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Abstract

Robust optimization is a tractable and expressive technique for decision-making

under uncertainty, but it can lead to overly conservative decisions when pessimistic

assumptions are made on the uncertain parameters. Wasserstein distributionally robust

optimization can reduce conservatism by being data-driven, but it often leads to very

large problems with prohibitive solution times. We introduce mean robust optimiza-

tion, a general framework that combines the best of both worlds by providing a trade-off

between computational effort and conservatism. We propose uncertainty sets con-

structed based on clustered data rather than on observed data points directly thereby

significantly reducing problem size. By varying the number of clusters, our method

bridges between robust and Wasserstein distributionally robust optimization. We show

finite-sample performance guarantees and explicitly control the potential additional

pessimism introduced by any clustering procedure. In addition, we prove conditions

for which, when the uncertainty enters linearly in the constraints, clustering does not

affect the optimal solution. We illustrate the efficiency and performance preservation

of our method on several numerical examples, obtaining multiple orders of magnitude

speedups in solution time with little-to-no effect on the solution quality.
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1 Introduction

Robust optimization (RO) and distributionally robust optimization (DRO) are popu-

lar tools for decision-making under uncertainty due to their high expressiveness and

versatility. The main idea of RO is to define an uncertainty set and to minimize the

worst-case cost across possible uncertainty realizations in that set. However, while

RO often leads to tractable formulations, it can be overly-conservative [42]. To reduce

conservatism, DRO takes a probabilistic approach, by modeling the uncertainty as

a random variable following a probability distribution known only to belong to an

uncertainty set (also called ambiguity set) of distributions. In both RO and DRO, the

choice of the uncertainty or ambiguity set can greatly influence the quality of the solu-

tion. Good-quality uncertainty sets can lead to excellent practical performance while

ill chosen sets can lead to overly-conservative actions and intractable computations.

Traditional approaches design uncertainty sets based on theoretical assumptions

on the uncertainty distributions [1, 3, 5, 13]. While these methods have been quite

successful, they rely on a priori assumptions that are difficult to verify in practice. On

the other hand, the last decade has seen an explosion in the availability of data, which

has brought a shift in focus from a priori assumptions on the probability distributions

to data-driven methods in operations research and decision sciences. In RO and DRO,

this new paradigm has fostered data-driven methods where uncertainty sets are shaped

directly from data [10]. In data-driven DRO, a popular choice of the ambiguity set is

the ball of distributions whose Wasserstein distance to a nominal distribution is at most

ε > 0 [24, 28, 29, 35]. When the reference distribution is an empirical distribution,

the associated Wasserstein DRO can be formulated as a convex minimization problem

where the number of constraints grows linearly with the number of data-points [24].

While less conservative than RO, data-driven DRO can lead to very large formulations

that are intractable, especially in mixed-integer optimization (MIO).

A common idea to reduce the dimensionality of data-driven decision-making prob-

lems is to use clustering techniques from machine learning. While clustering has

recently appeared in various works within the stochastic programming literature [7,

17, 23, 34], the focus has been on the improvement of and comparisons to the sample

average approximation (SAA) approach and not in a distributionally robust sense. In

contrast, recent approaches in the DRO literature cluster data into partitions and either

build moment-based uncertainty sets for each partition [19, 39], or enrich Wasserstein

DRO formulations with partition-specific information (e.g., relative weights) [25].

While these approaches are promising, clustering is still used as a pre-processing

heuristic on the data-sets in DRO, without a clear understanding of how it affects

the conservatism of the optimal solutions. In particular, choosing the right clustering

parameters to carefully balance computational tractability and out-of-sample perfor-

mance is still an unsolved challenge.
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1.1 Our contributions

We present mean robust optimization (MRO), a data-driven method that, via machine

learning clustering, bridges between RO and Wasserstein DRO.

– We design the uncertainty set for RO as a ball around clustered data. With-

out clustering, our formulation corresponds to the finite convex reformulation

in Wasserstein DRO. With one cluster, our formulation corresponds to the clas-

sical RO approach. The number of clusters is a tunable parameter that provides

a tradeoff between the worst-case objective value and computational efficiency,

which includes both speed and memory usage.

– We provide probabilistic guarantees of constraint satisfaction for our method,

based on the quality of the clustering procedure.

– We derive bounds on the effect of clustering in case of constraints with concave

and maximum-of-concave dependency on the uncertainty. In addition, we show

that, when constraints are linearly affected by the uncertainty, clustering does not

affect the solution nor the probabilistic guarantees.

– We show on various numerical examples that, thanks to our clustering proce-

dure, our approach provides multiple orders of magnitude speedups over classical

approaches while guaranteeing the same probability of constraint satisfaction. The

code to reproduce our results is available at https://github.com/stellatogrp/mro_

experiments.

1.2 Related work

Robust optimization. RO deals with decision-making problems where some of the

parameters are subject to uncertainty. The idea is to restrict data perturbations to a

deterministic uncertainty set, then optimize the worst-case performance across all

realizations of this uncertainty. For a detailed overview of RO, we refer to the survey

papers by Ben-Tal and Nemirovski [6] and Bertsimas et al. [8], as well as the books by

Ben-Tal et al. [3] and Bertsimas and den Hertog [11]. These approaches, while pow-

erful, may be overly-conservative, and there exists a tradeoff between conservatism

and constraint violation [42].

Distributionally robust optimization. DRO minimizes the worst-case expected loss

over a probabilistic ambiguity set characterized by certain known properties of the

true data-generating distribution. Based on the type of ambiguity set, existing liter-

ature on DRO can roughly be defined in two categories. Ambiguity sets of the first

type contain all distributions that satisfy certain moment constraints [21, 31, 49, 52].

In many cases such ambiguity sets possess a tractable formulation, but have also been

criticized for yielding overly conservative solutions [48]. Ambiguity sets of the second

type enjoy the interpretation of a ball of distributions around a nominal distribution,

often the empirical distribution on the observed samples. Wasserstein uncertainty sets

are one particular example [24, 28, 29, 35] and enjoy both a tractable primal as well

as a tractable dual formulation. We refer to the work by Chen and Paschalidis [18]

for a thorough overview of DRO, and to the work by Zhen et al. [51] for a gen-

eral theory on convex dual reformulations. When the ambiguity set is well chosen,
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DRO formulations enjoy strong out-of-sample statistical performance guarantees. As

these statistical guarantees are typically not very sharp, in practice the radius of the

uncertainty set is chosen through time consuming cross-validation [28]. At the same

time, DRO has the downside of being more computationally expensive than traditional

robust approaches. We observe for instance that the number of constraints in Wasser-

stein DRO formulations scale linearly with the number of samples, which can become

practically prohibitive especially when integer variables are involved. Our proposed

method addresses this problem by reducing the number of constraints through cluster-

ing. While many works have recently emerged on the construction of DRO ambiguity

sets through the partitioning of data [19, 25, 39], or the discretization of the underly-

ing distribution [36], there still exists a gap in the literature. In particular, theoretical

bounds on the change in problem performance as affected by the number of clusters,

as well as by the quality of the cluster assignment, remain largely unexplored. In this

work, we fill the gap by providing such insights.

Data-driven robust optimization. Data-driven optimization has been well-studied, with

various techniques to learn the unknown data-generating distribution before formulat-

ing the uncertainty set. Bertsimas et al. [10] construct the ambiguity set as a confidence

region for the unknown data-generating distribution P using several statistical hypoth-

esis tests. By pairing a priori assumptions on P with different statistical tests, they

obtain various data-driven uncertainty sets, each with its own geometric shape, com-

putational properties, and modeling power. We, however, use machine learning in the

form of clustering algorithms to preserve the geometric shape of the dataset, without

explicitly learning and parametrizing the unknown distribution.

Distributionally robust optimization as a robust program. Gao and Kleywegt [29]

consider a robust formulation of Wasserstein DRO similar to our mean robust opti-

mization, but without the idea of dataset reduction. Given N samples and a positive

integer K , they introduce an approximation of Wasserstein DRO by defining a new

ambiguity set as a subset of the standard Wasserstein DRO set, containing all distri-

butions supported on N K points with equal probability 1/(N K ), as opposed to the

standard set supported on N points. In this work, however, we study how to reduce

the number of variables and constraints.

Robust optimization as a distributionally robust optimization program. Xu et al. [50]

take inspiration from sample-based optimization problems to investigate probabilis-

tic interpretations of RO. They generalize the ideas of Delage and Ye [21], that the

solution to a robust optimization problem is the solution to a special DRO problem,

where the distributional set contains all distributions whose support is contained in the

uncertainty set. In a related vein, Bertsimas et al. [14] show that, under a particular

construction of the uncertainty sets, multi-stage stochastic linear optimization can be

interpreted as Wasserstein-∞ DRO. We establish a similar equivalence between RO

and DRO, focusing especially on Wasserstein-p ambiguity sets for all p. We develop

an easily interpretable construction of the primal constraints and uncertainty sets, and

prove that p = ∞ is a limiting case of p ≥ 1. This provides a natural extension of the

equivalence proved in [14, Proposition 3].
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Probabilistic guarantees in robust and distributionally optimization. Bertsimas et al.

[9] propose a disciplined methodology for deriving probabilistic guarantees for solu-

tions of robust optimization problems with specific uncertainty sets and objective

functions. They derive a posteriori guarantee to compensate for the conservatism of

a priori uncertainty bounds. Esfahani and Kuhn [24] obtain finite-sample guarantees

for Wasserstein DRO for selecting the radius ε of order N−1/ max{2,m}, where N is

the number of samples and m is the dimension of the problem data, while Gao [28]

derives finite-sample guarantees for Wasserstein DRO for selecting ε of order N−1/2

under specific assumptions. We provide theoretical results of a similar vein, with a

slightly increased ε to compensate for information lost through clustering and achieve

the same probabilistic guarantees. Our theoretical guarantees hold for Wasserstein-p

distance for all p ≥ 1 and p = ∞, and are independent of the uncertain function to

minimize. These bounds, however, following the literature, are theoretical in nature

and not tight in practice, typically resulting in conservative ε. The final ε values are

usually chosen through empirical experimentation - in which case, our formulation,

by being lower dimensional, is overall much faster to solve.

Clustering in stochastic optimization. Clustering in stochastic optimization is closely

related to the idea of scenario reduction. First introduced by Dupačová et al. [22],

scenario reduction seeks to approximate, with respect to a probability metric, an N -

point distribution with a distribution with a smaller number of points. In particular,

Rujeerapaiboon et al. [43] analyze the worst-case bounds on scenario reduction the

approximation error with respect to the Wasserstein metric, for initial distributions

constrained to a unit ball. They provide constant-factor approximation algorithms for

K -medians and K -means clustering [32]. Later, Bertsimas and Mundru [12] apply

this idea to two-stage stochastic optimization problems, and provide an alternating-

minimization method for finding optimal reduced scenarios under the modified

objective. They also provide performance bounds on the stochastic optimization prob-

lem for different scenarios. Jacobson et al. [34], Emelogu et al. [23], Beraldi et al.

[7], and Chen [17] apply a similar idea of clustering to reduce the sample/scenario

size, then compare the results against the classical SAA approach where the sample

size is not reduced. In MRO, we adapt and extend the scenario reduction approach to

Wasserstein DRO, where upon fixing the reduced scenario points to ones found by the

clustering algorithm, we allow for variation around these reduced points. We then pro-

vide performance bounds on the DRO problem depending on the number of clusters.

Data compression in data-driven problems. Fabiani and Goulart [26] compress data for

robust control problems by minimizing the Wasserstein-1 distance between the origi-

nal and compressed datasets, and observe a slight loss in performance in exchange for

reduced computation time. While related, this is orthogonal to our approach of using

machine learning clustering to reduce the dataset, where we include results and theoret-

ical bounds for a more general set of robust optimization problems with Wasserstein-p

distance, and demonstrate conditions under which no performance loss is necessary.

123



I. Wang et al.

2 Mean robust optimization

2.1 The problem

We consider an uncertain constraint of the form,

g(u, x) ≤ 0, (1)

where x ∈ X ⊆ Rn is the optimization variable and X is a compact set, u ∈ Rm

is an uncertain parameter, and −g(u, x) is proper, convex, and lower-semicontinuous

in u for all x . Throughout this paper, we assume the support S of u to live within the

domain of g for the variable u, which we will refer to as domu g, i.e., S ⊆ domu g.

We assume domu g is independent of x , and that the following assumption holds.

Assumption 1 The domain domu g is Rm . Otherwise, g is either element-wise mono-

tonically increasing in u and only has a (potentially) lower-bounded domain, or

element-wise monotonically decreasing in u and only has a (potentially) upper-

bounded domain.

This assumption on the domain and monotonicity of g is very common in practice as it

is satisfied by linear and quadratic functions, as well as other common functions (e.g.,

log(u), and 1/(1 + u)). In Sect. 2.4, we extend our results for g being the maximum

of of concave functions, each satisfying the aforementioned conditions.

The RO approach defines an uncertainty set U ⊆ Rm and forms the robust coun-

terpart as g(u, x) ≤ 0, ∀u ∈ U , where the uncertainty set is chosen so that for

any solution x , the above holds with a certain probability. We define this in terms of

expectation,

EP(g(u, x)) ≤ 0,

where P is the unknown distribution of the uncertainty u.

Risk measures. Expectation constraints can represent popular risk measures, and can

imply constraints commonly used in chance-constrained programming (CCP). In CCP,

the probabilistic constraint considered is P(g(u, x) ≤ 0) ≥ 1 −α, which corresponds

to the value at risk being nonpositive, i.e.,

VaR(g(u, x), α) = inf{γ | P(g(u, x) ≤ γ ) ≥ 1 − α} ≤ 0.

Unfortunately, except in very special cases, the value at risk function is intractable [46].

A tractable approximation of the value at risk is the conditional value at risk [40,

46], defined as CVaR(g(u, x), α) = infτ {E(τ + (1/α)(g(u, x) − τ)+)}, where

(a)+ = max{a, 0}. This expression can be modeled through our approach, by writing

CVaR(g(u, x), α) = infτ {E(ĝ(u, x, τ ))}, where ĝ(u, x, τ ) = τ + (1/α)(g(u, x) −
τ)+ is the maximum of concave functions, which we study in Sects. 2.4, 6.2, and 6.3.

It is well known from [46] that the relationship between these probabilistic guarantees

of constraint satisfaction is

CVaR(g(u, x), α) ≤ 0 �⇒ VaR(g(u, x), α) ≤ 0 ⇐⇒ P(g(u, x) ≤ 0) ≥ 1 − α.

Therefore, our expectation constraint implies common chance constraints.
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Finite-sample guarantees. In data-driven optimization, while P is unknown, it is par-

tially observable through a finite set of N independent samples of the random vector

u. We denote this training dataset by DN = {di }i≤N ⊆ S, and note that it is gov-

erned by PN , the product distribution supported on SN . A data-driven solution of a

robust optimization problem is a feasible decision x̂N ∈ Rn found using the data-

driven uncertainty set U , which in turn is constructed by the training dataset DN .

Specifically, the feasible decision and data-driven uncertainty set U must imply the

probabilistic guarantee

PN
(

EP(g(u, x̂N )) ≤ 0
)

≥ 1 − β, (2)

where β > 0 is the specified probability of constraint violation. From now on, the

probabilistic guarantees of constraint satisfaction refers to (2).

2.2 Our approach

To meet the probabilistic guarantees outlined above, we construct x̂N to satisfy par-

ticular constraints, with respect to a particular uncertainty set.

Case p ≥ 1. In the case where p ≥ 1, the set we consider takes the form

U(K , ε) =
{

u = (v1, . . . , vK ) ∈ SK

∣

∣

∣

∣

∣

K
∑

k=1

wk‖vk − d̄k‖p ≤ ε p

}

,

where we partition DN into K disjoint subsets Ck , and d̄k is the centroid of the k-

th subset, for k = 1, . . . , K . The weight wk > 0 of each subset is equivalent to

the proportion of points in the subset, i.e., wk = |Ck |/N . We choose p to be an

integer exponent, and ε will be chosen depending on the other parameters to ensure

satisfaction of the probability guarantee (2). When p = 2 and S = Rm , the set is

an ellipsoid in RK m with the center formed by stacking together all d̄k into a single

vector of dimension RK m . When we additionally have K = N or K = 1, this ellipsoid

becomes a ball of dimension RNm or Rm respectively.

Case p = ∞. In the case where p = ∞, the set we consider takes becomes

U(K , ε) =
{

u = (v1, . . . , vK ) ∈ SK

∣

∣

∣

∣

max
k=1,...,K

‖vk − d̄k‖ ≤ ε

}

,

where the constraints for individual vk become decoupled. This decoupling follows the

result for the Wasserstein type p = ∞ metric [30, Equation 2], as our uncertainty set is

analogous to the set of all distributions within Wasserstein-∞distance of d̄ . Note that, if

any of the decoupled constraints are violated, then lim p→∞
∑K

k=1 wk‖vk−d̄k‖p ≥ ε p,

and the summation constraint is violated.

For both cases, when K = 1, we have a simple uncertainty set: U(1, ε) =
{

v ∈ S | ‖v − d̄‖ ≤ ε
}

, a ball of radius ε around the empirical mean of the dataset.

This is equivalent to the uncertainty set of traditional RO, as it is of the same dimension
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m as the uncertain parameter. In addition, when K = N and wk = 1/N , both cases

resemble the ambiguity sets of Wasserstein-p DRO.

Having defined the uncertainty set, we now introduce the constraints

ḡ(u, x) =
K

∑

k=1

wk g(vk, x), (3)

where g is defined in the original constraint (1) and wk are the weights from above.

Subsequently, x̂N is the solution to the robust optimization problem

minimize f (x)

subject to ḡ(u, x) ≤ 0 ∀u ∈ U(K , ε),
(MRO)

where f is the objective function. We call this problem the mean robust optimization

(MRO) problem. Given the problem data, we formulate the uncertainty set from clus-

tered data using machine learning, with the choice of K and ε chosen experimentally.

Then, we solve the MRO problem to arrive at a data-driven solution x̂N which satisfies

the probabilistic guarantee (2).

2.3 Solving the robust problem

We solve the MRO problem using a direct convex reformulation, following usual

techniques for RO problems in existing literature [3, 11, 35], with adaptations made

for the MRO setup, as well as a reformulation derived for the case p = ∞. We include

simple examples for completeness.

Case p ≥ 1. In the case where p ≥ 1, the MRO can be rewritten as

minimize f (x)

subject to

⎧

⎨

⎩

maximize
v1,...,vK ∈S

∑K
k=1 wk g(vk, x)

subject to
∑K

k=1 wk‖vk − d̄k‖p ≤ ε p

⎫

⎬

⎭

≤ 0,
(4)

which, by dualizing the inner maximization problem, is reformulated as:

minimize f (x)

subject to
∑K

k=1 wksk ≤ 0

[−g]∗(zk − yk, x) + σS(yk) − zT
k d̄k + φ(q)λ ‖zk/λ‖q

∗ + λε p ≤ sk

k = 1, . . . , K

λ ≥ 0,

(5)

with variables λ ∈ R, sk ∈ R, zk ∈ Rm , and yk ∈ Rm . Here, [−g]∗(z, x) =
supu∈domu g zT u −[−g(u, x)] is the conjugate of −g, σS(z) = supu∈S zT u is the sup-

port function of S ⊆ Rm , ‖ · ‖∗ is the dual norm of ‖ · ‖, and φ(q) = (q − 1)(q−1)/qq

for q > 1 [35, Theorem 8]. Note that q satisfies 1/p + 1/q = 1, i.e., q = p/(p − 1).

The support function σS is also the conjugate of χS , which is defined χS(u) = 0

if u ∈ S, and ∞ otherwise. The proof of the derivation and strong duality of the
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constraint is delayed to Appendix A. Since the dual of the constraint becomes a mini-

mization problem, any feasible solution that with objective less than or equal to 0 will

satisfy the constraint, so we can remove the minimization to arrive at the above form.

While traditionally we take the supremum instead of maximizing, here the supremum

is always achieved as we assume g to be upper-semicontinuous. For specific examples

of the conjugate forms of different g, see Bertsimas and den Hertog [11, Section 2.5]

and Beck [2, Chapter 4].

When K is set to be N , wk is 1/N , and this is of an analogous form to the convex

reduction of the worst case problem for Wasserstein DRO, which we will introduce in

Sect. 3.

We observe from [35, Section 2.2 Remark 1] that limq→∞ φ(q)λ ‖zk/λ‖q
∗ = 0 if

‖zk‖ ≤ λ and = ∞ otherwise. Therefore, when p = 1 the reformulation becomes

minimize f (x)

subject to
∑K

k=1 wksk ≤ 0

[−g]∗(zk − yk, x) + σS(yk) − zT
k d̄k + λε ≤ sk k = 1, . . . , K

λ ≥ 0, ‖zk‖ ≤ λ, k = 1, . . . , K .

(6)

Case p = ∞. In the case where p = ∞, the MRO can be rewritten as

minimize f (x)

subject to

⎧

⎨

⎩

maximize
v1,...,vK ∈S

∑K
k=1 wk g(vk, x)

subject to ‖vk − d̄k‖ ≤ ε, k = 1, . . . , K

⎫

⎬

⎭

≤ 0,
(7)

which has a reformulation where the constraint above is dualized,

minimize f (x)

subject to
∑K

k=1 wksk ≤ 0

[−g]∗(zk − yk, x) + σS(yk) − zT
k d̄k + λkε ≤ sk k = 1, . . . , K

‖zk‖∗ ≤ λk k = 1, . . . , K ,

(8)

with sk ∈ R, zk ∈ Rm , and yk ∈ Rm . The proof is delayed to Appendix B.

Remark 1 (Case p = ∞ is the limit of case p ≥ 1) In terms of the primal problem, (7)

is the limiting case of (4) as p → ∞. In terms of the reformulated problem with

dualized constraints, problem (8) is the limiting case of (5). The proof, delayed to

Appendix C, extends the ideas stated in [14, Proposition 3].

Example with affine constraints. Consider a single affine constraint of the form

(a + Pu)T x ≤ b, (9)

where a ∈ Rn , P ∈ Rn×m , and b ∈ R. In other words, g(u, x) = (a + Pu)T x − b,

and the support set is S = Rm . Note that, in this case, yk must be 0 for the support

function σS(yk) to be finite. We compute the conjugate as [−g]∗(z, x) = supu zT u +
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b − (a + Pu)T x = aT x − b if z + PT x = 0, and ∞ otherwise. To substitute σS(yk)

and [−g]∗(zk − yk, x) into (5), we note that yk = 0 and zk = −PT x , i.e., zk is

independent from k. By combining the K constraints in (5), we arrive at the form for

general p ≥ 1

minimize f (x)

subject to aT x − b + φ(q)λ
∥

∥PT x/λ
∥

∥

q

∗ + λε p + (PT x)T
∑K

k=1 wk d̄k ≤ 0

λ ≥ 0,

(10)

where the number of variables or constraints does not depend on K . Since vector
∑K

k=1 wk d̄k is the average of the data-points in DN for any K ∈ {1, . . . , N }, this

formulation corresponds to always choosing K = 1. We also note that, for both p = 1

and p = ∞, the subsequent reformulation (11) can be viewed as the robust counterpart

when the uncertainty set is a norm ball of radius ε centered at (1/N )
∑N

i=1 di . If d̄ = 0,

the constraint can be simplified even further, obtaining aT x + ε‖PT x‖∗ ≤ b, which

corresponds to the robust counterpart in RO with norm uncertainty sets [11, Section

2.3], [3, Chapter 2].

minimize f (x)

subject to aT x − b + ε
∥

∥PT x
∥

∥

∗ + (PT x)T
∑K

k=1 wk d̄k ≤ 0.
(11)

2.4 Maximum-of-concave constraint function

We now consider a more general maximum-of-concave function

g(u, x) = max
j≤J

g j (u, x),

with each −g j being proper, convex, and lower-semicontinuous in u for all x . When we

take J = 1, we arrive back at the formulations given in Sect. 2. Note that any problem

with multiple uncertain constraints g j (u, x), j = 1, . . . , J , where we assume the

usual conditions on g j , can be combined to create a joint constraint of this maximum-

of-concave form. As mentioned in Sect. 2.1, this can also be used to model CVaR

constraints, which has a maximum-of-concave analytical form. The intuitive constraint

to formulate is then

ḡ(u, x) =
K

∑

k=1

wk max
j≤J

g j (vk, x) = max
( j1,..., jK )∈G

K
∑

k=1

wk g jk (vk, x), (12)

where in the last expression we brought the maximum outside the summation by

defining the set G of all possible choices of ( j1, . . . , jK ). This set has size J K , as

each cluster k has J possible pieces in the maximization function. We perform this

switch in order to attain a reformulation akin to (4), where we have a single inner

maximization problem for the MRO constraint. As these indices are hard to express,

we seek an alternative formulation. We turn to Section 4.2 of Esfahani and Kuhn [24],
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on the attainment of the worst-case distribution of Wasserstein DRO for a maximum-

of-concave function; Wasserstein DRO is closely related to our formulations, as will

be explored in Sect. 3. Adapting the ideas from Theorem 4.4 of Esfahani and Kuhn

[24], we note that the worst-case constraint value for any x can in fact be attained by

maximizing the function

ḡ(u, α, x) =
K

∑

k=1

J
∑

j=1

α jk g j (v jk, x) (13)

over u in the uncertainty set, which is to be defined, and α ∈ �, with � =
{α |

∑J
j=1 α jk = wk, α jk ≥ 0 ∀k, j}. For each constituent function g j , the uncer-

tainty set then contains a set of vectors (v j1, . . . , v j K ), where there exists a set of

parameters (α j1, . . . , α j K ) to denote the fraction of mass assigned to that function

and those vectors. The total amount of mass assigned for each cluster remains the

weight of the cluster, i.e., wk =
∑J

j=1 α jk . Note that choosing the j-th function as

the maximum function for cluster k, i.e., the index jk in (12), is equivalent to setting

α jk = wk and α j ′k = 0 for all j ′ �= j in (13). We adopt this formulation instead

of (12), as it easily allows us to apply the Von Neumann-Fan minimax theorem [38]

in the dual reformulation (see Appendices A and B), and the existence of α instead of

a maximization over g j is useful for a proof in Sect. 4.2.

The uncertainty set is then as follows. Case p ≥ 1. In the case where p ≥ 1, we

have

U(K , ε) =

⎧

⎨

⎩

u = (v11, . . . , vJ K ) ∈ S J×K

∣

∣

∣

∣

∣

∣

∃α ∈ �,

K
∑

k=1

J
∑

j=1

α jk‖v jk − d̄k‖p ≤ ε p

⎫

⎬

⎭

.

Note that the single concave case given previously follows when we take J = 1. All

parameters are defined as in the single concave case.

Case p = ∞. In the case where p = ∞, the set we consider becomes

U(K , ε) =

⎧

⎨

⎩

u = (v11, . . . , vJ K ) ∈ S J×K

∣

∣

∣

∣

∣

∣

∃α ∈ �, max
k=1,...,K

J
∑

j=1

α jk

wk
‖v jk − d̄k‖ ≤ ε

⎫

⎬

⎭

.

Following these changes, x̂N is again the solution to the robust optimization prob-

lem (MRO), defined now with the generalized uncertainty set.

Solving the robust problem. We give the direct reformulation approach for solving the

generalized problem for p ≥ 1. The case p = ∞ is delayed to Appendix B. We write

the MRO problem as the optimization problem

minimize f (x)

subject to

⎧

⎨

⎩

maximize
v11,...,vJ K ∈S,α∈�

∑K
k=1

∑J
j=1 α jk g j (v jk, x)

subject to
∑K

k=1

∑J
j=1 α jk‖v jk − d̄k‖p ≤ ε p

⎫

⎬

⎭

≤ 0,
(14)
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and, by dualizing the inner maximization problem, arrive at the reformulation:

minimize f (x)

subject to
∑K

k=1 wksk ≤ 0

[−g j ]∗(z jk − y jk, x) + σS(y jk) − zT
jk d̄k + φ(q)λ

∥

∥z jk/λ
∥

∥

q

∗ + λε p ≤ sk

k = 1, . . . , K , j = 1, . . . , J

λ ≥ 0,

(15)

with variables λ ∈ R, sk ∈ R, z jk ∈ Rm , and y jk ∈ Rm . The proof is delayed to

Appendix A. In addition, when K is set to be N , and wk’s are 1/N , this is also of

an analogous form to the convex reduction of the worst case problem for Wasserstein

DRO, given in Sect. 3.

3 Links toWasserstein distributionally robust optimization

Distributionally robust optimization (DRO) solves the problem

minimize f (x)

subject to supQ∈PN
EQ(g(u, x)) ≤ 0,

(16)

where the ambiguity set PN contains, with high confidence, all distributions that could

have generated the training samples DN , such that the probabilistic guarantee (2) is

satisfied. Wasserstein DRO constructs PN as a ball of radius ε with respect to the

Wasserstein metric around the empirical distribution P̂N =
∑N

i=1 δdi
/N , where δdi

denotes the Dirac distribution concentrating unit mass at di ∈ Rm . Specifically, we

write PN = B
p
ε (P̂N ) = {Q ∈ M(S) | Wp(P̂

N , Q) ≤ ε}, where M(S) is the set

of probability distributions supported on S satisfying a light-tailed assumption (more

details in Sect. 3.1), and

Wp(Q, Q′) = inf

{

(∫

S

‖u − u′‖p
(du, du′)

)1/p
}

.

Here, p is any integer greater than 1, and 
 is any joint distribution of u and u′ with

marginals Q and Q′.
When K = N , the constraint of the DRO problem (16) is equivalent to the constraint

of (MRO). In particular, for case p ≥ 1, the dual of the constraint of (16) is equivalent

to the dual of the constraint of (14), with wk = 1/N [35, 51]. Similarly, in the case

where p = ∞, the dual of the constraint of (16) is equivalent to the dual of the

constraint of (17). We can then rewrite the Wasserstein DRO problem as (14), the

MRO problem, when K = N .

Our approach can be viewed as a form of Wasserstein DRO, with the difference that,

when K < N , we deal with the clustered dataset. We form PN as a ball around the

empirical distribution P̂K of the centroids of our clustered data P̂K =
∑K

k=1 wkδd̄k
,

where wk is the proportion of data in cluster k. This formulation allows for the reduction
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of the sample size while preserving key properties of the sample, which translates

directly to a reduction in the number of constraints and variables, while maintaining

high quality solutions.

3.1 Satisfying the probabilistic guarantees

Following the parallels between MRO and Wasserstein DRO, we now show that the

conditions for satisfying the probabilistic guarantees are also analogous.

Case p ≥ 1. Wasserstein DRO satisfies (2) if the data-generating distribution, sup-

ported on a convex and closed set S, satisfies a light-tailed assumption [24, 27]:

there exists an exponent a > 0 and t > 0 such that A = EP(exp(t‖u‖a)) =
∫

S
exp(t‖u‖a)P(du) < ∞. We refer to the following theorem.

Theorem 1 (Measure concentration [27, Theorem 2]) If the light-tailed assumption

holds, we have PN (Wp(P, P̂N ) ≥ ε) ≤ φ(p, N , ε), where φ is an exponentially

decaying function of N .

Theorem (1) estimates the probability that the unknown data-generating distribution

P lies outside the Wasserstein ball B
p
ε (P̂N ), which is our ambiguity set. Thus, we can

estimate the smallest radius ε such that the Wasserstein ball contains the true distribu-

tion with probability 1 − β, for some target β ∈ (0, 1). We equate the right-hand-side

to β, and solve for εN (β) that provides us the desired guarantees for Wasserstein

DRO [24, Theorem 3.5].

Case p = ∞. When p = ∞, Bertsimas et al. [14, Section 6] note that the light-

tailed assumption is no longer sufficient. Wasserstein DRO satisfies (2) under stronger

assumptions, as given in the following theorem.

Theorem 2 (Measure concentration, p = ∞ [45, Theorem 1.1]) Let the support

S ⊂ Rm of the data-generating distribution be a bounded, connected, open set with

Lipschitz boundary. Let P be a probability measure on S with density ρ : S →
(0,∞), such that there exists λ ≥ 1 for which 1/λ ≤ ρ(x) ≤ λ, ∀x ∈ S. Then,

PN (W∞(P, P̂N ) ≥ ε) ≤ φ(N , ε), where φ is an exponentially decaying function of

N .

We can again equate the right-hand-side to β and find εN (β). We extend this result to

the clustered set in MRO.

Theorem 3 (MRO finite sample guarantee) Assume the light-tailed assumption holds

when p ≥ 1, and the corresponding assumptions hold when p = ∞. If β ∈ (0, 1),

ηN (K ) is the average p-th powered distance of data-points in DN from their assigned

cluster centers, and x̂N is the optimal solution to (MRO) with uncertainty set

U(K , εN (β) + ηN (K )1/p), then the finite sample guarantee (2) holds.

Proof Compared with Wasserstein DRO, MRO has to account for the additional dif-

ference between the two empirical distributions P̂N and P̂K . If we introduce a new
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parameter, ηN (K ), defined as

ηN (K ) = 1

N

K
∑

i=1

∑

i∈Ck

‖di − d̄k‖p

the average p-powered distance with respect to the norm used in the Wasserstein

metric, of all data-points in DN from their assigned cluster centers d̄k , we notice that

Wp(P̂
K , P̂N )p = inf




{∫

S

‖u − u′‖p
(du, du′)

}

(
 any joint dist. of P̂K , P̂N )

≤
K

∑

i=1

|Ck |
N

∫

S

‖u − d̄k‖pP̂N (u|u′ = d̄k)(du)

≤
K

∑

i=1

|Ck |
N

1

|Ck |
∑

i∈Ck

‖di − d̄k‖p = ηN (K ),

where we have replaced the integral with a finite sum, as the distributions are discrete.

Therefore, by Theorems 1, 2 and the triangle inequality [20],

Wp(P, P̂K ) ≤ Wp(P, P̂N ) + Wp(P̂
K , P̂N ) ≤ εN (β) + ηN (K )1/p,

with probability at least 1 − β. We thus have

P(P ∈ B
p

εN (β)+ηN (K )1/p (P̂
K )) ≥ 1 − β,

which implies U(K , εN (β) + ηN (K )1/p) contains all possible realizations of uncer-

tainty with probability 1 − β, so the finite sample guarantee (2) holds. ��

4 Worst-case value of the uncertain constraint

In the previous section, we proposed a theoretical increase in ε to maintain the same

finite sample guarantee before and after clustering. However, a question remains:

what is the extent of the effects of clustering if we don’t increase ε? In this section, we

thus approach the analysis in a different manner: keeping ε constant, we quantify the

change in the worst-case value of the constraint function that arises from clustering. In

fact, for select cases, our results suggest there is no need to increase ε after clustering;

under specific curvature conditions on the constraint function g, we may obtain a more

conservative, or even unchanged solution after clustering, in which case the original

finite sample guarantee is retained.

We begin with a remark on the clustering value attained. The MRO approach is

closely centered around the concept of clustering to reduce sample size while main-

taining sample diversity. We wish to cluster points that are close together, such that
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the objective is only minimally affected. With this goal, we would like to minimize

the average distance of the points in each cluster to their data-center,

D(K )� = minimize D(K ) = minimize
1

N

K
∑

k=1

∑

di ∈Ck

‖di − d̄k‖2
2,

where d̄k is the mean of the points in cluster Ck . While the best performance is attained

with D(K )�, in practice we work with the approximation D(K ), where Ck is decided

by a clustering algorithm. This value upper bounds D(K )�. A well-known algorithm

is K -means [32], where we create K clusters by iteratively solving a least-squares

problem. From here on we use only D(K ), and note that for the case p = 2, we have

D(K ) = ηN (K ) from Theorem 3.

In this section, we then show the effects of clustering on the worst-case value of the

constraint function in (MRO). We prove two sets of results, corresponding to g given

as a single concave function, and as a more general maximum-of-concave function,

which includes the maximum-of-affine function.

4.1 Single concave function

Quantifying the clustering effect. We calculate the difference between the worst-case

value of the constraint in (MRO), for different K ,

ḡK (x) = maximize
u1,...,uK ∈S

K
∑

k=1

|Ck |
N

g(uk, x)

subject to

K
∑

k=1

|Ck |
N

‖uk − d̄k‖p ≤ ε p.

(MRO-K)

When K = N , ḡN (x) is akin to the constraint value for traditional Wasserstein DRO.

We also denote by ḡN∗(x) the value of the constraint value without the support con-

straints u1, . . . , uN ∈ S. From here on, when we mention that the support affects the

worst-case constraint value, we refer to situations where at least one of the constraints

ui ∈ S for i = 1, . . . , N is binding. Formally, the definition is ḡN (x) �= ḡN∗(x) for

any x feasible for the DRO problem. We note a sufficient but not necessary condition

for the support to not affect the worst-case constraint value: the situation in which the

support doesn’t affect the uncertainty set, which is defined as

{

u ∈ RN×m : (1/N )

N
∑

i=1

‖ui − di‖p ≤ ε p

}

=
{

u ∈ SN×m : (1/N )

N
∑

i=1

‖ui − di‖p ≤ ε p

}

.
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If the support satisfies this condition, we can conclude that ḡN (x) = ḡN∗(x) for any x

feasible for the DRO problem, and obtain improved bounds below. While the condition

depends on the location of the data-points, it is acceptable, as this is a condition we

can check given data to potentially improve the following bounds, without having to

solve the MRO problem. We also define the L-smooth condition, which is needed in

the subsequent theorems.

Definition 1 (L-smoothness) A differentiable function g(u, x) is L-smooth on its

domain, with constant L , with respect to the �2-norm and for a given x , if

‖∇g(v, x) − ∇g(u, x)‖2 ≤ L‖u − v‖2, ∀u, v ∈ domu g.

With these definitions, we can prove the following relations.

Theorem 4 With the same x and ε, and for any integer p ≥ 1, we always have

ḡN (x) ≤ ḡK (x).

Suppose that Assumption 1 holds, and −g is L-smooth according to Definition 1.

Then, with the same x and ε, and for any integer p ≥ 1, we always have

ḡK (x) ≤ ḡN∗(x) + (L/2)D(K ).

The proof is delayed to Appendix D. The results also hold for p = ∞, as we have

shown in Remark 1 that the case p = ∞ is the limit of the case p ≥ 1, and these

results hold under the limit.

Let � be the maximum difference in constraint value resultant from relaxing

the support constraint on the MRO uncertainty sets, subject to x being feasible for

problem (MRO), � = maxx∈X (ḡN∗(x) − ḡN (x)). As we assume Assumption 1 to

hold, combined with the smoothness of g, we note that when solving for ḡN∗(x),

the chosen vi values without the support constraint will still remain in the domain

domu g. Refer to a similar argument in Appendix D (ii) for details. The function

ḡN∗(x) − ḡN (x) is then continuous in x and everywhere defined for x ∈ X , thus

maximizing with respect to X , a compact set, the value � is finite. Then, we observe

that ḡK (x) − ḡN (x) ≤ � + (L/2)D(K ) for all such x , so the smaller the D(K ),

(i.e., higher-quality clustering procedure), the smaller the increase in the worst-case

constraint value. In addition, the value � is independent of K , as it only depends on

ḡN∗(x) and ḡN (x).

Remark 2 While � could be constructed to be arbitrarily bad, in practice, we expect

our relevant range of ε to be small enough such that the difference is insignificant. We

can approximate � ≈ 0 and use the upper bound (L/2)D(K ), as this bound is often

not tight. See Sects. 6.3 and 6.1 for examples.

Uncertain objective When the uncertainty is in the objective, Theorem 4 quantifies

the difference in optimal values.
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Corollary 1 Consider the problem where g is itself the objective function we would like

to minimize and X ⊆ Rn represents the constraints, which are deterministic. Then,

(L/2)D(K ) + � upper bounds the difference in optimal values of the MRO problem

with K and N clusters.

Uncertain constraints. When the uncertainty is in the constraints, the difference

between ḡK (x) and ḡK (x) no longer directly reflects the difference in optimal values.

Instead, clustering creates a restriction on the feasible set for x as follows. For the

same x̂ , ḡK (x̂) takes a greater value than ḡN (x̂). Since both of them are constrained

to be nonpositive from (MRO), the feasible region with K clusters is smaller.

Affine dependence on uncertainty. As a special case, when g is affine in u, L = 0, so

we observe the following corollary.

Corollary 2 (Clustering with affine dependence on the uncertainty) If g(u, x) is affine

in u and the worst-case constraint value is not affected by the support constraint, then

clustering makes no difference to the optimal value and optimal solution to (MRO).

4.2 Maximum-of-concave functions

We now consider the more general case of a maximum-of-concave constraint function,

g(u, x) = max j≤J g j (u, x), subject to a polyhedral support, S = {u | Hu ≤ h}. For

p ≥ 1, we make use of the dual of the optimization problem in the constraint of (14),

defined for various K ,

ḡK (x) = minimize
λ≥0,γ≥0,z,s

K
∑

k

(|Ck |/N )sk

subject to [−g j ]∗(z jk − H T γ jk) + γ T
jk(h − Hd̄k) − zT

jk d̄k + λε p

+ φ(q)λ
∥

∥z jk/λ
∥

∥

q

∗ ≤ sk, k = 1, . . . , K , j = 1, . . . , J ,

(MRO-K-Dual)

where the variables y jk from (15) are replaced by H T γ jk , with γ jk ≥ 0, due to the

specific form of the polyhedral support. Similarly, for p = ∞, we define

ḡK (x) = minimize
λ≥0,γ≥0,z,s

K
∑

k

(|Ck |/N )sk

subject to [−g j ]∗(z jk − H T γ jk) + γ T
jk(h − Hd̄k) − zT

jk d̄k

+ λkε ≤ sk, k = 1, . . . , K , j = 1, . . . , J ,
∥

∥z jk

∥

∥

∗ ≤ λk, k = 1, . . . , K , j = 1, . . . , J .

(MRO-K-Dual-∞)

The following theorems hold for both p ≥ 1 and p = ∞.

Theorem 5 When g is the maximum of concave functions with domain domu g j = Rm

and polyhedral support S = {u | Hu ≤ h}, and where each −g j is L j -smooth
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according to Definition 1, we have, for the same x and ε,

ḡN (x) − δ(K , z, γ ) ≤ ḡK (x) ≤ ḡN∗(x) + max
j≤J

(L j/2)D(K ),

where δ(K , z, γ ) = (1/N )
∑K

k=1

∑

i∈Ck
max j≤J ((−z jk − H T γ jk)

T (di − d̄k)), and

z, γ are the dual variables. ḡN∗(x) is the problem without support constraints.

The proof is delayed to Appendix E. Due to the nonconvex and nonconcave nature

of maximum-of-concave functions, the lower bound now involves an extra term

δ(K , z, γ ). However, when g is a maximum-of-affine function, which is convex, we

know ḡN∗(x) to be an upper bound on ḡK (x).

Corollary 3 When g is the maximum of affine functions with domain domu g j = Rm

and polyhedral support S = {u | Hu ≤ h}, for the same x and ε,

ḡN (x) − δ(K , z, γ ) ≤ ḡK (x) ≤ ḡN∗(x)

This follows from the fact that L j = 0 for all affine functions g j .

Uncertain objective When the uncertainty is in the objective, Theorem 5 and Corol-

lary 3 quantifies the possible difference in optimal values between K and N clusters.

We let � = maxx

(

ḡN∗(x) − ḡN (x)
)

, subject to x being feasible for problem (MRO).

Note that this is only needed for the upper bound.

Corollary 4 Consider the problem where g is itself the objective function we would like

to minimize and X ⊆ Rn represents the constraints, which are deterministic. Then,

δ(K , z, γ ) upper bounds the possible decrease in optimal values of the MRO problem

with K clusters compared with that of N clusters. Similarly, max j≤J (L j/2)D(K )+�

upper bounds the possible increase.

Uncertain constraints When the uncertainty is in the constraints, the difference

between ḡN (x) and ḡK (x) as given in Theorem 5 no longer directly reflect the dif-

ference in optimal values. Instead, clustering affects the feasible set for x as follows.

For any x̂ , in the case ḡN (x̂) ≥ ḡK (x̂), ḡK (x̂) can be at most δ(K , z, γ ) lower in

value than ḡN (x̂). Since both values are constrained to be nonpositive from (MRO),

the feasible region of the MRO problem with K clusters may be less restricted than

that of N clusters. This indirectly allows MRO with K clusters to obtain a smaller

optimal value. On the other hand, in the case ḡN (x̂) ≤ ḡK (x̂), ḡK (x̂) can be at most

max j≤J (L j/2)D(K ) + � higher in value than ḡN (x̂). This indirectly lets MRO with

K clusters to obtain a larger optimal value.

5 Parameter selection and outliers

Choosing K . When the uncertain constraint is affine and S does not affect the worst-

case constraint value, the number of clusters K does not affect the final solution,

so it is always best to choose K = 1. When S affects the worst-case constraint
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value, there is a difference of at most � between setting K = 1 and K = N , which

can often be approximated ≈ 0 for small ε. Therefore, setting K = 1 remains the

recommendation. When the constraint is concave, we choose K to obtain a reasonable

upper bound on ḡK (x), as described in Theorem 4. This upper bound depends linearly

on D(K ), the clustering value, so by choosing the elbow of the plot of D(K ), we

choose a cluster number that, while being a reasonably low value, best conforms to

the shape of the underlying distribution. When the constraint is maximum-of-concave,

the bounds given in Theorem 5 are also related to D(K ). The upper bound is related

in the same manner as above. For the lower bound, note that we wish for δ(K , z, γ ),

which is nonnegative from Appendix E, to take lower values. By definition, δ(K , z, γ )

is linearly dependent on the differences di − d̄k , which are smaller when D(K ) takes

lower values. Therefore, while γ and z are unknown, we can attempt to lower the

possible value of δ(K , z, γ ) by choosing a reasonably low D(K ). The elbow method

has been commonly used in machine learning problems pertaining the choice of hyper-

parameters, especially for K -means, and can be traced back to Thorndike [44] in

1953. Note that, by directly returning D(K ) and examining the elbow as an initial

step, this procedure can be completed in the clustering step without having to solve

the downstream optimization problem. To further improve the choice of K , or if the

elbow is unclear, cross-validation may be used for low K values or K values around

the elbow. No matter if the uncertainty lies in the objective or the constraints, this

bound will inform us of the potential difference between different K .

Choosing ε While we have outlined theoretical results in Theorem 3 for choosing ε,

in practice, we experimentally select ε through cross validation to arrive at the desired

guarantee. Therefore, while the theoretical bounds suggest to choose a larger ε when

we cluster, this may not be the case experimentally. In fact, for concave g, we may

even choose a smaller ε, due to the increase in the level of conservatism for small

K . On the other hand, for maximum-of-concave g, there is the possibility of needing

a larger ε, as smaller K may lead to less conservative solutions. However, for both

cases, we show a powerful result in the upcoming numerical examples: although for

the same ε, MRO with K clusters differs in conservatism from Wasserstein DRO (N

clusters), there are cases where we can tune ε such that MRO and DRO provide almost

identical tradeoffs between objective values and probabilistic guarantees, such that no

loss in performance results from choosing a smaller cluster number K .

Data with outliers When the provided dataset contains outliers, one might imagine that

the centroids created by the clustering algorithm will be biased towards the outliers.

While this is true, the weights of the outliers will not increase through clustering, thus

the effect of outliers on these clustered Wasserstein balls is not worse than their effect

on the original Wasserstein balls, which include the Wasserstein ball around the outlier

point. In fact, by clustering the outlier point with other points, MRO offers protection

against the outlier. We demonstrate this in on the numerical experiment in Sect. 6.4,

where we compare three methods: MRO, MRO with outlier removal, and MRO with

the outlier considered as its own cluster.
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6 Numerical examples

We now illustrate the computational performance and robustness of the proposed

method on various numerical examples. All the code to reproduce our experiments is

available, in Python, at

https://github.com/stellatogrp/mro_experiments.

We run the experiments on the Princeton Institute for Computational Science and

Engineering (PICSciE) facility with 20 parallel 2.4 GHz Skylake cores. We solve all

optimization problems with MOSEK [37] optimizer with default settings. In Sect. 6.1,

we demonstrate the performance of MRO when the uncertain constraint is concave.

In Sect. 6.2, 6.3, and 6.4, we demonstrate the performance of MRO for maximum-of-

affine uncertainty.

The calculated in-sample objective value and out-of-sample expected values, as

well as the out-of-sample probability of constraint violation, are averaged over 50

independent runs of each experiment. For each run, we generate evaluation data of

the same size N as the training dataset. For numerical examples with an uncertain

objective, the probability of constraint violation is measured as the probability the

average out-of-sample value is above the in-sample value. For numerical examples

with an uncertain constraint, the probability of constraint violation is measured as the

probability the average constraint value is above zero. For all experiments, we plot the

following.

1. In-sample objective values and out-of-sample expected values vs. ε for different

K . We use solid lines for the in-sample objective value, and dotted lines for the

out-of-sample expected value.

2. Objective value vs. β for different K ; each point represents the solution for the ε

achieving the smallest objective value. Starred K values indicate the formulation

without support constraints.

3. The difference in the value of the uncertain objective between using K and N clus-

ters, compared with the theoretical upper bound from Theorems/Corollaries 4, 5, 3.

We use solid lines for the actual difference, and dotted lines for the upper bounds.

4. Solve time for select K and ε values.

We also plot the clustering value D(K ) over K , and use the elbow method to suggest

an a priori K value to perform cross-validation around.

6.1 Capital budgeting

We consider the capital budgeting problem in [4, Section 4.2], where we select a

portfolio of investment projects maximizing the total net present value (NPV) of the

portfolio, while the weighted sum of the projects is less than a total budget θ . The NPV

for all projects is η(u) ∈ Rn , where for each project j , η j (u) is the sum of discounted

cash flows F j t over the years t = 0, . . . , T , i.e., η j (u) =
∑T

t=0 F j t/(1 + u j )
t . Here,

u j ∈ R+ is the discount rate of project j . We formulate the uncertain function to be

minimized as
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Fig. 1 D(K ) vs. K . for all experiments. The red lines are the suggested values

g(u, x) = −η(u)T x,

where x = (x1, . . . , xn) ∈ {0, 1}n is the indicator for selecting each project. The

discount rate u j is subject to uncertainty, as it depends on several factors, such as

the interest rate of the country where project j is located and the level of return

the decision-maker wants to compensate the risk. The function g is concave and

monotonically increasing in u, and we can define a domain u ≥ 0 so that Assumption 1

and Theorem 4 applies. The robust problem becomes

minimize
x,t

τ

subject to ḡ(u, x) ≤ τ, u ∈ U(K , ε)

hT x ≤ θ, x ∈ {0, 1},

where h ∈ Rn is the vector of project weights. We solve the convex reformulation

obtained through applying (5), for p = 2, which gives rise to a number of power-cone

constraints proportional to the number of clusters.

Problem setup. We set n = 20, N = 120, T = 5. We generate F j t from a

uniform distribution on [0.1, 0.5 + 0.004t] for j = 1, . . . , n, t = 0, . . . , T .

For all j , h j is generated from a uniform distribution on [1, 3 − 0.5 j], and the

total budget θ is set to be 12. We generate uncertain data from two slightly dif-

ferent uniform distributions, to simulate two different sets of predictions on the

discount rates. The first half is generated on [0.005 j, 0.02 j], and the other half on

[0.01 j, 0.025 j], for all j . We calculate an upper bound on the L-smooth parameter,

L = ‖∇2
∑n

j=1

∑T
t=0 F j t (x̂N ) j (1+u j )

−t‖2,2 ≤ ‖
∑n

j=1

∑T
t=0 t(t +1)F j t (x̂N ) j‖2,2

for each data-driven solution x̂N .

Results We observe in Fig. 2 that using two clusters is enough to achieve performance

almost identical to that of using 120 clusters. Although from the left image, we see

that K = 2 slightly upper bounds K = 120, from the right, their tradeoffs between

the objective value and relevant constraint violation probability (β ≤ 0.2) are largely

the same, so we can always tune ε to achieve the same performance and guarantees.

Notice that the results for K = 120 and K = 120∗ are near identical for small ε, where
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Fig. 2 Capital budgeting. Descriptions are given in the beginning of Sect. 6. The difference in objective

values (bottom left) is calculated as ḡK (x) − ḡN (x), and the theoretical bound is (L/2)D(K ) from Corol-

lary 1

K = 120∗ is the formulation without the support constraint. Therefore, while ḡN∗(x)

slightly upper bounds ḡN (x), we can approximate their difference � ≈ 0 for small

enough ε, for which the upper bound (L/2)D(K ) thus hold. In fact in this example,

even for larger ε where we observe � > 0, the actual difference between ḡK and ḡN

is bounded by (L/2)D(K ). We see that the elbow of the upper bound is at K = 2,

and the true difference follows the same trend, matching the suggestion from Fig. 1.

Therefore, setting K = 2 is the optimal decision, with a time reduction of 2 orders

of magnitude, and a complexity reduction from 26,626 variables and 12,000 power

cones to 666 variables and 200 power cones.

6.2 Sparse portfolio optimization

We consider a market that forbids short-selling and has m assets as in [24]. Daily

returns of these assets are given by the random vector d = (d1, . . . , dm) ∈ Rm . The

percentage weights (of the total capital) invested in each asset are given by the decision

vector x = (x1, . . . , xn) ∈ Rn . We restrict our selection to at most θ assets, given by

the 0-th norm cardinality constraint below. The distribution P is unknown, but we have

observed a historical dataset DN . Our objective is to minimize the CVaR with respect

to variable x ,

minimize CVaR(−uT x, α)

subject to 1T x = 1, x ≥ 0, ‖x‖0 ≤ θ,
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which represents the average of the α largest portfolio losses that occur. In other words,

the CVaR term seeks to ensure that the expected magnitude of portfolio losses, when

they occur, is low. The objective has an analytical form with an extra variable τ given

as [24, 46]: EP
(

τ + 1
α

max{−uT x − τ, 0}
)

. From this, we obtain g as the maximum

of affine functions,

g(u, x) = max{(−1/α)xT u + (1 − 1/α)τ, τ }.

We then apply the convex reformulation given in Appendix B, for p = ∞.

Problem setup. We take stock data from the past 10 years of S&P500, and generate

synthetic data from their fitted general Pareto distributions. We choose a generalized

Pareto fit over a normal distribution as it better models the heavy tails of the returns [15].

See the Github repository for the code, which uses the "Rsafd" R package [16]. We let

α = 20%, m = 50 stocks, and generate a dataset size of N = 1000. Our portfolio can

include at most θ = 5 stocks. For the upper bound δ(K , z, γ ) on ḡN (x) − ḡK (x), we

note the special structure of this problem, where one of the affine pieces is independent

of u, to arrive at a bound δ(K , z, γ ) = maxk{maxi {(d̄k − di )
T x/α}}.

Results In Fig. 3, while setting K to smaller values lead to a decrease in the optimal

value across ε, we note that for K = 5 and above, we can already achieve a tradeoff

curve between the optimal value and probability of constraint satisfaction that is similar

to that of K = 1000, and setting K = 10 brings it slightly closer. In the plots of D(K )

and of the upper bound on the difference, we also note that the elbow is around K = 5.

We thus recommend choosing K through cross validation around 5, as tuning ε for

these small K gives 1–3 orders of magnitude time reduction.

6.3 Facility location

We examine the classic facility location problem [9, 33]. Consider a set of n potential

facilities, and m customers. Variable x ∈ {0, 1}n describes whether or not we construct

each facility i for i = 1, . . . , n, with cost ci . In addition, we would like to satisfy the

uncertain demand u ∈ Rm at minimal cost. We define variable X ∈ Rn×m where X i j

corresponding to the portion of the demand of customer j shipped from facility i with

corresponding cost Ci j . Furthermore, r ∈ Rn represents the production capacity for

each facility, and u ∈ Rm represents the uncertain demand from each customer. For

each customer j , X j represents the proportion of goods shipped from any facility to

that customer, which sums to 1. For each facility i , (X T )i represents the proportion

of goods shipped to any customer. Putting this all together, we obtain the objective to

minimize, cT x + tr(CT X), subject to constraints 1T X j = 1, j = 1, . . . , m, as well

as multiple affine uncertain capacity constraints,

gi (u, x) = (X T )i u − ri xi ≤ 0 i = 1, . . . , n,

which we combine to create a single maximum-of-affine constraint, g(u, x) =
maxi≤n((X T )i u − ri xi ) ≤ 0. Now, to ensure a high probability of constraint sat-
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Fig. 3 Sparse portfolio. Descriptions are given in the beginning of Sect. 6. The difference in objective values

(bottom left) is calculated as ḡN (x) − ḡK (x), and the theoretical bound is δ(K , z, γ ) from Corollary 3

isfaction, we use the CVaR reformulation,

g(u, x, τ ) = τ + (1/α) max

(

max
i≤n

((X T )i u − ri xi − τ), 0

)

≤ 0,

where we add the auxiliary variable τ . We assume a polyhedral support S = {u |
Hu ≤ b} for the demand, and apply the convex reformulation given in Appendix B,

for p = ∞.

Problem setup. To generate data, we set n = 5 facilities, m = 25 customers, and

N = 50 data samples. For the CVaR reformulation, we set α = 20%. We set costs c =
(46.68, 58.81, 30, 42.09, 35.87), and generate the two coordinates of each customer’s

location from a uniform distribution on [0, 15]. We then calculate C as the �2 distance

between each pair of customers. We set production capacities r = (33, 26, 41, 26, 22).

We assume the demand d is supported between 1 and 6, written as Hu ≤ b, where

H = [−I I ]T and b is the concatenation of a vector of −1’s of length m and a

vector of 6’s of length m. We generate demands as the combination of two normal

distributions. Half of the data is generated with mean μ1 = 3 and variance σ1 = 0.9,

the second half has mean μ1 = 4 and variance σ1 = 0.8. We then project the demands

onto (1, 6). For the upper bound δ(K , z, γ ) on ḡN (x) − ḡK (x) from Corollary 3, we

have (1/N )
∑K

k=1

∑

i∈Ck
max(max j≤J (((1/α)X [i] − H T γ jk), 0)T (di − d̄k)). Note

that this upper bounds the difference in constraint values, and only indirectly affects

the objective values through restrictions on the feasible region. Therefore, it is not

an upper bound on the difference in objective value, merely an estimate. We cannot

directly compare this upper bound against the change in constraint values, as the
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Fig. 4 Facility location. Descriptions are given in the beginning of Sect. 6. The difference in objective values

(bottom left) is calculated as Obj(N ) - Obj(K ), and we compare it to the theoretical upper bound δ(K , z, γ )

on the worst-case constraint value ḡN (x) − ḡK (x), from Corollary 3

constraint value will always be near 0 for optimality. We thus compare it against the

change in objective values.

Results As expected of maximum-of-affine g, we note in Fig. 4 that setting K to

smaller values lead to a decrease in the optimal value across different ε values. While

K = 1 yields poor performance in terms of the probability of constraint violation, we

observe that K = 2 already yields a tradeoff between the objective and probability of

constraint violation close to that of K = 50. Through cross-validation with different

K , we select K = 5, which provides a tradeoff curve closer to optimality. As this

problem has uncertainty in the constraints and not the objective, the bounds given in

Corollary 3 do not directly reflect the difference in the objective values. However, they

do give a reference value and inform us of the general trend of the difference. In this

case, they still upper bound the actual difference, as shown in Fig. 4. We note that the

bounds we use do not depend on ḡN∗(x), so it is irrelevant whether or not the support

has an affect on the worst-case constraint value. Overall, choosing K = 5 leads to a

time reduction of an order of magnitude while achieving near-optimal performance.

6.4 Newsvendor problem

We consider a 2-item newsvendor problem where, at the beginning of each day, the

vendor orders x ∈ R2
+ products at price h = (4, 5). These products will be sold at the

prices c = (5, 6.5), until either the uncertain demand u or inventory x is exhausted.

The objective function to minimize is the sum of the ordering cost minus the revenue,
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Fig. 5 Newsvendor. data-points

and the outlier at (0,0)

hT x −cT min{x, u}, from which we obtain the maximum-of-affine uncertain function

g to minimize,

g(u, x) = hT x + max(−c1x1 − c2x2, −c1x1 − c2u2, −c1u1 − c2x2,−c1u1 − c2u2).

We assume a polyhedral support S = {u | Cu ≤ b}, and obtain the convex

reformulation, for p = 1, by applying (15).

For this problem, we consider the effects of outliers on the performance of MRO.

Therefore, we consider the data to have an outlier at (0, 0), the worst-case value of the

support set. In Fig. 5, we show a set of generated data along with this outlier point.

We consider three ways to solve the problem.

1. MRO, where we directly apply MRO to the dataset with the outlier.

2. ROB-MRO, where we perform preliminary analysis on the dataset to remove the

outlier point, then apply MRO to the cleaned dataset.

3. AUG-MRO, where we perform the clustering step on data without the outlier, then

define an augmented distribution supported on K +1 points, where the extra point

is the outlier point (0,0), with weight 1/N . The weights of the other clusters are

adjusted accordingly.

Problem setup. To generate data, we set N = 100 data samples. We assume demand

is supported between 0 and 40, which we write as Cu ≤ b, where C = [−I I ]T

and b = (0, 0, 0, 0, 40, 40, 40, 40). We allow non-integer demand to allow for more

variance in the data. We generate the demand from a log-normal distribution, where

the underlying normal distribution has parameters

μ =
[

3.0

2.8

]

, � =
[

0.3 −0.1

−0.1 0.2

]

,

and take the minimum between the generated values and 40. For the upper bound

δ(K , z, γ ) on ḡN (x) − ḡK (x) from Corollary 3, we have (1/N )
∑K

k=1

∑

i∈Ck

max j≤4((−c̃ j − CT γ jk)
T (di − d̄k)), where c̃1 = 0, c̃2 = c1e1, c̃3 = c2e2, c̃4 = c.

Results To examine the effect of the outlier, in Fig. 6, we compare, for K = 10 and

K = 100, the objectives and tradeoff curves for the three methods. We note that,

when the outlier is averaged with other data-points, the final in-sample objective may

be improved, as the centroid moves closer to the non-outlier points. We observe that

MRO, in which the outlier may be clustered with other points, offers a lower in-sample

objective than AUG-MRO, in which the outlier is considered its own cluster. MRO has
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in fact offered protection against the outlier. And, as expected, ROB-MRO, where the

outlier point is removed, yields the best in-sample results. Regardless of the method,

we note that the final out-of-sample tradeoff curves are near-identical. Comparing the

plots for K = 10 and K = N = 100, the difference between MRO and ROB-MRO

for K = 10 is not larger than the difference for K = 100, which shows that, while

removing outliers a priori may be helpful, the effect of outliers will not be worse for

MRO compared to classic Wasserstein DRO.

In Fig. 7, we compare the in and out-of-sample objective values for MRO. While

setting K = 1 yields suboptimal results, we note that for K = 5 and above, we can

achieve similar performance as setting K = 100. We note that the upper bound on

ḡN (x) − ḡK (x), given in Corollary 3, holds for MRO. We again note that bounds

we observe do not depend on ḡN∗(x), so it is irrelevant whether or not the support

has an affect on the worst-case constraint value. Regardless, we see that the support

only minimally affects the worst-case constraint value, at only at higher values of ε.

Overall, choosing K = 5, we obtain an order of magnitude computational speed-up.

7 Conclusions

We have presented mean robust optimization (MRO), a new data-driven methodology

for decision-making under uncertainty that bridges robust and distributionally robust

optimization while preserving rigorous probabilistic guarantees. By clustering the

dataset before performing MRO, we solve an efficient and computationally tractable

formulation with limited performance degradation. In particular, we showed that when

the constraints are affine in the uncertainty, clustering does not affect the optimal

value of the objective. When the constraint is concave or maximum-of-concave in the

uncertainty, we directly quantified the change in worst-case constraint value that is

caused by clustering. For problems with objective uncertainty, this directly bounds

the change in the optimal value caused by clustering. We demonstrated this result

through a set of numerical examples, where we observed the possibility of tuning the

size of the uncertainty set such that using a small number of clusters achieves near-

identical performance of traditional DRO, with much higher computational efficiency.

In the final example, we also demonstrated that MRO offers protection against outliers

compared to Wasserstein DRO.

A Proof of the constraint reformulation in (15)

We give a prove for the general case of maximum-of-concave functions. When J = 1,

we take α1k = wk , for all k. For a simpler proof for the case of single-concave

functions, refer to [47, Appendix A].
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Fig. 6 Newsvendor. Comparing the three methods for K = 10 and K = 100. Left: in-sample objective

values vs ε. Right: objective value vs β

Fig. 7 Newsvendor, MRO. Descriptions are given in the beginning of Sect. 6. The difference in objective

values (bottom left) is calculated as ḡN (x)−ḡK (x), and the theoretical bound is δ(K , z, γ ) from Corollary 3
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To simplify notation, we define ck(v jk) = ‖v jk − d̄k‖p − ε p. Then, starting from

the inner optimization problem of (14):

⎧

⎨

⎩

sup
v11,...,vJ K ∈S,α∈�

∑K
k=1

∑J
j=1 α jk g j (v jk, x)

subject to
∑K

k=1

∑J
j=1 α jkck(v jk) ≤ 0

=
{

sup
v11,...,vJ K ∈S,α∈�

inf
λ≥0

∑K
k=1

∑J
j=1 α jk g j (v jk, x) − λ

∑K
k=1

∑J
j=1 α jkck(v jk)

=
{

sup
α∈�

inf
λ≥0

sup
v11,...,vJ K ∈S

∑K
k=1

∑J
j=1 α jk g j (v jk, x) − λ

∑K
k=1

∑J
j=1 α jkck(v jk),

We applied the Lagrangian in the first equality. Then, as the summation is over upper-

semicontinuous functions g j (v jk, x) concave in v jk , we applied the Von Neumann-

Fan minimax theorem [38] to interchange the inf and the sup. Next, we rewrite the

formulation using an epigraph trick, and make a change of variables.

=

⎧

⎪

⎨

⎪

⎩

sup
α∈�

inf
λ≥0,s

∑K
k=1 sk

subject to sup
v11,...,vJ K ∈S

∑J
j=1 α jk(g j (v jk , x) − λck(v jk)) ≤ sk k = 1, . . . , K ,

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

sup
α∈�

inf
λ≥0,s

∑K
k=1 sk

subject to sup
α11v11∈α11 S,...,αJ K vJ K ∈αJ K S

∑J
j=1 α jk(g j ((α jkv jk)/α jk , x)

−λck((α jkv jk)/α jk)) ≤ sk k = 1, . . . , K .

In the last step, we rewrote v jk = (α jkv jk)/α jk , and maximized over α jkv jk ∈ α jk S.

In the case αi j > 0, the terms in the summation are unchanged, and maximizing over

v jk is equivalent to maximizing over α jkv jk . In the case α jk = 0, we have in the

transformed formulation (α jkv jk)/α jk = 0/0 = 0, and α jk(g j (0, x) − λck(0)) =
0(g j (0, x) − λck(0)) = 0. In the original formulation, the term α jk(g j (v jk, x) −
λck(v jk)) is also equivalent to 0. As the terms in the summation are 0 regard-

less of the value of v jk , maximizing over v jk is equivalent to maximizing over

0. Therefore, we note that the optimal value remains unchanged. Next, we make

substitutions h jk = α jkv jk , and define functions g′
j (h jk, x) = α jk g j (h jk/α jk, x),

c′
k(h jk) = α jkck(h jk/α jk).

=

⎧

⎪

⎨

⎪

⎩

sup
α∈�

inf
λ≥0,s

∑K
k=1 sk

subject to sup
h11∈α11 S,...,h J K ∈αJ K S

∑J
j=1 g′

j (h jk , x) − λc′
k(h jk) ≤ sk k = 1, . . . , K ,

=

⎧

⎨

⎩

sup
α∈�

inf
λ≥0,s

∑K
k=1 sk

subject to
∑J

j=1[−g′
j + χα jk S + λc′

k ]∗(0) ≤ sk k = 1, . . . , K .

For the new functions defined, we applied the definition of conjugate functions. We

also define the characteristic function χS(v) with χS(v) = 0 if v ∈ S; = ∞ otherwise.
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Now, using the conjugate form f ∗(y) = αg∗(y) of a right-scalar-multiplied function

f (x) = αg(x/α), and noting that χα jk S(h) takes the same value as α jkχS(h/α jk), we

can rewrite the constraint as

J
∑

j=1

α jk[−g j + χS + λck]∗(0) ≤ sk k = 1, . . . , K .

Next, borrowing results from Esfahani et al. [24, Theorem 4.2], Rockafellar and Wets

[41, Theorem 11.23(a), p. 493], and Zhen et al. [51, Lemma B.8], with regards to the

conjugate functions of infimal convolutions and p-norm balls, we note that:

α jk[(−g j + χS + λck)]∗(0) = α jk inf
y jk ,z jk

([−g j ]∗(z jk − y jk, x)

+ σS(y jk) + [λck]∗(−z jk)),

[λck]∗(−z jk) = sup
v jk

(−zT
jkv jk − λ‖v jk − d̄k‖p + λε p)

= −zT
jk d̄k + φ(q)λ‖z jk/λ‖q

∗ + λε p.

Substituting this in, we have

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

sup
α∈�

inf
λ≥0,s,z,y

∑K
k sk

subject to
∑J

j=1 α jk([−g j ]∗(z jk − y jk, x)

+σS(y jk) − zT
jk d̄k + φ(q)λ

∥

∥z jk/λ
∥

∥

q

∗ + λε p) ≤ sk

k = 1, . . . , K .

Taking the supremum over α, noting that
∑J

j=1 α jk = wk for all k, we arrive at

⎧

⎪

⎪

⎨

⎪

⎪

⎩

inf
λ≥0,s,z,y

∑K
k sk

subject to wk([−g j ]∗(z jk − y jk, x) + σS(y jk) − zT
jk d̄k

+ φ(q)λ
∥

∥z jk/λ
∥

∥

q

∗ + λε p) ≤ sk k = 1, . . . , K , j = 1, . . . , J ,

which is equivalent to (15).

B Reformulation of themaximum-of-concave case for p = ∞

We again give the general proof for J ≥ 1. For the case J = 1, refer to the simpler

proof [47, Appendix B]. When p = ∞, we have

123



Mean robust optimization

minimize f (x)

subject to

⎧

⎨

⎩

maximize
v11,...,vJ K ∈S,α∈�

∑K
k=1

∑J
j=1 α jk g(v jk , x)

subject to
∑J

j=1(α jk/wk)‖v jk − d̄k‖ ≤ ε, k = 1, . . . , K

⎫

⎬

⎭

≤ 0,

(17)

which has a reformulation where the constraint above is dualized,

minimize f (x)

subject to
∑K

k=1 wksk ≤ 0

[−g j ]∗(z jk − y jk, x) + σS(y jk) − zT
jk d̄k + λkε ≤ sk

k = 1, . . . , K , j = 1, . . . , J
∥

∥z jk

∥

∥

∗ ≤ λk k = 1, . . . , K , j = 1, . . . , J ,

(18)

with new variables sk ∈ R, z jk ∈ Rm , and y jk ∈ Rm . We prove this by starting from

the inner optimization problem of (17):

⎧

⎨

⎩

sup
v11,...,vJ K ∈S,α∈�

∑K
k=1

∑J
j=1 α jk g j (v jk, x)

subject to
∑J

j=1(α jk/wk)‖v jk − d̄k‖ ≤ ε, k = 1, . . . , K

=

⎧

⎨

⎩

sup
v11,...,vJ K ∈S,α∈�

inf
λ≥0

∑K
k=1(

∑J
j=1 α jk g j (v jk, x)

+λk(ε −
∑J

j=1(α jk/wk)‖v jk − d̄k‖))

=

⎧

⎨

⎩

sup
α∈�

inf
λ≥0

sup
v11,...,vJ K ∈S

∑K
k=1(

∑J
j=1 α jk g j (v jk, x)

+λk(ε −
∑J

j=1(α jk/wk)‖v jk − d̄k‖))

We have again formulated the Lagrangian and applied the minmax theorem to the sum

of concave functions in v jk . Now, we can rewrite this in epigraph form,

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

sup
α∈�

inf
λ≥0,s

∑K
k=1 sk

subject to sup
v11,...,vJ K ∈S

λkε +
∑J

j=1 α jk g j (v jk, x)

−λk(α jk/wk)‖v jk − d̄k‖ ≤ sk k = 1, . . . , K ,

then use the definition of the dual norm to rewrite the constraints,

⎧

⎨

⎩

sup
v11,...,vJ K ∈S

λkε +
∑J

j=1 min
‖z jk‖∗≤λk/wk

α jk g j (v jk, x)

−α jk zT
jk(v jk − d̄k) ≤ sk k = 1, . . . , K ,

=

⎧

⎨

⎩

sup
α11v11∈α11 S,...,αJ K vJ K ∈αJ K S

λkε +
∑J

j=1 min
‖z jk‖∗≤λk/wk

α jk g j

((α jkv jk)/α jk, x) − α jk zT
jk(v jk − d̄k) ≤ sk k = 1, . . . , K .
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In the last step, we again rewrote v jk = (α jkv jk)/α jk inside functions g j . Using

similar logic as in Appendix A, we note that this does not change the optimal value

for both α jk > 0 and α jk = 0, as taking the supremum over the transformed variables

is equivalent to taking the supremum over the original variables. For conciseness, we

omit the steps of creating the right-scalar-multiplied function and transformations. For

details, please refer to Appendix A. We apply the definition of conjugate functions

and arrive at the optimization problem

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

sup
α∈�

inf
λ≥0,s,z

∑K
k=1 sk

subject to λkε +
∑J

j=1 α jk[−g j + χS]∗(−z jk, x) + α jk zT
jk d̄k ≤ sk

k = 1, . . . , K

‖z jk‖∗ ≤ λk/wk k = 1, . . . , K , j = 1, . . . , J .

Now, substituting λk = λkwk , z jk = −z jk , and substituting in the conjugate functions

derived in Appendix A, we have

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

sup
α∈�

inf
λ≥0,s,z

∑K
k=1 sk

subject to λkwkε +
∑J

j=1 α jk([−g j ]∗(z jk − y jk, x) + σS(y jk)

−zT
jk d̄k) ≤ sk k = 1, . . . , K

‖z jk‖∗ ≤ λk, k = 1, . . . , K , j = 1, . . . , J .

Note that rescaling λk did not affect value of the problem, as minimizing λk is equiv-

alent to minimizing λkwk , as wk > 0. Lastly, taking the supremum over α, we arrive

at

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

inf
λ≥0,s,z

∑K
k=1 sk

subject to wk(λkε + [−g j ]∗(z jk − y jk, x) + σS(y jk) − zT
jk d̄k) ≤ sk

k = 1, . . . , K , j = 1, . . . , J

‖z jk‖∗ ≤ λk, k = 1, . . . , K , j = 1, . . . , J .

C Proof of the dual problem reformulation as p → ∞

We prove the dual equivalence. For a proof of primal equivalence, see the appendix

of [47].

Theorem 6 Let S be a bounded set. Define here

ḡK (x;∞) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minimize
∑K

k=1 wksk

subject to λ ≥ 0, zk ∈ Rm, yk ∈ Rm, sk ∈ Rm k = 1, . . . , K ,

[−g]∗(zk − yk) + σS(yk) − zT
k dk + ε ‖zk‖∗ ≤ sk

k = 1, . . . , K .

(19)
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Then, lim p→∞ ḡK (x; p) = ḡK (x;∞) for any x ∈ X.

Proof First, from Equation (5) we have for any p > 1 that

ḡK (x; p)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minimize
∑K

k=1 wksk

subject to λ ≥ 0, zk ∈ Rm, yk ∈ Rm, sk ∈ Rm k = 1, . . . , K ,

[−g]∗(zk − yk) + σS(yk) − zT
k dk

+φ(q)λ ‖zk/λ‖q
∗ + λε p ≤ sk k = 1, . . . , K

≥

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minimize
∑K

k=1 wksk

subject to λk ≥ 0, zk ∈ Rm, yk ∈ Rm, sk ∈ Rm k = 1, . . . , K ,

[−g]∗(zk − yk) + σS(yk) − zT
k dk

+φ(q)λk ‖zk/λk‖q
∗ + λkε

p ≤ sk k = 1, . . . , K

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minimize
∑K

k=1 wksk

subject to zk ∈ Rm, yk ∈ Rm, sk ∈ Rm k = 1, . . . , K ,

[−g]∗(zk − yk) + σS(yk) − zT
k dk

+ε ‖zk‖∗ ≤ sk k = 1, . . . , K

where the first equality is established in Appendix A and the second equality follows

from Lemma 1. Remark that the inequality in the second step simply follows as we

introduce λk and do not impose that λk = λ for all k = 1, . . . , K . Hence, considering

the limit for p tending to infinity gives us now lim inf p→∞ḡK (x; p) ≥ ḡK (x;∞). It

remains to prove the reverse lim supp→∞ḡK (x; p) ≤ ḡK (x;∞).

Second, we have for any p > 1 with 1/p + 1/q = 1 that

ḡK (x; p)

≤

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

minimize
∑K

k=1 wksk

subject to zk ∈ Rm, yk ∈ Rm, sk ∈ Rm k = 1, . . . , K ,

[−g]∗(zk − yk) + σS(yk) − zT
k dk + φ(q)

[

q−1
q

ε
1

1−q maxK
k′=1

‖zk′‖∗
]1−q

‖zk‖q
∗

+
[

q−1
q

ε
1

1−q maxK
k′=1

‖zk′‖∗
]

ε p ≤ sk k = 1, . . . , K

(q − 1)1/4 ≤ ‖zk‖∗ ≤ (q − 1)−1/4 k = 1, . . . , K ,

which follows from the choice λk =
[

q−1
q

ε
1

1−q maxK
k′=1

‖zk′‖∗
]

and by imposing the

restrictions (q − 1)1/4 ≤ ‖zk‖∗ ≤ (q − 1)−1/4 for all k = 1, . . . , K . Next, using

the identities φ(q)

[

q−1
q

]1−q

= (q − 1)(q−1)/qq
[

q−1
q

]1−q

= 1/q and p + 1
1−q

=
1
1
p

+ 1
1−q

= 1

1− 1
q

+ 1
1−q

= −q
−q+1

+ 1
1−q

= 1−q
1−q

= 1, as well as pulling ε ‖zk‖∗ > 0

out of the last two terms, we can rewrite the first constraints as

⎧

⎨

⎩

[−g]∗(zk − yk) + σS(yk) − zT
k

dk

+ε ‖zk‖∗

[

1
q

[

maxK
k′=1

‖zk′‖∗
‖zk‖∗

]1−q
+ q−1

q maxK
k′=1

‖zk′‖∗
‖zk‖∗

]

≤ sk k = 1, . . . , K .
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Then, we note that maxK
k′=1

‖zk′‖∗/ ‖zk‖∗ ≥ ‖zk‖∗/ ‖zk‖∗ = 1 and maxK
k′=1

‖zk′‖∗/
‖zk‖∗ ≤ (q − 1)−1/2, and hence we can apply Lemma 2 to obtain

ḡK (x; p) ≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

minimize
∑K

k=1 wksk

subject to zk ∈ Rm, yk ∈ Rm, sk ∈ Rm k = 1, . . . , K ,

[−g]∗(zk − yk) + σS(yk) − zT
k dk

+ε ‖zk‖∗ D(q) ≤ sk k = 1, . . . , K ,

(q − 1)1/4 ≤ ‖zk‖∗ ≤ (q − 1)−1/4 k = 1, . . . , K .

Let

ḡK
u (x; p) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

minimize
∑K

k=1 wksk

subject to zk ∈ Rm, yk ∈ Rm, sk ∈ Rm k = 1, . . . , K ,

[−g]∗(zk − yk) + σS(yk) − zT
k dk

+ε ‖zk‖∗ D
(

p
p−1

)

≤ sk k = 1, . . . , K

(p − 1)−1/4 ≤ ‖zk‖∗ ≤ (p − 1)1/4 k = 1, . . . , K .

(20)

Hence, as q = p/(p−1) and q −1 = 1/(p−1) we have ḡK (x; p) ≤ ḡK
u (x; p) for all

p > 1. Hence, taking the limit p → ∞ we have ḡK (x;∞) ≤ lim supp→∞ ḡK (x; p).

In fact, as the function D
(

p
p−1

)

defined in Lemma 2 is nonincreasing for all p suf-

ficiently large this implies that ḡK
u (x; p) is nonincreasing for p sufficiently large

and hence we have ḡK (x;∞) ≤ lim supp→∞ ḡK (x; p) ≤ lim inf p→∞ ḡK
u (x; p) =

lim p→∞ ḡK
u (x; p). We now prove here that lim p→∞ ḡK

u (x; p) = lim inf p→∞ ḡK
u (x;

p) ≤ ḡK (x;∞). Consider any feasible sequence {(zt
k, yt

k, st
k = [−g]∗(zt

k − yt
k) +

σS(yt
k)−(zt

k)
T dk +ε

∥

∥zt
k

∥

∥

∗)}t≥1 in the optimization problem characterizing ḡK (x;∞)

in Equation (19) so that limt→∞
∑K

k=1 wkst
k = ḡK (x;∞). Let z̃t

k ∈ arg max{‖z‖∗ |
z ∈ Rm, ‖z − zt

k‖∗ ≤ 1/t} for all t ≥ 1 and k = 1, . . . , K and observe that

‖z̃t
k‖∗ = 1/t + ‖zt

k‖∗ ≥ 1/t . Consider now an increasing sequence {pt }t≥1 so that

(pt −1)1/4 ≥ maxK
k=1 ‖z̃t

k‖∗ and (pt −1)−1/4 ≤ 1/t . Finally observe that the auxiliary

sequence {(z̃t
k, ỹt

k = yt
k + (z̃t

k − zt
k), s̃t

k = [−g]∗(z̃t
k − ỹt

k) + σS(ỹt
k) − (z̃t

k)
T dk +

ε
∥

∥z̃t
k

∥

∥

∗ D (pt/(pt − 1)))}t≥1 is by construction feasible in the minimization problem

characterizing the function ḡK
u (x; pt ) in Equation (20). Hence, finally, we have

lim
p→∞

gK
u (x; p) = lim

t→∞
gK

u (x; pt ) = lim
t→∞

K
∑

k=1

wk s̃t
k

= lim
t→∞

K
∑

k=1

wk

(

[−g]∗(z̃t
k − ỹt

k) + σS(ỹt
k) − (z̃t

k)
T dk + ε

∥

∥z̃t
k

∥

∥

∗ D (pt/(pt − 1))

)

≤ lim
t→∞

K
∑

k=1

wk

(

[−g]∗(zt
k − yt

k) + σS(yt
k) − (zt

k)
T dk + ε

∥

∥zt
k

∥

∥

∗ D (pt/(pt − 1))

)
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+
K

∑

k=1

wk

(

max
s∈S

‖s‖ + ‖dk‖ + εD (pt/(pt − 1))

)

/t

≤ lim
t→∞

K
∑

k=1

wk

(

[−g]∗(zt
k − yt

k) + σS(yt
k) − (zt

k)
T dk + ε

∥

∥zt
k

∥

∥

∗ D (pt/(pt − 1))

)

= lim
t→∞

K
∑

k=1

wk([−g]∗(zt
k − yt

k) + σS(yt
k) − (zt

k)
T dk

+ ε
∥

∥zt
k

∥

∥

∗ + ε
∥

∥zt
k

∥

∥

∗ (D (pt/(pt − 1)) − 1))

≤ lim
t→∞

K
∑

k=1

wk([−g]∗(zt
k − yt

k) + σS(yt
k) − (zt

k)
T dk

+ ε
∥

∥zt
k

∥

∥

∗ + ε(pt − 1)1/4 (D (pt/(pt − 1)) − 1))

≤ lim
t→∞

K
∑

k=1

wksk = ḡK (x;∞).

To establish the third inequality observe first that −(z̃t
k)

T dk = −(zt
k)

T dk − (z̃t
k −

zt
k)

T dk ≤ −(zt
k)

T dk + ‖z̃t
k − zt

k‖∗‖dk‖ ≤ −(zt
k)

T dk + ‖dk‖/t . Second, remark that

we have

σS(ỹt
k) = σS(yt

k + (z̃t
k − zt

k)) ≤ max
s∈S

sT (yt
k + (z̃t

k − zt
k))

≤ max
s∈S

sT yt
k + max

s∈S
sT (z̃t

k − zt
k)

≤max
s∈S

sT yt
k + ‖s‖‖z̃t

k − zt
k‖∗ ≤ max

s∈S
sT yt

k + 1/t max
s∈S

‖s‖,

as ‖z̃t − zt‖ ≤ 1/t . Lemma 2 guarantees that limt→∞ D (pt/(pt − 1)) = 1. Finally,
∥

∥zt
k

∥

∥

∗ ≤
∥

∥z̃t
k

∥

∥

∗ ≤ (pt − 1)1/4 and

lim
t→∞

(pt − 1)1/4 (D (pt/(pt − 1)) − 1) = lim
p→∞

(p − 1)1/4 (D (p/(p − 1)) − 1)

= lim
q→1

(q − 1)−1/4 (D(q) − 1) = 0

with 1/p + 1/q = 1 using again Lemma 2. ��

Lemma 1 We have

min
λ≥0

φ(q)λ ‖z/λ‖q
∗ + λε p = ‖z‖∗ε

for any p > 1 and q > 1 for which 1/p + 1/q = 1, φ(q) = (q − 1)q−1/qq and

ε > 0.

Proof Remark that as the objective function λ �→ φ(q)λ ‖z/λ‖q
∗ + λε p is continuous

and we have limλ→0 φ(q)λ ‖z/λ‖q
∗ + λε p = limλ→∞ φ(q)λ ‖z/λ‖q

∗ + λε p = ∞ as
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ε > 0 there must exist a minimizerλ� ∈ minλ≥0 φ(q)λ ‖z/λ‖q
∗+λε p withλ� > 0. The

necessary and sufficient first-order convex optimality conditions of the minimization

problem guarantee

λ� ∈ min
λ≥0

φ(q)λ ‖z/λ‖q
∗ + λε p ⇐⇒ (1 − q)φ(q)λ

−q
� ‖z‖q

� + ε p = 0

⇐⇒ ε p = (q − 1)φ(q)λ
−q
� ‖z‖q

� ⇐⇒ λ� = [(q − 1)φ(q)]1/q ‖z‖�ε
−p/q

⇐⇒ λ� = q − 1

q
ε

1
1−q ‖z‖�

where we exploit that 1/p + 1/q = 1 and φ(q) = (q − 1)q−1/qq . Indeed, we have

[(q − 1)φ(q)]1/q =
[

(q − 1)q/qq
]1/q = (q − 1)/q,

− p

q
= − 1

1
p

q
= − 1

(1 − 1/q)q
= − 1

q − 1
= 1

1 − q
.

Hence, we have

min
λ≥0

φ(q)λ1−q‖z‖q
� + λε p = φ(q)λ

1−q
� ‖z‖q

� + λ�ε
p

= φ(q)

[

(q − 1)1−q

q1−q
ε‖z‖1−q

�

]

‖z‖q
� +

[

q − 1

q
ε

1
1−q ‖z‖�

]

ε p

= φ(q)
(q − 1)1−q

q1−q
ε‖z‖� + q − 1

q
ε

p+ 1
1−q ‖z‖�

= φ(q)
(q − 1)1−q

q1−q
ε‖z‖� + q − 1

q
ε‖z‖�

= (q − 1)q−1

qq

(q − 1)1−q

q1−q
ε‖z‖� + q − 1

q
ε‖z‖� = 1

q
ε‖z‖� + q − 1

q
ε‖z‖�

=
[

1

q
+ q − 1

q

]

ε‖z‖� = ε‖z‖�

where we exploit that 1/p + 1/q = 1 and φ(q) = (q − 1)q−1/qq . Indeed, we have

p + 1

1 − q
= 1

1
p

+ 1

1 − q
= 1

1 − 1
q

+ 1

1 − q
= −q

−q + 1
+ 1

1 − q
= 1 − q

1 − q
= 1

establishing the claim. ��

Lemma 2 Let q > 1 then

max
t∈[1,1/

√
q−1]

1

q
t1−q + q − 1

q
t = D(q) = max

(

1,
1

q

1

(q − 1)(1−q)/2
+

√
q − 1

q

)

with limq→1 D(q) = 1 and limq→1(q − 1)1/4 (D(q) − 1) = 0.
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Proof The objective function is convex in t . Convex functions attain their maximum

on the extreme points of their domain. The limits can be verified using standard

manipulations. ��

D Proof of Theorem 4

We prove (i) ḡN (x) ≤ ḡK (x), (ii) ḡK (x) ≤ ḡN∗(x) + (L/2)D(K ), and (iii) when the

support constraint does not affect the worst-case value, ḡK (x) ≤ ḡN (x) + (L/2)D(K ).

Proof of (i). We begin with a feasible solution v1, . . . , vN of (MRO-K) with K = N .

Then for K < N , we set uk =
∑

i∈Ck
vi/|Ck | for each of the K clusters. We see uk

with k = 1, . . . , K satisfies the constraints of (MRO-K) for K < N , as

K
∑

k=1

|Ck |
N

∥

∥uk − d̄k

∥

∥

p =
K

∑

k=1

|Ck |
N

∥

∥

∥

∥

∑

i∈Ck
vi

|Ck |
−

∑

i∈Ck
di

|Ck |

∥

∥

∥

∥

p

≤
K

∑

k=1

|Ck |
N

∑

i∈Ck

1

|Ck |
‖vi − di‖p

=
K

∑

k=1

1

N

∑

i∈Ck

‖vi − di‖p ≤ ε p,

where we have applied triangle inequality, Jensen’s inequality for the convex function

f (x) = ‖x‖p, and the constraint of (MRO-K) with K = N . In addition, since the

support S is convex, for every k our constructed uk , as the average of select points vi

∈ S, must also be within S. The same applies with respect to the domain of g.

Since we have shown that the uk’s satisfies the constraints for (MRO-K) with

K < N , it is a feasible solution. We now show that for this pair of feasible solutions,

in terms of the objective value, ḡK (x) ≥ ḡN (x). By assumption, g is concave in the

uncertain parameter, so by Jensen’s inequality,

K
∑

k=1

|Ck |
N

g

⎛

⎝

1

|Ck |
∑

i∈Ck

vi , x

⎞

⎠ ≥
K

∑

k=1

|Ck |
N

1

|Ck |
∑

i∈Ck

g(vi )

K
∑

k=1

|Ck |
N

g(uk, x) ≥ 1

N

∑

i∈N

g(vi ).

Since this holds true for uk’s constructed from any feasible solution vi , . . . , vN , we

must have ḡK (x) ≥ ḡN (x).

Proof of (ii). Next, we prove ḡK (x) ≤ ḡN∗(x) + (L/2)D(K ) by making use of

the L-smooth condition on −g. We first solve (MRO-K) with K < N to obtain a

feasible solution u1, . . . , uk . We then set �k = uk − d̄k for each k ≤ K , and set

vi = di +�k ∀i ∈ Ck, k = 1, . . . , K . These satisfy the constraint of (MRO-K) with
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K = N and no support constraints (which we will refer to as K = N∗ from here on),

as

1

N

N
∑

i=1

‖vi − di‖p = 1

N

K
∑

k=1

∑

i∈Ck

‖�k‖p =
K

∑

k=1

|Ck |
N

‖uk − d̄k‖p ≤ ε p.

Since the constraints are satisfied, the constructed vi . . . vN are a valid solution

for (MRO-K) with K = N∗. We note that these vi ’s are also in the domain of g,

given that the uncertain data DN is in the domain of g. For monotonically increasing

functions g, (e.g., log(u), 1/(1 + u)), we must have �k = uk − d̄k ≥ 0 in the solu-

tion of (MRO-K), as the maximization of g over uk will lead to uk ≥ d̄k . Therefore,

vi = di + �k is also in the domain, as the L-smooth and concave function g with

only a potential lower bound will not have holes in its domain above the lower bound.

For monotonically decreasing functions g, the same logic applies with a nonpositive

�k . We now make use of the convex and L-smooth conditions [2, Theorem 5.8] on

−g : ∀v1, v2 ∈ S, λ ∈ [0, 1],

g(λv1 + (1 − λ)v2) ≤ λg(v1) + (1 − λ)g(v2) + L

2
λ(1 − λ)‖v1 − v2‖2

2,

which, we can apply iteratively, with the first iteration being

g

(

1

|Ck |
v1 + |Ck | − 1

|Ck |
v̄2

)

≤ 1

|Ck |
g(v1) + |Ck | − 1

|Ck |
g(v̄2)

+ L

2

1

|Ck |
|Ck | − 1

|Ck |
‖v1 − v̄2‖2

2,

where v̄2 = 1
|Ck |−1

∑

i∈Ck ,i �=1 vi . Note that v1 − v̄2 = d1 − 1
|Ck |−1

∑

i∈Ck ,i �=1 di , as

they share the same �k . The next iteration will be applied to g(v̄2), and so on. For

each cluster k, this results in:

g

⎛

⎝

1

|Ck |
∑

i∈Ck

vi , x

⎞

⎠ ≤ 1

|Ck |
∑

i∈Ck

g(vi , x) + L

2|Ck |

|Ck |
∑

i=2

i − 1

i

∥

∥

∥

∥

∥

di −
∑i−1

j=1 d j

i − 1

∥

∥

∥

∥

∥

2

2

g(d̄k + �k, x) ≤ 1

|Ck |
∑

i∈Ck

g(vi , x) + L

2|Ck |
∑

i∈Ck

‖di − d̄k‖2
2

g(uk, x) ≤ 1

|Ck |
∑

i∈Ck

g(vi , x) + L

2|Ck |
∑

i∈Ck

‖di − d̄k‖2
2,

123



Mean robust optimization

where we used the equivalence
∑|Ck |

i=2((i − 1)/i)

∥

∥

∥
di −

∑i−1
j=1 d j/(i − 1)

∥

∥

∥

2

2
=

∑

i∈Ck
‖di − d̄k‖2

2. Now, summing over all clusters, we have

K
∑

k=1

(|Ck |/N )g(uk, x) ≤ 1/N

N
∑

i=1

g(vi , x) + (L/2)D(K ).

Since this holds for any feasible solution of (MRO-K) with K < N , we must have

ḡK (x) ≤ ḡN∗(x) + (L/2)D(K ).

E Proof of Theorem 5

Proof of the lower bound. We use the dual formulations of the MRO constraints. For

the case p ≥ 1, we first solve (MRO-K-Dual) with K < N to obtain dual variables

z jk , γ jk . For each data label i in cluster Ck , for all clusters k = 1, . . . , K , and for all

pieces j = 1, . . . , J , if we set

λ = λ, z j i = z jk, γ j i = γ jk, si = sk + max
j

{(−z jk − H T γ jk)
T (di − d̄k)},

we have obtained a valid solution for (MRO-K-Dual) with K = N . The increase in

the objective value from ḡK (x) to that of ḡN (x), i .e. ḡN (x) − ḡK (x), is

δ(K , z, γ ) = (1/N )

N
∑

i=1

si −
K

∑

k=1

(|Ck |/N )sk

= (1/N )

K
∑

k=1

∑

i∈Ck

max
j

{(−z jk − H T γ jk)
T (di − d̄k)}.

We note that δ(K , z, γ ) ≥ (|Ck |/N )
∑K

k=1(−z1k − H T γ1k)
T (1/|Ck |)

∑

i∈Ck
(di −

d̄k) = (|Ck |/N )
∑K

k=1(−z1k − H T γ1k)
T 0 = 0. The constructed feasible solution

for (MRO-K-Dual) with K = N is an upper bound for its optimal solution, since it is

a minimization problem. We then have ḡN (x)− ḡK (x) ≤ δ(K , z, γ ), which translates

to ḡN (x) − δ(K , z, γ ) ≤ ḡK (x).

Now, for p = ∞, the same procedure can be applied; we obtain a solu-

tion to (MRO-K-Dual-∞) with K < N , and construct a feasible solution

for (MRO-K-Dual-∞) with K = N . We modify the variables in the same man-

ner, with the exception of λ, which is now set by λi = λk . The definition of δ(K , z, γ )

remains unchanged, so the same result follows.

Proof of the upper bound. We use the primal formulations of the MRO constraints.

Similar to the single-concave proof, for p ≥ 1, we first solve the MRO problem with

K clusters to obtain a feasible solution u11, . . . , u J K , α11, . . . , αJ K . Note that the

existence of α removes the need to analyze which function g j attains the maximum
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for each cluster. We then set � jk = u jk − d̄k for each k ≤ K , and set v j i = di +� jk ,

α j i = α jk/|Ck | ∀i ∈ Ck, k = 1, . . . , K . These satisfy the constraint of the problem

with N clusters and without support constraints, as

N
∑

i=1

J
∑

j=1

α j i‖v j i − di‖p =
K

∑

k=1

J
∑

j=1

∑

i∈Ck

α j i‖� jk‖p =
K

∑

k=1

J
∑

j=1

α jk‖u jk − d̄k‖p ≤ ε p.

For p = ∞, we repeat the process of obtaining and modifying a feasible solution, and

observe, for i = 1, . . . , N ,

J
∑

j=1

(α j i/(1/N ))‖v j i − di‖ =
J

∑

j=1

(α jk/(|Ck |/N ))‖� jk‖

=
J

∑

j=1

(α jk/wk)‖u jk − d̄k‖ ≤ ε.

Therefore, we also have constraint satisfaction for p = ∞. The constructed solutions

for both cases remain in domu g, following the arguments in the proof of (ii) in

Appendix D.

Next, the objective functions for p ≥ 1 and p = ∞ are identical, so the same

analysis applies. For each cluster k and function g j , using the L-smooth condition on

−g j , we observe

α jk g j

⎛

⎝

1

|Ck |
∑

i∈Ck

v j i , x

⎞

⎠ ≤ α jk

⎛

⎝

∑

i∈Ck

1

|Ck |
g j (v j i , x)

+ L j

2|Ck |

|Ck |
∑

i=2

i − 1

i

∥

∥

∥

∥

∥

di −
∑i−1

j=1 d j

i − 1

∥

∥

∥

∥

∥

2

2

⎞

⎠

α jk g j (d̄k + �k, x) ≤
∑

i∈Ck

α j i g j (v j i , x) + α j i L j

2

∑

i∈Ck

‖di − d̄k‖2
2.

Then, summing over all the clusters and functions, we have

K
∑

k=1

J
∑

j=1

α jk g j (u jk, x) ≤
K

∑

k=1

J
∑

j=1

∑

i∈Ck

α j i g j (v j i , x)

+
K

∑

k=1

J
∑

j=1

α j i max j≤J L j

2

∑

i∈Ck

‖di − d̄k‖2
2

≤
N

∑

i=1

J
∑

j=1

α j i g(v j i , x) + max
j≤J

(L j/2N )

N
∑

i=1

‖di − d̄k‖2
2.

123



Mean robust optimization

Since this holds for all feasible solutions of the problem with K clusters, we conclude

that

ḡK (x) ≤ ḡN∗(x) + max
j≤J

(L j/2)D(K ).
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22. Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming. Math.

Program. 95(3), 493–511 (2003)

23. Emelogu, A., Chowdhury, S., Marufuzzaman, M., Bian, L., Eksioglu, B.: An enhanced sample average

approximation method for stochastic optimization. Int. J. Prod. Econ. 182, 230–252 (2016)

24. Esfahani, P.M., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein met-

ric: performance guarantees and tractable reformulations. Math. Program. 171, 115–166 (2018)

25. Esteban, P.A., Morales, J.M.: Partition-based distributionally robust optimization via optimal transport

with order cone constraints. 4OR 20(3), 465–497 (2022)

26. Fabiani, F., Goulart, P.: The optimal transport paradigm enables data compression in data-driven robust

control. In: 2021 American Control Conference (ACC), pp. 2412–2417 (2021)

27. Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance of the empirical measure.

Probab. Theory Relat. Fields 162(3), 707–738 (2015)

28. Gao, R.: Finite-sample guarantees for Wasserstein distributionally robust optimization: Breaking the

curse of dimensionality. CoRR (2020)

29. Gao, R., Kleywegt, A.: Distributionally robust stochastic optimization with Wasserstein distance. Math.

Oper. Res. 48, 603–655 (2023)

30. Givens, C.R., Shortt, R.M.: A class of Wasserstein metrics for probability distributions. Mich. Math.

J. 31(2), 231–240 (1984)

31. Goh, J., Sim, M.: Distributionally robust optimization and its tractable approximations. Oper. Res.

58(4–part–1), 902–917 (2010)

32. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser.

C (Appl. Stat.) 28(1), 100–108 (1979)

33. Holmberg, K., Rönnqvist, M., Yuan, D.: An exact algorithm for the capacitated facility location prob-

lems with single sourcing. Eur. J. Oper. Res. 113(3), 544–559 (1999)

34. Jacobson, D., Hassan, M., Dong, Z.S.: Exploring the effect of clustering algorithms on sample average

approximation. In: 2021 Institute of Industrial and Systems Engineers (IISE) Annual Conference &

Expo (2021)

35. Kuhn, D., Esfahani, P.M., Nguyen, V., Shafieezadeh-Abadeh, S.: Wasserstein Distributionally Robust

Optimization: Theory and Applications in Machine Learning, pp. 130–166 (2019)

36. Liu, Y., Yuan, X., Zhang, J.: Discrete approximation scheme in distributionally robust optimization.

Numer. Math. Theory Methods Appl. 14(2), 285–320 (2021)

37. MOSEK ApS: The MOSEK optimization toolbox. Version 9.3. (2022)

38. Neumann, J.V.: Zur theorie der gesellschaftsspiele. Math. Ann. 100, 295–320 (1928)

39. Perakis, G., Sim, M., Tang, Q., Xiong, P.: Robust pricing and production with information partitioning

and adaptation. Manag. Sci. (2023)

40. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance

26(7), 1443–1471 (2002)

41. Rockafellar, R.T., Wets, R.J.: Variational analysis. Grundlehren der mathematischen Wissenschaften

(1998)

42. Roos, E., den Hertog, D.: Reducing conservatism in robust optimization. INFORMS J. Comput. 32(4),

1109–1127 (2020)

43. Rujeerapaiboon, N., Schindler, K., Kuhn, D., Wiesemann, W.: Scenario reduction revisited: funda-

mental limits and guarantees. Math. Program. 191(1), 207–242 (2022)

44. Thorndike, R.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953)
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