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ABSTRACT e Trust: Vehicles need assurance that incoming messages are

The paper provides the first provable security analysis of the But-
terfly Key Mechanism (BKM) protocol from IEEE 1609.2.1 standard.
The BKM protocol specifies a novel approach for efficiently re-
questing multiple certificates for use in vehicle-to-everything (V2X)
communication. We define the main security goals of BKM, such
as vehicle privacy and communication authenticity. We prove that
the BKM protocol, with small modifications, meets those security
goals. We also propose a way to significantly improve the protocol’s
efficiency without sacrificing security.
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1 INTRODUCTION
1.1 Motivation

V2X. Vehicle-to-vehicle (V2V) communication, where vehicles ex-
change messages with other vehicles (e.g., vehicle’s speed, head-
ing, braking status, etc.), along with other types of vehicle com-
munications, such as vehicle-to-infrastructure (V2I) and vehicle-
to-pedestrian (V2P), collectively known as vehicle-to-everything
(V2X), have the potential to significantly improve safety and effi-
ciency of our transportation system. The U.S. Department of Trans-
portation (DOT) — National Highway Traffic Safety Administration
(NHTSA) estimated that when fully deployed, V2V communications
can help prevent up to 592,000 crashes and save up to 1,083 lives
per year [22]. In 2017, the DOT proposed a rule [1] to mandate
the inclusion of V2V technology in light vehicles in the US. Even
though the proposed rule didn’t materialize into a mandate, in their
recent draft V2X deployment plan [5], the DOT has set short term
(2024 - 2026), medium term (2027 — 2029) and long term (2030 —
2034) goals that include a fully deployed national highway system,
6 vehicle manufacturers and 20 vehicle models to be V2X capable.

V2X communication has its own unique challenges and require-
ments:

e Privacy: Vehicles need protection from being tracked as they
are continuously sending sensitive information.
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from genuine senders that have been allowed to participate
in V2X.

e Resource constraints: Vehicles have limited resources in
terms of connectivity, compute, storage, etc.

IEEE Standards. To address the above, the IEEE Std 1609.2 [2]
specifies digital certificate formats and the IEEE Std 1609.2.1 [4]
specifies certificate management protocols. Both these standards
are the de facto specifications for securing V2X communications in
the US [3], and form the bases for specifications elsewhere including
Europe and China.

Vehicles are issued digital certificates that they use to digitally
sign messages so that the receiver of those messages can verify the
signatures and be sure that the messages are coming from a genuine
sender. Those certificates are designed to be pseudonym, i.e., the
certificates do not contain any identifying information, and instead
contain permissions to send certain types of messages. Vehicles are
also provisioned with not one but several concurrently valid and
seemingly unrelated certificates, so that they don’t need to use any
particular certificate for a prolonged period.

Butterfly Key Mechanism. The IEEE Std 1609.2.1 specifies a novel
approach for requesting multiple certificates efficiently through a
cryptographic protocol called the Butterfly Key Mechanism (BKM).

We briefly and informally describe the protocol, also see Figure 1
for the pictorial description. The protocol involves three parties: an
end entity (EE), e.g., a vehicle, a registration authority (RA), and an
authorization certificate authority (ACA). The EE has two caterpillar
secret-public key pairs and two keys for pseudorandom functions,
where one is used for signing and the other for encryption. Using
the caterpillar secret keys and the pseudorandom function keys, the
EE creates two sets of cocoon secret keys, one set for signing and
the other for encryption. The RA, who gets the caterpillar public
keys and the pseudorandom function keys from the EE over a secure
channel, can create the corresponding sets of cocoon public keys
for signing and encryption.

Next, the RA permutes the cocoon public key sets from a large
number of EEs, and sends the permuted cocoon public keys to the
ACA. The ACA picks a random offset for each caterpillar signing
key, creates the corresponding butterfly public key and a digital
certificate for it, encrypts all of these under the cocoon public key
for encryption, signs the ciphertexts, and sends those back to the
RA. The RA “un-permutes” the responses and forwards them to the
EE. The EE verifies the signatures, decrypts the ciphertexts using
its cocoon secret key for encryption, and obtains the offsets. Using
these, the EE computes the butterfly secret and public keys and
verifies the certificates for the latter. We provide the protocol details
in Section 3.3.
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The butterfly key mechanism (cf. clause 9.3 in [4], and [14, 27])
has the following unique privacy and efficiency features:

o The certificate requester needs to make just one request to
obtain essentially unlimited number of seemingly unrelated
pseudonym certificates.

o The certificate provider that includes two distinct entities,
registration authority and certificate authority, can’t tell if
any two pseudonym certificates belong to the same EE or
not, as long as the registration and certificate authorities do
not collude with each other or with other entities.

Despite its importance and being on the verge of a massive
deployment, the Butterfly Key Mechanism (BKM) protocol, stan-
dardized in IEEE Std 1609.2.1 has not been formally analyzed. The
works [14, 27] describe the protocol along with the intended secu-
rity and privacy properties, but do not provide a formal analysis.
Simplicio et al. [25] suggests an efficiency improvement so that
EEs could avoid sending the encryption keys to the RAs as those
keys could be derived by the parties using the same key expansion
mechanism. Their security analysis is very informal.

1.2 Our Contributions

We provide the first provable security analysis of the Butterfly Key
Mechanism protocol.

Protocol Syntax and Description. We start with defining the
Butterfly Key Mechanism (BKM) protocol’s functionality (syntax)
in Section 3.2. Our syntax follows the flow of the BKM as specified
in IEEE Std 1609.2.1, hereafter referred as IEEE BKM, but is general
enough to capture the modifications we suggest and some new
protocols.

We then describe (in Section 3.3) the IEEE BKM following our
syntax.

Security Definitions. Next, we provide the security definitions
for BKM protocols. Our security definitions capture two security
goals BKM protocols aim to achieve for end entities — privacy
(anonymity/unlinkability) and unforgeability (authenticity). For
both of these goals we consider different threat models depending
on which parties are corrupted. We assume that EEs are honest
(though we do discuss what happens if some of their keys get
compromised). We consider the cases when either the RA or the
ACA are corrupted. We also consider the strongest case when both
RA and ACA are corrupted and colluding. In all these cases, we
make the following assumptions, which follow the setup in prac-
tice. The communication between EEs and the RA is private and
authenticated, and the communication between the RA and the
ACA is authenticated. EEs have what are called enrollment certifi-
cates, which they use to sign the requests to the RA. This helps
prevent impersonation attacks on EEs. The caterpillar keys of EEs
are always honestly generated and thus have the right distribution
and are independent from each other. Each EE is communicating
with a single RA, and each RA may talk to several ACAs. For each
corruption case, we consider attackers who learn all the public
information and everything the corrupted party knows. We assume
the attacker is active and can deviate from the protocol.

The goal of the attacker in the privacy experiment is to distin-
guish whether two butterfly public keys belong to the same EE
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or two different EEs. The goal of the attacker in the unforgeabilty
experiment is to forge a signature under any butterfly public key.

Security Analysis. Our main contribution is the security analysis
of IEEE BKM.

Privacy. We start with the goal of privacy. If both ACA and RA are
corrupted, then no privacy can be achieved by a BKM protocol®.
This is because the attacker (by corrupting the ACA) will know the
butterfly public keys and the corresponding certificates of the EE,
and (by corrupting the RA) to which EE the certificates are returned.
In particular, the attacker can link public keys and certificates to
EEs (whether they belong to the same EE or not, and moreover,
which public key is whose). Hence no EE privacy can be achieved.
And of course, the certificates cannot be trusted as they may have
been produced by the attacker on behalf of the ACA.

If only the RA is corrupted, then EE’s privacy depends on how
the corrupted RA deals with ACAs. If there are multiple ACAs and
EEs the RA works with, then privacy in the strong sense cannot hold
as a malicious RA can do the following attack. Say, the corrupted
RA gets requests from EE; and EE;, and each is expanded into
several cocoon keys using the expansion function. Then the RA can
send ACA; all requests from EE; and ACA; all requests from EE,.
Later, the attacker will not be able to tell the EEs’ keys apart, but it
will be able to tell their certificates apart, as they will be signed by
different ACAs.

If there is a single ACA for all the EEs that the RA services,
then privacy can hold. If there are multiple ACAs, and if RA sends
fractions of requests from each EE to several ACAs, then privacy
can hold within each EE-ACA batch. In practice, however, it is
extremely unlikely that an RA will use more than one ACA to
generate certificates. The most likely scenario is where a vehicle
manufacturer contracts a Security Credential Management System
(SCMS) provider, so there will be a one-to-one mapping between
the RA and the ACA. Our definition captures both cases.

To prove that privacy holds, we would like to use the fact that
the underlying public-key encryption scheme, ECIES is secure. But
the standard security (indistinguishability under chosen-plaintext
attack or IND-CPA) is not immediately sufficient for us. Since the
attacker breaking the protocol will see ciphertexts created under
different but related cocoon keys (they are related because they
correspond to the same caterpillar key and the attacker knows that
key and the cocoon extensions), we need to rely on the security
of the base encryption scheme under a weak version of the notion
of related-key attack (RKA) [11, 12], where the related keys are
created by adding random offsets to a single key.

It turns out that proving security requires an additional non-
standard notion of security for the base encryption scheme, the
property that captures inability to create ciphertexts which are valid
wrt different keys. Such a property is called robustness. Robustness
of asymmetric encryption was studied by Abdalla et al. and Farshim
et al. [6, 17]. However, as we discuss in Section 5.2, their security
definitions are not immediately suitable for us. We provide the
definition of robustness capturing our setting, that we call target
robustness.

!t may be possible to construct a protocol with a slightly different functionality but
serving the same general security goals using group signatures [16] or fair blind
signatures [26], but efficiency is likely going to be an issue.
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Theorem 5.1 provides the formal bound stating that the generic
IEEE BKM (based on arbitrary underlying schemes) achieves pri-
vacy against the corrupted RA in the ideal cipher and random
oracle model, assuming that the base encryption scheme is IND-
CPA secure against additive RKA and is also target-robust, and the
signature scheme used by the ACA is UF-CMA secure.

Unfortunately, ECIES, the base encryption scheme used by IEEE
BKM is not known to be target-robust or secure in this sense of
additive RKA. The good news is that we can prove ECIES is secure
in these senses. In Theorem 6.1 we show that ECIES is IND-CPA
under additive RKA assuming hardness of the Hash Diffie-Hellman
problem and the IND-CPA security of the underlying symmetric
encryption scheme. We also prove that ECIES, with small modifi-
cations, satisfies target-robustness in the random oracle model (cf.
Theorem 6.2).

In case of corrupted ACAs, EEs’ privacy does hold assuming that
the honest RA sends each ACA the permuted requests containing
equal portion of each EE’s cocoon keys or there is only one ACA
for each EE. Theorem 5.2 states the result.

UNFORGEABILITY. We now turn to the goal of unforgeabil-
ity/authenticity. Consider the strongest model when both the RA
and ACA are corrupt. The adversary cannot compute the butterfly
secret keys as it does not know the caterpillar secret keys. But to for-
mally prove unforgeability we face the same issue we faced to prove
privacy, in that the standard (unforgeability under chosen-message
attack or UF-CMA) security of the base signature is not enough for
the proof to go through. What one would need is stronger security
for the base signature scheme such as unforgeability under related-
key attack (UF-RKA [11]). Such a notion requires unforgeability
to hold even if the attacker can observe signatures under related
keys. The relation we are concerned with is a specific one, where
random offsets are added to the secret key.

In order to obtain BKM unforgeability under such additive RKA
attacks we need a very simple modification to the protocol. The
change is as follows. In the current design, the ACA picks the
offset r, and sends it (encrypted) to EE via RA. We propose to use
H(r,cpk) instead of r in butterfly key generation, where H is a
hash function and cpk is the cocoon public key of EE. The intuition
for this modification is to prevent a corrupted ACA to gain any
advantage by picking r maliciously. Applying the hash makes the
result look random despite the choice of r, as long as hash inputs do
not repeat. The use of the cocoon public key is to prevent repeated
inputs. Even if the malicious ACA chooses the same r, the cocoon
keys will be distinct as the outputs of expansion functions will be
distinct (with overwhelming probability). Theorem 5.3 states that
the unforgeability of the generic (based on an arbitrary signature
scheme) IEEE BKM, with slight modification, reduces to the additive
RKA security of the underlying signature scheme, in the ideal cipher
and random oracle models.

But is ECDSA signature scheme the protocol uses secure under
(additive) RKA? ECDSA has not been proven to be (additive) RKA
secure until the very recent work by Groth and Shoup [21], and
their results fortunately can be used to complete arguing security
of IEEE BKM.

Since we could prove unforgeability in the strongest corruption
model, we do not focus on the weaker models. We observe, however,
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that in the case of honest ACA (and corrupted RA), unforgeability
holds without the protocol’s modification.

We note that the modifications we suggest are only needed for
the proofs to go through, and we do not know of attacks on the
protocol without the modifications.

Efficiency Improvement. We propose a simple change to the
protocol that yields a significant efficiency improvement. More
specifically, we propose that the ACA can re-use randomness when
encrypting certificate responses using ECIES under different cocoon
encryption keys. Observe that the first part of an ECIES ciphertext
is vG, where v € Zg has to be picked at random for each encryption.
We show that the ACA can re-use the same v across all ciphertexts.
This will result in reducing the computation in half (as the ACA
will have to perform only N + 1 scalar elliptic curve multiplications
as opposed to 2N, where N is the number of encryptions the ACA
performs) and significantly reducing the communication (since G
can be sent only once to each EE).

Kurosawa, Bellare et al. and Barbosa and Farshim [8, 10, 24]
studied the problem of secure randomness re-use. Bellare et al. [10]
defined the security notion for asymmetric multi-recipient encryp-
tion schemes (MRES) and proved that randomness can be safely
re-used across multiple DHIES encryptions under different public
keys. Their result applies to ECIES as well, however, we cannot use
their result as is. The reason is the public keys in our application
are related, and the results of [8, 10] do not cover this case. We
show that the MRES with ECIES and randomness re-use is secure in
the setting with the related keys, assuming hardness of the Oracle
Diffie-Hellman problem and IND-CPA security of the underlying
symmetric encryption scheme (cf. Theorem 7.2). Finally, we show
that this is what we need for unlinkability of the modified IEEE
BKM.

2 NOTATION AND PRELIMINARIES

2.1 Notation

For | € N we denote by 1! the string of I “1" bits. a4]|...||lan de-
notes the string encoding of ajy, ..., ap from which ay, ..., a, are
uniquely recoverable, e.g., concatenation. We use the bold font
x to denote the list (x1,...,x,) for any x. We assume that the
number of elements in the list is clear from the context. And
then x[i] = x; is the ith element in x. If S is a set then x s
denotes that x is selected uniformly at random from S. If A is

a randomized algorithm then y & A(x1,x2,...) denote the op-
eration of running A on inputs x1, Xz, ... and assigning output
to y. For the syntax of any interactive protocol (algorithm) I
executed between party A and party B, we use the convention:
(output 4, outputpg) <« [Z4(inputy), Ig(inputp)]. If A is an algo-
rithm, then A = x means that A outputs string x at the end of its
execution. By efficient we mean algorithms that run in (expected)
polynomial-time in the length of their inputs, and make polynomial
number of queries of polynomial length.

2.2 Preliminaries

We recall the cryptographic primitives the BKM protocol uses and
their security definitions.
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DiGITAL SIGNATURES. A digital signature scheme DS, associ-
ated with the message space MsgSp, consists of four algorithms
(G, K, S, V). The global info generation algorithm G takes as input
the security parameter 11 and outputs the global info I. (For Diffie-
Hellman-based schemes the global info may include the group
description and the generator of the group.) The key generation al-
gorithm K takes as input the global information I that contains the
security parameter and possibly some other information and returns
a pair of public-secret key (pk, sk). The signing algorithm takes a
secret key sk and message m then returns a signature o. The verifi-
cation algorithm takes a public key pk, a message m, and a signature
o, then returns a bit b indicating whether the signature is valid.
Correctness of the scheme requires that for any I output by G(14),
(pk, sk) & K(I), and any m € MsgSp, V (pk, m, S(sk,m)) = 1.
For security, recall the following security experiment

Exp‘g:gma(?[) associated with DS and adversary A . First, keys

are generated: [ & G(1M, (pk, sk) & K (I). Then A is given
pk and access to the oracle S () = S(sk,-). In the end, A
outputs a message-signature pair (m, o). Exp‘g_gma(.?{) returns
1 iff V(pk,m,0) = 1 and m is in MsgSp and was not queried
to the S (+) oracle. The advantage Advlg_gma(ﬂ) is defined as

Pr Expggma(ﬂ) =1].

AsYMMETRIC ENCRYPTION. An asymmetric encryption scheme A&,
associated with the message space MsgSp, is defined by four algo-
rithms (G, K, &, D). The global info generation algorithm G takes
as input the security parameter 1* and outputs the global info I. The
key generation algorithm % takes as input the global information
I and returns a pair of public-secret key (pk, sk). The encryption
algorithm & takes a public key pk and message m to return a ci-
phertext c. The decryption algorithm takes a secret key sk and a
ciphertext ¢ to return a plaintext m. Correctness of the scheme

requires that for any any I output by 6%, (pk, sk) & K(I), and
any m € MsgSp, D(sk, E(pk, m)) = m. We will define the security
notions we need later in the paper.

SYMMETRIC ENCRYPTION. A symmetric encryption scheme S&, asso-
ciated with the message space MsgSp, consists of three algorithms
(K, &, D). The key generation algorithm K returns a secret key k.
The encryption algorithm & takes key k and message m to return a
ciphertext c. The decryption algorithm takes key k and a ciphertext
c to return a plaintext m. Correctness of the scheme requires that
for any k & Kand any m € MsgSp, D(k, E(k, m)) = m.

For security, we recall the ind-cpa definition. Let LR(:, -, b) denote
the function that on inputs mg, m; returns my,. For an adversary A,

i;‘é—cpa_b(ﬂ). First, the key is gener-

atedask <& K. Then A is given access to the oracle &(k, LR(:, -, b)).
We require that each query (mg, m1) that A makes to its oracle
satisfies |mg| = |m;|. Finally, A outputs a bit d, and the experiment

returns 1iff b = d. The ind-cpa advantage AdviSncha(ﬂ) is defined
(A = O] - Pr[Exp

consider the experiments Exp

ind-cpa-0 ind-cpa-1
SE P PP (A) = 1.

as Pr{Exp SE
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3 THE BUTTERFLY KEY MECHANISM
PROTOCOL

In this section we first informally describe the IEEE BKM protocol.
Next, we formally define the syntax (functionality) of a BKM pro-
tocol. This is necessary for the formal security analysis. Next, we
formally specify the cryptographic core of the IEEE BKM, following
the syntax.

3.1 Overview of IEEE BKM

The IEEE BKM protocol involves three parties: an end entity (EE),
a registration authority (RA), and an authorization certificate au-
thority (ACA). Figure 1 informally presents the main steps of the
protocol.

3.2 Protocol Syntax

The Butterfly Key Mechanism protocol (BKM) is an interac-
tive protocol involving three parties: an end entity (EE), a reg-
istration authority (RA), and an authorization certificate author-
ity (ACA). It is associated with two digital signature schemes
DS = (G1, K1, 81, W), DSz = (G2, Ko, S2, Vo) with message
spaces MsgSp;, MsgSp,. (DS1 and DS can be the same schemes.)
The protocol consists of the following algorithms and interactive
subprotocols:

Caterpillar key generation (CKG). The algorithm is executed
by the EE. It takes the security parameter and outputs a caterpillar

key pair and an expansion key : (pkcp, skep, kg x ) & CKG(M).
ACA signing key generation (ACAKG). The algorithm is run
by the ACA. It takes the security parameter and outputs a pair of
signing keys : (pkaca, Skaca) & ﬂCﬂ‘KQ(l’l).

Cocoon key expansion (CKE). This is an interactive subpro-
tocol between the EE and the RA. The EE takes as inputs the
expansion key and the caterpillar secret key, and at the end
of the interaction outputs a list of cocoon secret keys. The RA
inputs the expansion key and the caterpillar public key, and

outputs a list of cocoon public keys: [(pkcc, Skcc), Pkec] &
[CKEEE (skep, kg xp), CKERA(Pkcp, kg xp)]. In practice the ex-
pansion key is sent by the EE via a secure channel.

Butterfly key generation (BKG). This is an interactive subproto-
col between the RA and the ACA. The RA takes input the ACA’s
public signing verification key and the cocoon public keys and out-
puts the certificate response. The ACA takes its signing key and has

no output: [rsp, L] & [BKGra(pkaca, Pkec). BKGAcA (skaca)]

Butterfly key reconstruction (BKR). This is an interactive
subprotocol between the EE and the RA. The EE takes inputs
the cocoon secret keys and the ACA’s signing verification key
and outputs lists of butterfly public and secret keys, as well
as a list of certificates. The RA takes input the response from

ACA in BKG and outputs nothing: [(pkps, skps, cert), L] &
[BKREeE (skec, pkaca), BKRra(rsp)].

Correctness. Informally, correctness requires that at the end
of the protocol the EE obtains valid key pairs for the signature
scheme and valid certificates for the public keys. More precisely,
we require that for any A, (pkcp, skep, kg x ) output by CKG (1Y),
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1. EE generates:
1.1. Caterpillar secret-public key pair for

signing
1.2. Caterpillar secret-public key pair for
encryption > ﬁ\
1.3. Secret expansion function \ /f
<P
1 1.2. 13.

2. EE sends to RA:

2.1. Caterpillar public key for signing
2.2. Caterpillar public key for encryption
2.3. Secret expansion function

C.T—\A)H

3. EE expands caterpillar keys into a series of &? 1@@ é%
cocoon secret-public key pairs for signing and é

encryption using the expansion function ?@

e
2 EE S %6

&&%

&= B

7. EE receives the packets from RA, verifies
ACA’s signatures, and decrypts them using

cocoon secret keys for encryption to obtain
certificates and randomization information

8. EE randomizes cocoon secret keys for
signing to butterfly secret keys and stores
them along with the corresponding
certificates on butterfly public keys

from ACA
ﬁ M M M M 7. RA forwards received packets to corresponding
EEs
. " «—— I I

2. RA receives from EE:

2.1. Caterpillar public key for signing
2.2. Caterpillar public key for encryption
2.3. Secret expansion function

3. RA expands caterpillar keys into a series of
cocoon public keys for signing and encryption
using the expansion function

4. RA sends to ACA permuted cocoon public
keys for signing and encryption

6. RA receives all the encrypted and signed packets

Pl
o

4. ACA receives from RA permuted cocoon
public keys signing and encryption

5. For each cocoon public key for signing:

5.1. ACA randomizes the key to a butterfly public
key and generates a certificate for the butterfly
public key

5.2. ACA encrypts to the corresponding cocoon
public key for encryption: certificate and
randomization information

5.3. ACA signs the encrypted packet

“ﬁi‘lll

5.1
6. ACA sends all the encrypted and signed packets

to RA

Figure 1: Eight main steps of IEEE BKM protocol, ran between EE, RA and ACA.

(pkaca, skaca) output by ﬂCﬂ‘Kg(lA), and for the sequential ex-
ecutions of interactive protocols CKE&E, BKG and BKR, where
(pkpt, skpf) denote the butterfly keys produced by the EE at
the end of BK'R, we have that for any message m € MsgSp,,
DS1.V1(pkpelil, m, DS1.81(skpg[i], m)) = 1. Also, we require
that pkp¢[i] € MsgSp, and DS2. Vs (pkaca, pkpsli], cert[i]) =1
for any 1 < i < n. Here for simplicity we ignore the auxiliary
information that the certificates usually contain, and focus only on
the public butterfly keys certification.

3.3 IEEE-BKM Description

General Description. We now specify the IEEE Butterfly Key
Certificate protocol using our syntax. We first present the protocol
for general (but elliptic-curve Diffie-Hellman based) schemes, and
later discuss the particular instantiations the protocol uses.

Let DS = (g1, K1, S1, (Vl), DS,y = (gz, Ko, So, (Vz) be signa-
ture schemes and let AE = (G, K, &, D) be an asymmetric en-
cryption scheme. DS and AE are elliptic-curve Diffie-Hellman
based schemes, meaning that their key generation algorithms are
as follows. The global info generation algorithm outputs the global
information I = (G, G, q), where G is the group of points on the
elliptic curve of prime order g, generated by G € G. The key genera-
tion algorithm outputs a pair of keys (pk, sk), where sk is a random
element of Z4 and pk = x - G. Let EXP: {0, 1 x {0,1}! - Zg
be a function family that we refer to as the expansion function. Let
H: {0,1}* — Zg be a hash function. For simplicity of notation we

assume that public keys contain the global information and that
the parties are stateful.
o CKG:
$ A $ A
Is &= DS1.G1(1"); [e — AE.G(17);
(Pkep,skep) < DS1.Kg (I); kexp < {0.1}F
(epkep, eskep) & AEKg(Le): ekgxp < {0,1}F
Return (Pkcp“epkcp, Skcp”eSkcp, ksxplleksxp)

The CKG (caterpillar key generation) algorithm specifies how the
(caterpillar and expansion) keys initially possessed by an EE are
generated.

I & DS82.Go(1%); (pkacar skaca) & DS2.Kg,(I)
Return (pkaca, skaca)

The ACAKG (ACA key generation) algorithm specifies how the
keys initially possessed by the ACA are generated. The ACA’s
public key is assumed to be publicly known.

o CKE: The protocol is presented in Figure 2.

The CKE (cocoon key expansion) protocol is executed between
the EE and RA. The EE sends the public caterpillar and expansion
keys to the RA via a secure channel. Both parties use the expansion
keys to expand the public caterpillar keys into multiple cocoon
public keys. The EE can also expand the secret caterpillar keys into
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EE(skeplleskep, ke xplleks xp)

Fori=1,..,n:
skecli] < skep + EXP(kgxp, (D))
Pkecli] « pkep + EXP(kgxp,(i)1) - G
eskec[i] « eskcp + EXP (ekgxp, (i)1)
epkecli] — epkep + EXP(ekgxp.(i)) -G

Return (pkecllepkec, skeclleskec)

RA(pkcpllepkep. ke xplleks xp)

Fori=1,..,n:
Pkeclil & pkep + EXP(kgxp, (M) -G
epkec[i] « epkcp + EXP(ekgxp, (i)) - G

Return pkccllepkec

Figure 2: CKE algorithm. Here (i); means number i represented as [ bits.

multiple cocoon secret keys. We assume that n < 2L,

o BKG: The protocol is presented in Figure 3. There P, is a set of
all permutations on n elements.

The BKG (butterfly key generation) protocol is executed between
the RA and ACA. The RA randomly permutes the EE’s cocoon
public keys for signing and encryption and sends them to the
ACA. The ACA expands the signing cocoon keys with random
offsets into butterfly keys and certifies them. It then encrypts each
butterfly key, the certificate and the random offset under the EE’s
public cocoon encryption key. The ACA also signs each ciphertext,
and sends them all to the RA. The RA “un-permutes” the ciphertexts.

o BKR: The protocol is presented in Figure 4.

The BKR (butterfly key reconstruction) protocol is between the
EE and the RA. The RA sends the EE the ciphertexts. The EE verifies
the ACA’s signatures and decrypts the ciphertexts using the secret
cocoon keys for decryption. It then uses the offsets to expand the
secret signing cocoon keys into the butterfly secret keys. It also
verifies the validity of the certificates and that the secret keys match
the public keys. The correctness follows from correctness of the
base schemes. Even though the butterfly and cocoon keys are not
computed using the respected key generation algorithms, they still
could be output by those algorithms, and hence the correctness
follows.

IEEE-BKM Instantiations. [EEE BKM uses AES as EXP2, ECDSA
as DS1, DS5, and ECIES as AE with the CCM mode as the under-
lying symmetric encryption. The IEEE 1609.2.1 standard specifies
several mechanisms for secure channels including TLS1.2, TLS1.3
and ISO/TS21177.

4 BKM SECURITY DEFINITIONS

In this Section we formally define the security notions for
the two main security goals of the BKM protocol: privacy
(anonymity/unlinkability) and authenticity (unforgeability). We
treat each goal separately. For each goal, we consider different sce-
narios of corrupted parties. The EE is always honest®. The strongest
model will assume that both RA and ACA are corrupted. The weaker
models treat the cases when either RA or ACA are corrupted.

2The standard also makes use of some XOR operations, but those are not relevant to
our analyses.

3In Section 7 we consider a modification to the protocol where EEs share some infor-
mation, and hence it makes sense to consider the case of compromised EEs there.

Let BKM = (CKG, ACAKG, CKE, BKG, BKR) be a BKM
protocol associated with two digital signature schemes DS =
(G1,K1,81,MN), DS2 = (G2, K2, S2,V2) with message spaces
MsgSp;, MsgSp,.

In the security following security definitions we assume that the
adversary is stateful, i.e., it can preserve state between invocations.
We do not specify states explicitly. If the attacker was previously
given some inputs, it can use those inputs in further stages.

4.1 Privacy

We formalize security in terms of end entity (EE) privacy. In other
words, we define anonymity (unlinkability) of EEs. The adversary
should not be able to tell to which EE a (butterfly) public key belongs
to. Note that this goal is not applicable in the standard PKI setting,
where digital certificates bind public keys and public identities
together. In our setting, the certificates intentionally do not contain
information about the key owner.

1. HoNesT EE, cORRUPTED RA AND ACA. In this strongest model, no
EE privacy is possible. Since the attacker communicates to EEs on
behalf of corrupted RA and ACA, it can later link public keys and
certificates to EEs (whether they belong to the same EE or not, and
moreover, whose public key is whose). More precisely, the attacker
will know the butterfly public keys of EE and the certificates, and
to which EE the certificates are returned. Hence no EE privacy can
be achieved.

II. HoNEsT EE AND ACA, corrRUPTED RA. If the RA is corrupted,
EE’s privacy depends on how the corrupted RA deals with the
ACAs. If there are more than one ACA and EE the RAs works with,
then no privacy holds in the strong sense as a malicious RA can
do the following attack. Say, the corrupted RA gets requests from
EE; and EEj, and each is expanded into several cocoon keys using
the expansion function. Then the CKE can send ACA; all requests
from EE; and ACA; all requests from EE,. Later, the attacker will
not be able to tell the EEs’ keys apart, but it will be able to tell their
certificates apart, as they will be signed by different ACAs with
different public keys.

If all requests from each EE are sent to a single ACA, then privacy
can hold. If an RA sends fractions of requests from each EE to several
ACAs, then privacy can hold within each batch. In practice, it is
extremely unlikely that an RA will use more than one ACA to
generate a single batch of certificates. The most likely scenario
is where a vehicle manufacturer contracts a Security Credential
Management System (SCMS) provider, so there will be a one-to-one
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RA(pkaca, pkecllepkec)

$
T« Py

Pkcc — ”(Pkcc)a ePkcc — ”(epkcc)

Pkcc, epkec

ACA(skaca)

rsp

Fori=1,..,n:

$
ri<—Zq

A hi — H(rill pkeelil)

Pkosli] « pkecli] +hiG

cert[i] « DSQ.SQ(Skaca,pkbf[i])

ci — Enc.&(epkeclil, pkpelilllcert[i]llr:)
0i — DS3.82(skaca, ci)

rspli] « cillo;

rsp «— n~ L (rsp)
Return rsp

Figure 3: BKG algorithm. The red font (also marked with A symbol) indicates the change we suggest. In the current protocol,

hi =Tj.

EE (skcclleskee, pkaca)

Fori=1,..,n:
cilloi < rspli]
If di «— DS2.Va(pkaca, ci, 0i) # 1 then Return L
m «— Enc.D(eskec|i], ci)

If pkpeli] # pkecli] + hi - G then Return L
A hi — H(rillpkec[i])
skpg[i] « skec[i] +hi

Return (Pkbf’ skpt, cert)

If m = L then Return L Else parse m as pkps[i]||cert[i]||r;
If DS2.Va(pkaca, pkpsli], cert[i]) # 1 then Return L

RA(rsp)

rsp

Figure 4: BKR algorithm. The red font (also marked with A symbol) indicates the change we suggest. In the current protocol,

hi = rj.

mapping between the RA and the ACA. Our definition (implicitly)
covers both cases.

The experiment Exp? > "

BIM 1S defined in Figure 7. The definition
models a malicious RA, whose goal is to link the butterfly keys
of the same EE together. The adversary interacts with two honest

EEs on behalf of the RA and learns everything that the RA knows.

It also interacts with the honest ACA. We also let the adversary
know both caterpillar public keys. We then give the attacker a pair
of public butterfly keys, and the certificates, which either belong
to the same EE or two different EEs. The goal of the adversary is
figure out which case it is.

The privacy advantage is defined as

AdVi T (A) = 2 PrBxplnc ¥ (A) = 1] - 1.

Note that the definition does not consider multiple ACAs for
simplicity. (One could do so, but that would not make the definition

stronger). If multiple ACAs are used in practice, then the definition
ensures that the EEs’ keys certified by each ACA are unlinkable.

III. HoNEST EE AND RA, cORRUPTED ACA. The definition models a
malicious ACA whose goal is to link two butterfly keys of the same
EE together. The experiment Expg:v]g\jlca associated with attacker
A is defined in Figure 5. There are two EEs that interact with the
honest RA. The adversary learns everything that the ACA knows,
namely, the permuted cocoon public keys, and the ACA’s secret
signing key. We also let the adversary know both caterpillar public
keys. Note that the adversary does not get to intervene into the
EE-RA communication because they talk over a secure channel.
We then give the attacker a pair of public cocoon keys, which
either belong to the same EE or two different EEs. The goal of the
adversary is figure out which case it is. Note that the ACA can
always link a butterfly public signing key to the corresponding
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cocoon key, so it is enough for us only focus on the cocoon key
unlinkability.
The privacy advantage is defined as

AN <2 BB ) = 1] -1

Recall that Py, denotes the set of all permutations on 2n elements.

We note that in this definition the adversary does not have to
participate in any interactive protocol or have any oracle access, as
it has already got all the information it can get.

Extn ()

&Py d (0.1

(pkéb. sk, k) & CKG (1Y)
(pkB.skB kB, ) & cxG(1h)
(pkaca, Skaca) & ACAKG (1Y)

$
[(skec®, phec®), phec®] & [CKEe (skdp, ki yp), CKERA (PKSD, Kby )]

$
[(skee®, pkec®), phec®] & [CKEee (k. kB ), CKERA(PKE, KB, )]
Pkec — ”(PkccA:PkccB)

$
Pk & {pkidy, . ki)
Ifb=0:

$
pky & {pk&y. ... pkid 3 \ {pk1}
Else:

$
pky & {pkl 1, .. pk8 )

$
d & A(pkép, pkB, skaca, pkec, pk1, pkz)
Return 1iff (b =d)

priv-caca

gxm (A) for defining privacy

Figure 5: The experiment Exp
with corrupted ACA.

4.2 Unforgeability

A BKM protocol lets EEs obtain public-secret key pairs to be used for
signing. Accordingly, the protocol must guarantee that attackers
cannot forge DS signatures on behalf of EEs. In addition, the

public key certificates issued by the ACA must also be unforgeable.

But the latter goal is straightforward and follows from the standard
security of DS signature scheme. Hence, we focus on studying
the former goal.

We first consider the strongest definition where only the EE is
honest.

I. HONEST EE, CORRUPTED RA AND ACA. The adversary learns all
information known to the RA and ACA and gets to interact with the
honest EE on their behalf. The adversary wins if it produces a new
valid forgery for one of the EE’s butterfly signing keys. Figure 6
defines the security experiment Expl,‘ﬁf;g”/c/? (A) in detail, and the
unforgeability advantage of the attacker A is defined as
AdviLoma () = Pr[Explfena (A) = 1] .

REMARK. We note that the corrupted ACA in possession of the
ACA’s secret key can issue the certificates for any public key. We
still consider the corrupted ACA and study its inability to forge
signatures on behalf of honest EEs. This is similar to the situation
with the standard PKI: a corrupted CA can create certificates on
any key and frame any user, but it still should not be able to forge
signatures under the legitimate keys users certified.

Alexandra Boldyreva, Virendra Kumar, and Jiahao Sun

II. HonesT EE AND ACA, cORRUPTED RA. The security definition in
this case is strictly weaker than the above for the case of corrupted
ACA and RA. Since the BKM protocol can achieve the stronger
latter definition, we do not consider the former in detail. But the
security guarantees are much stronger in this setting because the
ACA is honest and all certificates are hence trusted.

III. HoNEST EE AND RA, cCORRUPTED ACA. It is important to remem-
ber that the corrupted ACA can always certify keys of its choice.
Yet the definition can still ensure unforgeability under the butter-
fly keys accepted by EEs. Again, the security definition is strictly
weaker than that in the case of corrupted ACA and RA. Since the
BKM protocol can achieve the stronger one, we do not treat the
weaker definition separately.

5 SECURITY ANALYSIS OF THE GENERIC
IEEE BKM PROTOCOL

In this section we study whether IEEE BKM satisfies the defini-
tions of privacy and unforgeability defined above, and under which
conditions.

As the butterfly signing keys are derived from the same caterpil-
lar signing key and the cocoon encryption keys are derived from
the same caterpillar encryption key, rather than independently gen-
erated, we cannot prove security of the protocol assuming the stan-
dard security definitions for the encryption and signature schemes.
Accordingly, we start with recalling the security definitions for
encryption and signatures in the presence of related keys. For us, a
weak version of the related-key attack security, where one considers
a particular additive relation function, is sufficient. Please see the
Introduction for the prior work references regarding related-key
attacks.

5.1 Security for Signatures and Encryption in
Presence of Related Keys

Signatures in the presence of related keys. A signature key
derivation function specifies how the related keys are generated.

SIGNATURE KEY DERIVATION FUNCTION. Let DS = (G, K, S, V) be
a digital signature scheme. Let (sPKExp, sSKExp) denote a pair of
key expansion algorithms associated with DS and the randomness
space Coins. sSKExp takes a secret key sk and randomness r €
Coins, then outputs the derived secret key sk’; sPKExp takes a
public key pk and randomness r € Coins, then outputs the derived
public key pk’. For correctness, we require that for all I output
by G(1M), all (pk, sk) output by DS.K(I), for all randomness r €
Coins, and for all m € MsgSp, let sk’ « sSKExp(sk;r), and pk’ «—
sPKExp(pk;r), we have

Pr [ DS.V(pk’, DS.S(sk’,m)) = 1] = 1.

UNFORGEABILITY UNDER WEAKLY RELATED KEY ATTACKS. Let
DS = (G, K, S, V) be a digital signature scheme and let
(sSKExp, sPKExp) be a pair of key expansion functions with ran-
domness space Coins. Consider the experiment defined in Figure
8. We note that the adversary is not given the expanded public
keys explicitly because it can compute them itself. The adversary’s
(A s Pr[Expgg”fka(ﬂ) =1|.

uf-wrka

advantage AdvDS, (sPKExp,sSKExp
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iR ()

A — (pkep, ke xp- Skaca: pkaca)
Fori=1,...,n: M[i] « 0
[ EEout, Aout] <$— [CKEEE (skep, kexp), Al

Parse EEout as (skec, pkec)
If does not parse, return L

[EBout, Aout] & [ BKReg (skec, pkaca), Al
Parse EEout as (skpf, pkpy, cert)
If does not parse return L

(m,0,j) — ﬂSIGN( ) (pkps. cert)
Return 1iff m ¢ M[j] and DS.V(pkps[jl.m, o) =1

(pkep skep, ks xp) g C'Kg(lA) ; (pkaca, skaca) i ﬂCﬂ(Kg(lA)

sien DS (m, j)

o & DS.S(skyelil.m)
M[i] « M[i] U {m}

Return &

Figure 6: The experiment Exp"{<™2( A) for defining unforgeablility with corrupted RA and ACA.

BEKM

Extu ()

b & 01)
(pkéh, sk, k) & CKG (11

(pkB skch kgxp) < exgt)

(Phacas skaca) & ACAKG (1)
$
[EEout, Aout] & [CKEEE (skép, kfiyp)» A(pké, ki ps Pkaca)]

Parse EEout as (skccA,pkcc )
If does not parse, return L

$
[EEout, Aout] & [CKEgg (skB, kgm,) A(pkS, am,)]

Parse EEout as (skccB,pkcc )
If does not parse, return L

[Aout, 1] & [ BHGxch (shac phec”, phec”)]

[ EEout, Aout] [Z?'K‘REE(skcc1 én,pkaca),ﬂ]

Parse EEout as (skbfl skbf" pkbfl .,pké}n, cert‘f, cert‘f})
If does not parse, retum €L

[ EEout, Aout] [B'K‘REE(skccl

Parse EEout as (skbfl Skbfn pkbfl
If does not parse return L

gn:Pkaca); Al
.,pkbﬂ}n, certf, cert‘,f)

(pky,certy) & {(pkbfl certf)
Ifb=0:

(pka, certy) <$— {(pkl‘?fl, cert‘f‘)
Else:

$
(pka, certy) — {(pkgfl,cert?)

L (pk{} L cert)}
(pkbfn certi)} \ {(pki,certy)}

. (pkE certp)}

d & A(pk, pkB, pki, ps, certy, certy)
Return 1iff b = d

priv-cra

BIM (A) for defining privacy

Figure 7: The experiment Exp
with corrupted RA.

Encryption in the presence of related keys.

ENncryPTION KEY DERIVATION FUNCTION. Let AE = (G, K, E, D)
be an public-key encryption scheme. Let (eSKExp, ePKExp) be a
pair of key expansion algorithms associated with AE and the ran-
domness space Coins. eSKExp takes a secret key sk and randomness
r, then returns the expanded secret key sk’; similarly, ePKExp takes
a public key pk and randomness r, then outputs the expanded pub-
lic key pk’. Correctness requires that for all I output by G(1%), all
(pk, sk) output by AE.K(I), for all randomness r € Coins, and for
allm € MsgSp, let sk’ « eSKExp(sk;r), and pk’ « ePKExp(pk;r)
we have that

Pr | AE.D(sk', AE.E(pk’,m)) = m | =1.

IND-CPA UNDER RELATED KEY ATTACK. Let AE = (G, K, &, D)
be a public key encryption scheme, (ePKExp, eSKExp) be a pair
of key expansion functions. The security experiment is pre-
sented in Figure 9. Again, the public keys are not explicitly
given to A as they can be computed. Note that the coins
are generated honestly, as for our proofs we do not require
security agagist maliciously-generated coins. For a stateful at-

ind-cpa-wrka (A) as

tacker A, we define its advantage Adv AE, (ePKExp,eSKEXp)

ind-cpa-wrka

2P EXP 75 (epKExpeskixp) (D) = 1] — 1.

5.2 Target Robustness

It turns out that security of the IEEE BKM protocol requires an
additional non-standard notion of security for the base encryption
scheme, called robustness [6, 17]. Robustness captures the inability
to create ciphertexts which are valid wrt different keys. Abdalla et
al. [6] defined robustness and proved that DHIES (and hence ECIES),
with small modification, is robust. However, taking a closer look
we can see that the robustness definition in [6] is for properly gen-
erated keys, in that pk; has to be valid. But in our experiment there
is no restriction on the validity of the public keys the malicious
RA sends to the ACA. Farshim et al. [17] revisited the definitions
of robustness and provided stronger robustness definitions which
take into account public keys which can be invalid. However, the
adversary in their definition is required to output the corresponding
secret keys. This is a problem for us since the malicious RA in our
experiment will not provide the secret key in any way. Luckily, we
are only concerned about the ciphertext being valid under one of the
two keys. Strictly speaking, the other key in our experiment is not
generated according to the base encryption scheme key generation
algorithm. But we can deal with this discrepancy easily in the ideal
cipher model. Below we provide the definition of robustness captur-
ing this setting, that we call target robustness (trob). Later, we prove
that ECIES, with small modifications, satisfies target robustness.

TARGET ROBUSTNESS DEFINITION. Let AE = (G, K, E, D) be a
public key encryption scheme. Figure 10 defines the experiment
Exptmb (A) associated with an adversary A. The adversary’s ad-

vantage, Advt“’b (A) is defined as Pr ExptrOb (A) = 1.
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Expg:g“”ka (A)
1& DS.6(1M
(pk, sk) & DS.K(I)
Ql«0
(a1, an) & A(pk)
Fori=1,..n:
sk; «— sSKExp(sk;a;)
pki < sPKExp(pk;a;)
(m,o,i) & ASEN ()
Return 1iff (i,m) ¢ QI and
DSV (pkiym, o) =1

S16NPS (m, i)

o & DS.S(ski,m)
Ol — QLU {(i,m)}

Return o

Figure 8: The experiment Exp

uf-wrka

DS, (sPKExp,sSKExp) (A).

ind-cpa-wrka
AE,(ePKExp,eSKExp

b& (0,1} 1&g
(pk,sk) & AE.K(I)

Exp ) (A1)

$ .
(ai,...,an) < Coins
Fori=1,...n:

sk; <« eSKExp(sk;a;)
pki — ePKExp(pk; a;)

d (3_ AENC(.) (pk,ai, ....,an)

Return 1iff (b =d)

procedure ENc(myg, my, i)

If [mo| = [mq|:

¢ & AE.E(pki, mp)
Else:

c«— L1

Return ¢

Figure 9: The experiment Exp

Exp'fep (A)

1&60Y

(pk, sk) & K(I)

(pk’,m) — A(pk)

¢ «— &E(pk’,m)

Return 1 iff pk # pk’ and D(sk,c) # L

Figure 10: Experiment Expfﬂrf’g

ness (TROB).

(A) for defining target robust-

5.3 Generic IEEE BKM Security

We start with analyzing the generic IEEE BKM (based on generic
signature and encryption schemes). In the next section we analyze
the specific instantiations of the base schemes.

THEOREM 5.1 (PR1vACY, CORRUPTED RA). Let BKM be the IEEE
Butterfly Key Certificate protocol as defined in Section 3.3, associated
with signatures schemes DS1, DS», asymmetric encryption AE,
the expansion function EXP and the hash function H. Let AE be
an elliptic-curve Diffie-Hellman based scheme (cf. the explanation in
Section 3.3). Let (ePKExp,, eSKExp, ) be the additive keys expansion
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ind-cpa-wrka

AE,(ePKExp,eSKExp) (ﬂ)

eSKExp, (sk;a)
sk’ «—sk+a

Return sk’

ePKExp, (pk;a)
pk’ — pk+a
Return pk’

Figure 11: Additive key expansion functions for A&.

sSKExp, (sk; a)
sk’ « sk +H’(a)

Return sk’

sPKExp, (pk; a)

pk’ — pk+H'(a)G
Return pk’

Figure 12: Additive key expansion functions for DS;.

functions for encryption described in Figure 11 associated with A&
and Coins = {0, 1}*. If EXP is modeled as an ideal cipher and H is
modeled as random oracles, then for every efficient adversary A there
exist efficient B, C, D such that

Advpriv—cra(ﬂ) <

ind-cpa-wrka
BIM 2Ad

V AE, (ePKExp, eSKExp, ) (8)
+ zAdvggfzﬂa(C) +4n - Adv'°2 (D) + negl (1) .

The proofis in Appendix B.1. Recall that the above result captures
privacy of EEs’ certificates from the same ACA.
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THEOREM 5.2 (PRivacy, CORRUPTED ACA). Let BKM be the
IEEE Butterfly Key Certificate protocol be as defined in Section 3.3,
associated with signatures schemes DS1, DSa, asymmetric encryp-
tion A8, the expansion function EXP and the hash function H. If
EXP is modeled as an ideal cipher, then for every efficient adversary
A,

AdVYESEE (A) < negl(A) .

The proof is in Appendix B.2.

THEOREM 5.3 (UNFORGEABILITY, CORRUPTED ACA AND RA). Let
BKM be the IEEE Butterfly Key Certificate protocol be as defined in
Section 3.3, associated with signatures schemes DS1, DS7, asymmet-
ric encryption AE, the expansion function EXP and the hash func-
tion H. Let DS be an elliptic-curve Diffie-Hellman based scheme
(cf. the explanation in Section 3.3). Let (sPKExp,,sSKExp,) be the
additive keys expansion functions for signatures described in Fig-
ure 12 associated with D81, Coins = {0,1}* and the hash function
H': {0,1} — Zy4. IFEXP is modeled as an ideal cipher and H, H’'
are modeled as random oracles, then for every efficient adversary A
there exist an efficient adversary B, such that

uf-cma uf-wrka
Advggep (A) < AdVDSl,(sPKExp+,sSKExp+)(B) :

The proof is in Appendix B.3.

REMARK. In the case of honest EE and RA, and corrupted ACA, we
can drop the ideal blockcipher assumption on cocoon key expansion
functions in Theorem 5.3 as the adversary no longer participates
in the cocoon key expansion stage. In the case of honest EE and
ACA, and corrupted RA, Theorem 5.3 holds without the protocol’s
modification, since all random offsets are honestly generated by
the honest ACA.

6 SECURITY ANALYSIS OF THE IEEE-BKM
INSTANTIATION

In this section we conclude the security analysis of IEEE-BKCP
protocol. Recall that IEEE-BKCP uses AES as EXP, ECDSA as
DS1, DS2, and ECIES as AE with the underlying symmetric en-
cryption AES-CCM. It is common in the security analyses to assume
that AES is an ideal cipher and the hash is a random oracle. ECDSA
has been proven to be uf-cma secure under various idealized as-
sumptions on the underlying primitives [15, 18, 19]. The CCM mode
has been analyzed in [20, 23]. But it remains to study ind-cpa-wrka
and trob security of ECIES and uf-wrka security of ECDSA.

6.1 ECIES

The asymmetric encryption scheme ECI ES is an elliptic-curve
variant of DHIES [7]. It is associated with a symmetric encryption
scheme S&*. Let HK : G — {0,1}" be a hash function. The Kg
algorithm of the asymmetric encryption scheme ECZ ES returns
the elliptic curve parameters I = (G, G, q). Figure 13 recalls the rest
of the scheme’s algorithms. Let the length the key for S& be hl.
The message space of ECIES is that of SE.

YDHIES was designed to also use a message authentication code (MAC). The use of
MAC:s is not essential to us as we do not consider IND-CCA security. Moreover, IEEE
BKM'’s implementation uses ECIES with the associated symmetric scheme in CCM
mode, which is an authenticated encryption scheme.
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To prove ind-cpa-wrka security of ECIES we will need to rely
on Hash Diffie-Hellman (HDH) assumption [7]. We recall the HDH
problem.

HDH ProBLEM. Let G be the global info generation and let H
be a hash function. The experiment Exphgdh (A) is defined in

Figure 14. The advantage of the adversary A, Advhgdh(&’l) =
2-Pr Exphgdh(ﬂ) =1|(-1

THEOREM 6.1 (ind-cpa-wrka seEcuriTy ofF ECIES). Let
ECIES be the encryption scheme recalled in Figure 13, with global
info generation G. The scheme is associated with a symmetric
encryption scheme S&, and hash HK G — {O,l}hl. Let
(ePKExp,,eSKExp,) be the additive encryption key expansion
functions described in Figure 11. Then for any efficient adversary A
there exist efficient adversaries B and D such that

ind-cpa
<n- AdeS (B8)

hdh
+2AdV(H(K’ G

ind-cpa-wrka
AdVSCISS,(ePKExp+,eSKExp+) (ﬂ)

(D).

The proof is in Appendix B.4.

IEEE BKM uses AES-CCM mode as S&. The CCM mode has
been proven secure in [20, 23] assuming AES is a PRF.

We now prove that ECIES with minor modifications (ECIES* in
Figure 13) is TROB-secure.

THEOREM 6.2 (trob sECURITY OF ECI ES). Let ECIES™ be the
modified ECIES recalled in Figure 13. The scheme is associated with
S& being the CCM mode and hash HK. Then for any efficient ad-
versary A, if the blockcipher used in CCM modeled as an ideal cipher,
we have

trob
Adveores

(A) < negl(A) .

Proor. There are two possibilities for a ciphertext vG||e created
under one public key Xj to be valid under a different public key X».
Let k}SS — HK(vX1), k.ZSS — HK (vX2).

(1) HK(vX1) = HK (vX2)

2 SS.D(k?SS, e)# L
The first condition has only a negligible probability of occurring if
HK is a random oracle and vX; # vX>. And the latter is true since
X1 #Xp,andV # 1, X7 # 1and Xy # 1, where V = 0G.

The second condition has only a negligible probability of oc-
curring since in the ideal cipher model, the blockcipher under a
different key is an independent random permutation, and the MAC,
which is part of the CCM’s mode construction would have only a
negligible probability of being valid. O

6.2 ECDSA

Despite its wide use, the ECDSA signature scheme has not
been proven secure against related key attacks until recently.
Groth and Shoup [21] showed that ECDSA is secure when keys
are computed via additive key derivation function, in the ellip-
tic curve generic group model. We use their result to bound

uf-wrka .
AdeCZ)S&ZL(sPKExp+,sSKEXp+) (A), in the random oracle model.

THEOREM 6.3 (uf-wrka SECURITY OF ECDSA, FrROM [[21]).
Let ECDSA be the ECDSA signature scheme (recalled in the
Appendix A), whose G algorithm returns I = (G,G,q). Let
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ECIES.K((G,G,q))

udz, v &z,

pk —uG V «— G

A If pk = 1 then return L x —v-pk

sk —u ksg «— HK(x)

Return (pk, sk)
Return Ve

ECIES.E(pk,m)

e & S8.8(kss, m)

ECIES.D(sk,c)

Ve« c

A If V =1 then return L

x—sk-V

ksg « HK(x)

If L =8S&.D(kgsg,e)
Return L

m «— S&E.D(kgsg, €)

Return m

Figure 13: ECIES encryption scheme does not include lines in red. The modified ECIES* scheme includes lines in red (also

marked with A symbol.)

Exply" (A)

b {01}

$
(G.9.q) — G(1%)
I<(Ggq)
U Zy U —uG
14} <$— Zg; V — oG
b =0 then Z & {0,1}%!
Else Z « H(uovG)
d— A" U,V,Z)
Return 1iff b =d

Figure 14: Experiment Exphgdh (A) for hdh problem.

(sPKExp,, sSKExp, ) be the additive expansion functions described
in Figure 12 where H is the random oracle with the range Z4. For
simplicity we assume that ECDSA uses the same H. Then in the
elliptic curve generic group model (EC-GGM), and in the random
oracle model, for any efficient adversary A,

Advlgéwzglgﬂ,(sPKExp+,sSKExp+)(ﬂ) = (8*'0(1))518‘“11%1/61*'0(‘1?/‘1)’

where qs is the number of signing or group queries and qp is the
number of random oracle queries the adversary makes.

Theorems 5.1, 5.2, 5.3, 6.1, 6.2, 6.3 together complete the security
results for the IEEE BKM protocol.

7 EFFICIENCY IMPROVEMENT FOR IEEE BKM

Proposed modification. We propose a simple change to the BKM
protocol that yields a significant efficiency improvement. More
specifically, we propose that the ACA can re-use randomness when
encrypting certificate responses using ECIES under different cocoon
encryption keys. Recall that the first part of an ECIES ciphertext is
0G, where v € Zg has to be picked at random for each encryption.
We show that the ACA can re-use the same v across all ciphertexts.
This will result in reducing the computation in half (as the ACA
will have to perform only N + 1 scalar elliptic curve multiplications
as opposed to 2N, where N is the number of encryptions the ACA
performs) and significantly reducing the communication (since vG
can be sent only once to each EE).

Kurosawa, Bellare et al. and Barbosa and Farshim [8, 10, 24]
studied the problem of secure randomness re-use. Bellare et al. [10]
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defined the security notion for asymmetric multi-recipient encryp-
tion schemes (MRES) that, unlike the notion in [24], lets the at-
tacker to corrupt some users and learn their secret keys. They
also proved that randomness can be safely re-used across multiple
DHIES encryptions under different public keys. Their result applies
to ECIES as well, however, we cannot use their result as is. The
reason is the public keys in our application are related, and the
results of [8, 10] do not cover this case. Their results apply only
to the case of independently-created keys, and in general, security
does not extend to the case of related keys. We show that the MRES
with ECIES and randomness re-use is secure in the setting with the
related keys, assuming hardness of the Oracle Diffie-Hellman prob-
lem and IND-CPA security of the underlying symmetric encryption
scheme (cf. Theorem 7.2). Finally, we show that this is what we
need for unlinkability of the modified IEEE BKM.

MuLrTI-RECIPIENT ENCRYPTION SCHEME WITH RELATED KEYS (RK-
MRES). Let AE = (G, K,E,D) be an asymmetric encryption
scheme with the message space MsgSp. Let (ePKExp, eSKExp) be
the key expansion functions. The associated RK-MRES is defined by
the following algorithms. RK MRES.K on input 14 returns the
global info I. RKMRES.K takes input global info I and does
the following. (pk, sk) & AEK(D), (ai,...,an) & Coins, For
i=1,..,n:skli] < eSKExp(sk;a;), pk[i] < ePKExp(pk;a;), and
returns ( pk, sk). RKMRES.E takes inputs pk and m and returns
c. RKMRES.D is the same as AE.D.

Correctness of the scheme requires that the following exper-

iment always returns 1. | & REMRES.K (1), (pk, sk) &

REMRES.K(I), m <& MsgSp, ¢ & RKMRES.E(m), i &
{1,...,n}, m[i] — RKMRES.D(c[i]).

RANDOMNESS RE-USING ECIES RK-MRES. We are interested in a spe-
cific WK-MRES scheme, MR-ECI ES, obtained from ECIES (cf.
Figure 13). by using the same coins to encrypt different messages
in the message vector, and associated with the additive key expan-
sion functions (eSKExp,, ePKExp, ). We present the construction
explicitly for clarity. Let ECZ ES.Coins denote the randomness
set for ECTES. MR-ECIES.G(17) runs ECTES.G(11). The
rest of the algorithms are in Figure 15. The scheme is correct by
correctness of ECJ ES and of the expansion functions.

Security analysis. To assess security of this scheme, we need to
introduce a new security definition that takes into account both
randomness re-use and related keys. We adapt the security defini-
tion from [10] to accommodate related keys. The adversary knows
(or can compute) all public keys and how the keys are related. It
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MR-ECTES.K(I)

MR-ECIES.E(pk, m)

(pk, sk) & ECTES.K(I)
Fori=1,..,n Fori=1,..,n
a; <$— Zq
pkli] « ePKExp, (pk;a;)
sk[i] < eSKExp, (sk;a;)
Return (pk, sk)

Return ¢

r & ECIES.Coins

cli] « ECTES.E(pkli]l, m[i];r)

MR-ECITES.D(sk,c)

m«— ECIES.D(sk,c)
Return m

Figure 15: Randomness re-using multi-recipient encryption scheme with related keys, based on public key encryption scheme

ECIES and key expansion functions (ePKExp,, eSKExp, ).

is allowed to learn some secret keys, and is trying to get some
information about the messages encrypted under the other public
keys.

Definition 7.1. Let MRPKE = (G, K,E,D) be a multi-
recipient asymmetric encryption scheme based on public

key encryption scheme A& and key expansion functions
(ePKExp, eSKExp). We define the experiment Expaggiawrka(ﬂ)
in Figure 16. The attacker’s advantage, Advy,- b " @ (A) is

MRPKE
2Pr | Exp (A =1

mr-cpa-wrka

MRPKE -1

Expg" (A) 0u(X) :

- s If X = uG then return L
b e {0’1£ Return H (0X)
(C.9.q) = G(1Y)
I<(Gg.9q)

U Zy U —uG

0 & 2y V oG

Ifb =0 then Z & {0,1)"
Else Z « H(uovG)

d — DM (LU, v,z)
Return 1iff b =d

mr-cpa-wrka
Expypeke (D)

b (0,1}
(pk, sk) & AEK(I)
(pk’,sk’) & AE.K(I)
a < Coins
a’ & Coins
Fori=1,..,n
sk[i] < eSKExp(sk;al[i])
pkli] « ePKExp(pk;ali])
sk’ [i] « eSKExp(sk’;a’[i])
pk’[i] < ePKExp(pk’;a’[i])
(mg, m1, m) & A(pk, pk’,a,a’,sk”)
If |mg| # |m;| then return L
If |mg| = |m;| = |m’| is not n then return L
¢ & MRPKE.E(pk, my)
¢ & MRPKE.E(pk’, m)
d & Ae,c)
Return 1 iff (b = d)

Figure 16: Experiment for mr-cpa-wrka security of RK-MRES.

We now analyze the randomness re-using ECIES-based RK-
MRES. Security relies on the Oracle Diffie-Hellman (ODH) prob-
lem [7], so we recall it here. It was proven in [7] that in the random
oracle model Strong Diffie-Hellman (SDH) implies ODH.

ODH Problem. Let G be the global info generation and let H
be a hash function. The experiment Exp(gjh(ﬂ) is defined in Fig-

ure 17. The advantage of the adversary A, Advogdh(ﬂ) =2-
Pr Exp‘gh(ﬂ) =1|-1
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Figure 17: Experiment Expogdf‘H(ﬂ) for odh problem.

THEOREM 7.2 (MR-ECT ES SecURITY). Let MR-ECIES be
the randomness re-using ECI ES-based RK-MRES scheme defined
in Figure 16 and associated with the additive key expansion functions
(eSKExp,, ePKExp, ) described in Figure 11. Let G be the global info
generation algorithm of the underlying ECI ES scheme (ECIES is
recalled in Figure 13). Let SE be the symmetric encryption scheme and
let HK be the hash underlying ECIES. Then, in the random oracle
model, for any efficient adversary A , there exist efficient adversaries
B and C such that

Ad mr-cpa-wrka

ind
ViR sores(A) < n-Adv‘)g'{E;ﬁ((B) +n-AdvLLPRC) .

S&

The proof is in Appendix B.5.

Finally, we observe that the use of MR-ECIES instead of
ECIES only affects unlinkability in case of the corrupted RA. How-
ever, the statement of Theorem 5.1 still holds for MR-ECI ES and
its security wrt to the mr-cpa-wrka notion.

8 CONCLUSIONS

We analyzed the Butterfly Key Mechanism protocol from IEEE
1609.2.1 standard, using the provable security approach. We for-
malized the goals of end entity privacy and their signing keys
unforgeability. We considered different corruption scenarios and
proved that the IEEE-BKM protocol, with small modifications sat-
isfies our definitions under the appropriate assumptions on the
building blocks. We also proposed a way to significantly improve
the protocol’s efficiency without sacrificing security. An interest-
ing direction for future work will be studying ways to achieve
post-quantum security of the protocol, following [13].
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A ECDSA
Figure 18 recalls the ECDSA signature scheme.

B PROOFS
B.1 Proof of Theorem 5.1

We consider a series of “hybrid” games Gy, . . . G5 associated with
adversary A. Let Pr; denote the probability of game G; returning
1,for0 < j <5. '

Gy is identical to Expgi}‘gj\:(a (A).

By definition, we have

BKM

G; is identical to Gy except in G; the encryption cocoon keys
(which are computed by honest EE as part of EEout and skec?,
skecB in Figure 7) are computed via random expansions a;:
eskec[i] « eskep + ai,
epkcc[i] < epkep +ai - G.

In the ideal cipher model, EXP (ekg xp, -) is modeled as a ran-
dom permutation. The only difference between games is that in
one game all expansion tweaks are chosen uniformly at random
and in the other game they are outputs of a random permutation

1 v 1
Prg = EAdvp”V A + 5
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ECDSA.K((G,G,q)) ECDSA.S(sk,m)
udz, 2 & H(m)
pk — uG r & Z,
sk —u (ex,ey) «— tG
Return (pk, sk) r— ey, modgq
Ifr=0 modgq
Go to step 2
se—t Y z+r-sk)
Ifs=0 modgq
Go to step 2
Return (7, s)

ECDSA.V(pk,o)
(r,s) <o
Ifr,s¢ Zg

Return 0

w571

z & H(m)

u; <« zw mod g

uy «— rw mod q

(ex,ey) «—uy - G+uy - pk

If (ex, ey) = (0,0)
Return 0

Returnr = e, mod g

mod g

Figure 18: ECDSA signature scheme.

on non-repeating inputs. Therefore, the only way the attacker can
distinguish the games if there is a collision between random tweaks.
But this only happens with negligible probability. Hence we have

Pry — Prg < negl(4) .

G is identical to Gy except in Gy, if A modifies at least one
ciphertext in the responses it got from the ACA as part of BKG
stage, i.e., there is at least one ciphertext sent to the EE that the
ACA did not send, and the EE does not reject, then the game aborts.

Note that each ciphertext is signed by the ACA, hence if the
attacker sends a new ciphertext to the EE, and the EE does not
reject, it means that the adversary succeeded in creating a forged
signature. It is straightforward to construct an efficient attacker
breaking the UF-CMA security of the signature scheme used by the
ACA. And hence

Prp — Pr; < AdngTa(C) .

G3 is identical to G except in Gs, if A sends at least one cocoon
public key to ACA that is computed not according to the protocol
(distinct from what EE computes), and EE later does not reject, then
the game aborts.

Here we consider an event when the adversary, who is given a
set of cocoon public keys pki, . .., pk, can modify a public key pk;
into pk; for some 1 < i < n so that a ciphertext of some message
under pk; will be deemed as valid wrt pk;.

We construct D breaking target robustness as follows. D is given
pk and runs A. D picks bit d at random and also picks 2n random
tweaks aq, . .., as, from Zg, and picks j at random from {1, ..., 2n}.
If d = 0, then it sets pké, < pk —a;G, and generates pkch honestly.

It sets skéi — pk+aiGforl1 <i<nand skgi — pkfp +a;G

forn+1 <i < 2n.Ifd = 1, then tt sets pkfp « pk —a;G, and

generates pké}, honestly. It sets skgi «— pk+aiGfor1 <i<nand

sk, — pké‘}J +a;G for n+1 < i < 2n. D simulates the rest of the
experiment properly.

Note that all the keys have the right distribution. With probability
1/2n, A will modify the caterpillar key with index j that is equal
to pk — ajG + a;G = pk into some pk’. D will output pk’ and the
ciphertext C it created under pk. If the game aborts, then D wins
its own game. We have

Pr3 —Pry <2n- Advtjrfg(ﬂ) .
15

Gy is identical to G3 except in G4 the ACA encrypts random
plaintexts. Here we claim that there is an efficient adversary 8 so
that

ind-cpa-wrka
Pry —Prs < AdvﬂS,(ePKExpPeSKEpr (B) .

To justify the above, we construct an adversary 8 that attacks
uf-wrka security of the encryption scheme, using A as a subroutine.
Adversary B is given the global information I = (G, G, g). It is also
given the public key pk = x-G and random offsets (tweaks) t1, . . ., tp.
The attacker also has access to oracle Enc(-, -, -).

B runs (pkaca, skaca) & ACAKG(I), (pkA, skA) & ECKG(I),

cp’ P
$ $ s
(pkB, skB) & ECKG(D); kv — {0,1}%, KB, . < {0,1}F,
epké, — pk,y & Zg, epkfp «— pk + yG, and gives (I,pké‘}),

pkfp, epkf"], epkgp, kgxp’ kgxp,pkaca) to A. The attacker is not

given ek‘g Xxp OF ekg xp because in this game the cocoon keys are
“expanded” with random values. 8 computes epkccf — pkep + ;G
and epkcci.B — epkfp + (tisn —y)Gfor1 <i < n.

Next 8B simulates the ACA in the 8KG interaction. 8 com-
putes the responses for both parties A and B according to the al-
gorithm with the only difference in how the ciphertexts are com-
puted. Instead of computing ¢; « Enc.8(epkéi,pkbfi||cert,-||r,-),
B makes a query to its oracle ENc(pkyy;||cert;||r;, M, i) for a ran-
dom M with the same length as pky;||cert;||r;. And instead of
cj — Enc.8(epkcc?,pkbfi||cert,~||r,~), B makes a query to its oracle
ENc(pkps;llcerti||ri, M, i + n) for a random M with the same length
as pkys;||cert;||r;.

Finally, 8 flips bit b & {0,1}, and computes the challenge but-
terfly key pairs according to G4. When A outputs its guess d, A
outputs 1iff d = b.

We now claim that the simulation is perfect for A in that its
view is like in the respectful games: when the challenge bit of 8
is 1, then the view of A is as in G4, and the challenge bit of 8 is 0,
then the view of A is as in G3. Everything is simulated properly
in the obvious way except perhaps for the caterpillar and cocoon
encryption public keys ciphertexts. Recall that epkg}) = pk and
epkfp is computed as pk + yG. The latter also has the right uniform
distribution since y is picked at random. Finally, the ciphertexts are
all computed under the proper cocoon public keys. The ciphertext
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for i’s cocoon public key for EE A is computed via calling the
encryption oracle with the third input index i, i.e., the ciphertext
is encrypted under pk + ;G = epké, +1tG = epkcc? for1<i<n.
And the ciphertext for i’s cocoon public key for EE B is computed
via calling the encryption oracle with the third input index i + n,
i.e., the ciphertext is encrypted under pk + ;G =forn+1<i < 2n
. which is right since epkccﬁ3 = epkch + (tisn — y)G = pk + yG +
(titn—Yy)G = pk+tj4nG for 1 < i < n, which is the same as pk+1;G
forn+1<i<2n

Gs is identical to G4 except in Gs, if A makes a random oracle
query on any r;||pkec;, then the experiment aborts.

Note that since the view of the attacker in Gs is independent
from any r;, unless the adversary makes a random oracle query
containing it. This accounts to finding at least one pre-image of
a hash in the random oracle model and the probability of that is
negligible.

Pr5 — Pry < negl(X) .
Since the view of the attacker is independent from the challenge
bit, we claim that

pe 1
Isg = — .
T3

Finally, we observe that

4
Prg = Z(Prj—Prj+1)+Pr5,

1 p 1 -Ccra 1
—Adv e (&1{) —
Jj=0

BEM 2
and the statement of the theorem follows from the above bounds.

B.2 Proof of Theorem 5.2.

The adversary sees two caterpillar public keys and two cocoon
public keys, which come either from the same EE or from two
different EEs. The cocoon keys are created by modifying (additevely)
the caterpillar keys using the expansion function EXP and the
expansion key, different for each EE. Since in the ideal cipher model,
each expansion function is modeled as a random permutation, then
the only way the adversary could distinguish two worlds (determine
the challenge bit b) is when two cocoon public keys coming from
different EE happen to be same, since the keys of the same EE cannot
be the same. But the probability if the former event is related to the
birthday bound and is negligible. [

B.3 Proof of Theorem 5.3

We construct an adversary B that attacks uf-wrka security of the
signature scheme DS, using A as a subroutine. Let g be the
number of random oracle queries A makes. Adversary 8B is given
the global information I = (G, G, q), where G is the group of points
on the elliptic curve of prime order g, generated by G € G. It is also
given the public key pk = x - G. B outputs random offsets (tweaks)
ai,...,ap and computes z; « H(q;) for 1 < i < n. The attacker
has access to oracle SIGN(-, -).

B runs (pkaca, skaca) & ACAKG(I), and gives (I, pk, skaca,
pkaca) to A. A is not given kg xp or ekg xp because the permuta-
tion underlying the expansion keys is modeled as the ideal cipher.
This means that for each key, the resulting function is modeled as a
random permutation the adversary is given access to. Accordingly,
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B simulates computations EXP (kg xp, -) and EXP (ekg x o, -) for
the interaction with the honest EE in CKE& via oracles O1, O3 as
follows. B picks two random permutations 1, 72 and random off-
sets uj, v, where u; # uj and v; # vj for 1 < i, j < n. It then then
computes pkec; < pkep +u;G and epkec; < epkep +0;G and when
A queries oracle Oy with i, 8 returns u;; when A queries oracle
O, with i, B returns v;.

Next adversary 8 simulates EE in 8KG interaction for A. Here
for simplicity we assume that A makes only one random oracle
query containing each pkcc;. (There is no reason for the adversary
to query more for each butterfly key computation. But if it does,
then 8 would have to “program” a random one with g;, and the
resulting bound would have a factor of the maximum number of
random oracle queries per key.) To answer A’s random oracle
queries, B does the following. If the random oracle query by A
does not contain any pkcc;, then 8B uses its own random oracle to
provide the answer. If A makes a random oracle query r||pkcc;, B
returns h; <« z; — u;.

Next adversary B simulates EE in BK'R. When A queries oracle
SiGN, B fowards the query to its own oracle SiGN? S, and forwards
the oracle’s response back to A. When A provides the responses
at the end of BKG stage, B verifies them using pkaca. In the end,
adversary B obtains the output of A and uses that forgery as its
own output.

We now claim that 8 wins whenever A wins. First, we observe
that the simulation is perfect for A in that its view is like in the
actual experiment. The EE’s key it is given has the right distribution
of a random key (because the same key given to 8B has the same
distribution). The expansion values u;, v; are computed correctly
under the ideal cipher model. Under the random oracle model, the
BKE’s offsets z’s also have the right (uniform) distribution.

Since u; is selected at random by adversary $, and z; are the
outputs of the random oracle, the simulated outputs of H, h; =
z; — u; also appear random to adversary A, with the same uniform
distribution as from a true random oracle.

At the end of the simulation, if adversary A successfully forged
a signature o for message m under secret key sky¢; = skee; +hi =
(sk+u;) + (z; —u;) = sk +z;, then (o, m) can also be used as a valid
forgery for adversary 8 in the uf-wrka game.

And clearly, if A is efficient, then B is efficient.

O

B.4 Proof of Theorem 6.1

Consider the following sequence of n+ 1 “hybrid” games associated
with an adversary A. Let Pr; denote the probability of game G;
returning 1, for 0 < j < n.

Note that by definition Gy is ind-cpa-wrka game for ECTES
and (ePKExp,, eSKExp, ). And then we have that

PI‘()

Pr [ ind—cpa—wrkaﬂ =1

ind-cpa-wrka
VSCISS,(ePKExp+,eSKExp+)(ﬂ) + 1

2 2

Ad

Now note that
n-—1
Pry = Z(Prj —Prj41) +Pry .
Jj=0
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Game Gj
(uG,u) & ECTES.K((G,G,q))
(a1 an) & AG)
Fori=1,...,m:
sk;i —u+a;
pki — (u+a;)G
b (0,1}
b & AR (ay, . an)
Return (b’ = b)

Enc(mg, my, i)
If |mg| # |my| then Return L:
Ifi < j:
$
v Zg
V «— oG
$
(kse kmac) < {0,1}en
ed SE.E(ksg, myp)
t — MﬂC(kMﬂC,e)
Return V|e||t
Else:

c— ECIES.E(pki,myp)

Return ¢

Figure 19: “Hybrid” games G; for 0 < j < n for the proof of Theorem 6.1.

The statement of the theorem follows from the above equations
and the following claims.

LEmMmA B.1. Forany0 < j < n—1 and any efficient adversary A
there exists an efficient adversary D such that

(Prj = Prjs1) < Advbf?!,‘c 6D

ProoF. Recall that the hdh attacker D is given the public group
info (G, G, q) and also U = uG,V = vG, Z, where u, v are random
elements in Zg and Z is either H(uvG) or a random bitstring. To
figure out which case it is 8 uses A.

D picks a random bit b, offsets ajy, ..., a, from Zg at random
and runs A on pk = U-a;G and ay, ..., ap. D computes pk; <
(ai —a;)G+Uforall0 <i<n.

To answer A’s oracle query ENc(my, m1, i), D follows the algo-
rithm outlined on the right side in Figure 19 for all i # j. When
i = j, then D uses Z in place of the output of H, and the rest is
unchanged.

Finally, O outputs 0 if A guesses b correctly.

To analyze D, note that the public keys of A are (a; — a;)G +
U,...,U,...,(an — a;)G + U have the right distribution. If D’s
challenge bit b is 0, i.e., Z is random, then the view of A in the
simulated experiment is exactly as in G;. And if b = 1,1ie,Z =
H(uvG) = H(v(u+aj—aj))G), then the view of A in the simulated
experiment is exactly as in G 1

Now,
Advie o (D) = Pr[Exp hdh® = 0] — Pr[Exp hdh' = o]
=Prj —Prj;1 .
Clearly, if A is efficient, then D is efficient. ]

LEmMA B.2. For any any efficient adversary A there exists an
efficient adversary B such that
ind-cpa
n-Advg, (B) +l

Pr, <
" 2 2

Proor. In G, messages are encrypted using the symmetric en-
cryption scheme under the keys, which are random and indepen-
dent from other information the adversary sees. Hence we can
construct an adversary that breaks security of the symmetric en-
cryption scheme. Since several random keys are involved, for sim-
plicity we use the ind-cpa security definition in the multi-user
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setting, n-ind-cpa, [9], and their result about the relation to the
security in the standard (single-user) setting.

The n-ind-cpa attacker B, is given n left-right encryption oracles
associated with n randomly generated keys, that it can query on
pairs of messages mg, m; of equal length and they return encryp-
tions, under the corresponding key, of my, where b is the challenge
bit flipped at random at the beginning of the experiment. B, has
to guess b.

B, simulates G, for A, by following the code of G, with the
only difference in answering the oracle query of A on (mg, my, i) ,

ksg is not used, and instead of computing e & SE.E(ksg, mp),
By, queries its own ith left-right encryption oracle and the result is
assigned to e.

When A returns a bit, 8;, returns the same bit.

We claim that B, wins whenever A wins, because B, simulates
Gy, for A perfectly. In Gy, encryptions are computed using randomly
picked keys in the experiment, while B, uses its own left-right
encryption oracles, which are also under the randomly generated
keys. And the rest is the same. Clearly, if A is efficient, then B, is
efficient.

To obtain the statement in the claim it remains to recall the result
from [9] stating that security in the standard single-user setting
implies security in the multi-user setting, with the multiplicative
factor n in the security loss in the concrete relation between the
adversaries. [J

[m}

B.5 Proof of Theorem 7.2.

Consider a series of games Gy, ..., Gy, associated with adversary A.
Let Prj denote the probability of game G; returning 1, for 0 < j < n.

We first observe that when j = 0, then all ciphertexts are com-
puted properly, according to the the MR-ECI ES scheme, match-
ing mr-cpa-wrka experiment. When j = n, then n challenge cipher-
texts are computed using the random keys for symmetric encryp-
tion. Hence,

1 k 1 n-—1

mr- ~Wr
5Ade75[’;”;;‘5(&—71) +5=Pr= Z(Prj —Prjs1) +Pry .
=0

The statement of the theorem will follow from the following two
claims.
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Game Gj

b (0,1}
(pk,sk) & AEK(I)
(a1, - an) & Coins
Fori=1,..,n
sk; < eSKExp(sk;a;)
pki «— ePKExp(pk;a;)
(pk’, sk’) & AE.K ()
(b1, ..., bn) < Coins
Fori=1,..,n
sk} < eSKExp(sk; b;)
pk; « ePKExp(pk;b;)
(mo, my, m) & A(pk, pk’, a1, ..., an, b, .., b, sk
If |mg| # |my| then return L
If n # |mg| then return L
If n # |m| then return L
$

v Zg

V «—0G
Fori=1,...,n
Ifi < j:

(kse. kmac) < {0, 1}1en

Else:
(kse kmac) < H(ski-V)
e & S8.8(ksg, myli])
b« Mﬂc(kMﬂc, e)
c[i] « (Vellt)
(kse-kpmac) « H(sk; - V)
e & S&.8(ksg mli])
< Mﬂc(kMﬂc, e)
cli+n] < (Vlellt)

b & Al

Return (b’ = b)

Figure 20: “Hybrid” games for the proof of Theorem 7.2.

Lemma B.3. For any efficient A and 0 < j < n — 1 there is an
efficient B such that

(Prj - Prj+1) < Advedh

g;H(K(B) .

PrROOF. We present adversary B in Figure 21. The “neighboring”
hybrid games G and G ;1 differ only in whether the keys are picked
at random and computed using the hash, and this the reduction
to ODH here insures that these games are indistinguishable to the
adversary. ]

LemMA B.4. For any efficient A there is an efficient C such that

1 ind— 1
Prp<n- EAdvgscm(C) + 3

Proor. Since all challenge messages are encrypted using the
symmetric encryption scheme with randomly chosen keys, then
it is straightforward to show a reduction to IND-CPA security of
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the scheme. The factor of n is from the reduction from the ind-cpa
security in the multi-user setting to the single-user setting, similarly
to the proof in [9]. O

Adversary B0() (LV,U,Z2)
b {01}

(a1, ...,an) & Coins

(b1, ....bn) & Coins

pk —U—a;j

(pk’,sk’) & AEK(I)

Fori=1,..,n

pki «— ePKExp(pk;a;)

sklf «— eSKExp(sk’; b;)

pk] — ePKExp(pk’; b;)

(mg, my, m) & A(pk, pk’, a1, ..., an, by, ..., by, sk”)
If |mg| # |m;| then return L

’| is not n then return L

If lmg| = |m;| = |m
Fori=1...,n
Ifi = jthen (ksg, kpmac) « Z
Ifi < jthen (ksg, kprac) <« Ou(pk + a;G)
Ifi > j then (ksg, kpac) < {0, 1}7en
ei & SE.E(kge, myli])
ti = MAC(kpmac ei)
cli] « Vllellt
Fori=1...,n
(ksg kmac) — H((sk" +bi)V)
, 8 .
e; — S8E.E(ksg, m[i])
tl{ — MﬂC(kMﬂC, ei)
[i] « Vllellt
Y & Al )
Return (b’ = b)

Figure 21: Adversary B for the proof of Theorem 7.2.
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