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Abstract

Accurately measuring and understanding affective loads, such as cognitive
and emotional loads, is crucial in the field of human-robot interaction (HRI)
research. Although established assessment tools exist for gauging working
memory capability in psychology and cognitive neuroscience, few tools are
available to specifically measure affective loads. To address this gap, we
propose a practical stimulus tool for teleoperated human-robot teams. The
tool is comprised of a customizable graphical user interface and subjective
questionnaires to measure affective loads. We validated that this tool can
invoke different levels of affective loads through extensive user experiments.
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Metadata
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C1 Current code version v01
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code version
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SMART-TeleLoad

C3 Permanent link to Reproducible
Capsule

https://github.com/
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SMART-TeleLoad/releases/

tag/v01

C4 Legal Code License MIT License
C5 Code versioning system used git
C6 Software code languages, tools,
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python3, lab-streaming later
(LSL)

C7 Compilation requirements, oper-
ating environments & dependen-
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Python3.8, PyQt 5, Pylsl

C8 If available Link to developer doc-
umentation/manual

https://github.com/

SMARTlab-Purdue/

SMART-TeleLoad

C9 Support email for questions jow@purdue.edu

Table 1: Code metadata

1. Motivation and significance

1.1. Motivation

Advancements in engineering and technology have enabled increased hu-
man interaction with various systems and machines across numerous research
fields [1, 2, 3]. However, human agents are susceptible to fluctuating affec-
tive states, such as cognitive and emotional loads, which pose challenges and
adversely impact the performance and productivity of interaction systems
involving both humans and machines [4]. These interaction systems also ne-
cessitate human operators to multitask and divide their attention, resulting
in excessive affective loads that hinder performance [5].
To reduce the excessive affective loads on the human operator in the

human-machine interaction (HMI), various stimulus tools and systems have
been utilized in various interaction applications, such as manufacturing [6],
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exploration [7], and healthcare [8]. However, the existing stimulus tools used
in the HMI research are commonly based on psychology tasks (e.g., N-back
task [9], Flanker task [10], Simon Task [11], Stroop task [12], Mental Arith-
metic Task [13] and so on).
Beyond the traditional stimulus, there are video game-based stimuli re-

cently developed and utilized in various research to evoke affective loads.
Lindstedt et al. [14] and Cai et al. [15] utilized the customized Tetris game
to generate different affective loads by adjusting the game speed and the
difficulty of the shape. Schrodt et al. [16] and Bevilacqua et al. [17] utilized
the Mario game to stimulate different affective loads in various psychology
experiments . Seyderhelm et al. [18] introduced a 3D driving game to assess
cognitive load and performance, manipulating three levels by changing en-
vironmental contexts. Sharek et al. [19] used a strategy game called “block
walk” in their study. Players manipulated colored boxes to stack and trans-
port them to a specific position. Additional rules were introduced to adjust
the game’s difficulty. Berg et al. [20] developed an online game tool to
measure cognitive functions in students, and assess skills like memory and
problem-solving in an engaging way.
However, the tasks used in the previous stimuli have limitations when

it comes to replicating the complex dynamics of real-world HMI scenarios
required for teleoperated surveillance missions. These missions include cor-
rectional facilities (e.g., jails [21]), CCTV surveillance centers (e.g., airport
security [22], shopping centers [23], etc.), unmanned aerial control centers
[24], and robotic surgeries [25], where a small number of staff need to mon-
itor a large number of CCTV cameras. Therefore, it is limited to conclude
that the affective load stimulated by the existing stimuli is representative.
Therefore, we introduce a new practical stimulus tool that generates vary-

ing levels of affective loads in teleoperation robot control scenarios. The tool
consists of open-source-based graphic user interface (GUI) programs that can
flexibly modulate control variables related to the stimulus, catering to diverse
research and practical applications. Furthermore, it incorporates support for
a lab-streaming layer (LSL) to seamlessly connect with other systems [26],
including physiological sensors and GUI programs, across different operating
systems. To directly measure affective loads, including cognitive and emo-
tional loads, the GUI incorporates two subjective questionnaires: the Self-
Assessment Manikin (SAM) and the NASA-Task Load Index (NASA-TLX).
The effectiveness of the proposed tool is validated through an extensive user
study involving 30 participants, with changes in affective loads measured via
multiple subjective surveys addressing cognitive and emotional aspects. Our
primary contributions can be summarized as follows:
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• We propose a new stimulus GUI tool to evoke the targeted operator’s
affective conditions (e.g., emotional states and cognitive loads);

• We publish an open-access repository to disseminate the stimulus tool
with tutorials and details of programs;

• We validate the proposed stimulus tool to induce the targeted affective
loads through extensive user experiments.

1.2. Significance

The significance of the proposed stimulus is the development of a new
stimulus tool to generate different levels of affective loads in the teleoper-
ation robot control scenarios. Our stimulus can enable researchers to ac-
curately simulate the affective loads that can be generated in teleoperation
scenarios. By doing so, the proposed stimulus can assist in the border field
of human-computer interaction by enhancing teleoperated human-robot in-
teraction, improving operator performance, enabling safer and more efficient
teleoperation, and advancing human-robot interaction (HRI). Understanding
affective loads can lead to the design of more effective and safe human-robot
interfaces. The advancements can improve overall system performance, user
experience, operational safety, and efficiency, while also contributing to on-
going progress in HRI technologies.

2. Software description

In this section, we introduce a new stimulus GUI tool, called SMART-
TeleLoad and explain the software architecture, external features, and func-
tions of the SMART-TeleLoad.

2.1. Software architecture

Fig. 1 illustrates the overall software architecture of the SMART-TeleLoad.
This tool is readily available for use in various projects related to teleoper-
ation, especially when operators are controlling remote machines or robots.
SMART-TeleLoad was developed in Python 3.8 under a Linux environment
(e.g., Ubuntu 20.04). In order to detect the object from the camera views,
it is required to enable OpenCV’s DNN, CUDA driver, and CUDA toolkit.
This SMART-TeleLoad was mainly developed using NVIDIA GeForce 1050.
Within the SMART-TeleLoad repository, there are four folders and three

Python codes as presented in Fig. 2. The directory and file details are as
follows:
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X

Experiment 
settings

Speeds

Camera 
number

Streaming 
robot videos

SAM for 
emotion

NASA-TLX for 
cognitive load

Mission summary

Robot speedNumber of Camera

CSV-format dataset
 1) Experiment timestamp
 2) Subjective results
 3) Mission results 

Lab-streaming layer (LSL)
 1) Experiment status
 2) Mouse positions (x and y)
 3) Mouse pushed button
 4) Mission results 

- [1, 2, 4 camera views]

Subjective 
questionnaires

- [100, 200, 300 mm/s]

Fig. 1: The SMART-TeleLoad software architecture includes environment setup, stimulus
execution, participant subjective questionnaire measurement, and saving and recording
participant’s activities during the experiment.

• darknet files: including the essential cfg file and split weights zip
files necessary for object detection algorithms.

• pyqt ui files: including six Qt-based User Interface (UI) design files
used in the SMART-TeleLoad program.

• resources: having three folders including supplementary resources,
such as images, effect sounds, and pre-recorded video files.

• subjective results: saving directory for the participant’s answers
and mission scores from the subjective questionnaire.

• control room gui node.py: main code to run the SMART-TeleLoad
software.

• lsl outlet reader.py: an example code to read the LSL stream data,
which is an optional code to read the LSL outlet stream data.

• lsl stream setup.py: defining the LSL out streams which is con-
nected to control room gui node.py.

2.2. Software functionalities

The SMART-TeleLoad operational framework consists of four steps, each
accompanied by its corresponding UI files, as illustrated in Figure A.1 in
Appendix A: Experimental Setup UI, Preparation UI, Main Experiment
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SMART-TELEOAD

darknet_files pyqt_ui_files

resources

yolov3-custom_final.zip

object_shape

sam

sounds

subjective_results

P#_cam_#_speed_###.csv

control_room_gui_node.py

lsl_outlet_reader.py

lsl_stream_setup.py

PyQT_CCTV_GUI.ui

PyQT_CCTV_Score_GUI.ui

PyQT_Ready_GUI.ui

PyQT_subQ_NASA_GUI.ui

PyQT_subQ_SAM_GUI.ui
…

smartmbot_videos
speed_100
speed_200
speed_300

Fig. 2: A folder tree for the SMART-TeleLoad repository located at https://github.

com/SMARTlab-Purdue/SMART-TeleLoad.

UI, Subjective Questionnaire UIs, and Session Summary UI. Furthermore,
the SMART-TeleLoad tool stores all data, including experiment status, self-
reported answers, and objective behavioral data (e.g., mouse features), in a
single CSV file. It also transmits this data through the Lab-streaming Layer
(LSL) [26], which is well-known middleware and commonly used to commu-
nicate with other programs or sensors and synchronize time-series data in
physiology experiments; brain-computer interfaces [27], neurofeedback sys-
tems [28], and virtual reality experiments [29].
To facilitate LSL integration, the SMART-TeleLoad provides four outlet

streams to transmit experiment information encompassing the experiment’s
status, mission performance metrics, and intricate details concerning the
participant’s input interface. Also, it includes their objective data, such as
the mouse cursor’s position and recorded button clicks. Table 2 describes
the details of these LSL outlet streams.

2.2.1. Experimental Setup UI

The Experimental Setup UI is to define and modify experimental variables,
such as Participant Number, Number of Cameras, Moving Speed, Preparation
time, and Experiment time. Participant Number is essential in saving all
data to CSV files, enabling researchers to effectively manage the collected
data. The parameters Number of Cameras and Moving Speed determine
the number of camera views displayed on the Main Experiment UI and the
speed at which the robot moves in the streamed videos. This combination
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Table 2: Details of lab-streaming layer streams used in the SMART-TeleLoad software.

Stream name
Stream
type

Channel
count

Sampling
rate

Format Details

Outlet 1 teleload mouse pos mouse pose 2 Irregular int32
Ch 1: X position
Ch 2: Y position

Outlet 2 teleload mouse btn mouse button 1 Irregular string
[”Pressed”]
or [”Released”]

Outlet 3 teleload task accuracy task accuracy 4 Irregular float32

[”success”],
[”failure”],
[”successrate”],
[”totalscores

′′]

Outlet 4 teleload exp status task status 1 Irregular string

[”start”],
[”preparation”],
[”main task”],
[”end”]

is essential in stimulating targeted affective loads, such as low, medium, and
high. Preparation time refers to the amount of time for preparation and is
set by default at 60 seconds. Experiment Time sets the duration of the main
experiment to display the camera videos on the Main experiment UI. The
maximum time allowed is 120 seconds, and the default time is set at 100
seconds.

2.2.2. Preparation UI

Before executing Main Experiment UI, there is Preparation UI to refresh
participants’ cognitive loads. The participant should watch a white cross
with a black background, for (Preparation time−10) seconds and countdown
numbers from 9 to 1, and then Start. Processing time can be adjusted based
on Preparation time, which is set on the Experimental Setup UI.

2.2.3. Main Experiment UI

According to the Number of cameras, Moving speed, and Experiment time
defined on Experimental Setup UI as shown in Fig. 3, it mainly displays pre-
recorded camera views with the selected moving speed for the experiment
time. There are 450 video files (format: *.mp4) recorded with three different
robot speeds (e.g., 100, 200, and 300 mm/sec). The details of the multi-robot
system and navigation algorithm used for recording the videos are described
in Appendix B.
In order to calculate the mission scores as the participant is performing the

task of detecting abnormal objects on the displayed video on the Main Ex-
periment UI, we applied the object detection algorithm through YOLO [30].
The classification algorithm is developed from labeled 4,000 images captured
by the SMARTmBOT platforms [31] with the same experiment environment
as shown in Fig. 4. The algorithm for detecting objects determines whether
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Fig. 3: Main experiment UI to stimulate different cognitive loads by adjusting the number
of cameras from one to four. The participant’s mission is to detect abnormal objects (e.g.,
skeleton objects). There is a supplementary video available to introduce the participant’s
mission and demonstrate the usage of SMART-TeleLoad, which can be accessed through
https://youtu.be/qaYlWQdBHfI.

the operator can identify normal or abnormal objects and provides audio
feedback to the operator based on the detection results. When a partici-
pant answers a question correctly, they will hear a coin sound (represented
by “jangle”). Conversely, if the answer is incorrect, they will hear a wrong
sound (represented by “eek”).
During the execution of this software, the mouse positions and the but-

tons pressed by the participants are transferred through LSL outlet streams
simultaneously. The reason for transfer is that mouse features contain valu-
able information that can be used to analyze the user’s cognitive loads and
emotional loads, such as the rate of cursor movement and button clicks [32].

2.2.4. Subjective questionnaire UI

After completing theMain Experiment UI, users are asked to evaluate their
experience with self-report questionnaires on their affective states. There are
two questionnaires mounted on the Subjective questionnaire UI to measure
participants’ affective loads (e.g., emotional and cognitive loads). The par-
ticipants will move the slider under each question, check all confirm boxes to
activate the Submit button, and then click the Submit button on each UI to
submit the results of the subjective questionnaire.
The first questionnaire is SAM with a 9-point scale [33], which investigates

participants’ emotional state with two dimensions of emotions; valence and
arousal. The second questionnaire is NASA-TLX which is widely used in
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(a) (b)

Fig. 4: The object detection algorithm to detect Among Us figure. (a) Among Us figures
used in the training model, and (b) An example of the detected object from the pre-
recorded video files.

human factors research to assess cognitive loads using six factors with a 7-
point scale [34, 35]. The answers are saved in CSV files, including details
about the experiment conditions and variables in the Experimental Setup UI.

2.2.5. Session Summary UI

The last UI is Session summary UI to display the overall task performance
of participants, including successful clicks, failed clicks, total mission scores,
and success rate. The successful clicks and failed clicks represent the total
number of the object detection results. The total mission scores are obtained
by converting the scores from successful and failed clicks. To determine the
success rate, we calculate the average of the clicks that were successful out
of the total number of clicks.
Afterward, the data is saved into a CSV file named “[participant num-

ber ] cam [Camera number ] speed [Moving speed ].csv”, and saved to “sub-
jective results” folder, and saved to “subjective results” folder. Table 3 is an
example of the CSV components.

Table 3: Components of the CSV file including participant’s information, experimental
conditions, self-reported answers for the affective loads, and mission performance.

P Name Camera Number Object Speed SAM Result NASA Result Mission Scores Click Result

Px # # Valence
Mental
demand

Total
scores

Success clicks

Arousal
Physical
demand

Failure clicks

Temporal
demand

Performance
Effort

Frustration
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3. Illustrative examples

We validated this SMART-TeleLoad by using on our user experiment [36],
which was to build a multimodal dataset in a scenario where an operator
worked alongside multiple robots as a team. This experiment was approved
by the Purdue University Institutional Review Board (IRB) (#IRB-2021-
1813). The aim of the user experiment was to record physiological and
behavioral data under different levels of affective loads generated by the
SMART-TeleLoad. In the experiment, we used three different numbers of
cameras (one, two, and four) and robot speeds (100, 200, and 300 m/s) to
stimulate varying levels of cognitive load. During the experiment, the par-
ticipants completed nine tasks in random order and different combinations
of robot speed and camera views. Additionally, the details of the user exper-
iment design can be found in [36]. As a result, 30 participants completed the
entire steps of the experiment, while one participant (#P02) discontinued
the experiment due to personal reasons. Therefore, 29 responses of the sub-
jective questionnaires are analyzed in a two-way repeated measure ANOVA
(rmANOVA) for answers of the NASA-TLX and a two-way Friedman test
for answers of SAM. The answers of two subjective questionnaires are re-
ferred to as ground-truth affective loads of the participants. We validated
that SMART-TeleLoad was able to elicit different levels of affective loads
based on the number of cameras and speed. Table 4 shows the GUI evoked
different levels of affective loads during the experiments.

Table 4: A Two-way repeated measure ANOVA result in NASA-TLX subjective question-
naires for affective loads.

Subjective Questionnaires Factor (df, error) F p η2p

NASA-TLX

Raw
Camera number (2, 56) 42.977 <0.001 0.606
Speed (2, 56) 36.292 <0.001 0.565
Camera number x Speed (4, 112) 2.177 0.076 0.072

Weighted
Camera number (2, 56) 49.866 <0.001 0.64
Speed (2, 56) 29.717 <0.001 0.515
Camera number x Speed (4, 112) 1.93 0.11 0.065

The participants responded to the NASA-TLX questionnaire and then
it was measured in two ways: raw and weighted NASA-TLX scores. The
weights in the weighted NASA-TLX score are to measure mental workload
where responses of mental demand, temporal demand, performance, effort,
frustration, and physical demand are weighted in [5, 4, 3, 2, 1, 0]. We found
a main effect of both the number of camera views (Camera Number) (raw:
F(2,56) = 42.977, p < 0.001, η2p = 0.606) and (weighted: F(2,56) = 49.866, p <
0.001, η2p = 0.64) and the robot speed (Speed) (raw: F(2,56) = 36.292, p <
0.001, η2p = 0.0.565) and (weighted: F(2,56) = 29.717, p < 0.001, η2p = 0.515).
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Fig. 5: The data distribution by variables of (a) the raw NASA-TLX scores and (b) the
weighted NASA-TLX scores.

Additionally, we found there is no interaction effect between the two within-
subjects factors (raw: F(4,112) = 2.177, p = 0.076, η2p = 0.072, weighted:
F(4,112) = 1.93, p = 0.11, η2p = 0.065).

Table 5: A two-way Friedman result in SAM subjective questionnaires for affective loads.

Subjective Questionnaire df χ2 p

SAM
Valence 8 76.513 <0.001
Arousal 8 91.191 <0.001

The SAM scales that participants responded to for their affective changes
during the experiments collect responses with discrete levels. We found a sig-
nificant difference between collected responses in the SAM scales, supported
by the two-way Friedman test in Table 5. The responses of valence and
arousal revealed significant differences between levels (valence: χ2 = 76.513,
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(a) (b)

Fig. 6: The posthoc analysis with the pair-wise comparison between mea-
surements. Each label has its label formatted as ‘CAM(number) v(Speed) SAM
scale Valence(VAL)/Arousal(ARO)’. The significance levels are adjusted with Bonferroni
corrections. Additionally, each node shows the sample number of successes. Blue connec-
tions indicate their significance p < 0.05, while purple ones do not. (a) the valence scores
of the SAM scale and (b) the arousal scores of the SAM scale.

p<0.001, arousal: χ2 = 91.191, p<0.001). Additionally, as illustrated in
Fig. 6, we adopted a posthoc analysis with the pair-wise comparison after
the two-way Friedman test to scrutinize which levels evoked significant dif-
ferences between levels from the different camera numbers and speeds from
controlled robots. Although all pairs of measures did not show statistical
significance to identify their differences, indicated by purple connections in
Fig. 6, we concluded that each factor was able to elicit different responses
during the experiments through the implemented GUI. Fig. 5 illustrates that
the data of the different raw and weighted NASA-TLX scores also show sta-
tistically identifiable by the number of camera views. Therefore, we conclude
that the proposed interface can successfully elicit the different responses in
the affective loads.

4. Impact

This software provides an integrated, scalable, and efficient means for in-
ducing the affective loads in human-machine teams. The interface presented
stimulus with multiple robots to elicit psychological and temporal human
state changes in the affective states. The GUI is beneficial for reproduc-
ing repetitive and error-based visual stimuli to elicit affective loads in HCI
scenarios. To the best of the authors’ knowledge, the interface is available
as an integrated software that can deliver visual stimuli and questionnaires
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simultaneously and promptly aroused by a new approach of robot-generated
stimuli compared to conventional methods. The interface is expected to hold
significant value for researchers across multiple disciplines, including robotics
and psychology. Its multi-disciplinary nature makes it a promising tool for
exploring and advancing knowledge in the fields simultaneously.
This software is designed to work with the LSL environment, to enhance

its scalability, flexibility and versatility. As well, this software’s scalability
enables researchers to efficiently collect and scrutinize human responses to
specific stimuli, including behavioral and physiological data. With its abil-
ity to handle multiple sensors and adjust to various stimuli, the software
streamlines the prompt data collection process.

5. Conclusions

We introduced a novel stimulus GUI tool, SMART-TeleLoad, designed
to stimulate targeted levels of affective loads in human operators, includ-
ing cognitive loads (e.g., low, medium, and high) and emotional loads (e.g.,
arousal and valence) within the context of real-world robot teleoperations.
To validate the performance of this stimulus tool, we conducted an extensive
user study involving 30 participants. We employed subjective questionnaires
to assess changes in participants’ affective loads, providing valuable insights
into the impact of these loads, including both cognitive and emotional aspects
(p<0.001), on human operators in teleoperated scenarios.
Furthermore, we have established an online repository to make SMART-

TeleLoad accessible to other researchers. This repository includes detailed in-
stallation tutorials and program descriptions, which can be found at: (https:
//github.com/SMARTlab-Purdue/SMART-TeleLoad).
We believe that SMART-TeleLoad will bridge the gap in existing stimuli

tools, facilitating comprehensive measurement and understanding of affective
loads in the latest teleoperation systems and applications. This will empower
researchers to gain deeper insights into the affective loads experienced by
operators, ultimately leading to the design of more effective and practical
human-robot interfaces.
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Appendix A. QT-based UI Designs in SMART-TeleLoad

(a) (b)

(c) (d)

(e) (f)

Fig. A.1: Examples of the SMART-TeleLoad UIs: (a) Experimental Setup UI, (b) Prepa-
ration UI, (c) Experimental setup UI, (d) Self-Assessment Manikin (SAM) questionnaire
UI, (e) NASA-Task Load Index (NASA-TLX) questionnaire UI, and (f) Session Summary
UI

Fig. A.1 is all User Interface (UI) used in the SMART-TeleLoad, which
are easily modified based on the user’s preferences and experiment designs.
Fig. A.1a is Experimental Setup UI to adjust experimental variables; the
number of the camera views, robot moving speeds, and periods of preparation
and experiment steps. Fig. A.1b is Preparation UI of the SMART-TeleLoad.
It counts down from 0s to the predefined preparation time on Experimental
setup UI (default: 60s), displays a black cross with a white background (the
predefined time - 10s), and then displays count-down from 9 to 1, and then
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Start before runningMain experiment UI. Fig. A.1c isMain experiment UI to
stimulate different cognitive loads by adjusting the number of cameras from
one to four. Fig. A.1d is Self-Assessment Manikin (SAM) questionnaire
UI that measures the pleasure and arousal for emotional state. Fig. A.1e
is NASA-Task Load Index (NASA-TLX) questionnaire UI that measures
the cognitive loads. Fig. A.1f is Session Summary UI to show the overall
performance of subjects.

Appendix B. Details of Multi-Robot System for Recording Videos
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Fig. B.1: Results of the SMARTmBOT’s function and performance tests: (a) A diagram of
the software architecture used in the SMARTmBOT, (b) pure-pursuit algorithm geometry
test, and (c) pure-pursuit navigation algorithm test.

The provided video files are recorded by the Multi-Robot system (MRS)
composed of six ROS2-based multi-robot platforms, called SMART Lab
multi-roBOT (SMARTmBOT) [31]. The multi-robot platform, as shown
in Fig. B.1a, is an open-source mobile robot platform supported for Robot
Operating System 2 (ROS2). The SMARTmBOT is 15 cm and 10 cm in
diameter and height, 900 grams in weight. The Vicon motion capture sys-
tem tracks the robot’s orientation and direction with 100 Hz sampling rate
through the pattern of the reflective markers attached to the top of the
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robots. For recording the surveillance mission videos, we applied a pure-
pursuit control to repetitively travel between the starting position and the
goal position with about the targeted velocity of the three different speeds.
The pure-pursuit algorithm is a widely used approach for autonomous vehi-
cle navigation, which follows a trajectory by controlling the heading angle
(δ). The path’s different waypoints are defined from a beginning point to a
goal point. To get to the look-ahead point (xt, yt), it modifies the linear and
angular velocities using the δ [37].

α = Kangular
p tan−1(

xt − xc

yt − yc
)− θc

δ = tan−1(
K linear

p wb sinα

l
)

(B.1)

where Kangular
p is a proportion gain for the angular velocity and K linear

p is
a proportion gain for linear velocity, (xc, yc) is a current SMARTmBOT’s
position, (xt, yt) is a targeted look-ahead point, α is the error heading an-
gle between (xc, yc) and (xt, yc), θc is a current heading angle, and l is the
distance between the look-ahead point and the current SMARTmBOT’s po-
sition, as depicted in Fig. B.1b. The controller algorithm for the surveillance
mission is validated via extensive field experiments. Fig. B.1c shows one of
the experiment results of the pure-pursuit controller.
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