A,
consider the experiments Expind-cpa-1

SE
(A). First, the key is gener-

ated as : $
 K . ThenA is given access to the oracle E(:, LR(·, ·,1)).

We require that each query (<0,<1) that A makes to its oracle
satis�es |<0 | = |<1 |. Finally, A outputs a bit 3 , and the experiment
returns 1 i� 1 = 3 . The ind-cpa advantageAdvind-cpa

SE
(A) is de�ned

as Pr
h
Expind-cpa-0

SE
(A) ) 0

i
� Pr

h
Expind-cpa-1

SE
(A) ) 1

i
.

3 THE BUTTERFLY KEY MECHANISM
PROTOCOL

In this section we �rst informally describe the IEEE BKM protocol.
Next, we formally de�ne the syntax (functionality) of a BKM pro-
tocol. This is necessary for the formal security analysis. Next, we
formally specify the cryptographic core of the IEEE BKM, following
the syntax.

3.1 Overview of IEEE BKM
The IEEE BKM protocol involves three parties: an end entity (EE),
a registration authority (RA), and an authorization certi�cate au-
thority (ACA). Figure 1 informally presents the main steps of the
protocol.

3.2 Protocol Syntax
The Butter�y Key Mechanism protocol (BKM) is an interac-
tive protocol involving three parties: an end entity (EE), a reg-
istration authority (RA), and an authorization certi�cate author-
ity (ACA). It is associated with two digital signature schemes
DS1 = (G1,K1,S1,V1), DS2 = (G2,K2,S2,V2) with message
spacesMsgSp1,MsgSp2. (DS1 andDS2 can be the same schemes.)
The protocol consists of the following algorithms and interactive
subprotocols:

Caterpillar key generation (CKG). The algorithm is executed
by the EE. It takes the security parameter and outputs a caterpillar
key pair and an expansion key : (?:cp, B:cp,:EXP)

$
 CKG(1_).

ACA signing key generation (ACAKG). The algorithm is run
by the ACA. It takes the security parameter and outputs a pair of
signing keys : (?:aca, B:aca)

$
 ACAKG(1_).

Cocoon key expansion (CKE). This is an interactive subpro-
tocol between the EE and the RA. The EE takes as inputs the
expansion key and the caterpillar secret key, and at the end
of the interaction outputs a list of cocoon secret keys. The RA
inputs the expansion key and the caterpillar public key, and
outputs a list of cocoon public keys: [(pkcc, skcc),pkcc]

$
 

[CKEEE (B:cp,:EXP), CKERA (?:cp,:EXP)]. In practice the ex-
pansion key is sent by the EE via a secure channel.
Butter�y key generation (BKG). This is an interactive subproto-
col between the RA and the ACA. The RA takes input the ACA’s
public signing veri�cation key and the cocoon public keys and out-
puts the certi�cate response. The ACA takes its signing key and has
no output: [rsp,?] $

 [BKGRA (?:aca,pkcc),BKGACA (B:aca)]

Butter�y key reconstruction (BKR). This is an interactive
subprotocol between the EE and the RA. The EE takes inputs
the cocoon secret keys and the ACA’s signing veri�cation key
and outputs lists of butter�y public and secret keys, as well
as a list of certi�cates. The RA takes input the response from
ACA in BKG and outputs nothing: [(pkbf , skbf , cer t),?]

$
 

[BKREE (skcc, ?:aca),BKRRA (rsp)].

Correctness. Informally, correctness requires that at the end
of the protocol the EE obtains valid key pairs for the signature
scheme and valid certi�cates for the public keys. More precisely,
we require that for any _, (?:cp, B:cp,:EXP) output by CKG(1_),
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1. EE generates:
1.1. Caterpillar secret-public key pair for 
signing 
1.2. Caterpillar secret-public key pair for 
encryption 
1.3. Secret expansion function

3. EE expands caterpillar keys into a series of 
cocoon secret-public key pairs for signing and 
encryption using the expansion function

2. EE sends to RA:
2.1. Caterpillar public key for signing 
2.2. Caterpillar public key for encryption 
2.3. Secret expansion function

2. RA receives from EE:
2.1. Caterpillar public key for signing 
2.2. Caterpillar public key for encryption 
2.3. Secret expansion function

3. RA expands caterpillar keys into a series of 
cocoon public keys for signing and encryption 
using the expansion function

4. RA sends to ACA permuted cocoon public 
keys for signing and encryption

4. ACA receives from RA permuted cocoon 
public keys signing and encryption

5. For each cocoon public key for signing:
5.1. ACA randomizes the key to a butterfly public 
key and generates a certificate for the butterfly 
public key
5.2. ACA encrypts to the corresponding cocoon 
public key for encryption: certificate and 
randomization information
5.3. ACA signs the encrypted packet

6. ACA sends all the encrypted and signed packets 
to RA 

6. RA receives all the encrypted and signed packets 
from ACA

7. EE receives the packets from RA, verifies 
ACA’s signatures, and decrypts them using 
cocoon secret keys for encryption to obtain 
certificates and randomization information

8. EE randomizes cocoon secret keys for 
signing to butterfly secret keys and stores 
them along with the corresponding 
certificates on butterfly public keys 

7. RA forwards received packets to corresponding 
EEs

EE

2.

4. 6.

7.

…

…

…

…

…

…

…

1.1. 1.2. 1.3.

2.1. 2.2. 2.3.

5.1. 5.2. 5.3.

…

…

RA

ACA

Figure 1: Eight main steps of IEEE BKM protocol, ran between EE, RA and ACA.

(?:aca, B:aca) output by ACAKG(1_), and for the sequential ex-
ecutions of interactive protocols CKE,BKG and BKR, where
(pkbf , skbf) denote the butter�y keys produced by the EE at
the end of BKR, we have that for any message < 2 MsgSp1,
DS1 .V1 (pkbf [8],<,DS1 .S1 (skbf [8],<)) = 1. Also, we require
that pkbf [8] 2 MsgSp2 and DS2 .V2 (?:aca,pkbf [8], cer t [8]) = 1
for any 1  8  =. Here for simplicity we ignore the auxiliary
information that the certi�cates usually contain, and focus only on
the public butter�y keys certi�cation.

3.3 IEEE-BKM Description

General Description. We now specify the IEEE Butter�y Key
Certi�cate protocol using our syntax. We �rst present the protocol
for general (but elliptic-curve Di�e-Hellman based) schemes, and
later discuss the particular instantiations the protocol uses.

Let DS1 = (G1,K1,S1,V1), DS2 = (G2,K2,S2,V2) be signa-
ture schemes and let AE = (G,K, E,D) be an asymmetric en-
cryption scheme. DS1 and AE are elliptic-curve Di�e-Hellman
based schemes, meaning that their key generation algorithms are
as follows. The global info generation algorithm outputs the global
information � = (G,⌧,@), where G is the group of points on the
elliptic curve of prime order @, generated by⌧ 2 G. The key genera-
tion algorithm outputs a pair of keys (?:, B:), where B: is a random
element of Z@ and ?: = G · ⌧ . Let EXP : {0, 1}: ⇥ {0, 1}; ! Z@
be a function family that we refer to as the expansion function. Let
H : {0, 1}⇤ ! Z@ be a hash function. For simplicity of notation we

assume that public keys contain the global information and that
the parties are stateful.
� CKG:

�B
$
 DS1 .G1 (1_); �4

$
 AE .G(1_);

(?:cp, B:cp)
$
 DS1 .Kg1 (�B ); :EXP

$
 {0, 1}:

(4?:cp, 4B:cp)
$
 AE .Kg(�4 ); 4:EXP

$
 {0, 1}:

Return (?:cpk4?:cp, B:cpk4B:cp, :EXP k4:EXP)

The CKG (caterpillar key generation) algorithm speci�es how the
(caterpillar and expansion) keys initially possessed by an EE are
generated.

� ACAKG:

�
$
 DS2 .G2 (1_); (?:aca, B:aca)

$
 DS2 .Kg2 (� )

Return (?:aca, B:aca)

The ACAKG (ACA key generation) algorithm speci�es how the
keys initially possessed by the ACA are generated. The ACA’s
public key is assumed to be publicly known.

� CKE: The protocol is presented in Figure 2.

The CKE (cocoon key expansion) protocol is executed between
the EE and RA. The EE sends the public caterpillar and expansion
keys to the RA via a secure channel. Both parties use the expansion
keys to expand the public caterpillar keys into multiple cocoon
public keys. The EE can also expand the secret caterpillar keys into
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EE(B:cpk4B:cp,:EXP k4:EXP) RA(?:cpk4?:cp,:EXP k4:EXP)

For 8 = 1, ...,=: For 8 = 1, ...,=:
skcc [8]  B:cp + EXP(:EXP , h8i; ) pkcc [8]  ?:cp + EXP(:EXP , h8i; ) ·⌧
pkcc [8]  ?:cp + EXP(:EXP , h8i; ) ·⌧ epkcc [8]  4?:cp + EXP(4:EXP , h8i; ) ·⌧
eskcc [8]  4B:cp + EXP(4:EXP , h8i; )
epkcc [8]  4?:cp + EXP(4:EXP , h8i; ) ·⌧

Return (pkcckepkcc, skcckeskcc) Return pkcckepkcc

Figure 2: CKE algorithm. Here h8i8 means number 8 represented as ; bits.

multiple cocoon secret keys. We assume that =  2; .

� BKG: The protocol is presented in Figure 3. There %= is a set of
all permutations on = elements.

The BKG (butter�y key generation) protocol is executed between
the RA and ACA. The RA randomly permutes the EE’s cocoon
public keys for signing and encryption and sends them to the
ACA. The ACA expands the signing cocoon keys with random
o�sets into butter�y keys and certi�es them. It then encrypts each
butter�y key, the certi�cate and the random o�set under the EE’s
public cocoon encryption key. The ACA also signs each ciphertext,
and sends them all to the RA. The RA “un-permutes” the ciphertexts.

� BKR: The protocol is presented in Figure 4.

The BKR (butter�y key reconstruction) protocol is between the
EE and the RA. The RA sends the EE the ciphertexts. The EE veri�es
the ACA’s signatures and decrypts the ciphertexts using the secret
cocoon keys for decryption. It then uses the o�sets to expand the
secret signing cocoon keys into the butter�y secret keys. It also
veri�es the validity of the certi�cates and that the secret keys match
the public keys. The correctness follows from correctness of the
base schemes. Even though the butter�y and cocoon keys are not
computed using the respected key generation algorithms, they still
could be output by those algorithms, and hence the correctness
follows.
IEEE-BKM Instantiations. IEEE BKMuses AES as EXP

2, ECDSA
asDS1,DS2, and ECIES asAE with the CCM mode as the under-
lying symmetric encryption. The IEEE 1609.2.1 standard speci�es
several mechanisms for secure channels including TLS1.2, TLS1.3
and ISO/TS21177.

4 BKM SECURITY DEFINITIONS
In this Section we formally de�ne the security notions for
the two main security goals of the BKM protocol: privacy
(anonymity/unlinkability) and authenticity (unforgeability). We
treat each goal separately. For each goal, we consider di�erent sce-
narios of corrupted parties. The EE is always honest3. The strongest
model will assume that both RA andACA are corrupted. Theweaker
models treat the cases when either RA or ACA are corrupted.

2The standard also makes use of some XOR operations, but those are not relevant to
our analyses.
3In Section 7 we consider a modi�cation to the protocol where EEs share some infor-
mation, and hence it makes sense to consider the case of compromised EEs there.

Let BKM = (CKG,ACAKG, CKE,BKG,BKR) be a BKM
protocol associated with two digital signature schemes DS1 =
(G1,K1,S1,V1), DS2 = (G2,K2,S2,V2) with message spaces
MsgSp1,MsgSp2.

In the security following security de�nitions we assume that the
adversary is stateful, i.e., it can preserve state between invocations.
We do not specify states explicitly. If the attacker was previously
given some inputs, it can use those inputs in further stages.

4.1 Privacy
We formalize security in terms of end entity (EE) privacy. In other
words, we de�ne anonymity (unlinkability) of EEs. The adversary
should not be able to tell to which EE a (butter�y) public key belongs
to. Note that this goal is not applicable in the standard PKI setting,
where digital certi�cates bind public keys and public identities
together. In our setting, the certi�cates intentionally do not contain
information about the key owner.

I. H����� EE, ��������� RA ��� ACA. In this strongest model, no
EE privacy is possible. Since the attacker communicates to EEs on
behalf of corrupted RA and ACA, it can later link public keys and
certi�cates to EEs (whether they belong to the same EE or not, and
moreover, whose public key is whose). More precisely, the attacker
will know the butter�y public keys of EE and the certi�cates, and
to which EE the certi�cates are returned. Hence no EE privacy can
be achieved.

II. H����� EE ��� ACA, ��������� RA. If the RA is corrupted,
EE’s privacy depends on how the corrupted RA deals with the
ACAs. If there are more than one ACA and EE the RAs works with,
then no privacy holds in the strong sense as a malicious RA can
do the following attack. Say, the corrupted RA gets requests from
EE1 and EE2, and each is expanded into several cocoon keys using
the expansion function. Then the CKE can send ACA1 all requests
from EE1 and ACA2 all requests from EE2. Later, the attacker will
not be able to tell the EEs’ keys apart, but it will be able to tell their
certi�cates apart, as they will be signed by di�erent ACAs with
di�erent public keys.

If all requests from each EE are sent to a single ACA, then privacy
can hold. If an RA sends fractions of requests from each EE to several
ACAs, then privacy can hold within each batch. In practice, it is
extremely unlikely that an RA will use more than one ACA to
generate a single batch of certi�cates. The most likely scenario
is where a vehicle manufacturer contracts a Security Credential
Management System (SCMS) provider, so there will be a one-to-one
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RA(?:aca,pkcckepkcc) ACA(B:aca)

c
$
 %=

pkcc  c (pkcc), epkcc  c (epkcc)
pkcc, epkcc

������������������������!

For 8 = 1, ...,=:
A8

$
 Z@
4 ⌘8  H(A8 kpkcc [8])
pkbf [8]  pkcc [8] + ⌘8⌧
cer t [8]  DS2 .S2 (B:aca,pkbf [8])
28  Enc.E(epkcc [8],pkbf [8]kcer t [8]kA8 )
f8  DS2 .S2 (B:aca, 28 )
rsp [8]  28 kf8

rsp
 ������������������������

rsp  c�1 (rsp)
Return rsp

Figure 3: BKG algorithm. The red font (also marked with 4 symbol) indicates the change we suggest. In the current protocol,
⌘8 = A8 .

EE(skcckeskcc, ?:aca) RA(rsp)

rsp
 �����������������������

For 8 = 1, ...,=:
28 kf8  rsp [8]
If 38  DS2 .V2 (?:aca, 28 ,f8 ) < 1 then Return ?
<  Enc.D(eskcc [8], 28 )
If< = ? then Return ? Else parse< as pkbf [8]kcer t [8]kA8
If DS2 .V2 (?:aca,pkbf [8], cer t [8]) < 1 then Return ?
If pkbf [8] < pkcc [8] + ⌘8 ·⌧ then Return ?
4 ⌘8  H(A8 kpkcc [8])
skbf [8]  skcc [8] + ⌘8

Return (pkbf , skbf , cer t)

Figure 4: BKR algorithm. The red font (also marked with 4 symbol) indicates the change we suggest. In the current protocol,
⌘8 = A8 .

mapping between the RA and the ACA. Our de�nition (implicitly)
covers both cases.

The experiment Exppriv-cra
BKM

is de�ned in Figure 7. The de�nition
models a malicious RA, whose goal is to link the butter�y keys
of the same EE together. The adversary interacts with two honest
EEs on behalf of the RA and learns everything that the RA knows.
It also interacts with the honest ACA. We also let the adversary
know both caterpillar public keys. We then give the attacker a pair
of public butter�y keys, and the certi�cates, which either belong
to the same EE or two di�erent EEs. The goal of the adversary is
�gure out which case it is.

The privacy advantage is de�ned as

Advpriv-cra
BKM

(A) = 2 · Pr
h
Exppriv-cra

BKM
(A) ) 1

i
� 1 .

Note that the de�nition does not consider multiple ACAs for
simplicity. (One could do so, but that would not make the de�nition

stronger). If multiple ACAs are used in practice, then the de�nition
ensures that the EEs’ keys certi�ed by each ACA are unlinkable.

III. H����� EE ��� RA, ��������� ACA. The de�nition models a
malicious ACA whose goal is to link two butter�y keys of the same
EE together. The experiment Exppriv-caca

BKM
associated with attacker

A is de�ned in Figure 5. There are two EEs that interact with the
honest RA. The adversary learns everything that the ACA knows,
namely, the permuted cocoon public keys, and the ACA’s secret
signing key. We also let the adversary know both caterpillar public
keys. Note that the adversary does not get to intervene into the
EE-RA communication because they talk over a secure channel.
We then give the attacker a pair of public cocoon keys, which
either belong to the same EE or two di�erent EEs. The goal of the
adversary is �gure out which case it is. Note that the ACA can
always link a butter�y public signing key to the corresponding

7
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cocoon key, so it is enough for us only focus on the cocoon key
unlinkability.

The privacy advantage is de�ned as

Advpriv-caca
BKM

(A) = 2 · Pr
h
Exppriv-caca

BKM
(A) ) 1

i
� 1 .

Recall that %2= denotes the set of all permutations on 2= elements.
We note that in this de�nition the adversary does not have to

participate in any interactive protocol or have any oracle access, as
it has already got all the information it can get.

Exppriv-caca
BKM

(A)

c
$
 %2= ;1 $

 {0, 1}

(?:�cp, B:
�
cp,:

�
EXP

)
$
 CKG(1_ )

(?:⌫cp, B:
⌫
cp,:

⌫
EXP

)
$
 CKG(1_ )

(?:aca, B:aca )
$
 ACAKG(1_ )

[ (skcc�, pkcc� ), pkcc� ]
$
 [CKEEE (B:

�
cp,:

�
EXP

), CKERA (?:
�
cp,:

�
EXP

) ]

[ (skcc⌫ , pkcc⌫ ), pkcc⌫ ]
$
 [CKEEE (B:

⌫
cp,:

⌫
EXP

), CKERA (?:
⌫
cp,:

⌫
EXP

) ]

pkcc  c (pkcc�, pkcc⌫ )

?:1
$
 {?:�cc1, ...,?:

�
cc= }

If 1 = 0:
?:2

$
 {?:�cc1, ...,?:

�
cc= } \ {?:1 }

Else:

?:2
$
 {?:⌫cc1, ...,?:

⌫
cc= }

3
$
 A(?:�cp,?:

⌫
cp, B:aca, pkcc,?:1,?:2 )

Return 1 i� (1 = 3 )

Figure 5: The experiment Exppriv-caca
BKM

(A) for de�ning privacy
with corrupted ACA.

4.2 Unforgeability
ABKMprotocol lets EEs obtain public-secret key pairs to be used for
signing. Accordingly, the protocol must guarantee that attackers
cannot forge DS1 signatures on behalf of EEs. In addition, the
public key certi�cates issued by the ACA must also be unforgeable.
But the latter goal is straightforward and follows from the standard
security of DS2 signature scheme. Hence, we focus on studying
the former goal.

We �rst consider the strongest de�nition where only the EE is
honest.
I. H����� EE, ��������� RA ��� ACA. The adversary learns all
information known to the RA and ACA and gets to interact with the
honest EE on their behalf. The adversary wins if it produces a new
valid forgery for one of the EE’s butter�y signing keys. Figure 6
de�nes the security experiment Expuf-cma

BKM
(A) in detail, and the

unforgeability advantage of the attacker A is de�ned as

Advuf-cma
BKM

(A) = Pr
h
Expuf-cma

BKM
(A) ) 1

i
.

R�����. We note that the corrupted ACA in possession of the
ACA’s secret key can issue the certi�cates for any public key. We
still consider the corrupted ACA and study its inability to forge
signatures on behalf of honest EEs. This is similar to the situation
with the standard PKI: a corrupted CA can create certi�cates on
any key and frame any user, but it still should not be able to forge
signatures under the legitimate keys users certi�ed.

II. H����� EE ��� ACA, ��������� RA. The security de�nition in
this case is strictly weaker than the above for the case of corrupted
ACA and RA. Since the BKM protocol can achieve the stronger
latter de�nition, we do not consider the former in detail. But the
security guarantees are much stronger in this setting because the
ACA is honest and all certi�cates are hence trusted.
III. H����� EE ��� RA, ��������� ACA. It is important to remem-
ber that the corrupted ACA can always certify keys of its choice.
Yet the de�nition can still ensure unforgeability under the butter-
�y keys accepted by EEs. Again, the security de�nition is strictly
weaker than that in the case of corrupted ACA and RA. Since the
BKM protocol can achieve the stronger one, we do not treat the
weaker de�nition separately.

5 SECURITY ANALYSIS OF THE GENERIC
IEEE BKM PROTOCOL

In this section we study whether IEEE BKM satis�es the de�ni-
tions of privacy and unforgeability de�ned above, and under which
conditions.

As the butter�y signing keys are derived from the same caterpil-
lar signing key and the cocoon encryption keys are derived from
the same caterpillar encryption key, rather than independently gen-
erated, we cannot prove security of the protocol assuming the stan-
dard security de�nitions for the encryption and signature schemes.
Accordingly, we start with recalling the security de�nitions for
encryption and signatures in the presence of related keys. For us, a
weak version of the related-key attack security, where one considers
a particular additive relation function, is su�cient. Please see the
Introduction for the prior work references regarding related-key
attacks.

5.1 Security for Signatures and Encryption in
Presence of Related Keys

Signatures in the presence of related keys. A signature key
derivation function speci�es how the related keys are generated.
S�������� K�� D��������� F�������. LetDS = (G,K,S,V) be
a digital signature scheme. Let (sPKExp, sSKExp) denote a pair of
key expansion algorithms associated withDS and the randomness
space Coins. sSKExp takes a secret key B: and randomness A 2
Coins, then outputs the derived secret key B:0; sPKExp takes a
public key ?: and randomness A 2 Coins, then outputs the derived
public key ?:0. For correctness, we require that for all � output
by G(1_), all (?:, B:) output by DS.K(� ), for all randomness A 2
Coins, and for all< 2 MsgSp, let B:0  sSKExp(B: ; A ), and ?:0  
sPKExp(?: ; A ), we have

Pr
⇥
DS.V

�
?:0,DS.S(B:0,<)

�
) 1

⇤
= 1.

U������������� ����� ������ ������� ��� �������. Let
DS = (G,K,S,V) be a digital signature scheme and let
(sSKExp, sPKExp) be a pair of key expansion functions with ran-
domness space Coins. Consider the experiment de�ned in Figure
8. We note that the adversary is not given the expanded public
keys explicitly because it can compute them itself. The adversary’s
advantage Advuf-wrka

DS,(sPKExp,sSKExp) (A) is Pr
h
Expuf-wrka

DS
(A) ) 1

i
.
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Expuf-cma
BKM

(A)

(?:cp, B:cp,:EXP )
$
 CKG(1_ ) ; (?:aca, B:aca )

$
 ACAKG(1_ )

A  (?:cp,:EXP , B:aca,?:aca )
For 8 = 1, ...,=:" [8 ]  ;

[EEout,Aout]
$
 [CKEEE (B:cp,:EXP ), A]

Parse EEout as (skcc, pkcc )
If does not parse, return ?

[EEout,Aout]
$
 [BKREE (skcc,?:aca ), A]

Parse EEout as (skbf , pkbf , cert )
If does not parse, return ?

(<,f, 9 )
$
 A

S���( ·,·)
(pkbf , cert )

Return 1 i�< 8 " [ 9 ] and DS.V(pkbf [ 9 ],<,f ) = 1

S���DS
(<, 9 )

f
$
 DS.S(skbf [ 9 ],<)

" [8 ]  " [8 ] [ {<}

Return f

Figure 6: The experiment Expuf-cma
BKM

(A) for de�ning unforgeablility with corrupted RA and ACA.

Exppriv-cra
BKM

(A)

1
$
 {0, 1}

(?:�cp, B:
�
cp,:

�
EXP

)
$
 CKG(1_ )

(?:⌫cp, B:
⌫
cp,:

⌫
EXP

)
$
 CKG(1_ )

(?:aca, B:aca )
$
 ACAKG(1_ )

[EEout,Aout]
$
 [CKEEE (B:

�
cp,:

�
EXP

), A(?:�cp,:
�
EXP

,?:aca ) ]

Parse EEout as (skcc�, pkcc� )

If does not parse, return ?

[EEout,Aout]
$
 [CKEEE (B:

⌫
cp,:

⌫
EXP

), A(?:⌫cp,:
⌫
EXP

) ]

Parse EEout as (skcc⌫ , pkcc⌫ )

If does not parse, return ?

[Aout,?]
$
 [A, BKGACA (B:aca, pkcc

�, pkcc⌫ ) ]

[EEout,Aout]
$
 [BKREE (B:

�
cc1, ..., B:

�
cc= ,?:aca ), A]

Parse EEout as (B:�bf 1, ..., B:
�
bf= , ?:

�
bf 1, ...,?:

�
bf= , 24AC

�
1 , ..., 24AC

�
= )

If does not parse, return ?

[EEout,Aout]
$
 [BKREE (B:

⌫
cc1, ..., B:

⌫
cc= ,?:aca ), A]

Parse EEout as (B:⌫bf 1, ..., B:
⌫
bf= , ?:

⌫
bf 1, ...,?:

⌫
bf= , 24AC

⌫
1 , ..., 24AC

⌫
= )

If does not parse, return ?

(?:1, 24AC1 )
$
 { (?:�bf 1, 24AC

�
1 ), ..., (?:�bf= , 24AC

�
= ) }

If 1 = 0:
(?:2, 24AC2 )

$
 { (?:�bf 1, 24AC

�
1 ), ..., (?:�bf= , 24AC

�
= ) } \ { (?:1, 24AC1 ) }

Else:

(?:2, 24AC2 )
$
 { (?:⌫bf 1, 24AC

⌫
1 ), ..., (?:⌫bf= , 24AC

⌫
= ) }

3
$
 A(?:�cp,?:

⌫
cp,?:1,?:2, 24AC1, 24AC2 )

Return 1 i� 1 = 3

Figure 7: The experiment Exppriv-cra
BKM

(A) for de�ning privacy
with corrupted RA.

Encryption in the presence of related keys.
E��������� K�� D��������� F�������. Let AE = (G,K, E,D)

be an public-key encryption scheme. Let (eSKExp, ePKExp) be a
pair of key expansion algorithms associated with AE and the ran-
domness space Coins. eSKExp takes a secret key B: and randomness
A , then returns the expanded secret key B:0; similarly, ePKExp takes
a public key ?: and randomness A , then outputs the expanded pub-
lic key ?:0. Correctness requires that for all � output by G(1_), all
(?:, B:) output by AE .K(� ), for all randomness A 2 Coins, and for
all< 2 MsgSp, let B:0  eSKExp(B: ; A ), and ?:0  ePKExp(?: ; A )
we have that

Pr
⇥
AE .D

�
B:0,AE .E(?:0,<)

�
)<

⇤
= 1.

IND�CPA ����� ������� ��� ������. Let AE = (G,K, E,D)

be a public key encryption scheme, (ePKExp, eSKExp) be a pair
of key expansion functions. The security experiment is pre-
sented in Figure 9. Again, the public keys are not explicitly
given to A as they can be computed. Note that the coins
are generated honestly, as for our proofs we do not require
security agagist maliciously-generated coins. For a stateful at-
tacker A, we de�ne its advantage Advind-cpa-wrka

AE,(ePKExp,eSKExp) (A) as

2 Pr
h
Expind-cpa-wrka

AE,(ePKExp,eSKExp) (A) ) 1
i
� 1.

5.2 Target Robustness
It turns out that security of the IEEE BKM protocol requires an
additional non-standard notion of security for the base encryption
scheme, called robustness [6, 17]. Robustness captures the inability
to create ciphertexts which are valid wrt di�erent keys. Abdalla et
al. [6] de�ned robustness and proved that DHIES (and hence ECIES),
with small modi�cation, is robust. However, taking a closer look
we can see that the robustness de�nition in [6] is for properly gen-
erated keys, in that ?:08 has to be valid. But in our experiment there
is no restriction on the validity of the public keys the malicious
RA sends to the ACA. Farshim et al. [17] revisited the de�nitions
of robustness and provided stronger robustness de�nitions which
take into account public keys which can be invalid. However, the
adversary in their de�nition is required to output the corresponding
secret keys. This is a problem for us since the malicious RA in our
experiment will not provide the secret key in any way. Luckily, we
are only concerned about the ciphertext being valid under one of the
two keys. Strictly speaking, the other key in our experiment is not
generated according to the base encryption scheme key generation
algorithm. But we can deal with this discrepancy easily in the ideal
cipher model. Below we provide the de�nition of robustness captur-
ing this setting, that we call target robustness (trob). Later, we prove
that ECIES, with small modi�cations, satis�es target robustness.

T����� R��������� D���������. Let AE = (G,K, E,D) be a
public key encryption scheme. Figure 10 de�nes the experiment
Exptrob

AE
(A) associated with an adversary A. The adversary’s ad-

vantage, Advtrob
DS

(A) is de�ned as Pr
h
Exptrob

AE
(A) ) 1

i
.
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Expuf-wrka
DS

(A)

�
$
 DS.G(1_ )

(?:, B: )
$
 DS.K(� )

&;  ;

(01, ...,0= )
$
 A(?: )

For 8 = 1, ...,=:
B:8  sSKExp(B: ;08 )
?:8  sPKExp(?: ;08 )

(<,f, 8 )
$
 A

S���( ·,·)

Return 1 i� (8,<) 8 &; and
DS.V(?:8 ,<,f ) = 1

S���DS
(<, 8 )

f
$
 DS.S(B:8 ,<)

&;  &; [ { (8,<) }

Return f

Figure 8: The experiment Expuf-wrka
DS,(sPKExp,sSKExp) (A).

Expind-cpa-wrka
AE,(ePKExp,eSKExp) (A)

1
$
 {0, 1} ; � $

 G(1_ )
(?:, B: )

$
 AE .K(� )

(01, . . . ,0= )
$
 Coins

For 8 = 1, . . .=:
B:8  eSKExp(B: ;08 )
?:8  ePKExp(?: ;08 )

3
$
 A

E��( ·,·,·)
(?:,01, ...,0= )

Return 1 i� (1 = 3 )

procedure E��(<0,<1, 8 )

If |<0 | = |<1 |:

2
$
 AE .E(?:8 ,<1 )

Else:
2  ?

Return 2

Figure 9: The experiment Expind-cpa-wrka
AE,(ePKExp,eSKExp) (A).

Exptrob
AE

(A)

�
$
 G(1_)

(?:, B:)
$
 K(� )

(?:0,<)  A(?:)
2  E(?:0,<)

Return 1 i� ?: < ?:0 and D(B:, 2) < ?

Figure 10: Experiment Exptrob
AE

(A) for de�ning target robust-
ness (TROB).

5.3 Generic IEEE BKM Security
We start with analyzing the generic IEEE BKM (based on generic
signature and encryption schemes). In the next section we analyze
the speci�c instantiations of the base schemes.

T������ 5.1 (P������, C�������� RA). Let BKM be the IEEE
Butter�y Key Certi�cate protocol as de�ned in Section 3.3, associated
with signatures schemes DS1, DS2, asymmetric encryption AE,
the expansion function EXP and the hash function H . Let AE be
an elliptic-curve Di�e-Hellman based scheme (cf. the explanation in
Section 3.3). Let (ePKExp+, eSKExp+) be the additive keys expansion

eSKExp+ (B: ;0)

B: 0  B: + 0

Return B: 0

ePKExp+ (?: ;0)

?: 0  ?: + 0

Return ?: 0

Figure 11: Additive key expansion functions for AE.

sSKExp+ (B: ;0)

B: 0  B: +� 0 (0)

Return B: 0

sPKExp+ (?: ;0)

?: 0  ?: +� 0 (0)⌧
Return ?: 0

Figure 12: Additive key expansion functions for DS1.

functions for encryption described in Figure 11 associated with AE

and Coins = {0, 1}⇤. If EXP is modeled as an ideal cipher and � is
modeled as random oracles, then for every e�cient adversaryA there
exist e�cient B, C, D such that

Advpriv-cra
BKM

(A)  2Advind-cpa-wrka
AE,(ePKExp+,eSKExp+ )

(B)

+ 2Advuf-cma
DS2

(C) + 4= · Advtrob
AE

(D) + =46; (_) .

The proof is in Appendix B.1. Recall that the above result captures
privacy of EEs’ certi�cates from the same ACA.
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T������ 5.2 (P������, C�������� ACA). Let BKM be the
IEEE Butter�y Key Certi�cate protocol be as de�ned in Section 3.3,
associated with signatures schemes DS1, DS2, asymmetric encryp-
tion AE, the expansion function EXP and the hash functionH . If
EXP is modeled as an ideal cipher, then for every e�cient adversary
A,

Advpriv-caca
BKM

(A)  =46; (_) .

The proof is in Appendix B.2.

T������ 5.3 (U�������������, C�������� ACA ��� RA). Let
BKM be the IEEE Butter�y Key Certi�cate protocol be as de�ned in
Section 3.3, associated with signatures schemesDS1,DS2, asymmet-
ric encryption AE, the expansion function EXP and the hash func-
tion H . Let DS1 be an elliptic-curve Di�e-Hellman based scheme
(cf. the explanation in Section 3.3). Let (sPKExp+, sSKExp+) be the
additive keys expansion functions for signatures described in Fig-
ure 12 associated with DS1, Coins = {0, 1}⇤ and the hash function
H
0 : {0, 1} ! /@ . If EXP is modeled as an ideal cipher and � ,� 0

are modeled as random oracles, then for every e�cient adversary A

there exist an e�cient adversary B, such that

Advuf-cma
BKM

(A)  Advuf-wrka
DS1,(sPKExp+,sSKExp+ )

(B) .

The proof is in Appendix B.3.
R�����. In the case of honest EE and RA, and corrupted ACA, we
can drop the ideal blockcipher assumption on cocoon key expansion
functions in Theorem 5.3 as the adversary no longer participates
in the cocoon key expansion stage. In the case of honest EE and
ACA, and corrupted RA, Theorem 5.3 holds without the protocol’s
modi�cation, since all random o�sets are honestly generated by
the honest ACA.

6 SECURITY ANALYSIS OF THE IEEE-BKM
INSTANTIATION

In this section we conclude the security analysis of IEEE-BKCP
protocol. Recall that IEEE-BKCP uses AES as EXP, ECDSA as
DS1,DS2, and ECIES as AE with the underlying symmetric en-
cryption AES-CCM. It is common in the security analyses to assume
that AES is an ideal cipher and the hash is a random oracle. ECDSA
has been proven to be uf-cma secure under various idealized as-
sumptions on the underlying primitives [15, 18, 19]. The CCMmode
has been analyzed in [20, 23]. But it remains to study ind-cpa-wrka
and trob security of ECIES and uf-wrka security of ECDSA.

6.1 ECIES
The asymmetric encryption scheme ECIES is an elliptic-curve
variant of DHIES [7]. It is associated with a symmetric encryption
scheme SE4. Let HK : G! {0, 1}⌘; be a hash function. The Kg
algorithm of the asymmetric encryption scheme ECIES returns
the elliptic curve parameters � = (G,⌧,@). Figure 13 recalls the rest
of the scheme’s algorithms. Let the length the key for SE be ⌘; .
The message space of ECIES is that of SE.

4DHIES was designed to also use a message authentication code (MAC). The use of
MACs is not essential to us as we do not consider IND-CCA security. Moreover, IEEE
BKM’s implementation uses ECIES with the associated symmetric scheme in CCM
mode, which is an authenticated encryption scheme.

To prove ind-cpa-wrka security of ECIES we will need to rely
on Hash Di�e-Hellman (HDH) assumption [7]. We recall the HDH
problem.
HDH P������. Let G be the global info generation and let H
be a hash function. The experiment Exphdh

G
(A) is de�ned in

Figure 14. The advantage of the adversary A, Advhdh
G

(A) =

2 · Pr
h
Exphdh

G
(A) ) 1

i
� 1.

T������ 6.1 (ind�cpa�wrka �������� �� ECIES). Let
ECIES be the encryption scheme recalled in Figure 13, with global
info generation G. The scheme is associated with a symmetric
encryption scheme SE, and hash HK : G ! {0, 1}⌘; . Let
(ePKExp+, eSKExp+) be the additive encryption key expansion
functions described in Figure 11. Then for any e�cient adversary A

there exist e�cient adversaries B and D such that

Advind-cpa-wrka
ECIES,(ePKExp+,eSKExp+ )

(A)  = · Advind-cpa
SE

(B)

+2Advhdh
HK,G (D) .

The proof is in Appendix B.4.
IEEE BKM uses AES-CCM mode as SE. The CCM mode has

been proven secure in [20, 23] assuming AES is a PRF.
We now prove that ECIES with minor modi�cations (ECIES⇤ in

Figure 13) is TROB-secure.

T������ 6.2 (trob �������� �� ECIES). Let ECIES⇤ be the
modi�ed ECIES recalled in Figure 13. The scheme is associated with
SE being the CCM mode and hash HK . Then for any e�cient ad-
versaryA, if the blockcipher used in CCM modeled as an ideal cipher,
we have

Advtrob
ECIES

⇤ (A)  negl(_) .

P����. There are two possibilities for a ciphertext E⌧ k4 created
under one public key -1 to be valid under a di�erent public key -2.
Let :1

SE
 HK(E-1), :2SE

 HK(E-2).
(1) HK(E-1) = HK(E-2)
(2) SE .D(:2

SE
, 4) < ?

The �rst condition has only a negligible probability of occurring if
HK is a random oracle and E-1 < E-2. And the latter is true since
-1 < -2, and + < 1, -1 < 1 and -2 < 1, where + = E⌧ .

The second condition has only a negligible probability of oc-
curring since in the ideal cipher model, the blockcipher under a
di�erent key is an independent random permutation, and the MAC,
which is part of the CCM’s mode construction would have only a
negligible probability of being valid. ⇤

6.2 ECDSA
Despite its wide use, the ECDSA signature scheme has not
been proven secure against related key attacks until recently.
Groth and Shoup [21] showed that ECDSA is secure when keys
are computed via additive key derivation function, in the ellip-
tic curve generic group model. We use their result to bound
Advuf-wrka

ECDSA,(sPKExp+,sSKExp+ )
(A), in the random oracle model.

T������ 6.3 (uf�wrka �������� �� ECDSA, ���� [[21]).
Let ECDSA be the ECDSA signature scheme (recalled in the
Appendix A), whose G algorithm returns � = (G,⌧,@). Let
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ECIES.K((G,⌧,@) )

D
$
 Z@

?:  D⌧
4 If ?: = 1 then return ?
B:  D
Return (?:, B: )

ECIES.E(?:,<)

E
$
 Z@

+  E⌧
G  E · ?:
:SE  HK(G )

4
$
 SE .E(:SE ,<)

Return+ k4

ECIES.D(B:, 2 )

+ k4  2
4 If+ = 1 then return ?
G  B: · +
:SE  HK(G )
If ? = SE .D(:SE , 4 )

Return ?
<  SE .D(:SE , 4 )
Return<

Figure 13: ECIES encryption scheme does not include lines in red. The modi�ed ECIES⇤ scheme includes lines in red (also
marked with 4 symbol.)

Exphdh
G

(A)

1
$
 {0, 1}

(G,6,@)
$
 G(1_ )

�  (G,6,@)

D
$
 Z@ ;*  D⌧

E
$
 Z@ ;+  E⌧

If 1 = 0 then /
$
 {0, 1}⌘;

Else /  H(DE⌧ )

3  A
H
(� ,* ,+ ,/ )

Return 1 i� 1 = 3

Figure 14: Experiment Exphdh
G

(A) for hdh problem.

(sPKExp+, sSKExp+) be the additive expansion functions described
in Figure 12 where H is the random oracle with the range Z@ . For
simplicity we assume that ECDSA uses the same � . Then in the
elliptic curve generic group model (EC-GGM), and in the random
oracle model, for any e�cient adversary A,

Advuf-wrka
ECDSA,(sPKExp+,sSKExp+ )

(A)  (8+> (1))@B ·@2� /@+$ (@2B /@) ,

where @B is the number of signing or group queries and @� is the
number of random oracle queries the adversary makes.

Theorems 5.1, 5.2, 5.3, 6.1, 6.2, 6.3 together complete the security
results for the IEEE BKM protocol.

7 EFFICIENCY IMPROVEMENT FOR IEEE BKM
Proposed modi�cation. We propose a simple change to the BKM
protocol that yields a signi�cant e�ciency improvement. More
speci�cally, we propose that the ACA can re-use randomness when
encrypting certi�cate responses using ECIES under di�erent cocoon
encryption keys. Recall that the �rst part of an ECIES ciphertext is
E⌧ , where E 2 Z@ has to be picked at random for each encryption.
We show that the ACA can re-use the same E across all ciphertexts.
This will result in reducing the computation in half (as the ACA
will have to perform only # + 1 scalar elliptic curve multiplications
as opposed to 2# , where # is the number of encryptions the ACA
performs) and signi�cantly reducing the communication (since E⌧
can be sent only once to each EE).

Kurosawa, Bellare et al. and Barbosa and Farshim [8, 10, 24]
studied the problem of secure randomness re-use. Bellare et al. [10]

de�ned the security notion for asymmetric multi-recipient encryp-
tion schemes (MRES) that, unlike the notion in [24], lets the at-
tacker to corrupt some users and learn their secret keys. They
also proved that randomness can be safely re-used across multiple
DHIES encryptions under di�erent public keys. Their result applies
to ECIES as well, however, we cannot use their result as is. The
reason is the public keys in our application are related, and the
results of [8, 10] do not cover this case. Their results apply only
to the case of independently-created keys, and in general, security
does not extend to the case of related keys. We show that the MRES
with ECIES and randomness re-use is secure in the setting with the
related keys, assuming hardness of the Oracle Di�e-Hellman prob-
lem and IND-CPA security of the underlying symmetric encryption
scheme (cf. Theorem 7.2). Finally, we show that this is what we
need for unlinkability of the modi�ed IEEE BKM.
M�����R�������� E��������� S����� ���� R������ K��� (RK�
MRES). Let AE = (G,K, E,D) be an asymmetric encryption
scheme with the message spaceMsgSp. Let (ePKExp, eSKExp) be
the key expansion functions. The associated RK-MRES is de�ned by
the following algorithms. RKMRES.K on input 1_ returns the
global info � . RKMRES.K takes input global info � and does
the following. (?:, B:) $

 AE .K(� ), (01, ...,0=)
$
 Coins, For

8 = 1, ...,=: sk [8]  eSKExp(B: ;08 ), pk [8]  ePKExp(?: ;08 ), and
returns (pk, sk). RKMRES.E takes inputs pk andm and returns
c. RKMRES.D is the same as AE .D.

Correctness of the scheme requires that the following exper-
iment always returns 1. � $

 RKMRES.K(1_), (pk, sk) $
 

RKMRES.K(� ), m $
 MsgSp, c $

 RKMRES.E(m), 8 $
 

{1, . . . ,=}, m[8]  RKMRES.D(c[8]).
R��������� �������� ECIES RK�MRES.We are interested in a spe-
ci�c WK-MRES scheme,MR-ECIES, obtained from ECIES (cf.
Figure 13). by using the same coins to encrypt di�erent messages
in the message vector, and associated with the additive key expan-
sion functions (eSKExp+, ePKExp+). We present the construction
explicitly for clarity. Let ECIES.Coins denote the randomness
set for ECIES. MR-ECIES.G(1_) runs ECIES.G(1_). The
rest of the algorithms are in Figure 15. The scheme is correct by
correctness of ECIES and of the expansion functions.
Security analysis. To assess security of this scheme, we need to
introduce a new security de�nition that takes into account both
randomness re-use and related keys. We adapt the security de�ni-
tion from [10] to accommodate related keys. The adversary knows
(or can compute) all public keys and how the keys are related. It
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MR-ECIES.K(� )

(?:, B: )
$
 ECIES.K(� )

For 8 = 1, ...,=
08

$
 Z@

pk [8 ]  ePKExp+ (?: ;08 )
sk [8 ]  eSKExp+ (B: ;08 )

Return (pk, sk )

MR-ECIES.E(pk,m)

A
$
 ECIES.Coins

For 8 = 1, ...,=
c[8 ]  ECIES.E(pk [8 ],m[8 ]; A )

Return c

MR-ECIES.D(B:, 2 )

<  ECIES.D(B:, 2 )
Return<

Figure 15: Randomness re-using multi-recipient encryption scheme with related keys, based on public key encryption scheme
ECIES and key expansion functions (ePKExp+, eSKExp+).

is allowed to learn some secret keys, and is trying to get some
information about the messages encrypted under the other public
keys.

De�nition 7.1. Let MRPKE = (G,K, E,D) be a multi-
recipient asymmetric encryption scheme based on public
key encryption scheme AE and key expansion functions
(ePKExp, eSKExp). We de�ne the experiment Expmr-cpa-wrka

MRPKE (A)

in Figure 16. The attacker’s advantage, Advmr-cpa-wrka
MRPKE (A) is

2 Pr
h
Expmr-cpa-wrka

MRPKE (A) ) 1
i
� 1.

Expmr-cpa-wrka
MRPKE (A)

1
$
 {0, 1}

(?:, B:)
$
 AE .K(� )

(?:0, B:0)
$
 AE .K(� )

a $
 Coins

a0 $
 Coins

For 8 = 1, ...,=
sk [8]  eSKExp(B: ; a[8])
pk [8]  ePKExp(?: ; a[8])
sk0 [8]  eSKExp(B:0; a0 [8])
pk0 [8]  ePKExp(?:0; a0 [8])

(m0,m1,m)
$
 A(?:, ?:0, a, a0, B:0)

If |m0 | < |m1 | then return ?
If |m0 | = |m1 | = |m0 | is not = then return ?
c $
 MRPKE.E(pk,m1 )

c0 $
 MRPKE.E(pk0,m)

3
$
 A(c, c0)

Return 1 i� (1 = 3)

Figure 16: Experiment formr-cpa-wrka security of RK-MRES.
We now analyze the randomness re-using ECIES-based RK-

MRES. Security relies on the Oracle Di�e-Hellman (ODH) prob-
lem [7], so we recall it here. It was proven in [7] that in the random
oracle model Strong Di�e-Hellman (SDH) implies ODH.
ODH Problem. Let G be the global info generation and let H
be a hash function. The experiment Expodh

G
(A) is de�ned in Fig-

ure 17. The advantage of the adversary A, Advodh
G

(A) = 2 ·

Pr
h
Expodh

G
(A) ) 1

i
� 1.

Expodh
G

(A)

1
$
 {0, 1}

(G,6,@)
$
 G(1_ )

�  (G,6,@)

D
$
 Z@ ;*  D⌧

E
$
 Z@ ;+  E⌧

If 1 = 0 then /
$
 {0, 1}⌘;

Else /  H(DE⌧ )

3  D
H,$E ( ·) (� ,* ,+ ,/ )

Return 1 i� 1 = 3

$E (- ) :
If - = D⌧ then return ?
Return � (E- )

Figure 17: Experiment Expodh
G,H

(A) for odh problem.

T������ 7.2 (MR�ECIES S�������). Let MR-ECIES be
the randomness re-using ECIES-based RK-MRES scheme de�ned
in Figure 16 and associated with the additive key expansion functions
(eSKExp+, ePKExp+) described in Figure 11. Let G be the global info
generation algorithm of the underlying ECIES scheme (ECIES is
recalled in Figure 13). LetSE be the symmetric encryption scheme and
letHK be the hash underlying ECIES. Then, in the random oracle
model, for any e�cient adversary A , there exist e�cient adversaries
B and C such that

Advmr-cpa-wrka
MR-ECIES

(A)  = · Advodh
G,HK

(B) + = · Advind-cpa
SE

(C) .

The proof is in Appendix B.5.
Finally, we observe that the use of MR-ECIES instead of

ECIES only a�ects unlinkability in case of the corrupted RA. How-
ever, the statement of Theorem 5.1 still holds forMR-ECIES and
its security wrt to the mr-cpa-wrka notion.

8 CONCLUSIONS
We analyzed the Butter�y Key Mechanism protocol from IEEE
1609.2.1 standard, using the provable security approach. We for-
malized the goals of end entity privacy and their signing keys
unforgeability. We considered di�erent corruption scenarios and
proved that the IEEE-BKM protocol, with small modi�cations sat-
is�es our de�nitions under the appropriate assumptions on the
building blocks. We also proposed a way to signi�cantly improve
the protocol’s e�ciency without sacri�cing security. An interest-
ing direction for future work will be studying ways to achieve
post-quantum security of the protocol, following [13].
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A ECDSA
Figure 18 recalls the ECDSA signature scheme.

B PROOFS
B.1 Proof of Theorem 5.1
We consider a series of “hybrid” games ⌧0, . . .⌧5 associated with
adversary A. Let Pr9 denote the probability of game ⌧ 9 returning
1, for 0  9  5.

⌧0 is identical to Exppriv-cra
BKM

(A).
By de�nition, we have

Pr0 =
1
2
Advpriv-cra

BKM
(A) +

1
2
.

⌧1 is identical to ⌧0 except in ⌧1 the encryption cocoon keys
(which are computed by honest EE as part of EEout and skcc� ,
skcc⌫ in Figure 7) are computed via random expansions 08 :
eskcc [8]  4B:cp + 08 ,
epkcc [8]  4?:cp + 08 ·⌧ .

In the ideal cipher model, EXP(4:EXP , ·) is modeled as a ran-
dom permutation. The only di�erence between games is that in
one game all expansion tweaks are chosen uniformly at random
and in the other game they are outputs of a random permutation

14

https://standards.ieee.org/ieee/1609.2/10258/
https://www.its.dot.gov/research_areas/cybersecurity/scms/index.html
https://www.its.dot.gov/research_areas/cybersecurity/scms/index.html
https://standards.ieee.org/ieee/1609.2.1/10728/
https://its.dot.gov/research_areas/emerging_tech/pdf/Accelerate_V2X_Deployment.pdf
https://its.dot.gov/research_areas/emerging_tech/pdf/Accelerate_V2X_Deployment.pdf
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-36288-6_7
https://eprint.iacr.org/2022/483
https://doi.org/10.1109/TITS.2018.2797529
https://doi.org/10.1007/S10623-003-6154-Z
https://doi.org/10.1145/2976749.2978413
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-540-68914-0_25
https://doi.org/10.1007/978-3-031-06944-4_13
https://api.semanticscholar.org/CorpusID:107533679
https://api.semanticscholar.org/CorpusID:107533679
https://doi.org/10.1007/3-540-36492-7_7
https://doi.org/10.1109/VNC.2018.8628369
https://doi.org/10.1109/VNC.2018.8628369
https://doi.org/10.1109/VNC.2013.6737583


Provable Security Analysis of Bu�erfly Key Mechanism Protocol
in IEEE 1609.2.1 Standard Proceedings on Privacy Enhancing Technologies YYYY(X)

ECDSA.K((G,⌧,@) )

D
$
 Z@

?:  D⌧
B:  D
Return (?:, B: )

ECDSA.S(B:,<)

I
$
 H(<)

C
$
 Z@

(4G , 4~ )  C⌧
A  4G mod @
If A = 0 mod @

Go to step 2
B  C�1 (I + A · B: )
If B = 0 mod @

Go to step 2
Return (A , B )

ECDSA.V(?:,f )

(A , B )  f
If A , B 8 Z@

Return 0
F  B�1 mod @

I
$
 H(<)

D1  IF mod @
D2  AF mod @
(4G , 4~ )  D1 ·⌧ +D2 · ?:
If (4G , 4~ ) = (0, 0)

Return 0
Return A = 4G mod @

Figure 18: ECDSA signature scheme.

on non-repeating inputs. Therefore, the only way the attacker can
distinguish the games if there is a collision between random tweaks.
But this only happens with negligible probability. Hence we have

Pr1 � Pr0  negl(_) .

⌧2 is identical to ⌧1 except in ⌧2, if A modi�es at least one
ciphertext in the responses it got from the ACA as part of BKG

stage, i.e., there is at least one ciphertext sent to the EE that the
ACA did not send, and the EE does not reject, then the game aborts.

Note that each ciphertext is signed by the ACA, hence if the
attacker sends a new ciphertext to the EE, and the EE does not
reject, it means that the adversary succeeded in creating a forged
signature. It is straightforward to construct an e�cient attacker
breaking the UF-CMA security of the signature scheme used by the
ACA. And hence

Pr2 � Pr1  Advuf-cma
DS2

(C) .

⌧3 is identical to⌧2 except in⌧3, if A sends at least one cocoon
public key to ACA that is computed not according to the protocol
(distinct from what EE computes), and EE later does not reject, then
the game aborts.

Here we consider an event when the adversary, who is given a
set of cocoon public keys ?:1, . . . , ?:= can modify a public key ?:8
into ?:08 for some 1  8  = so that a ciphertext of some message
under ?:08 will be deemed as valid wrt ?:8 .

We constructD breaking target robustness as follows.D is given
?: and runs �. D picks bit 3 at random and also picks 2= random
tweaks 01, . . . ,02= from Z@ , and picks 9 at random from {1, . . . , 2=}.
If 3 = 0, then it sets ?:�cp  ?: �0 9⌧ , and generates ?:⌫cp honestly.
It sets B:�cc8  ?: + 08⌧ for 1  8  = and B:⌫cc8  ?:⌫cp + 08⌧

for = + 1  8  2=. If 3 = 1, then tt sets ?:⌫cp  ?: � 0 9⌧ , and
generates ?:�cp honestly. It sets B:⌫cc8  ?: + 08⌧ for 1  8  = and
B:�cc8  ?:�cp + 08⌧ for = + 1  8  2=. D simulates the rest of the
experiment properly.

Note that all the keys have the right distribution.With probability
1/2=, � will modify the caterpillar key with index 9 that is equal
to ?: � 0 9⌧ + 0 9⌧ = ?: into some ?:0. D will output ?:0 and the
ciphertext ⇠ it created under ?: . If the game aborts, then D wins
its own game. We have

Pr3 � Pr2  2= · Advtrob
AE

(D) .

⌧4 is identical to ⌧3 except in ⌧4 the ACA encrypts random
plaintexts. Here we claim that there is an e�cient adversary B so
that

Pr4 � Pr3  Advind-cpa-wrka
AE,(ePKExp+,eSKExp+ )

(B) .

To justify the above, we construct an adversary B that attacks
uf-wrka security of the encryption scheme, usingA as a subroutine.
Adversary B is given the global information � = (G,⌧,@). It is also
given the public key ?: = G ·⌧ and random o�sets (tweaks) C1, . . . , C✓ .
The attacker also has access to oracle E��(·, ·, ·).

B runs (?:aca, B:aca)
$
 ACAKG(� ), (?:�cp, B:�cp)

$
 ECKG(� ),

(?:⌫cp, B:
⌫
cp)

$
 ECKG(� ); :�

EXP

$
 {0, 1}: , :⌫

EXP

$
 {0, 1}: ,

4?:�cp  ?: , ~ $
 Z@ , 4?:⌫cp  ?: + ~⌧ , and gives (� , ?:�cp,

?:⌫cp, 4?:
�
cp, 4?:

⌫
cp, :

�
EXP

, :⌫
EXP

, ?:aca) to A. The attacker is not
given 4:�

EXP
or 4:⌫

EXP
because in this game the cocoon keys are

“expanded” with random values. B computes 4?:cc�8  ?:cp + C8⌧

and 4?:cc⌫8  4?:⌫cp + (C8+= � ~)⌧ for 1  8  =.
Next B simulates the ACA in the BKG interaction. B com-

putes the responses for both parties � and ⌫ according to the al-
gorithm with the only di�erence in how the ciphertexts are com-
puted. Instead of computing 28  Enc.E(4?:�cc8 , ?:bf8 k24AC8 kA8 ),
B makes a query to its oracle E��(?:bf8 k24AC8 kA8 ,", 8) for a ran-
dom " with the same length as ?:bf8 k24AC8 kA8 . And instead of
28  Enc.E(4?:cc18 , ?:bf8 k24AC8 kA8 ), B makes a query to its oracle
E��(?:bf8 k24AC8 kA8 ,", 8 +=) for a random" with the same length
as ?:bf8 k24AC8 kA8 .

Finally, B �ips bit 1 $
 {0, 1}, and computes the challenge but-

ter�y key pairs according to ⌧4. When A outputs its guess 3 , A
outputs 1 i� 3 = 1.

We now claim that the simulation is perfect for A in that its
view is like in the respectful games: when the challenge bit of B
is 1, then the view of A is as in ⌧4, and the challenge bit of B is 0,
then the view of A is as in ⌧3. Everything is simulated properly
in the obvious way except perhaps for the caterpillar and cocoon
encryption public keys ciphertexts. Recall that 4?:�cp = ?: and
4?:⌫cp is computed as ?: +~⌧ . The latter also has the right uniform
distribution since ~ is picked at random. Finally, the ciphertexts are
all computed under the proper cocoon public keys. The ciphertext
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for 8’s cocoon public key for EE A is computed via calling the
encryption oracle with the third input index 8 , i.e., the ciphertext
is encrypted under ?: + C8⌧ = 4?:�cp + C8⌧ = 4?:cc�8 for 1  8  =.
And the ciphertext for 8’s cocoon public key for EE B is computed
via calling the encryption oracle with the third input index 8 + =,
i.e., the ciphertext is encrypted under ?: + C8⌧ = for = + 1  8  2=
. which is right since 4?:cc⌫8 = 4?:cp⌫ + (C8+= � ~)⌧ = ?: + ~⌧ +

(C8+=�~)⌧ = ?: +C8+=⌧ for 1  8  =, which is the same as ?: +C8⌧
for = + 1  8  2=.

⌧5 is identical to ⌧4 except in ⌧5, if A makes a random oracle
query on any A8 k?:cc8 , then the experiment aborts.

Note that since the view of the attacker in ⌧5 is independent
from any A8 , unless the adversary makes a random oracle query
containing it. This accounts to �nding at least one pre-image of
a hash in the random oracle model and the probability of that is
negligible.

Pr5 � Pr4  negl(_) .
Since the view of the attacker is independent from the challenge

bit, we claim that

Pr5 =
1
2
.

Finally, we observe that

Pr0 =
1
2
Advpriv-cra

BKM
(A) +

1
2
=

4’
9=0

(Pr9 � Pr9+1) + Pr5 ,

and the statement of the theorem follows from the above bounds.

B.2 Proof of Theorem 5.2.
The adversary sees two caterpillar public keys and two cocoon
public keys, which come either from the same EE or from two
di�erent EEs. The cocoon keys are created bymodifying (additevely)
the caterpillar keys using the expansion function EXP and the
expansion key, di�erent for each EE. Since in the ideal cipher model,
each expansion function is modeled as a random permutation, then
the only way the adversary could distinguish twoworlds (determine
the challenge bit 1) is when two cocoon public keys coming from
di�erent EE happen to be same, since the keys of the same EE cannot
be the same. But the probability if the former event is related to the
birthday bound and is negligible. ⇤

B.3 Proof of Theorem 5.3
We construct an adversary B that attacks uf-wrka security of the
signature scheme DS, using A as a subroutine. Let @⌘ be the
number of random oracle queries A makes. Adversary B is given
the global information � = (G,⌧,@), where G is the group of points
on the elliptic curve of prime order @, generated by⌧ 2 G. It is also
given the public key ?: = G ·⌧ . B outputs random o�sets (tweaks)
01, . . . ,0= and computes I8  � (08 ) for 1  8  =. The attacker
has access to oracle S���(·, ·).

B runs (?:aca, B:aca)
$
 ACAKG(� ), and gives (� , ?:, B:aca,

?:aca) to A. A is not given :EXP or 4:EXP because the permuta-
tion underlying the expansion keys is modeled as the ideal cipher.
This means that for each key, the resulting function is modeled as a
random permutation the adversary is given access to. Accordingly,

B simulates computations EXP(:EXP , ·) and EXP(4:EXP , ·) for
the interaction with the honest EE in CKE via oracles $1, $2 as
follows. B picks two random permutations c1, c2 and random o�-
sets D8 , E8 , where D8 < D 9 and E8 < E 9 for 1  8, 9  =. It then then
computes ?:cc8  ?:cp +D8⌧ and 4?:cc8  4?:cp + E8⌧ and when
A queries oracle $1 with 8 , B returns D8 ; when A queries oracle
$2 with 8 , B returns E8 .

Next adversary B simulates EE in BKG interaction for A. Here
for simplicity we assume that A makes only one random oracle
query containing each ?:cc8 . (There is no reason for the adversary
to query more for each butter�y key computation. But if it does,
then B would have to “program” a random one with 08 , and the
resulting bound would have a factor of the maximum number of
random oracle queries per key.) To answer A’s random oracle
queries, B does the following. If the random oracle query by A

does not contain any ?:cc8 , then B uses its own random oracle to
provide the answer. If A makes a random oracle query A k?:cc8 , B
returns ⌘8  I8 � D8 .

Next adversary B simulates EE in BKR. WhenA queries oracle
S���, B fowards the query to its own oracle S���DS , and forwards
the oracle’s response back to A. When A provides the responses
at the end of BKG stage, B veri�es them using ?:aca. In the end,
adversary B obtains the output of A and uses that forgery as its
own output.

We now claim that B wins whenever A wins. First, we observe
that the simulation is perfect for A in that its view is like in the
actual experiment. The EE’s key it is given has the right distribution
of a random key (because the same key given to B has the same
distribution). The expansion values D8 , E8 are computed correctly
under the ideal cipher model. Under the random oracle model, the
BKE’s o�sets I’s also have the right (uniform) distribution.

Since D8 is selected at random by adversary B, and I8 are the
outputs of the random oracle, the simulated outputs of H , ⌘8 =
I8 �D8 also appear random to adversary A, with the same uniform
distribution as from a true random oracle.

At the end of the simulation, if adversary A successfully forged
a signature f for message< under secret key B:bf8 = B:cc8 + ⌘8 =
(B: +D8 ) + (I8 �D8 ) = B: +I8 , then (f,<) can also be used as a valid
forgery for adversary B in the uf-wrka game.

And clearly, if A is e�cient, then B is e�cient.
⇤

B.4 Proof of Theorem 6.1
Consider the following sequence of = + 1 “hybrid” games associated
with an adversary A. Let Pr9 denote the probability of game ⌧ 9
returning 1, for 0  9  =.

Note that by de�nition ⌧0 is ind-cpa-wrka game for ECIES
and (ePKExp+, eSKExp+). And then we have that

Pr0 = Pr
h
ind-cpa-wrkaA ) 1

i

=
Advind-cpa-wrka

ECIES,(ePKExp+,eSKExp+ )
(A)

2
+
1
2
.

Now note that

Pr0 =
=�1’
9=0

(Pr9 � Pr9+1) + Pr= .
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Game⌧ 9

(D⌧,D )
$
 ECIES.K((G,⌧,@) )

(01, ...,0= )
$
 A(D⌧ )

For 8 = 1, ...,=:
B:8  D + 08
?:8  (D + 08 )⌧

1
$
 {0, 1}

10
$
 A

E��( ·,·,·)
(01, ...,0= )

Return (10 = 1 )

E��(<0,<1, 8 )

If |<0 | < |<1 | then Return ?:
If 8  9 :

E
$
 Z@

+  E⌧
(:SE ,:MAC )

$
 {0, 1}⌘;4=

4
$
 SE .E(:SE ,<1 )

C  MAC(:MAC, 4 )
Return+ k4 kC

Else:
2  ECIES.E(?:8 ,<1 )

Return 2

Figure 19: “Hybrid” games ⌧ 9 for 0  9  = for the proof of Theorem 6.1.

The statement of the theorem follows from the above equations
and the following claims.

L���� B.1. For any 0  9  = � 1 and any e�cient adversary A

there exists an e�cient adversary D such that

(Pr9 � Pr9+1)  Advhdh
HK,G (D) .

P����. Recall that the hdh attacker D is given the public group
info (G,⌧,@) and also * = D⌧,+ = E⌧,/ , where D, E are random
elements in Z@ and / is either � (DE⌧) or a random bitstring. To
�gure out which case it is B uses A.

D picks a random bit 1, o�sets 01, . . . ,0= from Z@ at random
and runs A on ?: = *�0 9⌧ and 01, . . . ,0= . D computes ?:8  
(08 � 0 9 )⌧ +* for all 0  8  =.

To answer A’s oracle query E��(<0,<1, 8), D follows the algo-
rithm outlined on the right side in Figure 19 for all 8 < 9 . When
8 = 9 , then D uses / in place of the output of � , and the rest is
unchanged.

Finally, D outputs 0 if A guesses 1 correctly.
To analyze D, note that the public keys of A are (01 � 0 9 )⌧ +

* , . . . ,* , . . . , (0= � 0 9 )⌧ + * have the right distribution. If D’s
challenge bit 1 is 0, i.e., / is random, then the view of A in the
simulated experiment is exactly as in ⌧ 9 . And if 1 = 1, i.e., / =
� (DE⌧) = � (E (D+0 9 �0 9 ))⌧), then the view ofA in the simulated
experiment is exactly as in ⌧ 9+1.

Now,

Advhdh
HK,G (D) = Pr

⇥
Exp hdh0 ) 0

⇤
� Pr

⇥
Exp hdh1 ) 0

⇤
= Pr9 � Pr9+1 .

Clearly, if A is e�cient, then D is e�cient. ⇤

L���� B.2. For any any e�cient adversary A there exists an
e�cient adversary B such that

Pr= 
= · Advind-cpa

SE
(B)

2
+
1
2
.

P����. In ⌧= , messages are encrypted using the symmetric en-
cryption scheme under the keys, which are random and indepen-
dent from other information the adversary sees. Hence we can
construct an adversary that breaks security of the symmetric en-
cryption scheme. Since several random keys are involved, for sim-
plicity we use the ind-cpa security de�nition in the multi-user

setting, =-ind-cpa, [9], and their result about the relation to the
security in the standard (single-user) setting.

The=-ind-cpa attackerB= is given= left-right encryption oracles
associated with = randomly generated keys, that it can query on
pairs of messages<0,<1 of equal length and they return encryp-
tions, under the corresponding key, of<1 , where 1 is the challenge
bit �ipped at random at the beginning of the experiment. B= has
to guess 1.

B= simulates ⌧= for A, by following the code of ⌧= with the
only di�erence in answering the oracle query of A on (<0,<1, 8) ,
:SE is not used, and instead of computing 4 $

 SE .E(:SE ,<1 ),
B= queries its own 8th left-right encryption oracle and the result is
assigned to 4 .

When A returns a bit, B= returns the same bit.
We claim that B= wins whenever A wins, because B= simulates

⌧= forA perfectly. In⌧= encryptions are computed using randomly
picked keys in the experiment, while ⌫= uses its own left-right
encryption oracles, which are also under the randomly generated
keys. And the rest is the same. Clearly, if A is e�cient, then ⌫= is
e�cient.

To obtain the statement in the claim it remains to recall the result
from [9] stating that security in the standard single-user setting
implies security in the multi-user setting, with the multiplicative
factor = in the security loss in the concrete relation between the
adversaries. ⇤

⇤

B.5 Proof of Theorem 7.2.
Consider a series of games ⌧0, ...,⌧= associated with adversary A.
Let Pr9 denote the probability of game⌧ 9 returning 1, for 0  9  =.

We �rst observe that when 9 = 0, then all ciphertexts are com-
puted properly, according to the the MR-ECIES scheme, match-
ingmr-cpa-wrka experiment. When 9 = =, then = challenge cipher-
texts are computed using the random keys for symmetric encryp-
tion. Hence,

1
2
Advmr-cpa-wrka

MR-ECIES
(A) +

1
2
= Pr0 =

=�1’
9=0

(Pr9 � Pr9+1) + Pr= .

The statement of the theorem will follow from the following two
claims.
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Game ⌧ 9

1
$
 {0, 1}

(?:, B:)
$
 AE .K(� )

(01, ...,0=)
$
 Coins

For 8 = 1, ...,=
B:8  eSKExp(B: ;08 )
?:8  ePKExp(?: ;08 )
(?:0, B:0)

$
 AE .K(� )

(11, ...,1=)
$
 Coins

For 8 = 1, ...,=
B:08  eSKExp(B: ;18 )
?:08  ePKExp(?: ;18 )
(m0,m1,m)

$
 A(?:, ?:0,01, ...,0=,11, ...,1=, B:0)

If |m0 | < |m1 | then return ?
If = < |m0 | then return ?
If = < |m| then return ?

E
$
 Z@

+  E⌧
For 8 = 1, ...,=
If 8  9 :

(:SE ,:MAC)
$
 {0, 1}⌘;4=

Else:
(:SE ,:MAC)  � (B:8 ·+ )

4
$
 SE .E(:SE ,m1 [8])

C  MAC(:MAC, 4)
c[8]  (+ k4 kC)
(:SE ,:MAC)  � (B:08 ·+ )

4
$
 SE .E(:SE ,m[8])

C  MAC(:MAC, 4)
c[8 + =]  (+ k4 kC)

10
$
 A(c)

Return (10 = 1)

Figure 20: “Hybrid” games for the proof of Theorem 7.2.

L���� B.3. For any e�cient A and 0  9  = � 1 there is an
e�cient B such that

(Pr9 � Pr9+1)  Advodh
G,HK

(B) .

P����. We present adversary B in Figure 21. The “neighboring”
hybrid games⌧ 9 and⌧ 9+1 di�er only inwhether the keys are picked
at random and computed using the hash, and this the reduction
to ODH here insures that these games are indistinguishable to the
adversary. ⇤

L���� B.4. For any e�cient A there is an e�cient C such that

Pr=  = ·
1
2
Advind-cpa

SE
(C) +

1
2
.

P����. Since all challenge messages are encrypted using the
symmetric encryption scheme with randomly chosen keys, then
it is straightforward to show a reduction to IND-CPA security of

the scheme. The factor of = is from the reduction from the ind-cpa
security in the multi-user setting to the single-user setting, similarly
to the proof in [9]. ⇤

Adversary B
$E ( ·) (� ,+ ,* ,/ )

1
$
 {0, 1}

(01, ...,0=)
$
 Coins

(11, ...,1=)
$
 Coins

?:  * � 0 9

(?:0, B:0)
$
 AE .K(� )

For 8 = 1, ...,=
?:8  ePKExp(?: ;08 )
B:08  eSKExp(B:0;18 )
?:08  ePKExp(?:0;18 )
(m0,m1,m)

$
 A(?:, ?:0,01, ...,0=,11, ...,1=, B:0)

If |m0 | < |m1 | then return ?
If |m0 | = |m1 | = |m0 | is not = then return ?
For 8 = 1 . . . ,=

If 8 = 9 then (:SE ,:MAC)  /
If 8 < 9 then (:SE ,:MAC)  $E (?: + 08⌧)

If 8 > 9 then (:SE ,:MAC)
$
 {0, 1}⌘;4=

48
$
 SE .E(:SE ,m1 [8])

C8  MAC(:MAC, 48 )
c[8]  + k4 kC

For 8 = 1 . . . ,=
(:SE ,:MAC)  � ((B:0 + 18 )+ )

408
$
 SE .E(:SE ,m[8])

C 08  MAC(:MAC, 48 )
c0 [8]  + k4 kC

10
$
 A(c, c0)

Return (10 = 1)

Figure 21: Adversary B for the proof of Theorem 7.2.
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