Check for
Updates

Exploiting Update Leakage in Searchable Symmetric Encryption

Jacob Haltiwanger
Virginia Tech
Department of Computer Science
Blacksburg, VA, USA
jacobshalt@vt.edu

ABSTRACT

Dynamic Searchable Symmetric Encryption (DSSE) provides effi-
cient techniques for securely searching and updating an encrypted
database. However, efficient DSSE schemes leak some sensitive
information to the server. Recent works have implemented forward
and backward privacy as security properties to reduce the amount
of information leaked during update operations. Many attacks have
shown that leakage from search operations can be abused to com-
promise the privacy of client queries. However, the attack literature
has not rigorously investigated techniques to abuse update leakage.

In this work, we investigate update leakage under DSSE schemes
with forward and backward privacy from the perspective of a pas-
sive adversary. We propose two attacks based on a maximum like-
lihood estimation approach, the UFID Attack and the UF Attack,
which target forward-private DSSE schemes with no backward pri-
vacy and Level Il backward privacy, respectively. These are the first
attacks to show that it is possible to leverage the frequency and
contents of updates to recover client queries. We propose a variant
of each attack which allows the update leakage to be combined with
search pattern leakage to achieve higher accuracy. We evaluate our
attacks against a real-world dataset and show that using update
leakage can improve the accuracy of attacks against DSSE schemes,
especially those without backward privacy.

CCS CONCEPTS

« Security and privacy — Cryptanalysis and other attacks;
Management and querying of encrypted data.

KEYWORDS
Searchable Encryption; Inference Analysis; Database Privacy

ACM Reference Format:

Jacob Haltiwanger and Thang Hoang. 2024. Exploiting Update Leakage in
Searchable Symmetric Encryption . In Proceedings of the Fourteenth ACM
Conference on Data and Application Security and Privacy (CODASPY ’24),
June 19-21, 2024, Porto, Portugal. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3626232.3653260

1 INTRODUCTION

Cloud computing has experienced substantial growth in the past
decade. Improvements in networking infrastructure and lower costs
of storage hardware have given way to a number of remote storage

@ @ @ This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike International 4.0 License.

CODASPY °24, June 19-21, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0421-5/24/06
https://doi.org/10.1145/3626232.3653260

115

Thang Hoang
Virginia Tech
Department of Computer Science
Blacksburg, VA, USA
thanghoang@vt.edu

solutions. These options promise high availability and enable conve-
nient access to files across multiple devices. Cheap remote storage
options have been rapidly increasing in popularity as a way for
users to offload files and free up storage space on their local devices.
However, storing personal files on an untrusted server presents
security concerns. The server has access to the client’s entire file set
and queries in plaintext. One way to mitigate these concerns is to
encrypt each file before uploading to the server. However, this ap-
proach breaks user-friendly search functionality because keyword
matching becomes impossible under traditional encryption.

Searchable Symmetric Encryption (SSE) is one method to address
the privacy concerns of remote data outsourcing while retaining
search functionality in optimal time. In a basic SSE scheme, the
client first tokenizes the keywords and uses the tokens to create a
search index. Then, the client protects the database with symmetric
encryption and sends the encrypted database and search index to
the server. To perform a query, the client sends a search token to
the server, who checks the index and returns the corresponding
files. The client can then decrypt and view the files locally. Dy-
namic Searchable Symmetric Encryption (DSSE) [7, 15, 21, 24] is a
convenient generalization of SSE that allows the client to privately
update the database. All forms of encrypted search are designed to
provide two kinds of privacy to the users: data privacy and query
privacy. Data privacy implies that the server is unable to learn the
plaintext of the encrypted files that it is storing on behalf of the
client. Query privacy implies that the server is unable to learn which
keywords a client is searching or updating. Over time, SSE scheme
development research has focused on more efficient constructions
[9, 15, 21], more expressive queries [6, 14, 26, 37, 38], multi-user
settings [25, 32, 36], and stronger privacy properties [3, 4, 7, 12, 17].

Although SSE/DSSE significantly improves the privacy of re-
mote storage, all efficient schemes leak some sensitive information
to the server. Curtmola et al. [9] introduced the notion of leakage
functions, which formally characterize the information that the
server can learn from SSE operations. An SSE scheme must only
leak information that is captured in one of the scheme’s leakage
functions. Most efficient SSE schemes leak the access pattern, or the
file identifiers returned in response to a search, and almost all SSE
schemes leak the search pattern, or whether two search operations
target the same keyword. Update operations can also leak sensi-
tive information in DSSE schemes. Forward privacy and backward
privacy are important security properties that were introduced to
make dynamic schemes more secure. They imply that the server
cannot learn whether newly inserted files match past queries or
whether deleted files match future queries, respectively.

Many leakage-abuse attacks have shown that access and search
pattern leakage can be abused by an adversarial server to violate
the privacy of SSE schemes with certain background information

https://doi.org/10.1145/3626232.3653260
https://doi.org/10.1145/3626232.3653260
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3626232.3653260
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626232.3653260&domain=pdf&date_stamp=2024-06-19

CODASPY ’24, June 19-21, 2024, Porto, Portugal

Jacob Haltiwanger and Thang Hoang

Table 1: Comparison of passive attacks against SSE/DSSE

Requirements
Attack Name Attack Type* Targets DSSE?** Target Leakage' Known queries Known files Aux
IKK [22] Known-Data X Co-occurrence Pattern v v X
Count [5] Known-Data X Co-occurrence, Volume Patterns v v X
SelVolAn [2] Known-Data X Volume Pattern X v X
Refined Score [10] Hybrid X Co-occurrence Pattern v X v
Graph Match [31] Inference X Co-occurrence Pattern X X v
Frequency [27] Inference X Search Pattern X X v
SAP [28] Inference X Search, Volume Patterns X X v
THOP [29] Inference X Co-occurrence, Search, Volume Patterns X X v
FMA [39] Inference v Search, Volume Patterns X X v
VIA, PVIA [39] Known-Data v Volume Pattern X v X
LVIA [39] Inference v Volume Pattern X X v
Our UF Inference v Search Pattern, Update Freq. X X v
Our UFID Inference v Search Pattern, Update Freq. & Contents X X v

*Known-data attacks require the attacker to know some portion of the documents, queries, or both, in plaintext. Inference attacks use statistically-similar auxiliary information

about the target leakage to assist in the attack.

** Attacks which do not target DSSE can be modified to work against DSSE, but the necessary changes are non-trivial, especially for stronger schemes.
"Co-occurrence pattern leaks the number of files which both contain a keyword. Search pattern leaks whether two queries target the same keyword. Volume pattern typically means
the number of files returned in response to a query (SelVolAn, FMA, and VIA use a higher-leakage notion called file volume, which leaks the number of keywords in each file

containing the queried keyword).

Both of our attacks use search pattern leakage to infer update frequency. The UFID Attack additionally uses the file identifiers associated with each update. In Section 4, we present
a variant of each attack, SP+UF and SP+UFID respectively, which can exploit both the search pattern and update leakage directly.

and assumptions about client behavior. Most attacks in the field are
aimed at compromising query privacy [2, 5, 10, 22, 28, 29, 33, 39, 40].
Most attacks are passive (e.g., [5, 10, 22]), meaning the adversary
only needs to observe leakage and possess some background in-
formation. Some attacks are active (e.g., [2, 33, 40]), meaning the
adversary can send chosen queries, add files to the database, or
perform other SSE operations. A summary of leakage profiles that
are commonly leaked (and commonly targeted by attacks) is below:

o Access Pattern: After a query for keyword w, reveals the
identifiers of the files that contain w (This is commonly
called Access Pattern in the SSE literature, but called Result
Pattern in adjacent fields).

e Co-occurrence Pattern: After queries for keywords w; and
wj, reveals which file identifiers contain both w; and w;.
Can be inferred from access patterns.

e Volume Pattern After a query for keyword w, reveals how
many documents were returned, i.e., size of the access pat-
tern for w. Some works include a stronger notion of file
volume, or the number of keywords per file containing w.

e Search Pattern Given two queries 7; and 7, reveals whether
both queries target the same keyword.

See Table 1 for a summary of passive attacks which exploit these
different kinds of leakage. These works focus heavily on leakage
during the search operation, because it is the primary source of
leakage in SSE schemes. In fact, almost all passive attacks only
target static SSE [5, 10, 22, 28, 29, 31], and do not consider how to
attack DSSE schemes where the client performs both search and
update operations. While a handful of active attacks [2, 33, 40] are
powerful against DSSE schemes without forward privacy, all such
attacks only exploit leakage from the search operation. Leakage
from client updates has generally been overlooked in the attack
literature. Thus, the defense literature has been working to improve

116

the efficiency of backward privacy [4, 7, 17, 42] not in response
to any attacks, but instead under the collective intuition that less
leakage must result in better security. Without any attacks targeting
DSSE to evaluate against, defense researchers are unsure whether
backward privacy successfully defends against any attacks [42].
This has left the field with the following open question:

Can leakage related to DSSE update operations be directly exploited
to improve the accuracy of query-recovery attacks, even in the presence
of forward and backward privacy?

1.1 Our Contributions

We answer this question affirmatively with two query-recovery
attacks: the UFID Attack and the UF Attack. Our attacks aim to
directly compromise the update leakage exclusive to dynamic SSE
schemes. We also show how to improve accuracy by combining
search pattern and update leakage, resulting in a variant of each
attack, the SP+UFID Attack and SP+UF Attack, respectively. The
UFID and SP+UFID Attacks achieve high query recovery rates
against forward-private DSSE with no backward privacy, while
the UF and SP+UF Attacks can recover queries from schemes with
forward privacy and Level Il backward privacy. These attacks use
the Maximum Likelihood Estimation technique explored by Oya
and Kerschbaum [28] as a building block because it is an efficient
and elegant tool to exploit frequency information.

Previous passive attacks have typically focused on targeting
static SSE schemes [2, 5, 22, 28, 29, 31]. Instead, our work investi-
gates how a passive adversary can use the frequency of updates
and their associated file identifiers to compromise the security of
dynamic SSE schemes. Our work is also the first to exploit update
frequency against backward-private DSSE schemes at Level II and
Level IIL

Exploiting Update Leakage in Searchable Symmetric Encryption

The very recent work by Xu et al. [39] proposes the first passive
attacks to target DSSE, and their attacks work against forward- and
backward-private schemes. However, their attacks only use update
leakage to infer information about traditionally-exploited leakage
from searches. Our work is different because we focus on exploiting
this update leakage directly via frequency analysis.

While there are a handful of Level I backward-private SSE schemes
[1, 16, 17, 42, 43], they are not strong candidates for widespread
adoption because the oblivious data structures necessary to build
them incur heavy performance costs. As such, our attacks can com-
promise query privacy of nearly all efficient DSSE schemes.

We evaluate our attacks under realistic settings with a real-world
dataset and show that incorporating update leakage improves Oya
and Kerschbaum’s recent frequency attack, SAP, [28] by 5% in
schemes with forward privacy and Level II or Level III backward-
privacy, and up to 25% in schemes with only forward privacy. There-
fore, our work provides significant theoretical and empirical ev-
idence that a DSSE scheme which leaks information about the
frequency of searches and updates enables a passive adversarial
server to compromise client privacy more effectively than the static
search-only setting traditionally considered by the attack literature.

2 RELATED WORK

SSE and Defenses. Song et al. [34] introduced the first practical
techniques for searching over encrypted data. Curtmola et al. [9]
formalized definitions related to the security of SSE schemes.

Forward and backward privacy are important security proper-
ties for dynamic SSE schemes introduced by Stefanov et al. [35].
Forward privacy reduces the leakage after update operations, but
requires some efficiency tradeoffs. Stefanov et al. gave the first
forward-private scheme, and forward privacy was later formally
defined by Bost [3]. Works such as those by Zhang et al. [41] focus
on creating efficient forward-private schemes.

Later, Bost et al. [4] formalized backward privacy, an even stronger
security notion organized into three levels, I through III, with Level
I leaking the least information. Backward privacy limits the amount
of information the server can learn about deleted documents, but
again comes at an efficiency cost. Despite several works [7, 12, 17]
focusing on implementation of efficient forward- and backward-
private schemes, designing a practically-efficient Level I backward-
private scheme remains an open challenge.

A different line of work investigates strategies to defend against
the most common types of attacks against SSE schemes. These
works typically involve probabilistically hiding one of the leakage
profiles introduced above. Demertzis et al. [13] developed a scheme
which can reduce volume and access pattern leakage by padding re-
sponse volume based on adjustable security parameters. Amjad et al.
[1] craft two forward- and backward-private volume-hiding DSSE
schemes from dynamic volume-hiding encrypted multi-maps. The
work of Zhao et al. [42] has a similar focus with stronger backward
privacy and better asymptotic efficiency at the cost of imperfect
correctness. Access-pattern-hiding countermeasures such as the
differentially-private approach presented by Chen et al. [8] typi-
cally provide security through the inclusion of false positives and
false negatives, which can increase security but harm the efficiency

117

CODASPY ’24, June 19-21, 2024, Porto, Portugal

and correctness of the scheme. These types of probabilistic coun-
termeasures are often harder to make provable security guarantees
about, but provide practical security against attacks that require
the leakage they attempt to hide.

Leakage-Abuse Attacks. Islam, Kuzu, and Kantarcioglu [22] were
the first to demonstrate that it is possible to violate query privacy
in searchable encryption. By combining ground truth data with
query result co-occurrence, they could frame query recovery as
a quadratic optimization problem that can be approximated via
simulated annealing. The field collectively refers to their work as
the IKK attack. Cash et al. [5] proposed a similar but more efficient
approach that required less ground truth information.

Pouliot and Wright [31] frame the query recovery problem as
a graph matching problem. Their attack can work with ground
truth data or similar data, but it may be difficult to obtain similar
co-occurrence data in practice. Damie et al. [10] developed an attack
that performs well under scenarios in which the attacker only has
some known queries and a distributionally similar auxiliary dataset.

Liu et al. [27] proposed an attack which uses query frequency in-

formation combined with open-source data and background knowl-
edge about the dataset to recover client queries. Oya and Ker-
schbaum [28] combine frequency information with response vol-
ume leakage to construct the SAP Attack, which solves a linear
assignment problem via a maximum likelihood estimation approach.
Later, Oya and Kerschbaum [29] introduced the IHOP Attack, which
makes use of frequency and query dependency information to it-
eratively solve a quadratic optimization problem, improving upon
the result from the SAP Attack.
Attacks Against DSSE. Zhang et al. [40] were the first to consider
an active adversary in detail. They proposed a file-injection attack,
where the adversary adds carefully crafted files to the database and
observes the access patterns to recover client queries with high
accuracy. They concluded that forward privacy is a vital security
property for defeating file-injection attacks, although Salmani and
Barker [33] later showed that file-injection attacks can be modified
to compromise the security of forward-private schemes. Although
this class of attacks specifically targets dynamic SSE schemes, our
work differs in two ways. First, file-injection attacks require an ac-
tive adversary, while ours uses a weaker, passive adversary. Second,
file-injection attacks target access pattern leakage, while our work
targets search pattern and update leakage.

Concurrent to our work, Xu et al. [39] presented techniques for
an adversary to track leakage exploited by many attacks against
static SSE to the dynamic setting while the client issues updates.
While this process is simple for defenseless DSSE schemes, they
moved the field forward by presenting techniques that work even
in the presence of forward- and Level I backward-private schemes.
They propose three attacks which use information about the total
number of updates per keyword to recover search and volume pat-
terns, which are exploited by many of the existing static SSE attacks.
Our work differs because we focus on exploiting information about
the frequency and contents of the updates directly to compromise
forward-private schemes with backward privacy equal to or worse
than Level II. In addition, we show that our approach can make
attacks more powerful against DSSE schemes, while their work only
showed that DSSE is similarly vulnerable to static SSE.

CODASPY ’24, June 19-21, 2024, Porto, Portugal

Table 2: Summary of notation

General Parameters

A Keyword universe A = ['wy, wy, ..., Wy].

n Total number of keywords, n = |A|.

w; The ith keyword in A, with i € [n].
Np Number of documents in the encrypted dataset.
id; ith file identifier, with 1 < i < Np

P Number of observation time intervals.

Adversary Observations

Number of search tags (derived from search pattern leakage).
Yi Jjth tag, with j € [m].

Nk Number of queries sent in the kth time interval, with k € p.
n Vector n = [n1,72,...,7p].

fik Search frequency of y; in the kth time interval, with k € p.
f; Search frequency vector of y;, £; = [fj1,.... fipl-
F Search frequency matrix of all tags (size m X p).

i Number of update requests in the kth time interval.

I Vector pt = [y, iz, - . ., Hpl.

Number of update requests for y; in the kth time interval.
Vector @ = [wj1,0j2,...,@jp].

Q Update frequency matrix of all tags (size m X p).

Uj,yk | Update frequency for jth tag in the yth file in in time interval k.
Uyk Update frequency for all tags in the yth file in time interval k (size m).
Uk Update frequency for all tags in all files in time interval k (size m X Np).

U (Update, file ID) pair frequency matrix of all tags (size m X Np X p).

Auxiliary Information

f,-,k Search frequency of w; in the kth time interval, with k € p.
fj Search frequency vector of w;, f; = [fi1,..., fipl.
F Search frequency matrix of all keywords (size n X p).

@i | Update frequency of w; in the kth time interval.

@; Update frequency vector of w;, @; = [@i1,...,wip].

Q Update frequency matrix of all keywords (size n X p).

Ui,yx | Update freq. for ith keyword in the yth file in time interval k.
Uy Update freq. for all keywords in the yth file in time interval k (size m).
Uk Update freq. for all keywords in all files in time interval k (size m X Np).

U (Update, file ID) pair frequency matrix of all keywords (size n X Np X p).

Attack Goal

Index of the keyword that an attack assigns to y;.

()
’ P Permutation matrix, Pp(j),j =1, else 0 (size n X m).

3 PRELIMINARIES

Notation. Given an SSE database with Np documents, A is the
keyword universe of size n for which the client issues search or
update queries. If the adversary believes two queries correspond
to the same keyword, she assigns them the same tag. Let m be
the number of search tags. Search pattern leakage is a necessary
assumption for tag assignment. The adversary will observe p time
intervals of query and response traces between the client and server.
f; and w; hold all information from all p time intervals about
the frequency of the searches and updates, respectively, on tag j.
Matrices F and Q of size (m X p) store search/update frequency
information for all tags for all weeks. U is size (m X Np X p), where
Uj, y, k gives the frequency of updating the jth tag into the yth file
in the kth time interval. F, Q, and U are the auxiliary counterparts
to these matrices. p(j) is the keyword that an attack assigns to a
tag. Matrix P is the full injective mapping of keywords from A to
tags. In other words, it contains p(j) V j € {1, m}. Let P be the set
of all valid permutation matrices P. See Table 2 for notation used
by the attacks.

3.1 System Model

We consider a client-server file storage service where a client wishes
to offload a private database to save local storage space. The client
wishes to perform two types of operations over the database. The

118

Jacob Haltiwanger and Thang Hoang

first is single-keyword queries, where the server returns all files
which contain a particular keyword. The second is updates, where
the client adds or deletes a file identifier from the entry of a keyword
in the search index. Below we briefly explain the operation of a
DSSE scheme, then present formal definitions and notation that we
will use to define our threat and attack models.

Dynamic Searchable Symmetric Encryption. First, the client
sets up the scheme by using the files to generate an inverted search
index. The index maps each keyword to all of the identifiers of all the
documents that contain it. Then, the client tokenizes each keyword
w in the inverted index by computing its one-way trapdoor 7,.
After tokenization, the inverted index is known as the encrypted
search index. Next, the client uses symmetric encryption to encrypt
the entire database. The client concludes the setup phase by sending
the encrypted search index and the encrypted database to the server.

When the client wishes to perform a search query for keyword
w, she sends its search token 7,, to the server. The server checks
the index for the row containing 7,, and sends the corresponding
files back to the client for decryption.

To perform an update on keyword w, the client sends a tuple
(op, T, id) to the server. The server finds the row in the index
containing 7, or creates a new row if one doesn’t exist. The server
looks at op to determine whether the operation is an addition or
deletion. The server then performs the specified operation on file
id in the position for 7,, in the search index. These operations are

formally defined below:

Definition 3.1. (Dynamic Searchable Symmetric Encryption) A
dynamic searchable symmetric encryption scheme ¥ consists of an
algorithm Setup and two protocols, Search and Update, between a
client and server.

e Setup(DB) is an algorithm run by the client to initialize the
DSSE scheme. It takes as input the initial database DB and
outputs (EDB, K,), where EDB is an encrypted form of DB,
K is the master secret key, and o is the client’s internal state.
Search(K, o, w; EDB) is a protocol consisting of a client al-
gorithm Search¢ (K, o, w) which takes as input the master
key, internal state, and keyword w, and a server algorithm
Searchg(EDB), which takes the encrypted database as input
and outputs DB(w).

Update(K, o, op, in; EDB) is a protocol consisting of two al-
gorithms. Update~(K, o, op, in) is a client algorithm which
takes as input the master key, internal state, operation op €
{add, del}, and input in, which consists of a file identifier
id and a keyword w. Updateg(EDB) is a server algorithm
which takes the encrypted database as input and adds or
deletes one or more keyword-document pairs from the en-
crypted search index.

A DSSE scheme is considered correct iff the search protocol returns
the correct result for all queries except with negligible probability.

This definition of updates extends to the case where the client
wants to add or remove a file from the database; this operation
would be decomposed into an individual keyword/document update
for each keyword in the file.

Exploiting Update Leakage in Searchable Symmetric Encryption

3.2 Threat and Attack Models

In our paper, the adversary is a server that is honest-but-curious;
it will follow the DSSE protocol exactly but attempts to learn the
underlying keywords of all searches and updates sent by the client.
Search Patterns. We consider SSE schemes which leak the search
pattern. Informally, search pattern leakage allows the adversary to
learn query equality, or whether two search tokens were generated
by the same keyword. This could be in the form of explicit search
patterns, where keyword w is converted to the same search token
regardless of the client’s internal state o, or implicit search patterns,
where the adversary can reliably tell whether two tokens match a
keyword by looking for unique patterns in other types of leakage.
We formally define search pattern leakage as follows [9]:

Definition 3.2. (Search Pattern) Given a keyword universe A,
database EDB, and query history H = (EDB, A) of length n, the
search pattern is a symmetric binary matrix S(H) such that for
1<i,j<n S(H);j =1if w; = wj, and 0 otherwise.

Search patterns are hard to hide because they can be inferred
from other types of leakage. By observing client queries and their re-
sponses, the adversary can determine whether two different queries
were for the same keyword with high probability. For example, if
the adversary observes that two queries, g; and g, have the same
access pattern, she can assume that ¢; and q; were generated by
the same keyword.

Tracking Search Patterns in DSSE. In DSSE schemes, search
patterns are harder to track because file additions and deletions can
change a token’s access patterns or response volumes over time.
Prior works have presented techniques to overcome this obstacle.
Salmani and Barker [33] create n bit-strings of length Np, where
the jth bit is 1 if w; is contained in file j. The server saves these bit-
strings. If a file is added to the database, copies of the bit-strings are
made and a bit for the new file is prepended to the string. The server
also maintains a deletion bit-string, where the jth bit is 1 if file j has
been deleted by the client. When the server receives a search token,
it takes its bit-string and compares it bit-wise with the deletion bit-
string and all of the original bit-strings. If the comparison returns
zero, then the tokens correspond to the same keyword, thus search
patterns are recovered. Xu et al. [39] estimate query equality by
computing differences in response similarity. We refer to the papers
by both authors for a more thorough treatment of this topic. For
the purposes of our work, we assume the adversary is capable of
tracking query equality in the DSSE environment.

Update History. When a client issues an update for keyword w
in a DSSE scheme, the server can learn which keyword is being
updated, the timestamp of the update, whether the operation is an
addition or deletion, and which file is being updated. The adversary
can keep track of this data continuously for all keywords in a
leakage profile called UpHist described by Bost [3]. More generally,
UpHist(w) = (u, op, id), where u is a timestamp starting at 0 and
incremented with each operation, op is the operation type, and
id is the identifier of the updated file. Below we discuss security
properties that can reduce the leakage of update operations to less
than UpHist(w).

Forward Privacy. It is desirable to prevent the server from building
UpHist after every update. Forward privacy is a security property
that helps mitigate leakage during update operations. Informally,

119

CODASPY ’24, June 19-21, 2024, Porto, Portugal

forward privacy guarantees that the server cannot learn whether
the keywords of a newly added document match any previous
queries. In a forward-private scheme, updates on keyword w are
only revealed to the server after the client has searched for w.
Formally, forward privacy is defined as follows [3]:

Definition 3.3. (Forward Privacy) An L-adaptively secure DSSE
is forward-private iff the leakage function £UP9t can be written as:

LUPdt(op, in) = £’ (op, {(idj, wi) }

where £’ is stateless and the set {(id;, w;)} contains all updated
documents as the number of modified keywords w; in updated
document id;.

Under this definition, the most information that an adversary
can learn immediately after a file is added to the database in a
forward-private scheme is the identifier id of the file, the number
of keywords in the file, and whether the update was an addition
or deletion. In this work, we only consider SSE schemes that are at
least forward-private.

Backward Privacy. Backward privacy is a strong security property
for DSSE schemes. Informally, backward privacy ensures that the
server does not learn whether deleted files match a search query.
Bost et al. [4] were the first to rigorously characterize backward pri-
vacy, which they organize into three levels. We recap them in order
of decreasing strength, noting that each level is strictly stronger
than the next. At each level, a search for keyword w reveals:
Level I. Backward Privacy with Insertion Pattern: All the doc-
uments currently containing w (TimeDB(w)), when they were in-
serted, and the total number of updates on w (ay,).

Level II. Backward Privacy with Update Pattern: All the doc-
uments currently containing w (TimeDB(w)), when they were in-
serted, and when all the updates on w happened (Updates(w)).
Level III. Weak Backward Privacy: All the documents currently
containing w (TimeDB(w)), when they were inserted, and when all
the updates on w happened with information about which deletion
updates cancelled which addition updates (DelHist(w)).

From a query list Q in the form (u, w), where u is a timestamp
starting at 0 and incremented with every query, we can construct
the necessary leakage profiles, following Bost et al [4]. TimeDB (w)
is the list of all documents matching w with a timestamp of when
they were inserted in the database and it excludes any documents
which have been deleted. Formally,

TimeDB(w) = {(u,id) | (u, add, (w,id)) € Q and
Vi, (v, del, (w,id)) ¢ Q}.
Updates(w) is the collection of update timestamps on w. Formally,
Updates(w) = {u | (4, add, (w, id)) or (u, del, (w,id)) € Q}.

DelHist(w) is the list of timestamps for all deletion operations with
the timestamp of the inserted entries they remove. Formally,

DelHist(w) = {(»®99, w9y | Tid s.t. (u9®, del, (w,id)) € O
and (4299, add, (w,id)) € Q}.

Definition 3.4. (Backward Privacy) An L-adaptively secure DSSE
achieves Level I II, or Il backward privacy iff the search and update
leakage functions rSearch - pUpdt an be written as:

CODASPY ’24, June 19-21, 2024, Porto, Portugal Jacob Haltiwanger and Thang Hoang

Level I: £YPdt(op, w,id) = £’ (op) number of queries for each time interval k € p follows a multi-
L£3earch(y)y = £77(TimeDB(w), ay), nomial distribution with n; trials and probabilities given by the
Level II: £UP (op, w,id) = £’ (op, w) frequency vector fi. The formal relationship is expressed below.
L£3earch () = £77(TimeDB(w), Updates(w)),

Level III: £YP4t (op w,id) = £’ (op, w) Pr(F, n|F,P) = Pr(n) - Pr(F|F, n, P) (1)
L3earch () = £ (TimeDB(w), DelHist(w)), p

where £’ and £’/ are stateless. =Pr(n) - 1_[Pr(fk|?k, k- P)

Clarifying Update Leakage. The update operation leakage of a p = m f S

DSSE scheme is the information leaked during an update opera- =Pr(n) - l_[7! l_[p(j).k

tion. This information is formally defined by a scheme’s leakage k=1 j=1 (i f00)!

function £Updt, However, under a typical DSSE use-case, the client
will perform both searches and updates. Although state of the art
schemes [7, 17, 42] leak little to no information while performing an
update for keyword w, the next search for w must leak additional

Oya et al. choose to maximize the logarithm of Equation 1 because
it is more precise than maximizing Equation 1 directly. Taking the
log, we have:

information about the previous updates, otherwise the server could P m 3

not return the correct results to the client [4]. To avoid confusion Z Z log ((ﬁ;(j),k)”kfj *)

when discussing update-related leakage in DSSE schemes, it is use- k=1j=1

ful to distinguish between leakage incurred at update time and P m R

the additional leakage after searches. For the rest of this paper, we = Z Z Nk Sk log (fp(j).k) 2)

refer to the extra leakage about previous updates that occurs after k=1 j=1

searches as post-search update leakage. Equation 2 allows for the construction of a cost matrix that can be
The post-search update leakage of a keyword w is all leakage used to numerically express the optimization problem. The (i, j)th

about previous update operations on w that exists in £5¢2N (1), entry in the cost matrix is as follows:

For schemes that are forward- or backward-private, post-search

update leakage is always strictly greater than update operation u -
leakage. For schemes that are not backward-private, the post-search (Cplij =~ Z NSk - 1og(fik)
update leakage for w is UpHist(w). k=1

4 ATTACK DETAILS

3.3 Maximum Likelihood Estimation Our goal is to show that post-search update leakage can be exploited

Oya and Kerschbaum developed the SAP Attack [28], which can be to improve the accuracy of attacks on DSSE schemes. To accomplish

viewed as a combination of a search frequency attack and response this goal, we use the Maximum Likelihood Estimation building

volume attack. Although their work targeted the static setting, they block described in Section 3.3.

use an elegant mathematical approach that is applicable to the

dynamic setting. Of particular relevance is the Maximum Likeli- 4.1 No Backward Privacy

hood Estimation (MLE) approach that they use to analyze search The post-search update leakage of a scheme with forward privacy

frequency, which we will refer to as the Search Frequency Attack. and no backward privacy is UpHist(w) = (u, op, id). Note that for

We recap this technique below. DSSE schemes with neither forward nor backward privacy, the
The adversary uses fags to keep track of the implicit search attack methods described in this section can be used even if the

pattern leakage. She assigns two keywords the same tag if she client never searches and only issues updates. We refer to the attack

believes they correspond to the same keyword, using techniques presented in this section as the UFID Attack.

like access pattern comparison described in Section 3.2. When choosing the update input, we assume the client chooses
The Search Frequency Attack aims to find the keyword-tag map- the keyword w and file identifier id independently from any other

ping P that maximizes the probability of observing F, 5, and Np updates with probabilities given by U. We finally assume that the

given the auxiliary frequency information F. Formally, the attack number of updates for each tag in file y in a time interval k € p

solves the optimization problem follows a multinomial distribution with . trials and probabilities

. iven by frequency vector U, ;. These assumptions allow us to
P = argmaxPr(F, . Np|F. P) formally model the probabilif of chserving U and. given T
Pep y model the probability of observing U and g given U:

Search Frequency Analysis. The SAP attack makes two assump- Pr(U, p|f], P) = Pr(p) - Pr(U|U, p, P)

tions in order to use search frequency as input to the optimization p

function. The first assumption is that the number of queries p =Pr(p) - 1_[Pr(Ukmk,Hk: P)

for each time interval follows an arbitrary distribution Pr(n). The k=1

second assumption is that the client chooses keywords to query p Np

1ndeper.1(.iently from all F)ther queries, with probablhtles. glven by =Pr(p) - n l_[Pr(Uyse[Uy ko pty 0 P)

the auxiliary frequency information F. Under these conditions, the k=1y=1

120

Exploiting Update Leakage in Searchable Symmetric Encryption

Because of our assumption mentioned above, we can apply the
probability mass function (PMF) of the multinomial distribution to
express the probability as an explicit formula:

p Np m
[T] Tmt]]
k=1y=1 Jj=1
We now take the logarithm of Equation 3 to obtain our update
frequency cost matrix. We can ignore any terms which are not
dependent on P because they do not affect the optimization problem.

)

k=1y=1j
We are now ready to construct the cost matrix. The entry in the
(i, j)th position is:

Up(j),yr)ve ok

®3)
(,uy,k Uj, y,k) !

M
M=

HykUjyk - 1Ot‘v’(ﬁp(j),yk)

Il
—
Il
—

p

Np
(Curp)ij == Z Z HyUj,y i - 10g(Us y k)
k=1y=1

4.2 Level Il Backward Privacy

The UFID Attack becomes unusable in the presence of backward
privacy, because the file identifier information is no longer leaked.
However, Level II and III backward-private schemes still leak the
frequency of updates on a keyword w from the post-search update
leakage Updates(w). We refer to the attack constructed from the
methodology described below as the UF Attack.

The assumptions are analogous to the UFID Attack: assume the
client chooses the keyword w independently from any other up-
dates with probabilities given by Q. The number of updates for each
tag in time interval k € p follows a multinomial distribution with
i trials and probabilities given by frequency vector @wy. Therefore,
the probability of observing Q and p given Q:

Pr(Q, u|Q,P) = Pr(p) - Pr(Q|Q, p, P)

P
=Pr(p) - | | Pr(wlddp pe P)
k=1
Again, we apply the PMF of the multinomial distribution to achieve
an explicit equation:

P
=Pr(p) - [!
k=1 j=1

Now we are ready to take the logarithm, ignoring terms indepen-
dent of P:

m ((:)p(j),k)”kwj'k

(@) x)!

P m
Z Z He@j i - 1og(dp(j) k)
k=1j=1
We can now create the cost matrix for update frequency informa-
tion:

P
(CURij ==) Hkwjk - log(@ix)
k=1
As described, the UF Attack will work on schemes with Level
II backward privacy or worse. Because this attack uses time inter-
val information, it will fail on Level I backward-private schemes
because they do not leak timestamps.

121

CODASPY ’24, June 19-21, 2024, Porto, Portugal

4.3 Exploiting Both Search and Update Leakage

While the UFID and UF Attacks against schemes with at least for-
ward privacy require the client to issue searches in order to obtain
the necessary post-search update leakage, they only incorporate the
update leakage into their cost matrices. From the adversary’s per-
spective, it is desirable to combine the search frequency information
with the update frequency information to increase the potential
accuracy of query recovery attacks. From the searches that the ad-
versary observes, she can construct C ¢. From the post-search update
leakage, she can construct Cyr in the presence of Level Il backward
privacy or Cyfp if there is no backward privacy. These matrices can
be combined with element-by-element multiplication, also known
as the Hadamard product. For two independent events A and B
with probabilities given by matrices P(A) and P(B), the Hadamard
product matrix given by (P(A) © P(B));ij = (P(A))i;j(P(B))ij can
be statistically interpreted as the joint probability P(A N B) of both
events occurring. If we assume the occurrence of a search does
not affect the probability of an update occurring, we can treat the
cost matrices as independent and apply the Hadamard product. For
schemes with no backward privacy:

Csp+urip = Cr © Curip

For schemes with Level I backward privacy:
Cspsur = Cr © Cur

This yields a new version of each attack, referred to as the
SP+UFID Attack and SP+UF Attack, respectively. See Section 5.3
for our empirical evaluation of the effectiveness of these versions
of the attacks compared to their baseline versions.

Following Oya and Kerschbaum [28], we express the maximiza-
tion as an unbalanced assignment problem, which is efficiently
solved by the Hungarian Algorithm. If tr(A) is the trace of matrix
A, the assignment problem for all attacks described in this section
is as follows:

P = argmin tr(PT(C)),
PeP
where C is the cost matrix of the corresponding attack.

5 EVALUATION

We evaluate our proposed attack methods against a range of experi-
ments and compare the results with the search frequency portion of
the SAP attack by Oya and Kerschbaum [28], described in Section
3.3 and hereafter referred to as the Search Frequency Attack.
Implementation. We implement our experiments using roughly
1,000 lines of single-threaded Python 3.6.8 code on a server running
CentOS Stream 8 with 125 GB of RAM and an Intel(R) Xeon(R)
Platinum 8630Y CPU with 2.4 GHz clock speed. We use NumPy’s
implementation of probabilistic functions and SciPy’s implemen-
tation of the Hungarian algorithm. Our code is available at https:
//github.com/vt-asaplab/DSSE- Attacks.

5.1 Methodology

Experiment Setting. We re-implement the Search Frequency At-
tack and implement our proposed attacks under new assumptions.
Oya et al. demonstrated their SAP attack under the assumption
that the adversary has fine-grained probabilities about the client’s

https://github.com/vt-asaplab/DSSE-Attacks
https://github.com/vt-asaplab/DSSE-Attacks

CODASPY ’24, June 19-21, 2024, Porto, Portugal

query frequencies for all of the keywords that the adversary is inter-
ested in. We feel this assumption is unlikely to arise in a real-world
scenario for two reasons.

First, the adversary must explicitly develop a predicted keyword
universe for all of the keywords that she believes the client will
query. Then the adversary must gather auxiliary information about
each keyword in A,¢q4. As Damie et al. [10] point out, any attack
operating under this model will be unable to recover any keywords
which are contained in the client’s true keyword universe A,..,; but
absent from A,qq. We claim that constructing a good Apyeq is
difficult in practice except in the case of a security breach (i.e., a
scheme that was set up incorrectly but later patched, leaking some
query traces) or the adversary already has significant information
about the client’s database (perhaps through a side-channel attack
or surveillance). The latter case is outside the scope of this work.

Second, if the auxiliary probabilities F selected by the adversary
do not align closely with the underlying query behavior F of the
client, the attack will be less likely to recover keywords. We feel that
taking auxiliary data from Google Trends is unlikely to accurately
represent the query behavior of clients of SSE services, especially
if the client is querying over a specialized database.

For these reasons, we implement all experiments under the as-

sumption that the adversary has access to some real query and
update traces from the client (i.e., the security breach scenario).
Although access to real query and update traces is a strong assump-
tion, we feel that it is more likely to occur in practice than Google
Trends data closely predicting the behavior of real SSE clients. We
note that this is simply the strategy we use to create auxiliary data to
simulate a realistic setting; our attacks still function as similar-data
inference attacks and do not require known data.
Generating the Auxiliary Data. Because there are no publicly
available datasets including real timestamped client query or update
information, we generate auxiliary client query and update traces
using data from Google Trends. We use the same Google Trends
probabilities as the Oya et al. evaluation [28] to keep our evalua-
tion consistent with theirs!. For each of the 3000 most common
keywords in each dataset, the frequency is obtained from Google
Trends for each week in a 260-week span. These relative frequencies
are then normalized and used for auxiliary data generation.

Because we only consider forward-private schemes, we remove
all updates from the auxiliary and observed traces if their corre-
sponding keyword or tag is not searched in a later week. We model
the client’s choice of which file identifier id to associate an update
with by sampling from a normal distribution with center ¢ and
standard deviation d. We assume each keyword has a unique center
c. d is a parameter of the experiment. d = 0 implies that a keyword
is always updated into the same file. The choice of which file to
update becomes more random as d increases. There are many other
valid ways to simulate client updates, but we are unable to use
real-world data for this choice due to the lack of publicly available
database-update datasets including timestamps and file identifiers.

Processing the Auxiliary Data. All experiments are conducted
using 100 time intervals of search and update traces. For each

keyword w; in A, we repeat the following procedure: in the first

1From https://github.com/simon-oya/USENIX21-sap-code/tree/master/datasets_pro

122

Jacob Haltiwanger and Thang Hoang

ID selected

c—d ¢

File ID

c+d

Figure 1: Diagram of how the client chooses which file to
update. Each keyword has a different center c. Standard de-
viation d is a parameter of the experiment. The dashed line
represents a random sample from the distribution. The client
will choose the file ID id at this location to include in the up-
date tuple (op, w, id). c and d are not known to the adversary.

time interval, we take its normalized frequency value from the the
first week in the Google Trends dataset and use it as the chance
that w; will appear in the first week of query or update traces. This
process is repeated for the remaining 99 weeks.

At this point, 100 weeks of query and update traces have been
generated. We refer to the first 50 weeks as the auxiliary period
because the traces from these weeks will be left in plaintext, as in
the security breach scenario described previously. The adversary
will use them to populate the auxiliary frequency matrices F, Q,
and U.

For the next 50 weeks, the server may only access traces which
have been processed to reveal no more information than a correct
SSE scheme, perhaps due to a security patch. This interval is known
as the observation period. The adversary never has access to any
keyword-tag pairs; she only sees keyword traces during the auxil-
iary period, and only sees tokenized traces during the observation
period. Our approach differs from Oya et al. because we do not
allow the adversary to access any of the Google Trends data, only
the auxiliary traces.

The adversary effectively has access to outdated frequency infor-

mation because the attack goal is to use the data from the auxiliary
period to recover queries in the observation period. We note that
the adversary only has access to keywords in the auxiliary period
and only has access to tags in the observation period, and therefore
never has access to ground truth information.
Attack Accuracy. For each experiment, accuracy of all attacks is
measured by the total number of searches recovered divided by
the total number of searches, including duplicates, in the observa-
tion period. This is known as weighted query recovery, and is the
standard accuracy metric used by attack papers [2, 5, 10, 28, 29].

5.2 Experimental Setup

Dataset. To evaluate our attack, we use the 30,109 files in the ’sent-
mail” directory of the Enron dataset?, as is standard in the field
[10, 28, 29, 40]. We also use the first 66,491 files after September
2001 of the Lucene dataset? for the first experiment. After removal
of English stopwords, we pick a random subset of size n of the 3,000

Zhttps://www.cs.cmu.edu/~enron/
3https://mail-archives.apache.org/mod_mbox/lucene-java-user/

https://github.com/simon-oya/USENIX21-sap-code/tree/master/datasets_pro
https://www.cs.cmu.edu/~enron/
https://mail-archives.apache.org/mod_mbox/lucene-java-user/

Exploiting Update Leakage in Searchable Symmetric Encryption

0.8

§ 0.6 b ; 0.6 B
g g
2 <
g 0ap 1% oaf *
E Search Frequency [28] 2 Search Frequency [28]
—=—UF —=—UF
02l —e—UFID] —e—UFID
- / e SP+UF 02 —+—SP+UF b
. —a—SP+UFID —4—SP+UFID

| n n T
250 500 750 1000
Avg. Number of Searches and Updates per Week (7, i)

(b) Lucene dataset

. | n n T .
10 250 500 750 1000 10
Avg. Number of Searches and Updates per Week (7, 1)

(a) Enron dataset

Figure 2: Effect of increasing number of searches and updates
per week in both the auxiliary and observation periods.

most commonly appearing keywords in the dataset to build our
keyword universe A.

Experiment Parameters. We run each experiment with settings
of keyword universe size n = 100, average searches and updates
per week of 7, i = 100, number of weeks for the auxiliary and
observation periods each p = 50, number of files in the dataset Np =
30,109, and standard deviation of the distribution that selects files
d = 0.0033Np (100 for Np = 30,109). Except for the independent
variable, these values are used for all experiments.

Following Oya et al., we generate the actual number of searches
and updates per week by sampling from a Poisson distribution
centered at 77 and fi, respectively.

To increase the confidence in our results, we run each experiment
30 times, using a different random seed for each. The seed affects
which keywords are selected to be in A, which file identifiers are
selected by the process simulating client updates (Figure 1), and
the actual values for and p for each week. After the inputs are
selected, the attacks are deterministic. For each data point in the
following figures, we report the average result of the 30 trials.

5.3 Experimental Results

Amount of Auxiliary Information. Figure 2 shows that the
accuracy of all attacks increases as the average number of searches
and updates per week increases. We note that our implementations
of the attacks require more searches per week to obtain the same
accuracy reported by Oya and Kerschbaum. This is due to the
change in attack setting; because our adversary only has access
to auxiliary traces, the client must issue more searches before the
adversary can get an accurate prediction of the true probability
that a client will query each keyword.

The UF Attack achieves similar accuracy to the Search Frequency
Attack. This is because update frequency alone is no more pow-
erful than search frequency leakage. The SP+UF Attack achieves
roughly five percent higher accuracy at all intervals. Both versions
of the UFID Attack perform better on average than the other at-
tacks, although the magnitude of this improvement increases as the
amount of information increases. We conjecture that this is because
adding more information is more likely to fill empty spaces in U
and U when compared to Q and f) because the UFID Attacks track
frequencies at a finer granularity.

In Figure 2(b), we run our attacks against the Lucene dataset
to verify the effectiveness of our attacks does not arise from some

123

CODASPY ’24, June 19-21, 2024, Porto, Portugal

0.6 - _— B

0.4

Attack Accuracy

0.2 -

—— SP+UFID

0

I I h T T T
10 100 200 300 400 500
Avg. Number of Searches and Updates per Week during Aux. Period (7, f1)

Figure 3: Effect of increasing auxiliary data on attack accu-
racy. During the auxiliary period, 7j and /i are set to the values
shown on the x-axis. During the observation period, 7, i = 100
for all experiments.

s
S
T
I
o
3
T

o
=
T
o
>
T

°
=
T

o
T

-

Attack Accuracy
Attack Accuracy

o
T

—e— UF n =100 —— SP+UF n = 100
—o— UF n =250 —— SP+UF n = 250 | |
—#— UF n =500 —— SP+UF n = 500

/
/+ UFID n = 100 —— SP+UFID n = 100
—e— UFID n = 250 —— SP+UFID n = 250
—8— UFID n = 500 —— SP+UFID n = 500

o
T

T T T T
250 500 750 1000

Avg. Number of Searches and Updates per Week (7, ji)

(b) UFID Attacks

. T T T T .
10 250 500 750 1000 10
Avg. Number of Searches and Updates per Week (7, ji)

(a) UF Attacks

Figure 4: Effect of keyword universe size on attack accuracy.

unique quality of the Enron dataset. From Enron to Lucene, the
accuracy of the Search Frequency Attack is stable, whereas our
attacks lose a small but noticeable amount of accuracy. This is
likely because the Lucene dataset has many more files than Enron,
which makes our matrices Q and U more sparse. However, it is
clear that all attacks shown are effective against both datasets.

Figure 3 shows that increasing the amount of auxiliary informa-
tion can significantly improve the accuracy of attacks, even if the
amount of searches and updates observed by the adversary does
not increase.

In Figure 4, we compare our attacks across different keyword uni-
verse sizes. As with all attacks against SSE, we notice a decrease in
accuracy as more keywords are included. We note that the keyword
universe does not have to be as large as the entire set of keywords
in the database, but instead can be hand-selected by the adversary.
While selecting keywords that the target client is likely to query is
a hard problem in practice, it could reduce the size of the keyword
universe to dozens or hundreds.

Number of Files in Database. Figure 5 shows the runtime scaling
of the UFID Attacks with respect to Np when all other variables are
held constant. We define runtime as the amount of time it takes to
build the cost matrix and optimize it with the Hungarian algorithm®.
The size of the UFID Attacks’ data structures is larger than their
UF Attack counterparts by a factor of Np. This figure provides

4UFID Attack is not shown in Figure 5 because the difference in runtime between
versions is negligible.

CODASPY ’24, June 19-21, 2024, Porto, Portugal

100

L|—+—spP+UFID 4

Runtime (s)
T
1

0.1F E

001 B

Y R EAEETII
1 10 100 1000 10000 100000
Number of Files in Database (Np)

Figure 5: Effect of database size on runtime of UFID Attacks.

T
—e— UFID
—+— SP+UFID
--- UF

SP+UF

0.8

L L
Attack Accuracy
° °
& 2
T T
+
\
]
|
|
¢
e
i
s
L L

Attack Accuracy

0.4
/ 777777777777777777777777777 02}

—e— UFID
—+— SP+UFID i
Search Frequency [28]

— T L
30 40 50 60 70 80 90
Number of Files in Database (Np) (x10%)

(b) Large database

I
100

Number of Files in Database (Np)

(a) Small database

Figure 6: Effect of adding files to a database on accuracy of
UFID Attacks.

experimental verification that the UFID Attacks run in reasonable
time for realistic experiment parameters.

Figure 6(a) experimentally verifies that the UF Attack is a special
case of the UFID Attack where there is only one file in the database.
This is expected because the adversary does not have file identifier
information in Level II backward-private schemes. Starting from
a database with only one file, the adversary begins to learn more
useful information from the file identifier leakage as the number of
files increases.

Figure 6(b) shows that adding more files to the database will
eventually degrade the accuracy of the UFID Attacks. We argue
that the value of the file identifier information decreases if there
are too few or too many files in the database because the relation-
ship between keywords and file identifiers in updates becomes
less unique. The SP+UFID Attack maintains an improvement over
search pattern leakage alone, even for databases with 100, 000 files.
File ID Distribution. Figure 7 investigates the effect that the choice
of which file to update has on the accuracy of the UFID Attacks.
Recall that we simulate this choice by sampling from a normal
distribution as described in Figure 1. We do not expect a normal
distribution to accurately model real-world client updates; indeed,
one can imagine real-world scenarios where client behavior would
be better modeled by other distributions. Instead, we use the normal
distribution to provide experimental insight about the effect of the
uniqueness of the update distribution. For both versions of the attack,
we find that very low values of d result in very high recovery rates.
On the other hand, a standard deviation of 600 implies that 95% of
the updates occur over a range of 2400 different file identifiers, or 8%
of the database size Np. Even under these conditions, the SP+UFID

124

Jacob Haltiwanger and Thang Hoang

B ——
—e— UFID 1r
—+— SP+UFID

Search Frequency [28] ||

e
T

0.4

,//
|
4
4
|
4
|
+
4
\
4
|
.
I I
Attack Accuracy
s o
&
T

Attack Accuracy

0.2 -
2l \;\ | & [—e— UFID n = 100 —+— SP+UFID n = 100
. —e—g—o L -, e |
— 0 —e— UFID n =250+ SP+UF n = 250
—e— UFID 1= 500 4 SP+UFID n = 500
O 0 0 4@ e 0 0 500 750 1000
0 120 240 360 480 600 ~

Avg, Number of Searches and Updates per Week (7, /)

(b) Zipfian distribution

Standard Deviation (d) of File Selection Distribution

(a) Normal distribution

Figure 7: Effect of file selection distribution on accuracy of
UFID attacks.

Attack still slightly outperforms the Search Frequency Attack. These
results suggest that the relationship between keywords and the
files that are updated is an important factor in these attacks.

In Figure 7(b), unlike all other experiments, the client chooses
the file identifier to associate with a keyword by sampling from a
Zipfian distribution with a parameter of a = 1.1. We assume the
most frequently updated file is different for each keyword. The
Zipfian distribution leads to much more pronounced couplings of
keywords and file identifiers than the normal distribution, caus-
ing the attacks to be remarkably effective under these conditions.
We point out that the SP+UFID Attack is less effective than the
UFID Attack, presumably because adversary’s information about
the client’s updates is of such high quality with this distribution
that including the search frequencies is no longer advantageous.

5.4 Discussion

Practicality of Attacks. Our results suggest that DSSE use cases
with frequent updates and at least semi-frequent searches, such as
encrypted email, could be very vulnerable to our attacks. Other use
cases that are infrequently accessed by the client, such as backup
file storage, are less likely to be compromised by our attacks.

Any DSSE scheme is likely to receive some amount of updates
from the client, otherwise the user would simply opt for a static SSE
scheme instead. As such, we encourage future works to consider
post-search update leakage matching the security properties of the
target scheme to be part of the standard leakage in their analysis.
We encourage deeper investigation into techniques to compromise
DSSE schemes so defense researchers are more capable of empiri-
cally evaluating the strength of their defenses against attacks that
explicitly target DSSE.

In practice, the major obstacle for an attacker is obtaining auxil-
iary data. Most attack papers only offer a short explanation about
how an attacker might obtain known documents, queries, or aux-
iliary data. We agree with the sentiment of Damie et al. [11] that
high-quality ground truth data, or even statistically-similar aux-
iliary data, is difficult to obtain in practice, even in the case of a
security breach. However, as we argued earlier, a security breach
is one of the only practical ways for an attacker to form a compre-
hensive keyword universe A.

In this work, we have made our best attempt to evaluate our
frequency-based attacks under realistic conditions, following strate-
gies from related works [27-29]. However, as Damie et al. [10] point

Exploiting Update Leakage in Searchable Symmetric Encryption

out, it is difficult to evaluate frequency-based attacks without real
timestamped search and update datasets’.

Nevertheless, our attacks expose weaknesses in DSSE schemes
which had not previously been exploited. It would be unwise to
dismiss leakage-abuse attacks as impractical for three reasons. First,
even attacks which are only theoretical motivate stronger designs
[13, 17, 19, 42]. Second, the security versus performance balance of
real commercial-scale systems are unlikely to lean in the direction
of the security properties that provably defeat ours and related
attacks. Third, the complexities of implementing large systems,
such as those that led to the recent devastating attacks by Gui
et al. [20] targeting the logging system of MongoDB’s Queryable
Encryption, can greatly assist an adversary in gaining auxiliary
data to compromise the privacy of SSE protocols.
Countermeasures. A growing line of research on SSE defenses
have focused on obfuscating access patterns and search patterns
[8, 13, 30]. While effective, very few of these works extend their
proposed methods to construct dynamic SSE schemes, generally
because it is challenging to do so under real-world efficiency con-
straints [13]. Zhao et al. [42] provide a Level I backward-private
scheme that obfuscates search patterns, however, its correctness
is inversely proportional to the strength of the security parame-
ter and the authors do not provide an empirical evaluation of its
performance. The SWiSSSE scheme designed by Gui et al. [19] ap-
pears to be the most efficient (and only end-to-end) defense to our
attacks. A DSSE scheme instantiated with frequency-smoothing
techniques like PANCAKE by Grubbs et al. [18] would defeat the
attacks proposed in this paper, but potentially not all attacks that
could be designed with similar methods (e.g., a dynamic extension
of IHOP [29] that includes update leakage). As such, attackers can
use update leakage to compromise all efficient DSSE schemes more
effectively than attacks that ignore this leakage. For this reason,
we encourage researchers to investigate techniques to improve the
practical efficiency of Level I backward privacy for DSSE.
Directions for Future Work. It is possible to incorporate the
post-search update leakage from Level I backward-private schemes
into an attack. Recall that the post-search update leakage of Level I
schemes is the time that each document matching w was inserted
into the database and the total number of updates on w. It would
be challenging to exploit this information effectively without a
stronger attack model. We leave this as an open research question.

Our attacks do not exploit all possible update leakage. For Level
III schemes, one could utilize the deletion information from DelHist.
For weaker schemes, it is possible to exploit the type of operation
op. Motivated by the results of our work and others [28, 29], we
are of the opinion that including more information to attacks will
generally improve their accuracy. We encourage attack researchers
to pursue this line of research further to incorporate update leakage
from DSSE schemes into existing attacks and new attacks alike.

While leakage-obfuscation defenses have proven effective against
a variety of attacks, there appears to be a heavier focus on volume-
hiding [1, 19, 23, 30, 42] than search pattern obfuscation [19, 42].

5In fact, almost all SSE attack evaluations, even those for non-frequency-based attacks,
choose to model client query behavior due to the lack of real-world data.

125

CODASPY ’24, June 19-21, 2024, Porto, Portugal

While effectively obfuscating the search pattern is an open chal-
lenge [4, 28], it would defeat our attacks and several others [27-
29, 39], so we believe it is a worthwhile direction to pursue further.

6 CONCLUSION

In this work, we propose two novel query-recovery attacks and
demonstrate that including traditionally-overlooked leakage from
updates in Dynamic Searchable Symmetric Encryption (DSSE) can
compromise query privacy more effectively than a strategy that
only uses leakage from searches. We show that the backward pri-
vacy security property prevents the strongest versions of these
attacks. We hope our work encourages researchers to improve
the efficiency of backward privacy so clients of future real-world
encrypted search systems can benefit from enhanced privacy.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback which im-
proved the quality of this work. This material is based upon work
supported by the National Science Foundation under Grants Num-
ber 194649, an unrestricted gift from Robert Bosch, 4-VA, and the
Commonwealth Cyber Initiative (CCI) — an investment in the ad-
vancement of cyber R&D, innovation, and workforce development.
For more information about CCI, visit www.cyberinitiative.org.

REFERENCES

[1] Ghous Amjad, Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2023.
Dynamic Volume-Hiding Encrypted Multi-Maps with Applications to Searchable
Encryption. Privacy Enhancing Technologies Symposium, Vol. 2023. 417-436.
https://doi.org/10.56553/popets-2023-0025

Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage
Abuse Attacks. ISOC Network and Distributed System Security Symposium. In
NDSS 2020. https://dx.doi.org/10.14722/ndss.2020.23103

Raphael Bost. 2016. Sophos: Forward Secure Searchable Encryption. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 1143-1154. https://doi.org/10.1145/2976749.2978303

Raphaél Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and Backward
Private Searchable Encryption from Constrained Cryptographic Primitives. 1465—
1482. https://doi.org/10.1145/3133956.3133980

David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2016. Leakage-
Abuse Attacks Against Searchable Encryption. In 15th ACM Conference on Com-
puter and Communications Security (CCS). https://eprint.iacr.org/2016/718.pdf
David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-
tion with Support for Boolean Queries. In Advances in Cryptology — CRYPTO
2013, Ran Canetti and Juan A. Garay (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 353-373.

Javad Ghareh Chamani, Dimitrios Papadopoulos, Mohammadamin Karbas-
forushan, and Ioannis Demertzis. 2022. Dynamic Searchable Encryption with
Optimal Search in the Presence of Deletions. In 31st USENIX Security Sym-
posium (USENIX Security 22). USENIX Association, Boston, MA, 2425-2442.
https://www.usenix.org/conference/usenixsecurity22/presentation/chamani
Guoxing Chen, Ten-Hwang Lai, Michael K. Reiter, and Yinqian Zhang. 2018.
Differentially Private Access Patterns for Searchable Symmetric Encryption. In
IEEE INFOCOM 2018 - IEEE Conference on Computer Communications (Honolulu,
HI, USA). IEEE Press, 810-818. https://doi.org/10.1109/INFOCOM.2018.8486381
Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable
Symmetric Encryption: Improved Definitions and Efficient Constructions. In
13th ACM Conference on Computer and Communications Security (CCS). https:
//eprint.iacr.org/2006/210.pdf

Marc Damie, Florian Hahn, and Andreas Peter. 2021. A Highly Accurate Query-
Recovery Attack against Searchable Encryption using Non-Indexed Documents.
In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association,
143-160. https://www.usenix.org/conference/usenixsecurity21/presentation/
damie

Marc Damie, Jean-Benoist Leger, Florian Hahn, and Andreas Peter. 2023. The
statistical nature of leakage in SSE schemes and its role in passive attacks.

(10]

(1]

www.cyberinitiative.org
https://doi.org/10.56553/popets-2023-0025
https://dx.doi.org/10.14722/ndss.2020.23103
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/3133956.3133980
https://eprint.iacr.org/2016/718.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/chamani
https://doi.org/10.1109/INFOCOM.2018.8486381
https://eprint.iacr.org/2006/210.pdf
https://eprint.iacr.org/2006/210.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/damie
https://www.usenix.org/conference/usenixsecurity21/presentation/damie

CODASPY ’24, June 19-21, 2024, Porto, Portugal

Cryptology ePrint Archive, Paper 2023/1883. https://eprint.iacr.org/2023/1883
https://eprint.iacr.org/2023/1883.

[12] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. 2020. Dynamic Searchable Encryption with Small Client
Storage. In NDSS 2020. https://doi.org/10.14722/ndss.2020.24423

[13] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Saurabh Shintre. 2020. SEAL: Attack Mitigation for Encrypted Databases
via Adjustable Leakage. In 29th USENIX Security Symposium (USENIX Secu-
rity 20). USENIX Association, 2433-2450. https://www.usenix.org/conference/
usenixsecurity20/presentation/demertzis

[14] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, Minos Garofalakis, and Charalampos Papamanthou. 2018. Practical
Private Range Search in Depth. ACM Trans. Database Syst. 43, 1, Article 2 (mar
2018), 52 pages. https://doi.org/10.1145/3167971

[15] Mohammad Etemad, Alptekin Kiip¢ii, Charalampos Papamanthou, and David
Evans. 2017. Efficient Dynamic Searchable Encryption with Forward Privacy.
arXiv:1710.00208 [cs.CR]

[16] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.
TWORAM: Efficient Oblivious RAM in Two Rounds with Applications to Search-
able Encryption. In Proceedings, Part III, of the 36th Annual International Cryp-
tology Conference on Advances in Cryptology — CRYPTO 2016 - Volume 9816.
Springer-Verlag, Berlin, Heidelberg, 563-592. https://doi.org/10.1007/978-3-662-
53015-3_20

[17] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,

and Rasool Jalili. 2018. New Constructions for Forward and Backward Private

Symmetric Searchable Encryption. 1038-1055. https://doi.org/10.1145/3243734.

3243833

Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,

Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency Smoothing

for Encrypted Data Stores. In 29th USENIX Security Symposium (USENIX Secu-

rity 20). USENIX Association, 2451-2468. https://www.usenix.org/conference/
usenixsecurity20/presentation/grubbs

[19] Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis, and Bogdan Warinschi.
2020. SWiSSSE: System-Wide Security for Searchable Symmetric Encryption.
Cryptology ePrint Archive, Paper 2020/1328. https://eprint.iacr.org/2020/1328
https://eprint.iacr.org/2020/1328.

[20] Zichen Gui, Kenneth G. Paterson, and Tianxin Tang. 2023. Security Analysis of
MongoDB Queryable Encryption. In 32nd USENIX Security Symposium (USENIX
Security 23). USENIX Association, Anaheim, CA, 7445-7462. https://www.usenix.
org/conference/usenixsecurity23/presentation/gui

[21] Kun He, Jing Chen, Qinxi Zhou, Ruiying Du, and Yang Xiang. 2021. Secure
Dynamic Searchable Symmetric Encryption With Constant Client Storage Cost.
IEEE Transactions on Information Forensics and Security 16 (2021), 1538-1549.
https://doi.org/10.1109/TIFS.2020.3033412

[22] Mohammad Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access Pattern
disclosure on Searchable Encryption: Ramification, Attack and Mitigation. In
NDSS 2012. https://www.ndss-symposium.org/wp-content/uploads/2017/09/06_
Lpdf

[23] Seny Kamara and Tarik Moataz. 2019. Computationally Volume-Hiding Struc-
tured Encryption. 11477 (2019), 183-213. https://doi.org/10.1007/978-3-030-
17656-3_7

[24] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

Searchable Symmetric Encryption. In Proceedings of the 2012 ACM Conference

on Computer and Communications Security (Raleigh, North Carolina, USA) (CCS

’12). Association for Computing Machinery, New York, NY, USA, 965-976. https:

//doi.org/10.1145/2382196.2382298

Aggelos Kiayias, Ozgur Oksuz, Alexander Russell, Qiang Tang, and Bing Wang.

2016. Efficient Encrypted Keyword Search for Multi-user Data Sharing. In Com-

puter Security — ESORICS 2016, Ioannis Askoxylakis, Sotiris Ioannidis, Sokratis

Katsikas, and Catherine Meadows (Eds.). Springer International Publishing, Cham,

173-195.

Mehmet Kuzu, Mohammad Saiful Islam, and Murat Kantarcioglu. 2012. Efficient

Similarity Search over Encrypted Data. In 2012 IEEE 28th International Conference

on Data Engineering. 1156-1167. https://doi.org/10.1109/ICDE.2012.23

[27] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu an Tan. 2014. Search pattern
leakage in searchable encryption: Attacks and new construction. Information
Sciences 265 (2014), 176-188. https://doi.org/10.1016/j.ins.2013.11.021

[28] Simon Oya and Florian Kerschbaum. 2021. Hiding the Access Pattern is Not
Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In 30th

[18

[25

[26

126

[29

[30

[31

[32

[33

(34]

@
2

[36

(37]

(38]

[40

[41

[42

[43]

Jacob Haltiwanger and Thang Hoang

USENIX Security Symposium (USENIX Security 21). USENIX Association, 127-142.
https://www.usenix.org/conference/usenixsecurity21/presentation/oya

Simon Oya and Florian Kerschbaum. 2022. IHOP: Improved Statistical Query
Recovery against Searchable Symmetric Encryption through Quadratic Opti-
mization. In 31st USENIX Security Symposium (USENIX Security 22). USENIX
Association, Boston, MA, 2407-2424. https://www.usenix.org/conference/
usenixsecurity22/presentation/oya

Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating

Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps
via Hashing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security (London, United Kingdom) (CCS ’19). Association
for Computing Machinery, New York, NY, USA, 79-93. https://doi.org/10.1145/
3319535.3354213

David Pouliot and Charles V. Wright. 2016. The Shadow Nemesis: Inference At-
tacks on Efficiently Deployable, Efficiently Searchable Encryption. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(Vienna, Austria) (CCS ’16). Association for Computing Machinery, New York,
NY, USA, 1341-1352. https://doi.org/10.1145/2976749.2978401

Cédric Van Rompay, Refik Molva, and Melek Onen. 2018. Secure and Scalable
Multi-User Searchable Encryption. Cryptology ePrint Archive, Paper 2018/090.
https://eprint.iacr.org/2018/090 https://eprint.iacr.org/2018/090.

Khosro Salmani and Ken Barker. 2021. Don’t Fool Yourself with Forward Privacy,
Your Queries STILL Belong to Us!. In Proceedings of the Eleventh ACM Conference
on Data and Application Security and Privacy (Virtual Event, USA) (CODASPY
’21). Association for Computing Machinery, New York, NY, USA, 131-142. https:
//doi.org/10.1145/3422337.3447838

Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical Tech-
niques for Searches on Encrypted Data. In Proceedings of the 2000 IEEE Symposium
on Security and Privacy (SP °00). IEEE Computer Society, USA, 44.

Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-
namic Searchable Encryption with Small Leakage. In NDSS 2014 (San Diego, CA,
USA). http://dx.doi.org/10.14722/ndss.2014.23298

Qiang Tang. 2014. Nothing is for Free: Security in Searching Shared & Encrypted
Data. Cryptology ePrint Archive, Paper 2014/362. https://eprint.iacr.org/2014/362
https://eprint.iacr.org/2014/362.

Jianfeng Wang, Hua Ma, Qiang Tang, Jin Li, Hui Zhu, Sigi Ma, and Xiaofeng
Chen. 2013. Efficient Verifiable Fuzzy Keyword Search over Encrypted Data
in Cloud Computing. Computer Science and Information Systems 10 (04 2013),
667-684. https://doi.org/10.2298/CSIS121104028W

Qian Wang, Meiqi He, Minxin Du, Sherman S. M. Chow, Russell W. F. Lai, and
Qin Zou. 2018. Searchable Encryption over Feature-Rich Data. IEEE Transactions
on Dependable and Secure Computing 15, 3 (2018), 496-510. https://doi.org/10.
1109/TDSC.2016.2593444

Lei Xu, Leqian Zheng, Chengzhi Xu, Xingliang Yuan, and Cong Wang. 2023.
Leakage-Abuse Attacks Against Forward and Backward Private Searchable Sym-
metric Encryption. In Proceedings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security (Copenhagen, Denmark) (CCS '23). Asso-
ciation for Computing Machinery, New York, NY, USA, 3003-3017. https:
//doi.org/10.1145/3576915.3623085

Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your
Queries Are Belong to Us: The Power of File-Injection Attacks on Search-
able Encryption. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 707-720. https://www.usenix.org/conference/
usenixsecurity16/technical- sessions/presentation/zhang

Zhongjun Zhang, Jianfeng Wang, Yunling Wang, Yaping Su, and Xiaofeng Chen.
2019. Towards Efficient Verifiable Forward Secure Searchable Symmetric En-
cryption. In Computer Security — ESORICS 2019: 24th European Symposium on
Research in Computer Security, Luxembourg, September 23-27, 2019, Proceedings,
Part I (Luxembourg, Luxembourg). Springer-Verlag, Berlin, Heidelberg, 304-321.
https://doi.org/10.1007/978-3-030-29962-0_15

Yongjun Zhao, Huaxiong Wang, and Kwok-Yan Lam. 2021. Volume-Hiding
Dynamic Searchable Symmetric Encryption with Forward and Backward Privacy.
Cryptology ePrint Archive, Paper 2021/786. https://eprint.iacr.org/2021/786
https://eprint.iacr.org/2021/786.

Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk. 2019.
Dynamic Searchable Symmetric Encryption with Forward and Stronger Backward
Privacy. Cryptology ePrint Archive, Paper 2019/1055. https://eprint.iacr.org/
2019/1055 https://eprint.iacr.org/2019/1055.

https://eprint.iacr.org/2023/1883
https://eprint.iacr.org/2023/1883
https://doi.org/10.14722/ndss.2020.24423
https://www.usenix.org/conference/usenixsecurity20/presentation/demertzis
https://www.usenix.org/conference/usenixsecurity20/presentation/demertzis
https://doi.org/10.1145/3167971
https://arxiv.org/abs/1710.00208
https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1145/3243734.3243833
https://www.usenix.org/conference/usenixsecurity20/presentation/grubbs
https://www.usenix.org/conference/usenixsecurity20/presentation/grubbs
https://eprint.iacr.org/2020/1328
https://eprint.iacr.org/2020/1328
https://www.usenix.org/conference/usenixsecurity23/presentation/gui
https://www.usenix.org/conference/usenixsecurity23/presentation/gui
https://doi.org/10.1109/TIFS.2020.3033412
https://www.ndss-symposium.org/wp-content/uploads/2017/09/06_1.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/06_1.pdf
https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1109/ICDE.2012.23
https://doi.org/10.1016/j.ins.2013.11.021
https://www.usenix.org/conference/usenixsecurity21/presentation/oya
https://www.usenix.org/conference/usenixsecurity22/presentation/oya
https://www.usenix.org/conference/usenixsecurity22/presentation/oya
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/2976749.2978401
https://eprint.iacr.org/2018/090
https://eprint.iacr.org/2018/090
https://doi.org/10.1145/3422337.3447838
https://doi.org/10.1145/3422337.3447838
http://dx.doi.org/10.14722/ndss.2014.23298
https://eprint.iacr.org/2014/362
https://eprint.iacr.org/2014/362
https://doi.org/10.2298/CSIS121104028W
https://doi.org/10.1109/TDSC.2016.2593444
https://doi.org/10.1109/TDSC.2016.2593444
https://doi.org/10.1145/3576915.3623085
https://doi.org/10.1145/3576915.3623085
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://doi.org/10.1007/978-3-030-29962-0_15
https://eprint.iacr.org/2021/786
https://eprint.iacr.org/2021/786
https://eprint.iacr.org/2019/1055
https://eprint.iacr.org/2019/1055
https://eprint.iacr.org/2019/1055

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Preliminaries
	3.1 System Model
	3.2 Threat and Attack Models
	3.3 Maximum Likelihood Estimation

	4 Attack Details
	4.1 No Backward Privacy
	4.2 Level II Backward Privacy
	4.3 Exploiting Both Search and Update Leakage

	5 Evaluation
	5.1 Methodology
	5.2 Experimental Setup
	5.3 Experimental Results
	5.4 Discussion

	6 Conclusion
	Acknowledgments
	References

