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ABSTRACT
Dynamic Searchable Symmetric Encryption (DSSE) provides effi-

cient techniques for securely searching and updating an encrypted

database. However, efficient DSSE schemes leak some sensitive

information to the server. Recent works have implemented forward
and backward privacy as security properties to reduce the amount

of information leaked during update operations. Many attacks have

shown that leakage from search operations can be abused to com-

promise the privacy of client queries. However, the attack literature

has not rigorously investigated techniques to abuse update leakage.
In this work, we investigate update leakage under DSSE schemes

with forward and backward privacy from the perspective of a pas-

sive adversary. We propose two attacks based on a maximum like-

lihood estimation approach, the UFID Attack and the UF Attack,

which target forward-private DSSE schemes with no backward pri-

vacy and Level II backward privacy, respectively. These are the first

attacks to show that it is possible to leverage the frequency and

contents of updates to recover client queries. We propose a variant

of each attack which allows the update leakage to be combined with

search pattern leakage to achieve higher accuracy. We evaluate our

attacks against a real-world dataset and show that using update

leakage can improve the accuracy of attacks against DSSE schemes,

especially those without backward privacy.
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1 INTRODUCTION
Cloud computing has experienced substantial growth in the past

decade. Improvements in networking infrastructure and lower costs

of storage hardware have given way to a number of remote storage
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solutions. These options promise high availability and enable conve-

nient access to files across multiple devices. Cheap remote storage

options have been rapidly increasing in popularity as a way for

users to offload files and free up storage space on their local devices.

However, storing personal files on an untrusted server presents

security concerns. The server has access to the client’s entire file set

and queries in plaintext. One way to mitigate these concerns is to

encrypt each file before uploading to the server. However, this ap-

proach breaks user-friendly search functionality because keyword

matching becomes impossible under traditional encryption.

Searchable Symmetric Encryption (SSE) is one method to address

the privacy concerns of remote data outsourcing while retaining

search functionality in optimal time. In a basic SSE scheme, the

client first tokenizes the keywords and uses the tokens to create a

search index. Then, the client protects the database with symmetric

encryption and sends the encrypted database and search index to

the server. To perform a query, the client sends a search token to

the server, who checks the index and returns the corresponding

files. The client can then decrypt and view the files locally. Dy-
namic Searchable Symmetric Encryption (DSSE) [7, 15, 21, 24] is a

convenient generalization of SSE that allows the client to privately

update the database. All forms of encrypted search are designed to

provide two kinds of privacy to the users: data privacy and query

privacy. Data privacy implies that the server is unable to learn the

plaintext of the encrypted files that it is storing on behalf of the

client.Query privacy implies that the server is unable to learn which

keywords a client is searching or updating. Over time, SSE scheme

development research has focused on more efficient constructions

[9, 15, 21], more expressive queries [6, 14, 26, 37, 38], multi-user

settings [25, 32, 36], and stronger privacy properties [3, 4, 7, 12, 17].

Although SSE/DSSE significantly improves the privacy of re-

mote storage, all efficient schemes leak some sensitive information

to the server. Curtmola et al. [9] introduced the notion of leakage
functions, which formally characterize the information that the

server can learn from SSE operations. An SSE scheme must only

leak information that is captured in one of the scheme’s leakage

functions. Most efficient SSE schemes leak the access pattern, or the
file identifiers returned in response to a search, and almost all SSE

schemes leak the search pattern, or whether two search operations

target the same keyword. Update operations can also leak sensi-

tive information in DSSE schemes. Forward privacy and backward
privacy are important security properties that were introduced to

make dynamic schemes more secure. They imply that the server

cannot learn whether newly inserted files match past queries or

whether deleted files match future queries, respectively.

Many leakage-abuse attacks have shown that access and search

pattern leakage can be abused by an adversarial server to violate

the privacy of SSE schemes with certain background information
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Table 1: Comparison of passive attacks against SSE/DSSE

Requirements

Attack Name Attack Type
∗

Targets DSSE?
∗∗

Target Leakage
†

Known queries Known files Aux

IKK [22] Known-Data ✗ Co-occurrence Pattern ✓ ✓ ✗

Count [5] Known-Data ✗ Co-occurrence, Volume Patterns ✓ ✓ ✗

SelVolAn [2] Known-Data ✗ Volume Pattern ✗ ✓ ✗

Refined Score [10] Hybrid ✗ Co-occurrence Pattern ✓ ✗ ✓

Graph Match [31] Inference ✗ Co-occurrence Pattern ✗ ✗ ✓

Frequency [27] Inference ✗ Search Pattern ✗ ✗ ✓

SAP [28] Inference ✗ Search, Volume Patterns ✗ ✗ ✓

IHOP [29] Inference ✗ Co-occurrence, Search, Volume Patterns ✗ ✗ ✓

FMA [39] Inference ✓ Search, Volume Patterns ✗ ✗ ✓

VIA, PVIA [39] Known-Data ✓ Volume Pattern ✗ ✓ ✗

LVIA [39] Inference ✓ Volume Pattern ✗ ✗ ✓

Our UF Inference ✓ Search Pattern, Update Freq. ✗ ✗ ✓

Our UFID Inference ✓ Search Pattern, Update Freq. & Contents ✗ ✗ ✓

∗
Known-data attacks require the attacker to know some portion of the documents, queries, or both, in plaintext. Inference attacks use statistically-similar auxiliary information

about the target leakage to assist in the attack.

∗∗
Attacks which do not target DSSE can be modified to work against DSSE, but the necessary changes are non-trivial, especially for stronger schemes.

†
Co-occurrence pattern leaks the number of files which both contain a keyword. Search pattern leaks whether two queries target the same keyword. Volume pattern typically means

the number of files returned in response to a query (SelVolAn, FMA, and VIA use a higher-leakage notion called file volume, which leaks the number of keywords in each file

containing the queried keyword).

Both of our attacks use search pattern leakage to infer update frequency. The UFID Attack additionally uses the file identifiers associated with each update. In Section 4, we present

a variant of each attack, SP+UF and SP+UFID respectively, which can exploit both the search pattern and update leakage directly.

and assumptions about client behavior. Most attacks in the field are

aimed at compromising query privacy [2, 5, 10, 22, 28, 29, 33, 39, 40].

Most attacks are passive (e.g., [5, 10, 22]), meaning the adversary

only needs to observe leakage and possess some background in-

formation. Some attacks are active (e.g., [2, 33, 40]), meaning the

adversary can send chosen queries, add files to the database, or

perform other SSE operations. A summary of leakage profiles that

are commonly leaked (and commonly targeted by attacks) is below:

• Access Pattern: After a query for keyword𝑤 , reveals the

identifiers of the files that contain 𝑤 (This is commonly

called Access Pattern in the SSE literature, but called Result

Pattern in adjacent fields).

• Co-occurrence Pattern: After queries for keywords𝑤𝑖 and

𝑤 𝑗 , reveals which file identifiers contain both 𝑤𝑖 and 𝑤 𝑗 .

Can be inferred from access patterns.

• Volume Pattern After a query for keyword𝑤 , reveals how

many documents were returned, i.e., size of the access pat-

tern for 𝑤 . Some works include a stronger notion of file
volume, or the number of keywords per file containing𝑤 .

• Search PatternGiven two queries 𝜏𝑖 and 𝜏 𝑗 , reveals whether

both queries target the same keyword.

See Table 1 for a summary of passive attacks which exploit these

different kinds of leakage. These works focus heavily on leakage

during the search operation, because it is the primary source of

leakage in SSE schemes. In fact, almost all passive attacks only

target static SSE [5, 10, 22, 28, 29, 31], and do not consider how to

attack DSSE schemes where the client performs both search and

update operations. While a handful of active attacks [2, 33, 40] are

powerful against DSSE schemes without forward privacy, all such

attacks only exploit leakage from the search operation. Leakage

from client updates has generally been overlooked in the attack

literature. Thus, the defense literature has been working to improve

the efficiency of backward privacy [4, 7, 17, 42] not in response

to any attacks, but instead under the collective intuition that less

leakage must result in better security. Without any attacks targeting

DSSE to evaluate against, defense researchers are unsure whether

backward privacy successfully defends against any attacks [42].

This has left the field with the following open question:

Can leakage related to DSSE update operations be directly exploited
to improve the accuracy of query-recovery attacks, even in the presence
of forward and backward privacy?

1.1 Our Contributions
We answer this question affirmatively with two query-recovery

attacks: the UFID Attack and the UF Attack. Our attacks aim to

directly compromise the update leakage exclusive to dynamic SSE

schemes. We also show how to improve accuracy by combining

search pattern and update leakage, resulting in a variant of each

attack, the SP+UFID Attack and SP+UF Attack, respectively. The
UFID and SP+UFID Attacks achieve high query recovery rates

against forward-private DSSE with no backward privacy, while

the UF and SP+UF Attacks can recover queries from schemes with

forward privacy and Level II backward privacy. These attacks use

the Maximum Likelihood Estimation technique explored by Oya

and Kerschbaum [28] as a building block because it is an efficient

and elegant tool to exploit frequency information.

Previous passive attacks have typically focused on targeting

static SSE schemes [2, 5, 22, 28, 29, 31]. Instead, our work investi-

gates how a passive adversary can use the frequency of updates

and their associated file identifiers to compromise the security of

dynamic SSE schemes. Our work is also the first to exploit update

frequency against backward-private DSSE schemes at Level II and

Level III.
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The very recent work by Xu et al. [39] proposes the first passive

attacks to target DSSE, and their attacks work against forward- and

backward-private schemes. However, their attacks only use update

leakage to infer information about traditionally-exploited leakage

from searches. Our work is different because we focus on exploiting

this update leakage directly via frequency analysis.

While there are a handful of Level I backward-private SSE schemes

[1, 16, 17, 42, 43], they are not strong candidates for widespread

adoption because the oblivious data structures necessary to build

them incur heavy performance costs. As such, our attacks can com-

promise query privacy of nearly all efficient DSSE schemes.

We evaluate our attacks under realistic settings with a real-world

dataset and show that incorporating update leakage improves Oya

and Kerschbaum’s recent frequency attack, SAP, [28] by 5% in

schemes with forward privacy and Level II or Level III backward-

privacy, and up to 25% in schemes with only forward privacy. There-

fore, our work provides significant theoretical and empirical ev-

idence that a DSSE scheme which leaks information about the

frequency of searches and updates enables a passive adversarial

server to compromise client privacymore effectively than the static

search-only setting traditionally considered by the attack literature.

2 RELATED WORK
SSE and Defenses. Song et al. [34] introduced the first practical

techniques for searching over encrypted data. Curtmola et al. [9]

formalized definitions related to the security of SSE schemes.

Forward and backward privacy are important security proper-

ties for dynamic SSE schemes introduced by Stefanov et al. [35].

Forward privacy reduces the leakage after update operations, but

requires some efficiency tradeoffs. Stefanov et al. gave the first

forward-private scheme, and forward privacy was later formally

defined by Bost [3]. Works such as those by Zhang et al. [41] focus

on creating efficient forward-private schemes.

Later, Bost et al. [4] formalized backward privacy, an even stronger

security notion organized into three levels, I through III, with Level

I leaking the least information. Backward privacy limits the amount

of information the server can learn about deleted documents, but

again comes at an efficiency cost. Despite several works [7, 12, 17]

focusing on implementation of efficient forward- and backward-

private schemes, designing a practically-efficient Level I backward-

private scheme remains an open challenge.

A different line of work investigates strategies to defend against

the most common types of attacks against SSE schemes. These

works typically involve probabilistically hiding one of the leakage

profiles introduced above. Demertzis et al. [13] developed a scheme

which can reduce volume and access pattern leakage by padding re-

sponse volume based on adjustable security parameters. Amjad et al.

[1] craft two forward- and backward-private volume-hiding DSSE

schemes from dynamic volume-hiding encrypted multi-maps. The

work of Zhao et al. [42] has a similar focus with stronger backward

privacy and better asymptotic efficiency at the cost of imperfect

correctness. Access-pattern-hiding countermeasures such as the

differentially-private approach presented by Chen et al. [8] typi-

cally provide security through the inclusion of false positives and

false negatives, which can increase security but harm the efficiency

and correctness of the scheme. These types of probabilistic coun-

termeasures are often harder to make provable security guarantees

about, but provide practical security against attacks that require

the leakage they attempt to hide.

Leakage-Abuse Attacks. Islam, Kuzu, and Kantarcioglu [22] were

the first to demonstrate that it is possible to violate query privacy

in searchable encryption. By combining ground truth data with

query result co-occurrence, they could frame query recovery as

a quadratic optimization problem that can be approximated via

simulated annealing. The field collectively refers to their work as

the IKK attack. Cash et al. [5] proposed a similar but more efficient

approach that required less ground truth information.

Pouliot and Wright [31] frame the query recovery problem as

a graph matching problem. Their attack can work with ground

truth data or similar data, but it may be difficult to obtain similar

co-occurrence data in practice. Damie et al. [10] developed an attack

that performs well under scenarios in which the attacker only has

some known queries and a distributionally similar auxiliary dataset.

Liu et al. [27] proposed an attack which uses query frequency in-

formation combined with open-source data and background knowl-

edge about the dataset to recover client queries. Oya and Ker-

schbaum [28] combine frequency information with response vol-

ume leakage to construct the SAP Attack, which solves a linear

assignment problem via amaximum likelihood estimation approach.

Later, Oya and Kerschbaum [29] introduced the IHOPAttack, which

makes use of frequency and query dependency information to it-

eratively solve a quadratic optimization problem, improving upon

the result from the SAP Attack.

Attacks Against DSSE. Zhang et al. [40] were the first to consider
an active adversary in detail. They proposed a file-injection attack,

where the adversary adds carefully crafted files to the database and

observes the access patterns to recover client queries with high

accuracy. They concluded that forward privacy is a vital security

property for defeating file-injection attacks, although Salmani and

Barker [33] later showed that file-injection attacks can be modified

to compromise the security of forward-private schemes. Although

this class of attacks specifically targets dynamic SSE schemes, our

work differs in two ways. First, file-injection attacks require an ac-

tive adversary, while ours uses a weaker, passive adversary. Second,

file-injection attacks target access pattern leakage, while our work

targets search pattern and update leakage.

Concurrent to our work, Xu et al. [39] presented techniques for

an adversary to track leakage exploited by many attacks against

static SSE to the dynamic setting while the client issues updates.

While this process is simple for defenseless DSSE schemes, they

moved the field forward by presenting techniques that work even

in the presence of forward- and Level I backward-private schemes.

They propose three attacks which use information about the total

number of updates per keyword to recover search and volume pat-

terns, which are exploited by many of the existing static SSE attacks.

Our work differs because we focus on exploiting information about

the frequency and contents of the updates directly to compromise

forward-private schemes with backward privacy equal to or worse

than Level II. In addition, we show that our approach can make

attacksmore powerful against DSSE schemes, while their work only

showed that DSSE is similarly vulnerable to static SSE.
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Table 2: Summary of notation
General Parameters

Δ Keyword universe Δ � [𝑤1, 𝑤2, . . . , 𝑤𝑛 ] .
𝑛 Total number of keywords, 𝑛 � |Δ | .
𝑤𝑖 The 𝑖th keyword in Δ, with 𝑖 ∈ [𝑛].
𝑁𝐷 Number of documents in the encrypted dataset.

id𝑖 𝑖th file identifier, with 1 < 𝑖 ≤ 𝑁𝐷

𝜌 Number of observation time intervals.

Adversary Observations

𝑚 Number of search tags (derived from search pattern leakage).

𝛾 𝑗 𝑗 th tag, with 𝑗 ∈ [𝑚].
𝜂𝑘 Number of queries sent in the 𝑘th time interval, with 𝑘 ∈ 𝜌 .

𝜼 Vector 𝜼 � [𝜂1, 𝜂2, . . . , 𝜂𝜌 ].
𝑓𝑗,𝑘 Search frequency of 𝛾 𝑗 in the 𝑘th time interval, with 𝑘 ∈ 𝜌 .

f𝑗 Search frequency vector of 𝛾 𝑗 , f𝑗 � [ 𝑓𝑗,1, . . . , 𝑓𝑗,𝜌 ].
F Search frequency matrix of all tags (size𝑚 × 𝜌).

𝜇𝑘 Number of update requests in the 𝑘th time interval.

𝝁 Vector 𝝁 � [𝜇1, 𝜇2, . . . , 𝜇𝜌 ].
𝜔 𝑗,𝑘 Number of update requests for 𝛾 𝑗 in the 𝑘th time interval.

𝝎 𝑗 Vector 𝝎 � [𝜔 𝑗,1, 𝜔 𝑗,2, . . . , 𝜔 𝑗,𝜌 ].
𝛀 Update frequency matrix of all tags (size𝑚 × 𝜌).

𝑈 𝑗,𝑦,𝑘 Update frequency for 𝑗 th tag in the 𝑦th file in in time interval 𝑘 .

U𝑦,𝑘 Update frequency for all tags in the 𝑦th file in time interval 𝑘 (size𝑚) .
U𝑘 Update frequency for all tags in all files in time interval 𝑘 (size𝑚 ×𝑁𝐷 ) .
U (Update, file ID) pair frequency matrix of all tags (size𝑚 × 𝑁𝐷 × 𝜌).

Auxiliary Information

˜𝑓𝑖,𝑘 Search frequency of 𝑤𝑖 in the 𝑘th time interval, with 𝑘 ∈ 𝜌 .
˜f𝑖 Search frequency vector of 𝑤𝑖 , f𝑖 � [ 𝑓𝑖,1, . . . , 𝑓𝑖,𝜌 ] .
F̃ Search frequency matrix of all keywords (size 𝑛 × 𝜌).

𝜔̃𝑖,𝑘 Update frequency of 𝑤𝑖 in the 𝑘th time interval.

𝝎̃𝑖 Update frequency vector of 𝑤𝑖 , 𝝎̃𝑖 � [𝜔𝑖,1, . . . , 𝜔𝑖,𝜌 ].
˜
𝛀 Update frequency matrix of all keywords (size 𝑛 × 𝜌).

𝑈̃𝑖,𝑦,𝑘 Update freq. for 𝑖th keyword in the 𝑦th file in time interval 𝑘 .

Ũ𝑦,𝑘 Update freq. for all keywords in the 𝑦th file in time interval 𝑘 (size𝑚) .
Ũ𝑘 Update freq. for all keywords in all files in time interval 𝑘 (size𝑚 ×𝑁𝐷 ) .
Ũ (Update, file ID) pair frequency matrix of all keywords (size 𝑛 ×𝑁𝐷 × 𝜌).

Attack Goal

𝑝 ( 𝑗 ) Index of the keyword that an attack assigns to 𝛾 𝑗 .

P Permutation matrix, P𝑝 ( 𝑗 ), 𝑗 = 1, else 0 (size 𝑛 ×𝑚).

3 PRELIMINARIES
Notation. Given an SSE database with 𝑁𝐷 documents, Δ is the

keyword universe of size 𝑛 for which the client issues search or

update queries. If the adversary believes two queries correspond

to the same keyword, she assigns them the same tag. Let 𝑚 be

the number of search tags. Search pattern leakage is a necessary

assumption for tag assignment. The adversary will observe 𝜌 time

intervals of query and response traces between the client and server.

f𝑗 and 𝝎 𝑗 hold all information from all 𝜌 time intervals about

the frequency of the searches and updates, respectively, on tag 𝑗 .

Matrices F and 𝛀 of size (𝑚 × 𝜌) store search/update frequency
information for all tags for all weeks. U is size (𝑚 ×𝑁𝐷 × 𝜌), where
𝑈 𝑗 , 𝑦, 𝑘 gives the frequency of updating the 𝑗th tag into the 𝑦th file

in the 𝑘th time interval. F̃, ˜𝛀, and Ũ are the auxiliary counterparts

to these matrices. 𝑝 ( 𝑗) is the keyword that an attack assigns to a

tag. Matrix P is the full injective mapping of keywords from Δ to

tags. In other words, it contains 𝑝 ( 𝑗) ∀ 𝑗 ∈ {1,𝑚}. Let P be the set

of all valid permutation matrices P. See Table 2 for notation used

by the attacks.

3.1 System Model
We consider a client-server file storage service where a client wishes

to offload a private database to save local storage space. The client

wishes to perform two types of operations over the database. The

first is single-keyword queries, where the server returns all files

which contain a particular keyword. The second is updates, where
the client adds or deletes a file identifier from the entry of a keyword

in the search index. Below we briefly explain the operation of a

DSSE scheme, then present formal definitions and notation that we

will use to define our threat and attack models.

Dynamic Searchable Symmetric Encryption. First, the client
sets up the scheme by using the files to generate an inverted search

index. The indexmaps each keyword to all of the identifiers of all the

documents that contain it. Then, the client tokenizes each keyword

𝑤 in the inverted index by computing its one-way trapdoor 𝜏𝑤 .

After tokenization, the inverted index is known as the encrypted

search index. Next, the client uses symmetric encryption to encrypt

the entire database. The client concludes the setup phase by sending

the encrypted search index and the encrypted database to the server.

When the client wishes to perform a search query for keyword

𝑤 , she sends its search token 𝜏𝑤 to the server. The server checks

the index for the row containing 𝜏𝑤 and sends the corresponding

files back to the client for decryption.

To perform an update on keyword 𝑤 , the client sends a tuple

(op, 𝜏𝑤 , id) to the server. The server finds the row in the index

containing 𝜏𝑤 or creates a new row if one doesn’t exist. The server

looks at op to determine whether the operation is an addition or

deletion. The server then performs the specified operation on file

id in the position for 𝜏𝑤 in the search index. These operations are

formally defined below:

Definition 3.1. (Dynamic Searchable Symmetric Encryption) A

dynamic searchable symmetric encryption scheme Σ consists of an

algorithm Setup and two protocols, Search and Update, between a

client and server.

• Setup(DB) is an algorithm run by the client to initialize the

DSSE scheme. It takes as input the initial database DB and

outputs (EDB, 𝐾, 𝜎), where EDB is an encrypted form of DB,
𝐾 is the master secret key, and 𝜎 is the client’s internal state.

• Search(𝐾, 𝜎,𝑤 ; EDB) is a protocol consisting of a client al-

gorithm Search𝐶 (𝐾, 𝜎,𝑤) which takes as input the master

key, internal state, and keyword𝑤 , and a server algorithm

Search𝑆 (EDB), which takes the encrypted database as input

and outputs DB(𝑤).
• Update(𝐾, 𝜎, op, in; EDB) is a protocol consisting of two al-

gorithms. Update𝐶 (𝐾, 𝜎, op, in) is a client algorithm which

takes as input the master key, internal state, operation op ∈
{add, del}, and input in, which consists of a file identifier

id and a keyword 𝑤 . Update𝑆 (EDB) is a server algorithm
which takes the encrypted database as input and adds or

deletes one or more keyword-document pairs from the en-

crypted search index.

A DSSE scheme is considered correct iff the search protocol returns

the correct result for all queries except with negligible probability.

This definition of updates extends to the case where the client

wants to add or remove a file from the database; this operation

would be decomposed into an individual keyword/document update

for each keyword in the file.
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3.2 Threat and Attack Models
In our paper, the adversary is a server that is honest-but-curious;
it will follow the DSSE protocol exactly but attempts to learn the

underlying keywords of all searches and updates sent by the client.

Search Patterns. We consider SSE schemes which leak the search
pattern. Informally, search pattern leakage allows the adversary to

learn query equality, or whether two search tokens were generated

by the same keyword. This could be in the form of explicit search
patterns, where keyword𝑤 is converted to the same search token

regardless of the client’s internal state 𝜎 , or implicit search patterns,

where the adversary can reliably tell whether two tokens match a

keyword by looking for unique patterns in other types of leakage.

We formally define search pattern leakage as follows [9]:

Definition 3.2. (Search Pattern) Given a keyword universe Δ,
database EDB, and query history 𝐻 = (EDB,Δ) of length 𝑛, the
search pattern is a symmetric binary matrix 𝑆 (𝐻 ) such that for

1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑆 (𝐻 )𝑖, 𝑗 = 1 if𝑤𝑖 = 𝑤 𝑗 , and 0 otherwise.

Search patterns are hard to hide because they can be inferred

from other types of leakage. By observing client queries and their re-

sponses, the adversary can determine whether two different queries

were for the same keyword with high probability. For example, if

the adversary observes that two queries, 𝑞𝑖 and 𝑞 𝑗 , have the same

access pattern, she can assume that 𝑞𝑖 and 𝑞 𝑗 were generated by

the same keyword.

Tracking Search Patterns in DSSE. In DSSE schemes, search

patterns are harder to track because file additions and deletions can

change a token’s access patterns or response volumes over time.

Prior works have presented techniques to overcome this obstacle.

Salmani and Barker [33] create 𝑛 bit-strings of length 𝑁𝐷 , where

the 𝑗 th bit is 1 if𝑤𝑖 is contained in file 𝑗 . The server saves these bit-

strings. If a file is added to the database, copies of the bit-strings are

made and a bit for the new file is prepended to the string. The server

also maintains a deletion bit-string, where the 𝑗 th bit is 1 if file 𝑗 has

been deleted by the client. When the server receives a search token,

it takes its bit-string and compares it bit-wise with the deletion bit-

string and all of the original bit-strings. If the comparison returns

zero, then the tokens correspond to the same keyword, thus search

patterns are recovered. Xu et al. [39] estimate query equality by

computing differences in response similarity. We refer to the papers

by both authors for a more thorough treatment of this topic. For

the purposes of our work, we assume the adversary is capable of

tracking query equality in the DSSE environment.

Update History.When a client issues an update for keyword𝑤

in a DSSE scheme, the server can learn which keyword is being

updated, the timestamp of the update, whether the operation is an

addition or deletion, and which file is being updated. The adversary

can keep track of this data continuously for all keywords in a

leakage profile called UpHist described by Bost [3]. More generally,

UpHist(𝑤) = (𝑢, op, id), where 𝑢 is a timestamp starting at 0 and

incremented with each operation, op is the operation type, and

id is the identifier of the updated file. Below we discuss security

properties that can reduce the leakage of update operations to less

than UpHist(w).
Forward Privacy. It is desirable to prevent the server from building

UpHist after every update. Forward privacy is a security property

that helps mitigate leakage during update operations. Informally,

forward privacy guarantees that the server cannot learn whether

the keywords of a newly added document match any previous

queries. In a forward-private scheme, updates on keyword 𝑤 are

only revealed to the server after the client has searched for 𝑤 .

Formally, forward privacy is defined as follows [3]:

Definition 3.3. (Forward Privacy) An L-adaptively secure DSSE

is forward-private iff the leakage function LUpdt
can be written as:

LUpdt (op, in) = L′ (op, {(idi,wi)}

where L′
is stateless and the set {(idi,wi)} contains all updated

documents as the number of modified keywords wi in updated

document idi.

Under this definition, the most information that an adversary

can learn immediately after a file is added to the database in a

forward-private scheme is the identifier id of the file, the number

of keywords in the file, and whether the update was an addition

or deletion. In this work, we only consider SSE schemes that are at

least forward-private.

Backward Privacy. Backward privacy is a strong security property
for DSSE schemes. Informally, backward privacy ensures that the

server does not learn whether deleted files match a search query.

Bost et al. [4] were the first to rigorously characterize backward pri-

vacy, which they organize into three levels. We recap them in order

of decreasing strength, noting that each level is strictly stronger

than the next. At each level, a search for keyword𝑤 reveals:

Level I. Backward Privacy with Insertion Pattern: All the doc-
uments currently containing𝑤 (TimeDB(𝑤)), when they were in-

serted, and the total number of updates on𝑤 (𝑎𝑤 ).

Level II. Backward Privacy with Update Pattern: All the doc-
uments currently containing𝑤 (TimeDB(𝑤)), when they were in-

serted, and when all the updates on𝑤 happened (Updates(𝑤)).
Level III. Weak Backward Privacy: All the documents currently

containing𝑤 (TimeDB(𝑤)), when they were inserted, and when all

the updates on𝑤 happened with information about which deletion

updates cancelled which addition updates (DelHist(𝑤)).
From a query list 𝑄 in the form (𝑢,𝑤), where 𝑢 is a timestamp

starting at 0 and incremented with every query, we can construct

the necessary leakage profiles, following Bost et al [4]. TimeDB(𝑤)
is the list of all documents matching𝑤 with a timestamp of when

they were inserted in the database and it excludes any documents

which have been deleted. Formally,

TimeDB(𝑤) = {(𝑢, id) | (𝑢, add, (𝑤, id)) ∈ 𝑄 and

∀ 𝑢′, (𝑢′, del, (𝑤, id)) ∉ 𝑄}.

Updates(𝑤) is the collection of update timestamps on𝑤 . Formally,

Updates(𝑤) = {𝑢 | (𝑢, add, (𝑤, id)) or (𝑢, del, (𝑤, id)) ∈ 𝑄}.

DelHist(𝑤) is the list of timestamps for all deletion operations with

the timestamp of the inserted entries they remove. Formally,

DelHist(𝑤) = {(𝑢add, 𝑢del) | ∃ id s.t. (𝑢del, del, (𝑤, id)) ∈ 𝑄

and (𝑢add, add, (𝑤, id)) ∈ 𝑄}.

Definition 3.4. (Backward Privacy) AnL-adaptively secure DSSE

achieves Level I, II, or III backward privacy iff the search and update

leakage functions LSearch
, LUpdt

can be written as:
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Level I: LUpdt (op,𝑤, id) = L′ (op)
LSearch (𝑤) = L′′ (TimeDB(𝑤), 𝑎𝑤),
Level II: LUpdt (op,𝑤, id) = L′ (op,𝑤)
LSearch (𝑤) = L′′ (TimeDB(𝑤),Updates(𝑤)),
Level III: LUpdt (op,𝑤, id) = L′ (op,𝑤)
LSearch (𝑤) = L′′ (TimeDB(𝑤),DelHist(𝑤)),
where L′

and L′′
are stateless.

Clarifying Update Leakage. The update operation leakage of a
DSSE scheme is the information leaked during an update opera-

tion. This information is formally defined by a scheme’s leakage

function LUpdt
. However, under a typical DSSE use-case, the client

will perform both searches and updates. Although state of the art

schemes [7, 17, 42] leak little to no information while performing an

update for keyword𝑤 , the next search for𝑤 must leak additional

information about the previous updates, otherwise the server could

not return the correct results to the client [4]. To avoid confusion

when discussing update-related leakage in DSSE schemes, it is use-

ful to distinguish between leakage incurred at update time and

the additional leakage after searches. For the rest of this paper, we

refer to the extra leakage about previous updates that occurs after

searches as post-search update leakage.
The post-search update leakage of a keyword 𝑤 is all leakage

about previous update operations on𝑤 that exists in LSearch (𝑤).
For schemes that are forward- or backward-private, post-search

update leakage is always strictly greater than update operation

leakage. For schemes that are not backward-private, the post-search

update leakage for𝑤 is UpHist(𝑤).

3.3 Maximum Likelihood Estimation
Oya and Kerschbaum developed the SAP Attack [28], which can be

viewed as a combination of a search frequency attack and response

volume attack. Although their work targeted the static setting, they

use an elegant mathematical approach that is applicable to the

dynamic setting. Of particular relevance is the Maximum Likeli-

hood Estimation (MLE) approach that they use to analyze search

frequency, which we will refer to as the Search Frequency Attack.

We recap this technique below.

The adversary uses tags to keep track of the implicit search

pattern leakage. She assigns two keywords the same tag if she

believes they correspond to the same keyword, using techniques

like access pattern comparison described in Section 3.2.

The Search Frequency Attack aims to find the keyword-tag map-

ping P that maximizes the probability of observing F, 𝜂, and 𝑁𝐷

given the auxiliary frequency information F̃. Formally, the attack

solves the optimization problem

P = argmax

P∈P
Pr(F,𝜼, 𝑁𝐷 |F̃, P)

Search Frequency Analysis. The SAP attack makes two assump-

tions in order to use search frequency as input to the optimization

function. The first assumption is that the number of queries 𝜼
for each time interval follows an arbitrary distribution Pr(𝜼). The
second assumption is that the client chooses keywords to query

independently from all other queries, with probabilities given by

the auxiliary frequency information F̃. Under these conditions, the

number of queries for each time interval 𝑘 ∈ 𝜌 follows a multi-

nomial distribution with 𝜂𝑘 trials and probabilities given by the

frequency vector
˜𝑓𝑘 . The formal relationship is expressed below.

Pr(F,𝜼 |F̃, P) = Pr(𝜼) · Pr(F|F̃,𝜼, P) (1)

= Pr(𝜼) ·
𝜌∏

𝑘=1

Pr(f𝑘 | ˜f𝑘 , 𝜂𝑘 , P)

= Pr(𝜼) ·
𝜌∏

𝑘=1

𝜂𝑘 !

𝑚∏
𝑗=1

( ˜𝑓𝑝 ( 𝑗 ),𝑘 )𝜂𝑘 𝑓𝑗,𝑘

(𝜂𝑘 𝑓𝑗,𝑘 )!

Oya et al. choose to maximize the logarithm of Equation 1 because

it is more precise than maximizing Equation 1 directly. Taking the

log, we have:

𝜌∑︁
𝑘=1

𝑚∑︁
𝑗=1

log (( ˜𝑓𝑝 ( 𝑗 ),𝑘 )𝜂𝑘 𝑓𝑗,𝑘 )

=

𝜌∑︁
𝑘=1

𝑚∑︁
𝑗=1

𝜂𝑘 𝑓𝑗,𝑘 log ( ˜𝑓𝑝 ( 𝑗 ),𝑘 ) (2)

Equation 2 allows for the construction of a cost matrix that can be

used to numerically express the optimization problem. The (𝑖, 𝑗)th
entry in the cost matrix is as follows:

(C𝑓 )𝑖, 𝑗 = −
𝜌∑︁

𝑘=1

𝜂𝑘 𝑓𝑗,𝑘 · log( ˜𝑓𝑖,𝑘 )

4 ATTACK DETAILS
Our goal is to show that post-search update leakage can be exploited

to improve the accuracy of attacks on DSSE schemes. To accomplish

this goal, we use the Maximum Likelihood Estimation building

block described in Section 3.3.

4.1 No Backward Privacy
The post-search update leakage of a scheme with forward privacy

and no backward privacy is UpHist(𝑤) = (𝑢, op, id). Note that for
DSSE schemes with neither forward nor backward privacy, the

attack methods described in this section can be used even if the

client never searches and only issues updates. We refer to the attack

presented in this section as the UFID Attack.

When choosing the update input, we assume the client chooses

the keyword𝑤 and file identifier id independently from any other

updates with probabilities given by Ũ. We finally assume that the

number of updates for each tag in file 𝑦 in a time interval 𝑘 ∈ 𝜌
follows a multinomial distribution with 𝜇𝑘 trials and probabilities

given by frequency vector Ũ𝑦,𝑘 . These assumptions allow us to

formally model the probability of observing U and 𝝁 given Ũ:

Pr(U, 𝝁 |Ũ, P) = Pr(𝝁) · Pr(U|Ũ, 𝝁, P)

= Pr(𝝁) ·
𝜌∏

𝑘=1

Pr(U𝑘 |Ũ𝑘 , 𝜇𝑘 , 𝑷 )

= Pr(𝝁) ·
𝜌∏

𝑘=1

𝑁𝐷∏
𝑦=1

Pr(U𝑦,𝑘 |Ũ𝑦,𝑘 , 𝜇𝑦,𝑘 , 𝑷 )
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Because of our assumption mentioned above, we can apply the

probability mass function (PMF) of the multinomial distribution to

express the probability as an explicit formula:

𝜌∏
𝑘=1

𝑁𝐷∏
𝑦=1

𝜇𝑦,𝑘 !

𝑚∏
𝑗=1

(𝑈̃𝑝 ( 𝑗 ),𝑦,𝑘 )𝜇𝑦,𝑘𝑈 𝑗,𝑦,𝑘

(𝜇𝑦,𝑘𝑈 𝑗,𝑦,𝑘 )!
(3)

We now take the logarithm of Equation 3 to obtain our update

frequency cost matrix. We can ignore any terms which are not

dependent on P because they do not affect the optimization problem.

𝜌∑︁
𝑘=1

𝑁𝐷∑︁
𝑦=1

𝑚∑︁
𝑗=1

𝜇𝑦,𝑘𝑈 𝑗,𝑦,𝑘 · log(𝑈̃𝑝 ( 𝑗 ),𝑦,𝑘 )

We are now ready to construct the cost matrix. The entry in the

(𝑖, 𝑗)th position is:

(CUFID)𝑖, 𝑗 = −
𝜌∑︁

𝑘=1

𝑁𝐷∑︁
𝑦=1

𝜇𝑦,𝑘𝑈 𝑗,𝑦,𝑘 · log(𝑈̃𝑖,𝑦,𝑘 )

4.2 Level II Backward Privacy
The UFID Attack becomes unusable in the presence of backward

privacy, because the file identifier information is no longer leaked.

However, Level II and III backward-private schemes still leak the

frequency of updates on a keyword𝑤 from the post-search update

leakage Updates(𝑤). We refer to the attack constructed from the

methodology described below as the UF Attack.

The assumptions are analogous to the UFID Attack: assume the

client chooses the keyword 𝑤 independently from any other up-

dates with probabilities given by 𝛀̃. The number of updates for each

tag in time interval 𝑘 ∈ 𝜌 follows a multinomial distribution with

𝜇𝑘 trials and probabilities given by frequency vector 𝝎̃𝑘 . Therefore,

the probability of observing 𝛀 and 𝝁 given
˜
𝛀:

Pr(𝛀, 𝝁 | ˜𝛀, P) = Pr(𝝁) · Pr(𝛀 | ˜𝛀, 𝝁, P)

= Pr(𝝁) ·
𝜌∏

𝑘=1

Pr(𝝎𝑘 |𝝎̃𝑘 , 𝜇𝑘 , P)

Again, we apply the PMF of the multinomial distribution to achieve

an explicit equation:

= Pr(𝝁) ·
𝜌∏

𝑘=1

𝜇𝑘 !

𝑚∏
𝑗=1

(𝜔̃𝑝 ( 𝑗 ),𝑘 )𝜇𝑘𝜔 𝑗,𝑘

(𝜇𝑘𝜔 𝑗,𝑘 )!

Now we are ready to take the logarithm, ignoring terms indepen-

dent of P:
𝜌∑︁

𝑘=1

𝑚∑︁
𝑗=1

𝜇𝑘𝜔 𝑗,𝑘 · log(𝜔̃𝑝 ( 𝑗 ),𝑘 )

We can now create the cost matrix for update frequency informa-

tion:

(CUF)𝑖, 𝑗 = −
𝜌∑︁

𝑘=1

𝜇𝑘𝜔 𝑗,𝑘 · log(𝜔̃𝑖,𝑘 )

As described, the UF Attack will work on schemes with Level

II backward privacy or worse. Because this attack uses time inter-

val information, it will fail on Level I backward-private schemes

because they do not leak timestamps.

4.3 Exploiting Both Search and Update Leakage
While the UFID and UF Attacks against schemes with at least for-

ward privacy require the client to issue searches in order to obtain

the necessary post-search update leakage, they only incorporate the

update leakage into their cost matrices. From the adversary’s per-

spective, it is desirable to combine the search frequency information

with the update frequency information to increase the potential

accuracy of query recovery attacks. From the searches that the ad-

versary observes, she can constructC𝑓 . From the post-search update

leakage, she can construct CUF in the presence of Level II backward

privacy orCUFID if there is no backward privacy. Thesematrices can

be combined with element-by-element multiplication, also known

as the Hadamard product. For two independent events 𝐴 and 𝐵

with probabilities given by matrices 𝑃 (𝐴) and 𝑃 (𝐵), the Hadamard

product matrix given by (𝑃 (𝐴) ⊙ 𝑃 (𝐵))𝑖 𝑗 = (𝑃 (𝐴))𝑖 𝑗 (𝑃 (𝐵))𝑖 𝑗 can
be statistically interpreted as the joint probability 𝑃 (𝐴 ∩ 𝐵) of both
events occurring. If we assume the occurrence of a search does

not affect the probability of an update occurring, we can treat the

cost matrices as independent and apply the Hadamard product. For

schemes with no backward privacy:

CSP+UFID = C𝑓 ⊙ CUFID

For schemes with Level II backward privacy:

CSP+UF = C𝑓 ⊙ CUF

This yields a new version of each attack, referred to as the

SP+UFID Attack and SP+UF Attack, respectively. See Section 5.3

for our empirical evaluation of the effectiveness of these versions

of the attacks compared to their baseline versions.

Following Oya and Kerschbaum [28], we express the maximiza-

tion as an unbalanced assignment problem, which is efficiently

solved by the Hungarian Algorithm. If tr(A) is the trace of matrix

A, the assignment problem for all attacks described in this section

is as follows:

P = argmin

P∈P
tr(P𝑇 (C)),

where C is the cost matrix of the corresponding attack.

5 EVALUATION
We evaluate our proposed attack methods against a range of experi-

ments and compare the results with the search frequency portion of

the SAP attack by Oya and Kerschbaum [28], described in Section

3.3 and hereafter referred to as the Search Frequency Attack.

Implementation.We implement our experiments using roughly

1,000 lines of single-threaded Python 3.6.8 code on a server running

CentOS Stream 8 with 125 GB of RAM and an Intel(R) Xeon(R)

Platinum 8630Y CPU with 2.4 GHz clock speed. We use NumPy’s

implementation of probabilistic functions and SciPy’s implemen-

tation of the Hungarian algorithm. Our code is available at https:

//github.com/vt-asaplab/DSSE-Attacks.

5.1 Methodology
Experiment Setting. We re-implement the Search Frequency At-

tack and implement our proposed attacks under new assumptions.

Oya et al. demonstrated their SAP attack under the assumption

that the adversary has fine-grained probabilities about the client’s
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query frequencies for all of the keywords that the adversary is inter-

ested in. We feel this assumption is unlikely to arise in a real-world

scenario for two reasons.

First, the adversary must explicitly develop a predicted keyword
universe for all of the keywords that she believes the client will
query. Then the adversary must gather auxiliary information about

each keyword in Δ𝑝𝑟𝑒𝑑 . As Damie et al. [10] point out, any attack

operating under this model will be unable to recover any keywords

which are contained in the client’s true keyword universe Δ𝑟𝑒𝑎𝑙 but
absent from Δ𝑝𝑟𝑒𝑑 . We claim that constructing a good Δ𝑝𝑟𝑒𝑑 is

difficult in practice except in the case of a security breach (i.e., a

scheme that was set up incorrectly but later patched, leaking some

query traces) or the adversary already has significant information

about the client’s database (perhaps through a side-channel attack

or surveillance). The latter case is outside the scope of this work.

Second, if the auxiliary probabilities F̃ selected by the adversary

do not align closely with the underlying query behavior F of the

client, the attack will be less likely to recover keywords. We feel that

taking auxiliary data from Google Trends is unlikely to accurately

represent the query behavior of clients of SSE services, especially

if the client is querying over a specialized database.

For these reasons, we implement all experiments under the as-

sumption that the adversary has access to some real query and

update traces from the client (i.e., the security breach scenario).

Although access to real query and update traces is a strong assump-

tion, we feel that it is more likely to occur in practice than Google

Trends data closely predicting the behavior of real SSE clients. We

note that this is simply the strategywe use to create auxiliary data to

simulate a realistic setting; our attacks still function as similar-data

inference attacks and do not require known data.

Generating the Auxiliary Data. Because there are no publicly

available datasets including real timestamped client query or update

information, we generate auxiliary client query and update traces

using data from Google Trends. We use the same Google Trends

probabilities as the Oya et al. evaluation [28] to keep our evalua-

tion consistent with theirs
1
. For each of the 3000 most common

keywords in each dataset, the frequency is obtained from Google

Trends for each week in a 260-week span. These relative frequencies

are then normalized and used for auxiliary data generation.

Because we only consider forward-private schemes, we remove

all updates from the auxiliary and observed traces if their corre-

sponding keyword or tag is not searched in a later week. We model

the client’s choice of which file identifier id to associate an update

with by sampling from a normal distribution with center 𝑐 and

standard deviation 𝑑 . We assume each keyword has a unique center

𝑐 . 𝑑 is a parameter of the experiment. 𝑑 = 0 implies that a keyword

is always updated into the same file. The choice of which file to

update becomes more random as 𝑑 increases. There are many other

valid ways to simulate client updates, but we are unable to use

real-world data for this choice due to the lack of publicly available

database-update datasets including timestamps and file identifiers.

Processing the Auxiliary Data. All experiments are conducted

using 100 time intervals of search and update traces. For each

keyword 𝑤𝑖 in Δ, we repeat the following procedure: in the first

1
From https://github.com/simon-oya/USENIX21-sap-code/tree/master/datasets_pro

𝑐 + 𝑑𝑐 − 𝑑 𝑐

ID selected

File ID

Figure 1: Diagram of how the client chooses which file to
update. Each keyword has a different center 𝑐. Standard de-
viation 𝑑 is a parameter of the experiment. The dashed line
represents a random sample from the distribution. The client
will choose the file ID id at this location to include in the up-
date tuple (op,𝑤, id). 𝑐 and 𝑑 are not known to the adversary.

time interval, we take its normalized frequency value from the the

first week in the Google Trends dataset and use it as the chance

that𝑤𝑖 will appear in the first week of query or update traces. This

process is repeated for the remaining 99 weeks.

At this point, 100 weeks of query and update traces have been

generated. We refer to the first 50 weeks as the auxiliary period

because the traces from these weeks will be left in plaintext, as in

the security breach scenario described previously. The adversary

will use them to populate the auxiliary frequency matrices F̃, ˜
𝛀,

and Ũ.
For the next 50 weeks, the server may only access traces which

have been processed to reveal no more information than a correct

SSE scheme, perhaps due to a security patch. This interval is known

as the observation period. The adversary never has access to any

keyword-tag pairs; she only sees keyword traces during the auxil-

iary period, and only sees tokenized traces during the observation

period. Our approach differs from Oya et al. because we do not

allow the adversary to access any of the Google Trends data, only

the auxiliary traces.

The adversary effectively has access to outdated frequency infor-

mation because the attack goal is to use the data from the auxiliary

period to recover queries in the observation period. We note that

the adversary only has access to keywords in the auxiliary period

and only has access to tags in the observation period, and therefore

never has access to ground truth information.

Attack Accuracy. For each experiment, accuracy of all attacks is

measured by the total number of searches recovered divided by

the total number of searches, including duplicates, in the observa-

tion period. This is known as weighted query recovery, and is the

standard accuracy metric used by attack papers [2, 5, 10, 28, 29].

5.2 Experimental Setup
Dataset. To evaluate our attack, we use the 30,109 files in the ’sent-

mail’ directory of the Enron dataset
2
, as is standard in the field

[10, 28, 29, 40]. We also use the first 66,491 files after September

2001 of the Lucene dataset
3
for the first experiment. After removal

of English stopwords, we pick a random subset of size 𝑛 of the 3,000

2
https://www.cs.cmu.edu/~enron/

3
https://mail-archives.apache.org/mod_mbox/lucene-java-user/
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(b) Lucene dataset

Figure 2: Effect of increasing number of searches and updates
per week in both the auxiliary and observation periods.

most commonly appearing keywords in the dataset to build our

keyword universe Δ.
Experiment Parameters.We run each experiment with settings

of keyword universe size 𝑛 = 100, average searches and updates

per week of 𝜂, 𝜇 = 100, number of weeks for the auxiliary and

observation periods each 𝜌 = 50, number of files in the dataset𝑁𝐷 =

30,109, and standard deviation of the distribution that selects files

𝑑 = 0.0033𝑁𝐷 (≈100 for 𝑁𝐷 = 30,109). Except for the independent

variable, these values are used for all experiments.

Following Oya et al., we generate the actual number of searches

and updates per week by sampling from a Poisson distribution

centered at 𝜂 and 𝜇, respectively.

To increase the confidence in our results, we run each experiment

30 times, using a different random seed for each. The seed affects

which keywords are selected to be in Δ, which file identifiers are

selected by the process simulating client updates (Figure 1), and

the actual values for 𝜂 and 𝜇 for each week. After the inputs are

selected, the attacks are deterministic. For each data point in the

following figures, we report the average result of the 30 trials.

5.3 Experimental Results
Amount of Auxiliary Information. Figure 2 shows that the

accuracy of all attacks increases as the average number of searches

and updates per week increases. We note that our implementations

of the attacks require more searches per week to obtain the same

accuracy reported by Oya and Kerschbaum. This is due to the

change in attack setting; because our adversary only has access

to auxiliary traces, the client must issue more searches before the

adversary can get an accurate prediction of the true probability

that a client will query each keyword.

TheUFAttack achieves similar accuracy to the Search Frequency

Attack. This is because update frequency alone is no more pow-

erful than search frequency leakage. The SP+UF Attack achieves

roughly five percent higher accuracy at all intervals. Both versions

of the UFID Attack perform better on average than the other at-

tacks, although the magnitude of this improvement increases as the

amount of information increases. We conjecture that this is because

adding more information is more likely to fill empty spaces in U
and Ũ when compared to 𝛀 and

˜
𝛀, because the UFID Attacks track

frequencies at a finer granularity.

In Figure 2(b), we run our attacks against the Lucene dataset

to verify the effectiveness of our attacks does not arise from some
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Figure 3: Effect of increasing auxiliary data on attack accu-
racy. During the auxiliary period, 𝜂 and 𝜇 are set to the values
shown on the x-axis. During the observation period,𝜂, 𝜇 = 100

for all experiments.
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Figure 4: Effect of keyword universe size on attack accuracy.

unique quality of the Enron dataset. From Enron to Lucene, the

accuracy of the Search Frequency Attack is stable, whereas our

attacks lose a small but noticeable amount of accuracy. This is

likely because the Lucene dataset has many more files than Enron,

which makes our matrices 𝛀 and U more sparse. However, it is

clear that all attacks shown are effective against both datasets.

Figure 3 shows that increasing the amount of auxiliary informa-

tion can significantly improve the accuracy of attacks, even if the

amount of searches and updates observed by the adversary does

not increase.

In Figure 4, we compare our attacks across different keyword uni-

verse sizes. As with all attacks against SSE, we notice a decrease in

accuracy as more keywords are included. We note that the keyword

universe does not have to be as large as the entire set of keywords

in the database, but instead can be hand-selected by the adversary.

While selecting keywords that the target client is likely to query is

a hard problem in practice, it could reduce the size of the keyword

universe to dozens or hundreds.

Number of Files in Database. Figure 5 shows the runtime scaling

of theUFIDAttacks with respect to 𝑁𝐷 when all other variables are

held constant. We define runtime as the amount of time it takes to

build the cost matrix and optimize it with the Hungarian algorithm
4
.

The size of the UFID Attacks’ data structures is larger than their

UF Attack counterparts by a factor of 𝑁𝐷 . This figure provides

4UFID Attack is not shown in Figure 5 because the difference in runtime between

versions is negligible.
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Figure 6: Effect of adding files to a database on accuracy of
UFID Attacks.

experimental verification that the UFID Attacks run in reasonable

time for realistic experiment parameters.

Figure 6(a) experimentally verifies that the UF Attack is a special
case of the UFID Attack where there is only one file in the database.

This is expected because the adversary does not have file identifier

information in Level II backward-private schemes. Starting from

a database with only one file, the adversary begins to learn more

useful information from the file identifier leakage as the number of

files increases.

Figure 6(b) shows that adding more files to the database will

eventually degrade the accuracy of the UFID Attacks. We argue

that the value of the file identifier information decreases if there

are too few or too many files in the database because the relation-

ship between keywords and file identifiers in updates becomes

less unique. The SP+UFID Attack maintains an improvement over

search pattern leakage alone, even for databases with 100, 000 files.

File IDDistribution. Figure 7 investigates the effect that the choice
of which file to update has on the accuracy of the UFID Attacks.

Recall that we simulate this choice by sampling from a normal

distribution as described in Figure 1. We do not expect a normal

distribution to accurately model real-world client updates; indeed,

one can imagine real-world scenarios where client behavior would

be better modeled by other distributions. Instead, we use the normal

distribution to provide experimental insight about the effect of the

uniqueness of the update distribution. For both versions of the attack,
we find that very low values of 𝑑 result in very high recovery rates.

On the other hand, a standard deviation of 600 implies that 95% of

the updates occur over a range of 2400 different file identifiers, or 8%

of the database size 𝑁𝐷 . Even under these conditions, the SP+UFID
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Figure 7: Effect of file selection distribution on accuracy of
UFID attacks.

Attack still slightly outperforms the Search FrequencyAttack. These

results suggest that the relationship between keywords and the

files that are updated is an important factor in these attacks.

In Figure 7(b), unlike all other experiments, the client chooses

the file identifier to associate with a keyword by sampling from a

Zipfian distribution with a parameter of 𝑎 = 1.1. We assume the

most frequently updated file is different for each keyword. The

Zipfian distribution leads to much more pronounced couplings of

keywords and file identifiers than the normal distribution, caus-

ing the attacks to be remarkably effective under these conditions.

We point out that the SP+UFID Attack is less effective than the

UFID Attack, presumably because adversary’s information about

the client’s updates is of such high quality with this distribution

that including the search frequencies is no longer advantageous.

5.4 Discussion
Practicality of Attacks. Our results suggest that DSSE use cases

with frequent updates and at least semi-frequent searches, such as

encrypted email, could be very vulnerable to our attacks. Other use

cases that are infrequently accessed by the client, such as backup

file storage, are less likely to be compromised by our attacks.

Any DSSE scheme is likely to receive some amount of updates

from the client, otherwise the user would simply opt for a static SSE

scheme instead. As such, we encourage future works to consider

post-search update leakage matching the security properties of the

target scheme to be part of the standard leakage in their analysis.

We encourage deeper investigation into techniques to compromise

DSSE schemes so defense researchers are more capable of empiri-

cally evaluating the strength of their defenses against attacks that

explicitly target DSSE.

In practice, the major obstacle for an attacker is obtaining auxil-

iary data. Most attack papers only offer a short explanation about

how an attacker might obtain known documents, queries, or aux-

iliary data. We agree with the sentiment of Damie et al. [11] that

high-quality ground truth data, or even statistically-similar aux-

iliary data, is difficult to obtain in practice, even in the case of a

security breach. However, as we argued earlier, a security breach

is one of the only practical ways for an attacker to form a compre-

hensive keyword universe Δ.
In this work, we have made our best attempt to evaluate our

frequency-based attacks under realistic conditions, following strate-

gies from related works [27–29]. However, as Damie et al. [10] point
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out, it is difficult to evaluate frequency-based attacks without real

timestamped search and update datasets
5
.

Nevertheless, our attacks expose weaknesses in DSSE schemes

which had not previously been exploited. It would be unwise to

dismiss leakage-abuse attacks as impractical for three reasons. First,

even attacks which are only theoretical motivate stronger designs

[13, 17, 19, 42]. Second, the security versus performance balance of

real commercial-scale systems are unlikely to lean in the direction

of the security properties that provably defeat ours and related

attacks. Third, the complexities of implementing large systems,

such as those that led to the recent devastating attacks by Gui

et al. [20] targeting the logging system of MongoDB’s Queryable

Encryption, can greatly assist an adversary in gaining auxiliary

data to compromise the privacy of SSE protocols.

Countermeasures. A growing line of research on SSE defenses

have focused on obfuscating access patterns and search patterns

[8, 13, 30]. While effective, very few of these works extend their

proposed methods to construct dynamic SSE schemes, generally

because it is challenging to do so under real-world efficiency con-

straints [13]. Zhao et al. [42] provide a Level I backward-private

scheme that obfuscates search patterns, however, its correctness

is inversely proportional to the strength of the security parame-

ter and the authors do not provide an empirical evaluation of its

performance. The SWiSSSE scheme designed by Gui et al. [19] ap-

pears to be the most efficient (and only end-to-end) defense to our

attacks. A DSSE scheme instantiated with frequency-smoothing

techniques like PANCAKE by Grubbs et al. [18] would defeat the

attacks proposed in this paper, but potentially not all attacks that

could be designed with similar methods (e.g., a dynamic extension

of IHOP [29] that includes update leakage). As such, attackers can

use update leakage to compromise all efficient DSSE schemes more

effectively than attacks that ignore this leakage. For this reason,

we encourage researchers to investigate techniques to improve the

practical efficiency of Level I backward privacy for DSSE.

Directions for Future Work. It is possible to incorporate the

post-search update leakage from Level I backward-private schemes

into an attack. Recall that the post-search update leakage of Level I

schemes is the time that each document matching𝑤 was inserted

into the database and the total number of updates on𝑤 . It would

be challenging to exploit this information effectively without a

stronger attack model. We leave this as an open research question.

Our attacks do not exploit all possible update leakage. For Level

III schemes, one could utilize the deletion information fromDelHist.
For weaker schemes, it is possible to exploit the type of operation

op. Motivated by the results of our work and others [28, 29], we

are of the opinion that including more information to attacks will

generally improve their accuracy. We encourage attack researchers

to pursue this line of research further to incorporate update leakage

from DSSE schemes into existing attacks and new attacks alike.

While leakage-obfuscation defenses have proven effective against

a variety of attacks, there appears to be a heavier focus on volume-

hiding [1, 19, 23, 30, 42] than search pattern obfuscation [19, 42].

5
In fact, almost all SSE attack evaluations, even those for non-frequency-based attacks,

choose to model client query behavior due to the lack of real-world data.

While effectively obfuscating the search pattern is an open chal-

lenge [4, 28], it would defeat our attacks and several others [27–

29, 39], so we believe it is a worthwhile direction to pursue further.

6 CONCLUSION
In this work, we propose two novel query-recovery attacks and

demonstrate that including traditionally-overlooked leakage from

updates in Dynamic Searchable Symmetric Encryption (DSSE) can

compromise query privacy more effectively than a strategy that

only uses leakage from searches. We show that the backward pri-

vacy security property prevents the strongest versions of these

attacks. We hope our work encourages researchers to improve

the efficiency of backward privacy so clients of future real-world

encrypted search systems can benefit from enhanced privacy.
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