
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Cognitive Load-based Affective Workload
Allocation for Multi-human Multi-robot Teams

Wonse Jo, Ruiqi Wang, Graduate Student Member, IEEE, Baijian Yang, Member, IEEE,
Dan Foti, Mo Rastgaar, Senior Member, IEEE, and Byung-Cheol Min, Senior Member, IEEE

Abstract—The interaction and collaboration between humans
and multiple robots represent a novel field of research known as
human multi-robot systems. Adequately designed systems within
this field allow teams composed of both humans and robots to
work together effectively on tasks such as monitoring, explo-
ration, and search and rescue operations. This paper presents a
deep reinforcement learning-based affective workload allocation
controller specifically for multi-human multi-robot teams. The
proposed controller can dynamically reallocate workloads based
on the performance of the operators during collaborative mis-
sions with multi-robot systems. The operators’ performances are
evaluated through the scores of a self-reported questionnaire (i.e.,
subjective measurement) and the results of a deep learning-based
cognitive workload prediction algorithm that uses physiological
and behavioral data (i.e., objective measurement). To evaluate
the effectiveness of the proposed controller, we conduct an
exploratory user experiment with various allocation strategies.
The user experiment uses a multi-human multi-robot CCTV
monitoring task as an example and carry out comprehensive real-
world experiments with 32 human subjects for both quantitative
measurement and qualitative analysis. Our results demonstrate
the performance and effectiveness of the proposed controller and
highlight the importance of incorporating both subjective and
objective measurements of the operators’ cognitive workload as
well as seeking consent for workload transitions, to enhance the
performance of multi-human multi-robot teams.

Index Terms—Workload allocation, Cognitive load, Multi-
human multi-robot teams, Affective computing, Human-robot
interaction, and Multi-robot systems.

I. INTRODUCTION

AS artificial intelligence continues to advance, multi-
robot systems (MRS) are demonstrating consistent per-

formance and precision that surpasses human ability in various
large-scale operations, such as surveillance [1] and, search
and rescue [2], and assembly [3]. However, compared to
human’s capabilities, MRS still has deficiencies in situational
awareness (SA) when it comes to effectively handling complex
task dynamics in the real world [4]. For example, adjusting
the operation of an MRS in a timely manner in response to
new missions and environmental changes can be challenging
when operating the system for an extended period of time.
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This issue is currently mitigated by having a human opera-
tor participate in task execution, which improves efficiency.
However, systems with many robots can produce excessively
high cognitive workload (CWL) for a single human operator,
making it difficult for them to track each robot’s work. This
can be addressed by having multiple operators in the loop to
provide some level of supervision, resulting in a multi-human
multi-robot (MH-MR) team.

While incorporating human operators as the core of the
decision-making process can significantly improve the sys-
tem’s SA and flexibility, it can also introduce more uncertainty
and complexity. Human affective conditions such as CWL and
emotion, as well as performance, are inconsistent and suscep-
tible to internal or external factors [5]–[7]. Thus, optimizing
the performance of the entire MH-MR team, including optimal
workload and workload allocation among multiple humans, is
a crucial challenge. The system must monitor human affective
states and reallocate workload accordingly, such as the number
of robots to be supervised, to maintain each human in optimal
interaction conditions with robots [8]–[10].

While the workload allocation in MRS [11]–[13] and the
scheduling of tasks in human-autonomy collaboration [14]–
[16] have been well studied, there has been limited research
on the objective of optimally coordinating multiple humans
in MH-MR team. In the limited literature available, existing
works on workload allocation in MH-MR teams that take
human factors into account are still in the preliminary stage
and have several drawbacks. Most methods only consider
human performance metrics or task difficulty as indicators
reflecting human decision-making ability without considering
individual human CWL [17], [18].

However, CWL, which measures the mental capacity re-
quired to complete tasks [19], serves as a vital factor that
influences the human ability to process environmental infor-
mation and make decisions [20]–[23]. Therefore, neglecting
this fundamental benchmark makes it difficult to imitate and
encode unstructured human decision-making processes. For
example, a decrease in human performance could result from
both cognitive overload and underload on the task, making it
challenging to determine the optimal task reallocation strategy
(e.g., increasing or decreasing the current workload) without
considering CWL.

Moreover, most existing approaches tend to build a model
that encodes the relationship between system attributes, includ-
ing contextual information and human factors, and the system
performance, to serve as one-step rules for determining the
optimal workload distribution [24], [25]. However, building
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Fig. 1: Conceptual illustration of the deep reinforcement learning (DRL)-based affective workload allocation controller (AWAC)
for multi-human multi-robot (MH-MR) teams. More details can be found at Session III or supplementary website: https:
//sites.google.com/view/affective-workload-allocation.

a valid and generalizable model is challenging due to the
complexity of an MH-MR team and the individual differences
between humans and task scenarios. Additionally, current
workload allocation models are difficult to deploy in realistic
MH-MR task scenarios as they mostly lack monitoring and
assessment of contextual information and human states, and
have barely been validated by real-world experiments.

To address these limitations (details in Section II), we
propose a deep reinforcement learning (DRL)-based affective
workload allocation controller (AWAC) for MH-MR teams, as
illustrated in Fig. 1, in where the affective workload refers to
changing the amount of the workload based on each human
operator’s task performance estimated from subjective and
objective CWL measurements [26], [27]. Thus, the proposed
controller can adaptively reallocate workloads based on the
operators’ performance during collaborative missions with the
MRS. Operator performance is estimated by self-reporting
questionnaire scores (i.e., subjective measurement) and the
results of a deep learning (DL)-based CWL prediction algo-
rithm using physiological and behavioral data (i.e., objective
measurement). To evaluate our proposed system, we use a
closed-circuit television (CCTV) monitoring task by a MH-
MR team as an example and conduct extensive real-world
team-based user experiments for quantitative measurement and
qualitative analysis.

The main contributions of this paper are as follows:

• We design a data-driven human performance model
to estimate the human operator’s mission performance
from CWL measurements. It can be adapted to various
applications by tuning parameters based on empirical
experiments.

• We propose a DRL-based AWAC capable of adapting
the distribution of workload in response to variations in
human cognitive load and team performance.

• We design and conduct an extensive real-world user
study in CCTV surveillance scenarios to validate the

productivity and effectiveness of the proposed AWAC.
• We investigate and furnish insightful analysis of various

workload allocation strategies for MH-MR teams.
The paper is organized as follows. Section II presents the

background and related works. Section III provides details of
the proposed affective workload allocation controller. Section
IV describes the design of a team-based monitoring task that
was conducted to validate the proposed controller. In Section
V, we present the results of the extensive user experiments
and analyze the team performance of the proposed affective
workload allocation system. Lastly, Section VI discusses the
findings of this study in depth, and Section VII concludes the
proposed the affective workload allocation system.

II. RELATED WORKS

In this section, we introduce the background of an overview
of existing research on workload allocation in MH-MR Teams.

Workload allocation in MH-MR teams is a critical issue
for practical human-robot interaction (HRI) applications. It
is essential for mission completion and success, as it facili-
tates a clear division of workloads, increased efficiency and
productivity, reduced workload on individual operators, and
improved adaptability to changing circumstances in the work
environment [20]. Assigning tasks to the most-suitable human
operator helps avoid conflicts and enhances collaboration and
communication between human and robotic agents [25]. With
a well-defined workload allocation strategy, the MH-MR team
can work cohesively toward achieving the assigned missions.

Previous research has examined human-in-the-loop systems,
such as team organization, task scheduling [28], and studies on
SA in HRI [29]. Workload allocation strategies based on hu-
man CWL [30] have also been researched to control unmanned
aerial vehicles [31], [32], and task performance and difficulty
of human operators have been studied to reallocate workloads
during missions [33]. However, these allocation strategies have
typically prioritized system output while overlooking the needs

https://sites.google.com/view/affective-workload-allocation
https://sites.google.com/view/affective-workload-allocation
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of human operators. As a result, the majority of workload
allocation research has been limited to applications in MH-
MR teams in real-world settings.

According to [22], the utilization of human CWL is crucial
in HRI applications for maximizing the entire performance, in-
cluding productivity and effectiveness. This is because robotic
or autonomous systems can adjust their workloads and control
parameters (e.g., speed, control method) based on the human
operator’s condition, which can be affected by factors, such
as personal reasons, negative emotions, and unusual environ-
ments. Two primary methods are used to measure human
CWL: subjective measurement and objective measurement.

Subjective measurement, such as self-reported ratings or
questionnaires, provides insight into the user’s perceived level
of CWLs related to factors such as motivation and prior
experience. However, it is difficult to measure the operator’s
CWL in real-time, and there is a high possibility of bias or fake
CWL, which is intentionally generated by human operators to
reduce their workload.

On the other hand, objective measurement, such as physio-
logical measures, provides a more quantifiable assessment of
CWL. They can reveal specific aspects of the interaction that
are causing increased mental effort, such as complex visual
displays or cognitively demanding tasks. Some studies in the
affective computing and HRI fields have used physiological
sensors to reflect the operator’s CWL or emotional states [34].
Other studies have utilized behavioral data, such as head pose,
eye blinking and gazing, as well as dynamic movement of
the input interfaces, to estimate affective states [35], [36].
However, systems using objective measurement are vulnerable
to malfunctioning physiological sensors or behavioral monitor-
ing devices, which can result in inaccurate measurements of
human CWL and impair the overall system’s performance.

By incorporating both subjective and objective measure-
ments, the limitations of each method can be mitigated,
resulting in a more comprehensive understanding of the
human’s CWL in HRI applications. This, in turn, enables
better-informed design decisions and an enhanced overall user
experience.

Subjective and objective CWL measurements, when used
in conjunction with reinforcement learning (RL), can serve
as a workload allocation controller for MH-MR teams. RL
optimizes workloads based on both measurements, allowing
for real-time allocation of tasks among multiple humans and
robots to achieve desired outcomes. This results in a more
effective and efficient system that balances the needs of both
humans and robots. Furthermore, RL allows for adaptation to
changing conditions, which is crucial in dynamic and uncertain
human-robot interaction scenarios. Despite its potential bene-
fits, there is limited understanding, and fewer studies that have
explored the use of both measurements and RL approaches for
MH-MR applications in real-world settings.

Previous research has predominantly focused on the use
of RL for workload allocation in human-robot interaction
scenarios [37], [38]. These studies aimed to balance the
workload between humans and robots in collaborative tasks
while considering factors such as user satisfaction, task ef-
ficiency, and cognitive load. Zhang et. al [37], for instance,

proposed an algorithm to optimize task allocation in complex
assembly operations. The algorithm was evaluated through a
virtual assembly of an alternator and showed great potential in
reducing human workload and improving efficiency in human-
robot collaboration tasks. Lim et. al [39] presented a human-
machine interface and interaction system to support adaptive
automation in unmanned aircraft systems. This system uses
a network of physiological sensors and machine learning
models to infer the user’s CWL in single human operator and
MRS scenarios, where the human operator is responsible for
coordinating the tasks of multiple UAVs. Ghadirzadeh et. al
[38] developed a data-efficient RL framework for modeling
physical human-robot collaborations that enables the robot to
learn how to collaborate with a human operator. The frame-
work reduces uncertainty in the interaction using Gaussian
processes, and optimal action selection is ensured through
Bayesian optimization.

However, these approaches have primarily focused on op-
timizing task allocation in single human-robot interaction
scenarios, which limits the applicability of workload allocation
research to real-world collaborations involving multiple robots
and human operators. Additionally, these approaches have
not comprehensively considered the various conditions of the
human operator and have not taken into account the human
operator’s CWL in collaborative missions with multiple robots.
Furthermore, the narrow focus on specific learning models
limits their ability to adapt to unexpected situations.

III. AFFECTIVE WORKLOAD ALLOCATION CONTROLLER

In this section, we introduce our AWAC for MH-MR teams.
The AWAC aims to enable human operators to collaborate
more effectively with multi-robot systems and teammates by
intelligently assigning appropriate workloads based on both
subjective and objective measurements of the CWL of the
operator and their teammates. For example, if one operator
has a high CWL, the proposed AWAC will assign more
work to other operators to balance the workload. The AWAC
is designed to improve the efficiency and effectiveness of
MH-MR teams by mitigating the impact of CWL on task
performance. Additionally, there is a supplementary website
including more details of the AWAC at https://sites.google.
com/view/affective-workload-allocation.

A. Problem Formulation

Although having knowledge of contextual information and
human conditions (e.g., CWL) can serve as a decision-making
foundation for the workload allocation problem, it is still a
challenging task to determine the ideal workload distribu-
tion, given the complex nature of MH-MR teams. Unlike
existing model-based approaches that rely on a single-step
allocation rule model, we address the workload allocation
in MH-MR teams as a partially observable Markov decision
process (POMDP) and apply DRL to find the optimal solution.
The partial observability arises from the limited ability of
any Affective Prediction Model (APM) to accurately and
completely predict continuous human conditions during a task.
The proposed POMDP for the affective workload allocation in

https://sites.google.com/view/affective-workload-allocation
https://sites.google.com/view/affective-workload-allocation
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Fig. 2: A learning diagram of the proposed DRL model.

MH-MR teams is defined as a tuple (H,W,S,O,A, T ,R, γ),
where:

• H := {h1, . . . , hn} is a finite set of n human agents.
• W := {w1, . . . , wi} is a finite set of i tasks, e.g., the

number of robots to be supervised, to be assigned to n
human agents.

• S := {Ss × So} is the joint human state observed,
including subjective CWL obtained by the self-reporting
questionnaire, Ss := {ss1 × . . .× ssn}, and objective CWL
assessed by the APM, So := {so1 × . . .× son}, of the n
human agents.

• O := {o1 × . . .× oq} is the joint observation of the
contextual information, e.g., current workload distribu-
tion, performance metrics, and other important system
characteristics.

• A := {a1 × . . .× an} is the joint allocation decision by
assigning wi to hn.

• T := P (s′ | s, a) is the state transition function.
• R := fR (s× o, s′ × o′) is the reward function, which

gives immediate reward after the transition from s× o to
s′ × o′ by taking action a.

• γ is the discount factor.
This formulation allows fundamental modeling of environ-

ment dynamics of the affective workload allocation problem
in MH-MR teams, and explicitly defines various attributes
of the team, such as the human state, including subjective
and objective CWLs, and contextual information, including
performance metrics, current workload distribution, and other
system characteristics. The goal of this POMDP is to find
the optimal policy π∗ : (s × o) 7→ a that obtains maxi-
mum system performance, i.e., the expected total discounted
reward E[

∑∞
k=0 γ

krt+k]. Through this optimization process,
the AWAC algorithm learns to adaptively adjust workload dis-
tribution for n human agents based on contextual information
and human conditions, including subjective and objective mea-
surements of CWLs, to maximize operational performance.

B. Data-driven Human Performance Model (HPM)

While the introduction of the POMDP and DRL can pro-
vide a better chance to find the optimal workload allocation
strategy, it requires a high volume of interaction rounds to

reach good performance. Therefore, a DRL model is typically
trained in a simulation environment to achieve results in a
cost-effective and timely manner. To build a sound simulation
environment for an MH-MR team, the key challenge is to
build a human performance model (HPM). that can simulate
human performance based on the human state and serve
as the transition function of the human state. To address
this challenge, we propose a data-driven HPM that estimates
the human operator’s current mission performance from the
subjective and objective measurements of the CWLs. This
HPM can be easily adapted to various applications by tuning
the parameters of the equations derived from the empirical
experiments.

For the generalized HPM, we applied the Yerkes-Dodson
law [40], which is a psychological principle that describes the
relationship between CWLs and mission performance. It states
that performance generally improves with increased CWLs,
but only up to a certain point. Beyond this point, further
increases in CWLs lead to a decline in performance. The law
is represented by an inverted-U shape as illustrated in Fig.
S1 on Appendix E, and can be mathematically described by
the Gaussian distribution as Eq. 1, with the optimal level of
CWLs for maximum performance at the peak of the curve. The
law helps explain why too much CWLs can have a negative
impact on performance and why finding the right level of
CWLs is important for optimal performance. The Yerkes-
Dodson law has been applied to various fields to estimate
human’s performance in HRI research [41]. We also found a
similar relationship between the operator’s CWLs and mission
performance in our previous study [42].

P (S) = A

σ
√
2π

e−(S−µ)2/2σ2

(1)

where area A is calculated using the trapezoidal rule: A =∑n−1
i=0 (xi+1−xi)(yi+1−yi)/2. The maximum and minimum

values of Ss, So, and P are used in the calculation. The values
of σ and µ are determined by the type of mission and the mea-
surement methods used to evaluate human performance, such
as subjective measurement, PSs and objective measurement,
PSo . S is the measured CWL and serves as an input variable
to convert into P .

Then, the integrated human operator’s mission performance
model using PSs and PSo is estimated by

Phn
= αpPSo + βpPSs . (2)

Here, we added two weights (αp = 0.5, βp = 0.5) for
the sensitivity of the proposed controller and type of the
mission. We utilized both PSs and PSo , which are calculated
by subjective questionnaires and objective measurements of
the CWL, respectively, in order to protect against unexpected
malfunctions of the physiological sensors as the objective
measurement and fake answers of the subjective questionnaires
made by human operators intentionally.

In order to allocate the workloads based on the estimated
operator’s mission performance P , we developed the DRL-
based AWAC to find optimal changes for multi-human oper-
ators H, H ∈ {h1, . . . , hn}, by comparing the current team
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mission performance with the predicted next team mission
performance that reflects changes in the two variables of W ,
which are the changed workloads of human agents:

So
t+1 = So

t +∆w

Ss
t+1 = Ss

t +∆w
(3)

where ∆w is the variance of the assigned workloads. The next
performance is estimated using Eqs. 1 and 2, as

P (St+1) = αpP (So
t+1) + βpP (Ss

t+1). (4)

These values are utilized in the AWAC algorithm to assign
the optimal workloads based on each human operator’s per-
formance.

C. Proximal Policy Optimization for Workload Allocation

Based on the HPM, we built a DRL model to allocate
optimal workloads for enhancing team performance. To train
our DRL model, we assume that the objective measurement
of the CWL predicted by APM indicates the human opera-
tor’s CWL, and there are no fake answers on the subjective
measurement of the CWL. Fig. 2 depicts the learning diagram
used in the proposed DRL model to find optimal transitions
of the workloads based human operators’ CWLs.

The state space (S) in the DRL model is designed to
consider individual CWLs measured by the self-reporting
questionnaire (Ss

hn
) and by the predicted CWL by APM

(So
hn

), where n is the number of the human operators and
n ∈ {1, . . . , n}. So represents the objective CWL, and Ss

represents the subjective CWL. The action space (A) repre-
sents the assigned workloads based on operators’ performance,
A ∈ (a1, . . . , an), which are estimated based on operators’
So and Ss. We designed the team mission performance-based
reward (R) in order for the DRL model to achieve high team
mission performance by comparing predicted performance
after taking the next state (S ′) and action (A′) with the current
state and action.

We built an environment to train our DRL model, utilizing
the predefined state space S , action space A, and reward R,
through the use of OpenAI gym (see Algorithm S1 on Ap-
pendix C). This was done in conjunction with our surveillance
environment, as depicted in Fig. 2. Using PPO, we trained
the DRL model on the environment to obtain the optimal
policy π [43]. This process is terminated if P ′

team is less than
Pteam, or if the sum of the assigned A falls outside the range
of W . A total of 1,000,000 samples were used to train the
DRL model using three episodes, covering various workload
allocation methods.

To validate the performance of our AWAC model, we
compared it with a random workload allocation method. Both
models were provided with equivalent inputs (S) and subjected
to equivalent restrictions as used in the HPM, along with the
sum of workloads. We then measured the performance of each
model based on the inputs, repeated the experiment 10,000
times, and performed repeated measures ANOVA (rmANOVA)
tests. Our results indicate that the proposed model outperforms
the random workload allocation method (p < .01).
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Fig. 3: Illustration of (a) MRS testbed for conducting surveil-
lance missions and (b) Participants’ workspace and wearable
biosensors (red) and behavioral-monitoring devices (blue) used
to collect physiological features and behavioral data.

IV. CASE STUDY IN CCTV SURVEILLANCE SCENARIOS

In this section, we describe how the proposed AWAC can
be applied to real MH-MR CCTV surveillance scenarios and
how the AWAC, with various allocation methods, impacts team
performance through exploratory user experiments. Moreover,
this section explains the details of the CCTV monitoring task,
the design of the user experiment, and the overall system
configuration used in the user experiment.

A. Team-based CCTV Monitoring Task

To validate the proposed AWAC method, we designed a
team-based user experiment that involved the MH-MR CCTV
monitoring task, which required multiple human operators
to monitor and control multiple agents/robots simultaneously.
Such surveillance missions are widely required in diverse MH-
MR system task scenarios, including security monitoring [44],
air traffic management [45], and performance checking [46].
The surveillance scenario is typical in real-world human-agent
systems, in which human operators undertake a simultaneous
CCTV monitoring task while multiple sensors track them.

Based on the surveillance scenario, we built a generalized
surveillance environment and team-based user study that sup-
ported multi-human operators in conducting CCTV monitoring
tasks with multi-robot systems as MH-MR teams as illustrated
in Fig. 3. Two human subjects work together as a team to
conduct a simulated CCTV monitoring task together in an
environment as shown in Fig. 3b. Both human subjects have
identical roles and responsibilities in the team. During the
CCTV monitoring task, the MRS platform moved through the
corridor (shown in red in Fig. 3a) at a speed of approximately
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300 mm/s and streamed the room conditions to the partic-
ipants’ screens to simulate a CCTV monitoring task, as the
participant’s monitor screen in Fig. 3b. The CCTV monitoring
task is to click on the window displaying a streaming camera
view containing an abnormal object, as illustrated in the right
bottom of Fig. 3a: abnormal objects (e.g., skeleton objects) and
normal objects. The objects were randomly placed in separated
rooms, as shown in the left of Fig. 3a, and differed in color
and quantity. In the CCTV monitoring task, one operator can
monitor up to five cameras. This maximum number of camera
views was determined through our previous experiment [42].

B. User Study Procedure

As illustrated in Fig. 4, the participants conducted the eight
tasks with random order (from Task A to H). This study was
designed as a 2×2×2 within-subject study. This user exper-
iment was reviewed and approved by the Purdue University
Institutional Review Board (IRB) (#IRB-2021-1813).

For the team-based user experiment, we recruited 32 par-
ticipants who met the health requirements (female: 9 and
male: 23; see more details about participant requirements on
Appendix B) for 16 teams and conducted the experiments to
validate the proposed AWAC, as shown in Fig. S3 on Appendix
E. The participants had an age range of 18 to 34 (Mean=23.81,
S.D.=4.17). Each participant was compensated $15 for their
time and efforts. To increase the subjects’ engagement in
the study, we provided additional compensation based on the
overall team’s scores on the given tasks.

Prior to starting the experiment, we explained the entire
experimental procedure to two participants and asked them to
fill out an informed consent and a demographic questionnaire.
The participants were then instructed to wear two wearable
biosensors. The wearable biosensor data were utilized to
predict the participant’s objective CWL. After completing the
survey and sensor calibration process, we provided instructions
for each of the nine tasks (one training and eight main
experiment tasks). Each task consisted of three sets (total
300 seconds) and three break times (total 60 seconds), as
illustrated in Fig. 4. Then, participants performed a trial CCTV
monitoring task using the CCTV monitoring graphic user
interface (GUI) program as depicted in Fig. S2 on Appendix E.
The objective of the trial session was to familiarize themselves
with the experiment hardware and to understand the CCTV
monitoring tasks used in this experiment. Then, the partici-
pants conducted one of the tasks for 360 seconds and repeated
it eight times under different experimental conditions. After
completing each task, participants were asked to evaluate their
emotional and cognitive states using questionnaires such as
self-assessment manikin (SAM), instantaneous self-assessment
(ISA), and NASA task load index (NASA-TLX) via the GUI
programs.

At the end of the user experiment, participants were inter-
viewed for approximately five minutes to gain insight into
their overall experience with our MH-MR AWAC system.
The interview began with a lead-off question (e.g., “Did you
notice any differences between the eight sessions? If so, what
were they?”) and was followed by several other questions
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Fig. 4: The experiment protocol used in the team-based user
experiment involves three phases: Baseline, Main, and Evalua-
tion phases. In the Main phase, a set is repeated three times for
the CCTV monitoring task. This procedure is repeated eight
times with different workload allocation methods randomly
selected from Task A to H.

(e.g., “What are your thoughts on the ISA and Approval
sessions during the mission?”, and “Which method do you
prefer for conducting this CCTV monitoring task: changing
or fixed workloads?”).

C. Details of Tasks in the User Experiment

In Task A, two participants view a fixed number of camera
views (e.g., three camera views). In Task B, two participants
discuss and decide on the allocation of workload (e.g., the
number of camera views) before starting the main task, known
as a consensus step, and view the fixed number of camera
views based on the outcome of the discussion. In Task C and
Task D, AWAC adjusts the workloads based on the subjective
CWL reported by ISA, called ISA Session (IS), with an
additional workload transition method known as Approval
Session (AS) used to seek consent from the other participant
before changing the workload. Task C has AS, while Task
D does not. In Task E and Task F, AWAC automatically
adjusts the number of camera views based on the objective
CWL predicted by APM, called Prediction Session (PS). Task
E has AS, while Task F does not. In Task G and Task H,
AWAC automatically adjusts the number of camera views
based on both subjective and objective measurements of the
CWL (e.g., IS and PS). Task G has AS, while Task H does not.
The tasks are summarized in Table I. A supplementary video
that demonstrates the user study experiment can be found at
https://youtu.be/qrmAQqfdLZk and/or on Appendix A.

D. Tuning HPM parameters

Using multimodal dataset for objective cognitive workload
assessment on simultaneous tasks, called MOCAS [42], we an-
alyzed the results of the subjective and objective measurements
of CWL, obtained from ISA answers and APM prediction
results. Then, we tuned the parameters of Eq. 1 based on
the empirical results of the extensive MOCAS dataset. The

https://youtu.be/qrmAQqfdLZk
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TABLE I: Summary of tasks used in the user experiment.

Task Fixed
workload

ISA
session (IS)

Prediction
session (PS)

Approval
session (AS)

A O X X X
B O X X O
C X O X O
D X O X X
E X X O O
F X X O X
G X O O O
H X O O X
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Fig. 5: An illustration of the HPM calculated using the ISA
score and predicted cognitive workload.

tuned HPM can estimate the current CCTV monitoring task
performance of the human operator from the subjective and
objective measurements of CWL. The correlation between
performance and subjective and objective CWL is illustrated
in Fig. 5.

Each surveillance mission with MH-MR teams consists of
three sets. To achieve better performance in each episode, we
defined the reward function as r = 0.33 if the next team
mission performance (Pteamt+1 ) is greater than the current
team performance (Pteamt ), and 0 otherwise. The Pteam is
the mean of all human operator’s mission performance, and
Pteam′ is the predicted team mission performance on the
next step, calculated by reflecting transitions in the number
of camera views. We assume that as the number of camera
views (wi) increases, the operator’s CWL (hn) and other state
variables (So, Ss) will also increase in the next step. The
correlation between the number of camera views and state
variables was found through empirical results from [27], [42].

E. Overall System Configuration

We developed a team-based surveillance system involving
two human operators and six multi-robot platforms, as shown
in Fig. 6. The hardware configuration used for the operators
in this user experiment is identical and is mainly comprised
of the APM, which serves as the main interface for reading
physiological signals and behavioral features, and measuring
the objective measurement of the CWL. The subjective and
objective measurements of CWL are then utilized as inputs
for AWAC to reallocate workload. In addition to the main

interfaces, additional sub-interfaces were used to conduct the
team-based surveillance mission during the user experiment,
as outlined below.

1) Affective Measurement Tool (AMT): As illustrated in
Fig. 6, we developed the AMT to measure physiological
and behavioral data from wearable biosensors and behavior-
monitoring devices, respectively. We utilize a robot operating
system 2 (ROS2)-based wearable biosensors package [47] to
record human data over wearable biosensors for communicat-
ing with multi-robot systems supporting ROS2. This package
allows for communication between wearable biosensors and
multi-robot systems supporting ROS2. To provide real-time
computing, support for multiple robots, and reliable streaming
data from various nodes, each node in the biosensor package
follows a standardized node and topic structure.

In the AMT, raw physiological signals from wearable
biosensors are collected at a 100 Hz sampling rate, while
behavioral features from the facial view are extracted at a
30 Hz sampling rate. This allows for efficient and accurate
measurement of affective states. For the physiological signals,
we used two off-the-shelf wearable biosensors, the Empactica
E4 and Emotiv Insight, to collect physiological data, and
a webcam (e.g., Intel RealSense) to record behavioral data.
The Emotiv Insight provides readings of 5-channel EEGs,
power spectrum (theta, alpha, beta, and gamma), performance
metrics, and motion data, while the Empatica E4 provides
readings of blood volume pulse (BVP), galvanic skin response
(GSR), heart rate (HR), inter-beat interval (IBI), skin tem-
perature (ST), and motion data. These measurements allow
us to accurately and reliably capture affective states during
collaborative tasks with multi-robot systems. For the behav-
ioral data, we extracted various features from the facial camera
views, such as eye-aspect ratio, facial action units, and facial
expressions. These behavioral measurements provide insight
into operator affective states and can be used to complement
the physiological data collected by the wearable biosensors.

The data collected from wearable biosensors and behavioral
features from the facial camera views in the AMT are down-
sampled to a sampling rate of 100 Hz. This processed data is
then used as inputs to predict operator affective states in real-
time. This process allows the team to effectively collaborate
and perform tasks efficiently, despite variations in operator
affective states. By leveraging the high temporal resolution
of these measurements, the AMT and APM can provide a
detailed understanding of operator affective states and support
the dynamic allocation of workloads in real-time.

2) Affective Prediction Model (APM): As illustrated in Fig.
6, we also use APM to predict CWLs from the objective
measurement of physiological and behavioral signals, which
can range from low to medium to high. We adopt the Hus-
former [48], an end-to-end multimodal transformer framework
for the recognition of multimodal human cognitive load, for
building the APM. To make predictions of objective CWLs of
operators, the APM uses the multimodal bio-signals collected
through AMT as the input, and predicts the objective cognitive
load levels, i.e., low, medium, and high, as the outputs at
100 Hz. We refer readers to [48] for more details of the APM.
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Fig. 6: System architecture for the MH-MR surveillance task. More details can be found at the supplementary website:
https://sites.google.com/view/affective-workload-allocation.

3) CCTV Monitoring GUI Program: The CCTV GUI Pro-
gram is the direct interface between the participant and the
multi-robot system for conducting the surveillance task, as
shown in Fig. S2 on Appendix E. The CCTV GUI pro-
gram displays multiple windows of the camera views and
team scores while performing the task. The GUI starts with
the setup screen to test communication among the wearable
biosensors, behavioral monitoring devices, and multi-robot
systems through ROS2. If there is no issue, the GUI enters the
preparation step, showing a black cross for 5 seconds, followed
by a 5-second countdown timer. Then, the GUI enters the
main experiment step where the participant monitors multiple
camera views simultaneously, called the CCTV monitoring
task, to find abnormal objects on the screens. Additionally,
only the team scores are displayed on the GUI to reduce peer
and time pressures.

Each task consists of three sets, and each set takes 100
seconds, with a break time of about 20 seconds between each
set. The break time is mainly used for reporting participant’s
subjective CWL through the IS for 10 seconds, and the other
10 seconds are for AS. However, participants have break time
if the current task does not require collecting both values (such
as Task A and B). After each task, participants are redirected
to three surveys, including SAM, ISA, and NASA-TLX, where
they respond based on their feelings and thoughts about the
entire task. We then repeated eight tasks for 90 minutes.

4) Object Detection Server (ODS): It performs the CCTV
monitoring task of detecting abnormal objects on the streaming
video from the multi-robots displayed on the GUI program.
The ODS checks whether the human operator detects abnormal
or normal objects and provides audio feedback to the human
operator based on the results of the ODS. If human operators
detect an abnormal object, they are awarded 1 point (e.g.,
reward). However, if they detect a normal object, they lose
3 points (e.g., penalty). Based on our pilot test, we decided
on two points: a higher penalty point (-3) than the reward
(+1), to encourage careful consideration by human operators
conducting CCTV monitoring tasks. For detecting abnormal
objects, we used the object detection algorithm, which has an
accuracy of 99.96% to detect abnormal objects among two
classes (i.e., normal and abnormal objects).

5) Mission Score Server (MSS): It manages the rewards
(+1 point) and penalty (-3 points) based on the participant’s
performance in the CCTV monitoring task. The MSS works
in conjunction with the ODS and GUI program during task
execution. The ODS updates the MSS by determining if the
human operator has completed the task correctly, while the
GUI program serves as the user’s direct interface and displays
the updated team score as the task is being carried out.

6) Multi-Robot System (MRS): The MRS consists of six
ROS2-based multi-robot platforms, known as SMARTmBOT
[49]. The MRS consists of six ROS2-based multi-robot plat-

https://sites.google.com/view/affective-workload-allocation
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Fig. 7: Results of the comparison experiment to validate the
AWAC on four tasks (Task A, D, F, and H): (a) Distribution of
team performance on the four tasks used to validate the AWAC
performance, and (b) Mean team performance obtained in each
set (1st set, 2nd set, and 3rd set) of the four tasks.

forms, which is an open-source mobile robot platform. The
Vicon motion capture system tracks the robot’s locations,
which uses reflective markers attached to the top of the robots.
To perform the surveillance mission, a pure-pursuit control
algorithm was employed, allowing the robot to repetitively
travel between the start and goal position [50].

V. RESULTS AND ANALYSIS

In this section, we present the findings from our exploratory
research. The user experiment is a team-based user study
involving two human operators and MRS. The main objective
of this experiment is to investigate the effect of the proposed
AWAC on team performance and to find optimal workload
allocation strategies by comparing with various task allocation
strategies. Therefore, we adjusted a significance level of α
to .10 for statistical analysis, which can provide valuable
insights for future research regarding MH-MR teams. Table
S1 and Table S4 on Appendix F show the normalized team
performance (or obtained mission scores) of all the teams. We
normalized the raw team performance (P ) by dividing it by the
mean of the team performance (µ); Pnorm = P/µ, in order to
create standards and transform data taken from different teams
into a consistent format.

A. AWAC Validation and Results
In order to find the optimal combination for AWAC (e.g.,

fixed, PS, IS, and AS), we divided teams into two groups:

Tasks A, D, F, H, and Tasks B, C, E, G, based on the
presence of the AS. Then, we performed the rmANOVA test to
investigate the effects of the proposed AWAC without AS on
team performance. We then conducted the post-hoc analysis
using a paired parametric t-test with Bonferroni correction
to explore the contrasts among different workload allocation
models [51]. The team performance across Task A, D, F, and
H was compared using mean scores and standard deviations.
Fig. 7a illustrates the team performance of Task A, D, F, and
H.

The rmANOVA analysis revealed significant effects in the
dependent variable among the groups (F (3, 45) = 2.2134, p
= .0995, η2p = .0813) with mean scores of 0.9564 for Task
A, 0.9645 for Task D, 1.0483 for Task F, and 1.0303 for
Task H (Table S2 on Appendix F). From the results of the
post-hoc tests, we observed that Task F demonstrated higher
performance than Task A (T (15) = -1.8182, p = .0891),
although there are significant effects. Furthermore, Task H
demonstrated higher performance than Task D (T (15) = -
2.1536, p = .0479). However, no significant differences were
found between Task A and D (T (15) = -0.1713, p = .8663),
Task D and F (T (15) = -1.6795, p = .1138), and Task F and H
(T (15) = 0.4053, p = .6909). These results underscore task-
specific variations in team performance, with Task F and H
generally demonstrating better performance compared to Task
A and D, although no significant difference emerged between
Task F and H.

Based on the rmANOVA result, we conclude that Task F
and H, which utilized the proposed AWAC, produced higher
team performance scores than the baseline task (Task A). The
mean mission score in Task A was 372.25, but the other
three tasks using AWAC were 376.375, 403.875, and 402.125,
respectively. Therefore, we confirmed the proposed AWAC’s
effectiveness in improving team performance by adaptively
allocating the operator’s workload based on their affective
state. Given the similar team performance of Task A and Task
D, we can assume that IS does not significantly affect the team
performance compared to PS used in Task F and H.

In order to more deeply investigate the performance of our
AWAC, we analyzed the team performance obtained in each
set of the task; each task in our user experiment has three sets
as illustrated in Fig. 4. We calculated the team performance
obtained in the 1st, 2nd, and 3rd sets, as illustrated in Fig. 7b.
We observed that the team performance obtained in each set
of tasks with our AWAC (Task D, F, and H) was higher than
that of Task A without AWAC in the 2nd set of the missions
(F (3, 45) = 2.5976, p = .0639, η2p = .0931). However, the team
performance of Task D, F, and H decreased in the next 3rd set
compared to Task A, but there was no statistically significant
difference, so we could not say whether the team performance
increased or decreased compared to the previous set.

Thus, we can conclude that our AWAC plays a significant
role in improving team performance. Additionally, we ob-
served that the team performance of Task D suddenly dropped,
which may imply that the subjective CWL responses were
inaccurate, resulting in our AWAC reallocating the wrong
workloads to each operator. We also noticed that the perfor-
mance of Task A increased in the transition from the 2nd set
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Fig. 8: Examples of workload allocation transitions generated
by AWAC during user experiments. (a) Operator A’s data and
(b) Operator B’s data. Red indicates ISA scores, blue indicates
team performance, green indicates the allocated camera num-
ber, and black indicates predicted cognitive workload.

to the 3rd set, but the team performance remained lower than
tasks with AWAC. This observation suggests that our AWAC
can effectively maximize operator performance in a shorter
time than other allocation methods.

The subjective analysis of the effectiveness of the AWAC
also supports the results of the objective analysis. As illustrated
in Fig. S7 on Appendix E, we observed that the valence scores
of the SAM questionnaire in the task with our AWAC are
positive. This means that our AWAC can positively influence
human operator’s emotional states by inducing positive va-
lence (e.g., happy), thereby improving the productivity and
effectiveness of the missions. This is consistent with the Yerke-
Dodson law [40] and other research findings [52].

Fig. 8 illustrates an example of workload reallocation
recorded during the user experiment while participants were
performing the CCTV monitoring task. The figure demon-
strates that our AWAC successfully reallocated the workload
for each participant based on their performance estimated from
ISA scores and predicted CWL.

B. Comparison of Workload Allocation Methods
Beyond validating the performance and effectiveness of

the AWAC, we investigated the effects of various workload
allocation methods on team performance for MH-MR teams.
We designed three sessions as mentioned in Table I; IS,
PS, and AS. The IS session measured the subjective CWL
of human operators using a five-point rating scale during
the missions. The PS session predicted the CWL of human
operators using DL-based APM. The AS session asked the
human operator to accept or reject the proposed workload
transition. If the human operator rejected the workload change,
the workload would not be altered.

To investigate the impact of the AWAC on team perfor-
mance, we conducted the rmANOVA test with significance

level of α to .10 by comparing Task B, C, E, and G. We also
conducted post-hoc tests using a paired parametric t-test with
Bonferroni correction. Fig. S6 on Appendix E presents the
team performance of Task B, C, E, and G. The rmANOVA test
showed significant effects: in the dependent variable among
the groups (F (3, 45) = 2.3585, p = .0842, η2p = .0861) with
Task B having a mean of 1.0275, Task C with 0.9316, Task E
with 1.0046, and Task G with 1.037 (Table S4 on Appendix
F).

Based on the results of the team performance analysis, it
can be concluded that Task G, which utilized both IS and
PS, can get higher team performance than other tasks (Task
B, C, and E). It was also observed that the capability-based
workload allocation (Task B) can get more team performance
than tasks that only used IS or only used PS. Therefore, it can
be suggested that workload allocation methods that include
AS should consider both subjective and objective CWL (IS
and PS) to optimize team performance.

In the tasks without AS (Task A, D, F, and H), we performed
the rmANOVA test with significance level of α to .10 to com-
pare the effects of the experimental conditions of the tasks on
the team performance. Fig. 7a shows the distribution of team
performance on Task A, D, F, and H. The rmANOVA results
showed there are significant effects on team performances
based on the conditions (F (3, 60) = 2.2139, p = .0995, η2p
= .0813). The mean of Task A is 0.9564, the mean of Task D
is 0.9645, Task F is 1.048, and Task H is 1.03. Thus, we can
conclude that workload allocation methods without AS should
consider applying the objective operator’s CWL (e.g., PS) to
maximize the team performance.

We performed the rmANOVA test to compare the effects
of the experimental conditions of Task A and B on the team
performance. Fig. S5 on Appendix E shows the distribution
of team performance on both tasks. The rmANOVA revealed
no statistically significant difference between the two tasks
(F (1, 30) = 1.5959, p = .2258, η2p = .0640). Therefore, we
can conclude that there is no difference between the task
allocation based on the operator’s capability (Task B) and the
counterbalanced task allocation (Task A).

C. Analysis of Subjective Questionnaires

After completing each task in the user experiment, partici-
pants were asked to rate their emotions and CWL using SAM,
ISA, and NASA-TLX. We conducted rmANOVA tests with a
significance level of α to .10 on the results of the subjective
questionnaires and found no statistically significant difference
between tasks in all questionnaires (F (7, 255) = 1.7411, p
= .3474). However, we observed that Task G with PS and
IS (Mean=0.91, S.D.=1.99) and Task E with PS (Mean=0.91,
S.D.=2.07) had positive effects on the participant’s emotions,
especially valence, compared to the other tasks. The SAM
questionnaire’s valence values distribution is illustrated in Fig.
S7 on Appendix E.

D. Analysis of Post-Interview

After completing all tasks, we conducted interviews with
the participants to gather feedback on our AWAC system.
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Most of the participants preferred changing the workload
for the CCTV monitoring task rather than a fixed workload.
Some participants reported that IS and AS were helpful in
conducting missions (see the extended post-interview analysis
in Appendix D).

From the post-interview sessions, we interestingly observed
that some participants felt sorry for getting lower mission
scores compared to their teammates, especially if they were
friends. In order to investigate the effect of the friendship
between two operators on the team performance, we conducted
a one-way ANOVA test to compare the performance of two
groups (e.g., Group A and Group B) in from Task A, which
is our baseline of the task allocation methods without any
other control variables, such as IS, PS, and AS. Group A
consists of Teams 1, 7, 8, 9, and 10, those who know each
other. Group B consists of other teams, those who do not
each other. According to the results of the one-way ANOVA
test, there is no significant difference between Group A and B
(F (1, 15) = 0.0182, p = .8945, η2p = 0.036; See Fig. S8). This
indicates that there is no correlation between the friendship
of two operators and the team’s performance. Therefore, we
can conclude that friendship between team members does not
affect team performance.

E. Summary of Findings

We validated the performance of the AWAC and found there
is a significant difference at α to .10 from our exploratory user
experiment. The tasks with AWAC can achieve better team per-
formance scores compared to tasks without AWAC, suggesting
that reallocating the workload based on the operator’s CWL
for the team mission has positive effects on team performance.
Among the four tasks (Task A, D, F, and H), the task with
the PS achieved the best team performance, indicating that
predicting the operator’s CWL may play an important role in
workload allocation for MH-MR teams.

When AS was provided, having both the IS (i.e., subjective
measurement) and the PS (i.e., objective CWL measurement)
achieved the best team performance. In addition, having the
PS performed better than having the IS, suggesting that the
objective measurement may be a better option for achieving
better team performance. Furthermore, when the subjective
and objective sessions were not provided, and only AS was
given, the performance was better than when the subjective
and objective measurements were provided separately. This
suggests that workload allocation through consultation among
team members can be more effective than workload allocation
through subjective and objective measurements. However, as
mentioned above, this consultation-based approach was not
better than when all three sessions (AS, PS, and IS) were
provided. In other words, the best performance in the CCTV
monitoring task introduced in this study can be achieved by
allocating the same workload in the beginning and soon after
implementing the proposed AWAC with all three sessions.

VI. DISCUSSION

We introduced the DRL-based AWAC that enables human
operators to perform better with teammates and multi-robot

systems through team-based user experiments in a CCTV
surveillance scenario involving MH-MR teams. The AWAC
intelligently assigns appropriate workloads based on individual
and team performance metrics, which are calculated using
a combination of subjective CWL reported through self-
reporting questionnaires and objective CWL predicted by our
DL-based APM. Furthermore, we compared different work-
load allocation strategies for MH-MR teams and found that
consulting with team members to allocate workload is more
efficient than relying solely on our AWAC, which reflects both
subjective and objective CWLs.

To evaluate the effectiveness of our AWAC, we conducted
an rmANOVA with a significance level of α = .10 to analyze
the mission scores obtained during the experiments. The
results indicated that our proposed DRL-based AWAC led to
better team performance. However, the significant effects were
observed only at α = .10 and not at the conventional α = .05, as
our study is exploratory, aimed at finding the optimal AWAC
settings (Task A to Task H) and investigating the effects of the
AWAC on team performance. The relatively small sample size
in our team-based user experiment also contributed to these
results. Although the statistical findings do not meet the α =
.05, we observed significant effects of using affective states
on team performance. Additionally, our post-analysis showed
that the p-value decreased as more teams were included in
the analysis (from Teams 1-4, 1-8, 1-12, to 1-16), suggesting
that further research with a larger sample could yield more
significant results (p < .05). Fig. S4 on Appendix E illustrates
the reduction of p-value with different numbers of teams.

In addition, generalization errors can occur in the proposed
HPM and the DL-based APM. The HPM estimates human
operators’ mission performance using both self-reported and
predicted CWL via the ISA and our DL prediction model,
respectively. To develop the HPM, we utilized the ISA scores
and predicted CWLs of human subjects from the dataset we
built in a previous study [42]. From the dataset, we observed
that the CWLs differ depending on the number of camera
views while performing the surveillance task, and there are
positive correlations between NASA-TLX and ISA scores
(γ > 0.5). Therefore, we assumed that most participants had
similar CWLs depending on the number of camera views.
For instance, when performing our surveillance mission with
one camera view, their CWL is low, and if they use more
camera views, the CWL increases. We applied this knowledge
to develop the HPM.

The DL-based APM was also developed using the same
dataset collected from our previous experiment [42]. However,
due to participants’ facial masks, our facial feature extraction
programs failed to extract some of the facial features (such as
eye aspect ratio and action units) from the subjects. Therefore,
we only used 70% of the MOCAS dataset for training the DL-
based APM. To compensate for the small size of the training
dataset, we applied K-fold cross-validation (K=5), which is a
re-sampling technique that generates more data from a limited
data sample. Thus, we assumed that the prediction results
could represent the current human operator’s CWL while
performing the CCTV monitoring task.

To ensure the sensibility of the proposed DRL-based APM,
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we added weights (α and β) to Eq. 2, which estimates human
performance using both subjective and objective measurements
of the CWL. During our team-based user experiment, we
defined αp and βp as 0.5 each, which were decided based
on our pilot test. However, we may need to adjust these
weights depending on the accuracy of the DL-based prediction
algorithm. If the prediction results of the algorithm are reliable
and high accuracy, we may need to increase the weight of βp

to allocate the workload appropriately based on the human
operator’s performance.

In this research, we focused only on the number of camera
views as one of the primary factors (e.g., robot speed) that
can directly affect an operator’s CWL. Then, we utilized our
HPM to convert the operator’s CWLs into their performance,
which determines the operator’s workload allocation. This
decision was made to focus on validating the effectiveness of
monitoring human affective states on MH-MR team missions
and finding the optimal workload allocation methods for MH-
MR teams. However, we have identified another factor through
previous experiments, which is that the robot’s speed can also
impact mission scores. In a previous study [27], we observed
that the mission scores of participants were influenced by the
robot speed (p < .001).

Moreover, the proposed AWAC was only validated through
a user experiment involving two human operators and six
multi-robot platforms due to limitations in experiment space
and equipment, raising concerns about its scalability. However,
this issue can be addressed by expanding our DRL framework
to include more human operator actions (A) and states (S)
or multi-robot platforms related to the total workloads. It is
important to note that the number of human operators should
be less than the number of robot agents to effectively allocate
workloads based on operators’ performance for the mission.

Based on the results of our experiment, our proposed
workload allocation method (AWAC) that considers both sub-
jective and objective CWL measurement (i.e., IS and PS) and
incorporates the operator’s opinion on workload transition (i.e.,
AS) led to better team performance compared to traditional
workload allocation methods (Task A). The most common
workload allocation method in our society is the capability-
based workload allocation under the agreement, which allo-
cates workloads based on the operator’s preference, ability,
skills, experience, and so on [53], [54]. However, capability-
based workload allocation methods are difficult to handle
sudden changes in the operator’s capability during the mis-
sion, so [25] proposed utilizing objective CWL measurement
methods using physiological sensors (i.e., PS) to overcome this
drawback. They found that CWL measurement-based work-
load allocation methods outperformed traditional allocation
methods, which was also observed in our study. Specifically,
objective-measurement-based workload allocation (Task E)
outperformed capability-based workload allocation methods
(Task C). Furthermore, we found that our proposed alloca-
tion methods using both IS and PS (Task G) outperformed
traditional workload allocation methods (Task B and C) and
objective CWL measurement-based workload allocation meth-
ods (Task E).

VII. CONCLUSION

We introduced the deep reinforcement learning-based af-
fective workload allocation controller (AWAC) that enables
human operators to perform better with teammates and multi-
robot systems. The AWAC intelligently assigns appropriate
workloads based on individual and team performance met-
rics, which are calculated using a combination of subjective
cognitive workload reported through the instantaneous self-
assessment method and objective cognitive workload predicted
by our DL-based affective physiological model. We evaluated
the effectiveness of our AWAC and human performance model
through team-based user experiments on a CCTV surveillance
scenario involving multi-human and multi-robot teams. We
used rmANOVA to analyze the mission scores obtained during
the experiments, which showed that our proposed DRL-based
AWAC resulted in better team performance. This indicates
that workload allocation based on human operators’ cognitive
workload is critical to improving team performance. Further-
more, we compared different workload allocation strategies
for MH-MR teams in the experiment, and found that allo-
cating workload by consulting with team members is a more
efficient method than relying solely on our AWAC that reflects
subjective and objective CWLs.

Our study highlighted the potential of the DRL-based
AWAC in improving team performance in MH-MR team, but
future research should focus on enhancing its robustness and
applicability. Future work will involve conducting experiments
with a larger and more diverse participant pool to improve the
statistical power and generalizability of the findings, which
will help validate the approach at a more significance level
α to .05. Additionally, more detailed comparisons between
specific tasks, particularly between Task A (fixed workload)
and Task G (full AWAC), should be conducted to provide
deeper insights into the effects of our AWAC over traditional
methods. Exploring the scalability of the AWAC by testing it
with larger MH-MR teams and more complex MH-MR setups
is also planned. Finally, future studies should consider addi-
tional factors, such as robot speed, to further refine workload
allocation and enhance overall team performance. Addressing
these areas will help to validate the effectiveness of the AWAC
more robustly and contribute to the development of more
efficient workload allocation strategies in HRI scenarios.

SUPPLEMENTARY MATERIALS

This PDF file includes: Appendix A. Supplementary Video
& Website; Appendix B. Participant Requirement; Appendix
C. Algorithm S1; Appendix D. Extended Post-interview Anal-
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APPENDIX A
SUPPLEMENTARY VIDEO & WEBSITE

• Team-based user experiment video: https://
youtu.be/qrmAQqfdLZk

• Paper website: https://sites.google.com/view/
affective-workload-allocation

APPENDIX B
PARTICIPANT REQUIREMENT

For the team-based user experiment, we recruited
32 participants through flyers, social networking ser-
vices, and email. All participants met the following
requirements:

• Over 18 years old,
• No medical history of brain disorders (e.g.,

stroke, brain tumor, surgery), no mental illness
(e.g., depression, bipolar),

• No heart diseases (e.g., high/low blood pressure,
myocardial infarction), no vision or muscle im-
pairment,

• No skin irritation or allergic reaction to glycerin
and saline fluids.

APPENDIX C
SUPPLEMENTARY ALGORITHM

Algorithm S1 The DRL learning environment.

Initialize state observation S ← (so1, . . . , s
o
n), (s

s
1, . . . , s

s
n);

Initialize actions space A ← (a1, . . . , an)
Initialize weights w ← (αp, βp);
while not terminated do

Receive initial state observation (So, Ss) with random;
Receive initial actions space A;
for all episode = 1, . . . , i do

Initial actions space A with random;
Calculate reward r(s, a);
Calculate transition in actions space A′;
Calculate P ′

team according to S , A′, and w;
Calculate reward r(s′, a′);
if Check termination criteria then:

Stop this episode;
else

Update current state observation s;
episode = episode+ 1

end if
end for
Updated policy π

end while

APPENDIX D
EXTENDED POST-INTERVIEW ANALYSIS

We conducted post-interviews with the partici-
pants to gather feedback on our AWAC system
and found that the majority of participants were
satisfied with our AWAC system, which automati-
cally changes the workload. Specifically, some par-
ticipants reported that IS and AS were helpful in
conducting missions:

“Personally, IS and AS were very helpful because
I felt like I could lead the system [P A of T4].”

On the other hand, other participants preferred
changing the workload for the CCTV monitoring
task rather than a fixed workload:

“It was so cool that this system automatically
recommended a new workload based on our per-
formance! Honestly, I am not sure how accurate
the system is, but I could definitely feel that the
recommended workload was better than sticking
to a fixed workload. I felt that it improved my
working ability [P B of T10].”

We also found unexpected results that some par-
ticipants felt pressure from their teammates due to
the mission scoreboard that was displayed on the
CCTV monitoring program at the end of each task.
We observed some participants quickly closed the
scoreboard program to avoid seeing their results:

“Wow! You (teammate) did a good job. How to
get the scores? Do you have any strategies to
get more scores? Next time, I will get more score
than you (teammate) [P B of T3].”

Interestingly, we observed that some participants
felt sorry for getting lower mission scores compared
to their teammates, especially if they were friends:

“I am very sorry to my teammate. My personal
score is lower than theirs (teammate) [P A of
T1].”

Furthermore, some participants requested to pause
the missions as they experienced headaches or dis-
comfort caused by the EEG headset. This is a known
issue when using wearable biosensors, as evidenced
by one participant who said;

“Can you stop the experiment for a minute? I
have a headache [P A of T15].”

The participants were given a 5-minute break
during which they removed their EEG headsets.
After the break, their headaches disappeared, and
they were able to continue with the remaining tasks
in the experiment.

https://youtu.be/qrmAQqfdLZk
https://youtu.be/qrmAQqfdLZk
https://sites.google.com/view/affective-workload-allocation
https://sites.google.com/view/affective-workload-allocation
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APPENDIX E
SUPPLEMENTARY FIGURES
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Fig. S1: Generalized correlation between performance and
levels of CWL based on the Yerkes-Dodson law [40].

(a)

(b)

(c)

Fig. S2: Graphic user interface (GUI) programs for human
operators in the generalized surveillance scenario. (a) Main
GUI for performing closed-circuit television (CCTV) moni-
toring tasks, (b) ISA session (IS) for participants to report
current CWL by rating from very low (-2) to very high (2), and
(c) Approval session (AS) for admitting transmitted additional
workload from a teammate.

Fig. S3: Experiment snapshots for our user experiments.
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Fig. S4: A trend of p-value according to the number of the
team-based experiment.
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Fig. S5: Distribution of team performance on Tasks A and B.
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Fig. S6: Distribution of team performance on four tasks (Tasks
B, C, E, and G).
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Fig. S7: Valence ratings on the self-assessment manikin (SAM)
for tasks applied to our AWAC.
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Fig. S8: Comparison of team performance between Group A
(Teams 1, 7, 8, 9, and 10) and Group B (Teams 2, 3, 4, 5,
6, 11, 12, 13, 14, 15, and 16) with and without friendship
between two human subjects, respectively.

APPENDIX F
SUPPLEMENTARY TABLES

TABLE S1: Normalized team performance scores of all 16
teams in Task A, D, F, and H.

Task A Task D Task F Task H
T1 0.8447 1.0014 1.4295 0.9059
T2 0.9703 0.7378 0.9110 0.9514
T3 0.6945 1.0103 0.7546 0.9201
T4 1.0060 1.0060 1.1039 0.9530
T5 0.6750 1.0083 0.9356 1.0724
T6 0.7458 0.7002 1.1509 0.9148
T7 1.0700 0.8767 0.9778 0.9531
T8 0.9347 1.0304 0.9375 0.8883
T9 0.8380 1.1639 1.0658 1.1957
T10 1.1335 1.0059 1.1573 1.2166
T11 1.1040 1.1040 0.9189 1.0316
T12 1.0772 0.9299 1.2296 1.0875
T13 1.0257 0.9441 0.9996 1.1074
T14 1.0449 0.8652 0.9012 0.9758
T15 1.0793 0.9580 1.1122 1.1273
T16 1.0584 1.0894 1.1868 1.1846

Mean 0.9564 0.9645 1.0483 1.0303
S.D. 0.1507 0.1234 0.1639 0.1121

TABLE S2: Results of the rmANOVA test for the team
performance scores obtained in Task A, D, F, and H.

Source DF Sum of Square Mean Square F Statistic p-value
Between groups 3 0.103 0.034 2.214 0.0995
Within groups 60 1.161 0.019
Error 45 0.6955 0.016

TABLE S3: Normalized team performance scores of all 16
teams for the team-based user experiment in Task B, C, E,
and G.

Task B Task C Task E Task G
T1 1.0855 0.8524 0.9556 0.9250
T2 1.0605 0.9561 1.2503 1.1625
T3 1.1658 1.0981 1.1633 1.1934
T4 0.9265 0.9080 1.0245 1.0721
T5 1.1877 0.7883 1.0531 1.2796
T6 1.0355 1.1885 1.1348 1.1294
T7 1.0992 0.9531 0.9621 1.1082
T8 1.0878 1.0796 0.9101 1.1315
T9 0.8012 0.7032 1.0977 1.1345

T10 0.9911 0.5994 0.9614 0.9347
T11 0.9976 0.9380 0.8870 1.0189
T12 0.7724 0.9868 0.9816 0.9351
T13 0.8559 0.9767 0.9996 1.0911
T14 1.1776 1.0919 0.9261 1.0173
T15 1.1299 0.9302 0.8291 0.8341
T16 1.0650 0.8547 0.9366 0.6244

Mean 1.0275 0.9316 1.0046 1.0370
S.D. 0.1293 0.1513 0.1110 0.1593

TABLE S4: Results of the rmANOVA test for the team
performance scores obtained in Task B, C, E, and G.

Source DF Sum of Square Mean Square F Statistic p-value
Between groups 3 0.1092 0.0364 2.3588 0.0842
Within groups 60 1.1596 0.0193
Error 45 0.6946 0.0154
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