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ABSTRACT T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions that result in T cell acti-
vation are complex and have been distinguished by their equilibrium affinity and kinetic profiles.While prior affinity-basedmodels
can successfully predict meaningful TCR-pMHC interactions in many cases, they occasionally fail at identifying TCR-pMHC in-
teractions with low binding affinity. This study analyzes TCR-pMHC systems for which empirical kinetic and affinity data exist and
prior affinity-based predictions have failed. We identify criteria for TCR-pMHC systems with available kinetic information where
the introduction of a correction factor improves energy-based model predictions. This kinetic correction factor offers a means to
refine existing models with additional data and offers molecular insights to help reconcile previously conflicting reports concern-
ing the influence of TCR-pMHC binding kinetics and affinity on T cell activation.
SIGNIFICANCE This study develops a method to integrate available kinetic data on the TCR-pMHC interactions into
biophysical affinity-based models. By analyzing available TCR-pMHC binding affinity and kinetic data, we identify empirical
criteria for which the incorporation of kinetic data is expected to benefit predictions based solely on affinity data. The
application of our kinetic correction factor benefitted model accuracy in several TCR-pMHC systems for which energy-
based modeling previously failed to adequately explain favorable interactions. Our approach offers a refinement to existing
biophysical models in cases where kinetic data are available for improved binding predictions, which is of general interest
for predicting T cell activity in the setting of infectious disease, autoimmunity, and cancer immunotherapy.
INTRODUCTION

The adaptive immune response relies on T cell activation
upon encountering antigenic peptide sequences. T cell spec-
ificity stems from the T cell receptor (TCR)’s selective
recognition of antigenic peptides presented on the cell
surface via major histocompatibility complex (MHC) mole-
cules (1). The human T cell repertoire is comprised of a
huge number (�108) (2) of unique TCRs, which collectively
confer broad immunity against a variety of antigenic pep-
tides presented on MHC (pMHC). Central thymic selection
and peripheral tolerance mechanisms train T cells to distin-
guish self from non-self signatures (3,4) and result in a TCR
repertoire having variable specificities directed against a
particular set of non-self antigens.
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Reliable prediction of TCR specificity against antigens of
interest remains an active area of research with broad impli-
cations for a better, more microscopic understanding of im-
mune responses during infection, autoimmunity, and cancer.
This problem is challenging because all available training
data are sparse in the immense sequence space of TCR
and antigen pairs. Several inferential modeling strategies
have been proposed, including those based on TCR-peptide
primary amino acid sequences (5–11). As an alternative,
recently developed random energy models provided a
theory-driven approach to understanding repertoire-level
T cell tolerance and antigen recognition (12–15). These
affinity-based models have subsequently led to the develop-
ment of inferential biophysical approaches, which leverage
known crystal structures to predict TCR-pMHC interactions
based on pairwise amino acid potentials trained using avail-
able affinity (KD) data on TCR-pMHC systems (16–18).

The above biophysical models perform well relative to
sequence-based models when evaluated using distinct
unseen TCRs during training. Incorporating structural
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information permits reliable predictions using a small fraction
of the data needed to train alternative models. Despite these
significant advantages, affinity-based modeling still poorly
explains some systems, and the molecular reasons for these
observations are notwell understood. TCR-pMHC interaction
kinetics seem to be important in elicitingT cell responses (19–
21), but relative to affinity measurements, there is a very
limited amount of kinetic data (e.g., association and dissocia-
tion rate constants kon and koff) available for previously stud-
ied human TCR-pMHC systems. In some situations, more
information is available on the kinetic responses of TCR-
pMHC interactions. The observation of decreased perfor-
mance of the affinity-based model in certain cases led us to
investigate whether incorporating relevant kinetic informa-
tion, where available, could improve the model predictions.

Here, we studied whether the relatively weaker perfor-
mance in certain cases could be improved by the inclusion
of kinetic information, such as effective TCR-pMHC associ-
ation (kon) and dissociation (koff) rates. To analyze this, we
developed a simple method to directly integrate kinetic
data, where available, into our previously developed
affinity-based models. This approach employs a correction
factor derived from kinetic arguments to adjust the predicted
affinity values, aiming to more accurately reflect the true
binding dynamics observed in physiological conditions. We
apply our integrated method to evaluate HLA-A*02-
restricted 1G4 TCR binding to mutations of NY-ESO-1
peptide ligands (22). These ligands are currently under inves-
tigation as candidate antigens for antitumor vaccines aimed
at enhancing immune responses against a wide range of tu-
mors. Challenges in T cell activation, such as suboptimal
TCR-pMHC binding kinetics or rapid dissociation, make
NY-ESO-1 an ideal model for evaluating kinetic corrections.
Although affinity-based models like Rapid Coarse-grained
Epitope TCR (RACER), which rely solely on KD, often fail
to accurately predict specificity in this case, incorporating ki-
netic parameters like kon and koff improves immune response
predictions and enhances model accuracy. Our findings
demonstrate that the inclusion of the kinetic parameter kon
is required to resolve TCR specificity, while considering
the thermodynamic KD alone is insufficient. Moreover, the
incorporation of kon significantly improves the prediction ac-
curacy in our affinity-driven model, which previously was
ineffective at resolving NY-ESO-1-specific TCRs. This
approach offers a method by which complementing
affinity-driven modeling with kinetic information can
dramatically enhance the quantitative description and our
understanding of complex processes in immune response.
MATERIALS AND METHODS

TCR-pMHC binding dynamics

ATCRwith concentration ½TCR� binds a peptide-bound major histocompat-

ibility species that has concentration ½pMHC� to create a TCR-pMHC com-
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plex with concentration ½TCR : pMHC�. This process can be described as a

reversible chemical reaction,

TCRþ pMHC#
kon

koff
TCR : pMHC; (1)

for which the equilibrium dissociation constant of this process (KD) can be

expressed as the ratio of corresponding equilibrium concentrations or the
ratio of the association and dissociation rate constants,

KD ¼ ½TCR�eq½pMHC�eq
½TCR : pMHC�eq

¼ koff
kon

: (2)

The equilibrium constant KD provides a static thermodynamic view of

the binding strength, while 1=koff can be associated with the duration of

time that the single TCR-pMHC complex remains intact before disas-

sembly, which might be relevant for T cell signaling response. Therefore,

the experimental values of KD, koff , and kon that are used as input in

our model are directly applied to evaluate the efficacy of different

TCR-pMHC interactions, guiding the development of our computational

models and the interpretation of their outputs.
Predictive structural affinity model

To accurately estimate the binding strength of a specific TCR-pMHC pair, we

utilizedourpreviouslydevelopedRACERpairwise energy framework (16,17).

RACER calculates binding energies by integrating high-throughput data on

previously confirmed TCR-peptide interactions and crystal structures to train

a residue-specific energy matrix. The energy matrix and available structural

templates are then used to quantify TCR-peptide binding. To accomplish

this, RACER evaluates the binding interface between peptide antigen and var-

iable (CDR3 a=b) regions via

Vdirect ¼
X

i˛TCR
j˛ peptide

g
�
ai; aj

�
QI

ij: (3)

In Eq. 3, gðai; ajÞ denotes the pairwise interaction strength between amino

acids ai and aj at positions i and jwithin the indexed TCR and peptide, respec-
tively. The entries of g represent all symmetric pairwise amino acid energies,

which are optimized during model training (23). Each interaction is weighted

as a sigmoidal functionQij of the pairwise distances between residues:

Qi;j ¼ 1

4

�
1þtanh

�
5
�
ri;j � rm

����
1þtanh

�
5
�
rM � ri;j

���
;

(4)

where rm ¼ 6:5 �A (respectively rM ¼ 8:5 �A) defines the minimum (respec-

tively maximum) distances over which the interaction remains significant.
RACER computes the energy of test TCR-pMHC pairs (Etest). These

values are compared against energy values for an ensemble of randomized

weak binding pairs (Eweak) binding TCR-pMHC pairs, and the free energy is

defined relative to the mean of weak binders: DGxEtest � CEweakD. Exper-
imentally obtained KD and calculated approximated free energy changes

DG are assumed to be related via

ln KD ¼ DG=kBT: (5)

To compare standardized free energy across distinct TCR-pMHC pairs

and structural templates, the Z score is introduced as a normalized free en-

ergy parameter, defined as follows:

Z ¼ �ðEtest � CEweakDÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE2

weakD � CEweakD
2

q ¼ �DG

sweak

: (6)
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Integrating kinetic data into the affinity model
To incorporate additional experimental kinetic data into the RACER frame-

work, we modify the imputed KD values. As one can see from Eq. 5, the

parameters KD and koff are expected to vary proportionally across TCR-

pMHC pairs that have comparable values for kon. Previous work has, how-

ever, noted that the variations in on-rate kon can significantly influence the

overall interaction dynamics in the TCR-pMHC binding case (24). As we

will demonstrate, the linear relationship between koff and KD breaks

down in systems where kon shows high variability. To account for this,

we introduce a kinetic correction term, hi, to modify the KD values for

TCR-pMHC pair i in cases where the on rate (kon;i) is available according

to the following rule:

hi ¼ lnðkon;iÞ � lnðkon;0Þ: (7)

In the above equation, cases where kon;i exhibits significant deviation away

from typical values of kon;0 of observed systems, h can be used to create an
‘‘effective dissociation equilibrium constant,’’ ~KD, according to

lnð~KDÞ ¼ lnðKDÞ � hi: (8)

The application of Eq. 7 relies on an empirical analysis of experimentally

obtained kon values for relevant cases. Our analysis (see the results)

ultimately leads us to select a lower limit for konx105 below which the

correction h is subsequently applied.
Data acquisition and analysis

Affinity data for 137 TCR-pMHC systems were sourced from the

ATLAS database (25). All available crystal structures for HLA A*02-

restricted systems were obtained via the RCSB Protein Data Bank

(26). Additional kinetic data were obtained from a recent analysis on

the NY-ESO-related peptides’ interaction with the 1G4 TCR (24). This

augmented set provided a total of 11 additional TCR-pMHC pairs

(Tables S1 and S2). In the dataset used for this research, various TCR-

pMHC interactions from the ATLAS dataset were analyzed alongside

the binding interactions of the 1G4 TCR with its corresponding pMHC

variant (24) using surface plasmon resonance (SPR) on a BIAcore

3000 system (GE Healthcare, Chicago, IL, USA). All experiments

from the ATLAS dataset and (24) were conducted at 25�C and 37�C,
respectively. Biotinylated pMHC molecules were immobilized onto a
FIGURE 1 Schematic depiction of the training and testing phases within RACE

model. For each TCR-pMHC pair with KD > 7 mM and kon < 105, a correction f
CM5 sensor chip (GE Healthcare) indirectly via covalently coupled

streptavidin at varying levels.
RESULTS

Fig. 1 presents an overview of our approach, which involves
integrating kinetic data in the form of a corrected affinity
score. Our primary goal is motivated by the question of
whether or not the incorporation of additional kinetic infor-
mation into a structural model trained on affinity data could
improve the predictions, particularly in cases where avail-
able affinity data are insufficient for explaining relevant
TCR-pMHC interactions.
1G4-NY-ESO as a candidate TCR-pMHC system

The NY-ESO peptide and corresponding 1G4 TCR variants
served as appropriate candidates as sufficient structural in-
formation exists for this case, yet despite this, RACER-m,
a multitemplate approach within the RACER framework,
was unable to correctly assess 50% of available cases
even when they were explicitly included in training (17).
An additional independent dataset generated affinity and ki-
netic data in the form of kon, koff , and KD for additional 1G4-
NY-ESO (TCR-pMHC) mutational variants (24). Plotting
the effective off-rate koff as a function of the equilibrium
constant KD for NY-ESO-associated cases demonstrated a
statistically significant direct correlation between affinity
and kinetic parameters, and expected inverse trends were
also found for kon versus KD, respectively (Fig. 2, a
and b). A significant inverse correlation was also observed
between kon and koff (Fig. 2 c). However, this behavior
was inordinately influenced by a minority of cases with
large kon. Removal of the three NY-ESO-mutant TCR-pep-
tide pairs having the highest KD values was enough to break
R, illustrating the impact of the kon binding parameter on the trained energy

actor was applied.
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FIGURE 2 Correlation analyses of TCR-pMHC

kinetic and affinity parameters for NY-ESO cases.

This figure explores the interrelations between ki-

netic and affinity parameters across all NY-ESO

cases. (a) demonstrates the correlation between

dissociation constant KD and dissociation rate koff ,

illustrating their mutual dependencies. (b) examines

the relationship between KD and association rate

kon, assessing how association dynamics influence

binding affinity. (c) analyzes the interplay between

koff and kon, highlighting the balance of association

and dissociation in binding kinetics. (d) shows the

correlation between KD and koff specifically for a

subset of NY-ESO cases.
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the observed correlation between koff and KD (Fig. 2 d;
Table S3). Remaining TCR-peptide pairs also exhibited
high variability in kon. In these cases, the proportional map-
ping between binding kinetics and affinity breaks down,
thereby necessitating correction to account for kinetics in
the affinity-trained model. Because the RACER-m model
attempts to resolve meaningful TCR-peptide pairs based
on an affinity threshold (defined to be KDz7 mM), we hy-
pothesized that cases with predicted KD values exceeding
this threshold, especially those with the smallest kon values,
would benefit significantly from a kinetic normalization of
the affinity model’s value. In the regime of low kon, small
fluctuations can have a large impact on the relationship be-
tween KD and koff . This supports the need for the kinetic
correction term, which is further discussed in the results.
Selection of a kinetic correction term recovers
identification of favorable interaction pairs

We applied a similar analysis on the subset of the ATLAS
dataset for which TCR-pMHC systems had an affinity and ki-
netic data (Fig. 3). Again, significant correlations have been
found in relations between koff versus KD, and the removal
of cases with low kon disrupts the observed correlation
between koff and KD (Fig. 3, a and b). For these cases, when
kon > 105, the values of KD and koff are concentrated in a nar-
row range.Conversely,when kon < 105,Koff andKD are highly
variable (Fig. 3, c and d).While this behavior appears to affect
NY-ESOcasesmost strongly, additional TCR-pMHCsystems
from distinct functional clusters also exhibit significant varia-
tion in koff and KD, including TCRs specific for GILGFVFTL
and ILAKFLHWL peptides. These findings are consistent
with another report analyzing the1G4-NY-ESOTCR-peptide,
4118 Biophysical Journal 123, 4115–4122, December 3, 2024
wherein the authors utilized a slightly different approach to
account for widely variable kon values (24).

Given the above findings, we now introduce a correction
factor based on kinetic normalization into our affinity esti-
mates (Eq. 8) for systems having low kon (Eq. 7). The
correction term effectively incorporates kinetic information
in the regime of kon < 105, for which the explicit incorpora-
tion of observable koff is expected to reflect the true binding
dynamics more accurately. To evaluate whether this correc-
tion term can successfully distinguish meaningful TCR-
pMHC pairs, we incorporate this adjustment into the
discrimination step based on standardized Z score (Eq. 6).
The predicted Z scores as a function of logðKDÞ are plotted
both before (Fig. 4 a) and following (Fig. 4 b) correction for
NY-ESO-specific TCRs. Using the previously established Z
score cutoff, our correction demonstrates effectively recog-
nized NY-ESO-specific TCRs, most of which would have
been unidentified. This simple correction results in over
90% of cases being correctly identified. Specifically, for
the six (two training, four test) NY-ESO cases in the
RACER dataset, we correctly predicted three out of four
cases after applying the correction factor. Additionally, all
11 NY-ESO test cases from (24) were correctly predicted.
In total, the implementation of the correction factor
achieved a diagnostic accuracy of 93%. Tables 1 and 2
display a summary of each case’s corrections.
Incorporation of kinetic correction term leads to
improved model predictions for meaningful TCR-
pMHC interactions

The kinetic correction factor can improve the predictions
on NY-ESO-specific TCRs. In the next step, we implement



FIGURE 3 Analysis of model fitting to data sub-

sets with larger variability in kon. (a) displays the

correlation between KD and koff for the entire

ATLAS dataset. (b) focuses on a subset of the

ATLAS dataset, excluding cases with high vari-

ability in kon. These images collectively highlight

how different rates of kon influence the model’s abil-

ity to fit the data, emphasizing the impact of kon on

binding parameter correlations. (c) illustrates the

distribution of kon versus KD, and (d) shows kon
versus koff for all cases in the ATLAS dataset.

Integrating kinetics for TCR prediction
this correction into the existing RACER approach
applied to distinct TCR-pMHC pairs with experimentally
confirmed thermodynamic parameters (25,27–30). To
assess this, we applied the optimized RACER model to
predict TCR-pMHC interactions, restricting our analysis
to TCR-pMHC systems in ATLAS with available kinetic
data. Our results are reported in Fig. 5 and compare
RACER predictions prior to and following kinetic correc-
tion. RACER contained 163 unique TCR-peptide pairs,
66 of which had crystal structures and were identified for
training, while the remaining 97 pairs were utilized
for testing. For the training set with kinetic correction,
RACER-m utilized 40 experimentally determined TCR-
pMHC complex structures with available kinetic data in
training. These structures included both NY-ESO and a to-
tal of 15 other functional TCR-peptide systems. Addition-
ally, 40,000 decoy binders were generated by randomizing
the peptide sequences, with 1000 decoys created for each
strong binder, producing a comprehensive negative dataset
that balanced the strong binders as done previously (17).
The model’s predictive accuracy and generalizability
were subsequently evaluated using both the original
training set and test TCR-peptide cases, including those
from all 16 functional groups in the ATLAS dataset. Cases
for which RACER had previously predicted strong binding
did not observe significant changes in the predicted binding
energy value. This was most evident in the GILGFVFTL
(FLU) antigen-specific TCR system. Such cases also
tended to correspond to TCR-pMHC pairs where the
correction criterion was not satisfied (Fig. 5, gray values).
This contrasted starkly with the remaining cases, most of
which RACER either predicted as a borderline favorable
interaction or failed outright. Our kinetic correction suc-
cessfully improved the original affinity-based predictions
in these cases, representing experimentally confirmed
favorable TCR-pMHC systems. Lastly, to observe the ef-
fects of available kinetic corrections as a function of KD,
we plotted prenormalization and postnormalization binding
energies for all cases with kinetic data rank ordered by the
original KD values (Fig. S1). As expected, we find smaller
FIGURE 4 Detailed analysis of TCR-pMHC

binding parameters for select NY-ESO cases. Com-

parison of RACER Z scores and experimental KD

values for NY-ESO cases with high KD values,

providing insight into the model’s effectiveness in

predicting TCR-pMHC interactions. (a) Z scores

before applying the correction factor. (b) Z scores

after applying the correction factor, illustrating the

improved predictions. This comparison highlights

the precision of the RACER model in handling

cases with significant variability, thereby illus-

trating its utility in refining predictions for complex

immune responses.
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TABLE 1 Z scores and DG values for 1G4 TCR with NY-ESO peptide and its mutations before and after applying the correction

factor

Peptide name kon �103 (M�1 s�1) hi Z score ~Z score DG (kcal mol�1) gDG (kcal mol�1)

ESO-9C 57 0.63 1.1706 2.8172 �2.6642 �4.2259

ESO-9L 17 0.58 0.8390 2.6618 �2.5551 �3.9928

ESO-9V 45 0.39 1.0693 2.2976 �2.4801 �3.4468

ESO-9A 47 0.44 1.0598 2.4064 �2.5189 �3.6096

ESO-3I 35 0.14 0.9459 1.9619 �2.5145 �2.9429

ESO-3M 42 0.36 1.061 2.3252 �2.5959 �3.4878

ESO-3Y 38 0.23 0.9250 1.9042 �2.2861 �2.8562

ESO-4D 10 1.11 0.9358 2.0054 �2.4172 �5.1687

ESO-6V 49 0.48 0.9615 2.4148 �2.4324 �3.6222

ESO-6T 13 0.85 0.9548 1.7045 �2.2861 �4.3931

ESO-7H 17 0.58 0.5530 1.0649 �1.3070 �2.7447

The crystal structures used for RACER analysis are based on PDB: 2BNQ, 2BNR, and 2P5E.
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prenormalization versus postnormalization case changes as
KD values decrease.
DISCUSSION

Reliable predictions of TCR specificity are still quite
challenging to estimate, partly because a complete
description of TCR-pMHC interactions must account for
complex interaction dynamics, downstream signaling,
and orchestration of cytokine release. Binding affinity,
the most widely available thermodynamic characterization
of TCR-pMHC interactions, has been successfully applied
to train structural models to achieve TCR-pMHC speci-
ficity predictions with reasonable accuracy. Despite this,
including additional physical parameters, such as binding
kinetics, p-MHC abundance on the cell surface, and T cell
costimulatory signals, seems necessary to characterize
T cell behavior fully. Our goal here was to investigate
with more detail the TCR-pMHC situations for which pre-
dictive models trained strictly on binding affinity data per-
formed poorly. Given their inability to be accurately
accounted for using available affinity data, these cases,
including NY-ESO and several other TCR-pMHC func-
tional systems, provided an opportunity to incorporate
and test meaningful kinetic data into model predictions.
Across all publicly available TCR-pMHC systems, a dra-
matic increase in the variability of koff emerged for suffi-
ciently low kon values. This observation motivated us to
introduce kinetic threshold criteria for refining our earlier
modeling approach. The notable increase observed in
RACER’s predictive accuracy likely result from the fact
that the original KD omitted important kinetic information
TABLE 2 Z scores and DG values for 1G4 TCR and its mutations b

TCR name kon �103 (M�1 s�1) hi Z score

1G4-mu1 17.8 0.16 0.3758

1G4-mu2 34 0.12 0.6167

1G4-mu3 4 2.03 0.5893

1G4-mu4 11 1.01 1.0706

The crystal structures used for RACER analysis are based on PDB: 2BNQ, 2BN
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relevant to specificity, which was then recovered with an
appropriate correction. While successful on the limited
set of currently available systems, subsequent thermody-
namic characterization of additional TCR-pMHC cases
will be needed to evaluate whether this empirical cutoff
scheme can be applied to immunologically distinct sys-
tems. One advantage of our threshold-based approach is
that it offers a simple criterion for determining when ki-
netic corrections are needed. For instance, in several
TAX (LLFGYPVYV)- and FLU (GILGFVFTL)-specific
cases in which our threshold criterion was not met, utiliz-
ing the kinetic corrections yielded minimal deviations
from the original Z score predictions. This observation
was held for cases with predicted scores both close to
and far from the critical cutoff for activation. We assessed
the binding affinity of both wild-type and variant 1G4
TCRs to NY-ESO and NY-ESO-variant peptides. Our da-
taset reveals that pMHC recognition does not always align
well with either KD or koff for cases having lower kon. We
augmented our analysis to include additional TCR-pMHC
systems with considerable variation in kon to more
comprehensively explore kon’s impact on pMHC recogni-
tion. Our results align with prior studies that found that
consistent kon values were most important in successfully
correlating TCR-pMHC recognition with either KD or koff
(31). In many cases, however, TCR-pMHC recognition
has been found to successfully correlate with either KD

(1,32,33) or koff(34–38). The corrections in our model
are based on SPR-derived kinetic data, as SPR is highly
sensitive and precise, especially for low-affinity interac-
tions. Other empirical techniques like bio-layer interfer-
ometry and microscale thermophoresis may require
efore and after applying the correction factor

~Z score DG (kcal mol�1) gDG (kcal mol�1)

2.3714 �0.9691 �6.6050

2.6135 �0.9633 �5.2277

3.9464 �2.0482 �7.8929

3.0421 �2.9691 �6.0842

R, and 2P5E.



FIGURE 5 Performance on ATLAS dataset

before and after applying the correction factor.

The boxplots illustrate the distribution of binding

energy values, highlighting the variability. The

correction factor improves prediction accuracy,

particularly in the higher-affinity interactions (rep-

resented by the orange dots), which is consistent

with the lower KD values demonstrating less

improvement.
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specific adjustments due to their lower sensitivity for weak
interactions (bio-layer interferometry) or the potential
variability introduced by fluorescence labeling (micro-
scale thermophoresis). Since these methods focus more
on binding affinities than precise kinetics, additional cali-
bration between measurements should be verified for cases
that contain affinity and kinetic data from separate exper-
imental setups. Empirical measurements originating from
diverse methodologies, where identified, will require cali-
bration and validation. Our results demonstrate that one
can address the practical question of when and how to
effectively incorporate variable thermodynamic features
into inferential models of TCR-pMHC specificity by iden-
tifying and incorporating suitable correction factors.
Moreover, such adjustments, when properly introduced,
can successfully encode independent information (off
rate) that is otherwise distinct from the original model bio-
physical feature (affinity). We remark that while our
correction factor is incorporated using thermodynamic
theory, the precise criteria for inclusion were made empir-
ically based on all available observations. As a result, our
prediction refinements are limited by the availability and
accuracy of kinetic data. Our theoretical method works
reasonably well for low values of the on rates, and one
can provide a more microscopic explanation of this obser-
vation. The equilibrium constant KD provides a measure
of binding affinity if these events can be measured for a
long time. For large on rates, after some time, the KD

can be well evaluated. However, when the on rates are
small due to limited time for immune response processes,
one cannot rely on KD, and the kinetic information pro-
vides a better description of the effective binding affinity.
One intriguing future direction concerns extending this
analysis so that future on rates would no longer be
required for applying the kinetic correction to new sys-
tems. Such an approach could be implemented by utilizing
the mean correction factors over a collection of empirical
kon values within a particular functional group, provided
the within-cluster variance is adequately controlled.
Such an approach requires additional kinetic data for
particular systems of interest for the necessary evaluation
but could replace altogether the need for additional kinetic
data for a new TCR-peptide pair of interest. While suc-
cessfully applied to multiple TCR-pMHC systems, this
approach will require further validation on distinct func-
tional systems. These follow-up analyses will benefit
from additional TCR-pMHC kinetic information, particu-
larly in cases having low on rates. The above approach
demonstrates promise for broadening the class of encod-
able information useful to an existing, affinity-based
model. In this case, kinetic data were included in a
straightforward way using foundational thermodynamic
principles. Future research should focus on expanding
this approach to include additional features that are
commonly measured, such as pMHC abundance and cyto-
kine release, in a biophysically meaningful manner.
Such model improvements will broaden the utility of pre-
dictive models and, in doing so, will enhance therapeutic
strategies to predict TCR-pMHC interactions with appli-
cations to cancer immunology, infectious diseases, and
autoimmunity.
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