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ABSTRACT: Antimicrobial peptides (AMPs) hold significant potential as broad-spectrum
therapeutics due to their ability to target a variety of different pathogens, including bacteria,
fungi, and viruses. However, the rational design of these peptides requires the molecular
understanding of properties that enable such broad-spectrum activity. In this study, we
present a computational analysis that utilizes machine-learning methods to distinguish
peptides with single-target activity from those with activity against multiple pathogens. By
optimizing a feature-selection procedure, the most relevant physical-chemical properties,
such as dipeptide compositions, solvent accessibility, charge distributions, and optimal
hydrophobicity, that differentiate between narrow-spectrum and broad-spectrum peptides
are identified. Possible molecular scenarios responsible for the universality of these features
are discussed. These findings provide valuable insights into the molecular mechanisms and
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rational design of multitarget AMPs.

Antimicrobial peptides (AMPs) received significant
attention recently as potential therapeutic agents against
various pathogens, including bacteria, viruses, fungi, and
parasites. These predominantly cationic peptides are an
integral part of the innate immune system across many
prokaryotic and eukaryotic organisms, with the ability to target
multiple pathogens simultaneously."” Given the rising threat of
antimicrobial resistance and the increasing number of
infectious diseases, there is a pressing need for novel, eflicient
therapeutic strategies with minimal side effects. Broad-
spectrum AMPs present a promising solution by potentially
reducing the toxicity associated with traditional treatments and
lowering the probability of resistance development.”

The design of AMPs with multitargeting capabilities relies
heavily on understanding the microscopic properties that
enable them to be effective across multiple pathogen classes.
Quantitative structure—activity relationship (QSAR) studies
have proven invaluable in these efforts, helping to uncover the
key molecular features that correlate with antimicrobial activity
against single or multiple targets.””’ Using statistical and
machine learning techniques, QSAR models can predict the
biological activity of some peptides based on their chemical
structure, streamlining the discovery of AMPs with desirable
properties.® A critical step in QSAR studies is a feature
selection process, which involves identifying the most relevant
physical-chemical properties that might be responsible for the
antimicrobial effectiveness of peptides.” "

Several characteristics have already been associated with the
broad-spectrum activity of AMPs. These peptides are generally
cationic and amphipathic, allowing them to interact with
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polarity

negatively charged microbial membranes, thereby compromis-
ing membrane integrity.'”'” Hydrophobic regions enable
AMPs to insert themselves into lipid bilayers, leading to
membrane disruption and cell death.'® Structural flexibility
further enhances their ability to adapt to different pathogen
types, contributing to their multitargeting properties.” Addi-
tionally, AMPs often target multiple intracellular components,
enhancing their effectiveness against a broad spectrum of
pathogens.””*'

Recent advancements in QSAR modeling have aided the
design of AMPs with multitargeting properties. For example,
3D-QSAR models have been successfully employed to predict
AMP activity based on AMPs’ three-dimensional structures,
resulting in the development of peptides with high efficacy
against both Gram-positive and Gram-negative bacteria while
minimizing toxicity to host cells.” Moreover, techniques such
as evolutionary algorithms and genetic programming, which
mimic natural selection to iteratively improve peptide
sequences, have been used to optimize AMP sequences,
improving their activity and stability.” Despite these advance-
ments, however, significant challenges remain. One of the
primary obstacles is the limited availability of high-quality

training data, which can improve the performance of machine
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learning models.”” Furthermore, the specific features that
differentiate broad-spectrum AMPs from narrow-spectrum or
single-target AMPs remain not well understood. While
significant progress has been made in designing dual-target
AMPs,'**** designing peptides with either broad-spectrum or
pathogen-specific activity remains a serious challenge. Studying
peptides with experimentally validated multitargeting activity
offers critical insights for the rational design of new AMPs.
However, a major problem here is the scarcity of data
regarding peptides with confirmed multitarget activity across
different pathogen classes. While many peptides exhibit broad-
spectrum activity, validating their efficacy across all relevant
pathogens often requires extensive and labor-intensive
experimentation.

The primary aim of this study is to identify universal
physical-chemical features that correlate with broad-spectrum
activity across different pathogen classes. We focus on
classifying peptides as either single-target (e.g., antibacterial,
antifungal, antiviral, or antiparasitic) or broad-spectrum
(targeting multiple pathogen types). Then, by studying
peptides with triple-action activity against bacteria, fungi, and
viruses or parasites, we identified the specific physical-chemical
features associated with broad-spectrum efficacy. The possible
microscopic picture associated with these universal properties
is also discussed. The insights gained from this study can
potentially inform the rational design of AMPs for future
therapeutic development. These findings should also improve
understanding of the microscopic mechanisms underlying
AMP functionality.

For our analysis, pathogens such as bacteria, fungi, viruses,
and parasites, were chosen not only because they are common
and well-documented threats, providing ample data for
analysis, but also because they represent practical targets for
developing antimicrobial peptides.”>™*® We identified the
AMPs that are effective against these pathogens. The peptides
were classified into two main groups: single-action peptides,
which target a single type of pathogen, and triple-action
peptides, which are active against multiple pathogens. Triple-
action peptides were further categorized into Set 1 (active
against bacteria, viruses, and fungi) and Set 2 (active against
bacteria, fungi, and parasites). The single-action peptides were
grouped by pathogen type: antibacterial, antiviral, antifungal,
and antiparasitic. Now we employed a feature selection
procedure to identify the properties that have the strongest
correlations with the activities of AMPs. This was done using
the Least Absolute Shrinkage and Selection Operator
(LASSO) method, as detailed in ref 10. For each system, the
most relevant physical-chemical properties were determined.

To perform LASSO-based feature selection, we employed a
two-stage hyperparameter tuning process. First, we manually
tuned hyperparameters by focusing on the regularization
parameter @, repeating the manual tuning process (see ref 11
and the detailed section on hyperparameter tuning methods in
the Supporting Information). From this process, we selected
the value of a that produced the highest classification accuracy.
This manually selected value was then used as the input for an
automated hyperparameter tuning process, which iteratively
refined the model to minimize classification error and further
reduce the number of selected features. The automated tuning
process adjusted o iteratively to optimize both accuracy and
feature selection. The final value of @ maximized classification
performance while minimizing the feature set. Accuracy plots

for all tested values of a are provided in the Supporting
Information.

To evaluate the accuracy of our computational approach, we
utilized several evaluation metrics, as illustrated in Table 1.

Table 1. Accuracy and Matthews Correlation Coefficient
(MCC) for Different Classification Tasks

classification task N features accuracy mcc
Set 1
antibacterial-only 1547 0.63 0.28
after feature selection 58 0.85 0.70
antiviral-only 1547 0.80 0.60
after feature selection 74 0.88 0.76
antifungal-only 1547 0.78 0.57
after feature selection 39 0.88 0.76
Set 2
antibacterial-only 1547 0.67 0.34
after feature selection 45 0.85 0.71
antifungal-only 1547 0.76 0.52
after feature selection 39 0.90 0.80
antiparasitic-only 1547 0.95 0.90
after feature selection 15 0.96 0.93

Matthews correlation coefficient (MCC), which lies between
—1 and 1 and is similar to other correlation coefficients, is a
robust metric under various circumstances and provides a
balanced, minimally biased score; a score close to 1 indicates
perfect prediction, while a score close to 0 indicates that the
prediction is random, and a score close to —1 indicates that all
predictions are the opposite of the true class (e.g., all single-
action peptides are incorrectly predicted to be triple-action
peptides).”

Table 1 shows the accuracy and MCC before and after
feature selection procedure. Across all tasks, accuracy and
MCC improved significantly after the feature selection. This
indicates that the removal of irrelevant or redundant properties
enhances the model’s ability to properly classify the peptides.
These results demonstrate that focusing on a reduced set of
features not only simplifies the model but also enhances its
predictive power, especially in distinguishing between single-
action and triple-action peptides. While previous studies have
also highlighted the importance of feature selection in
improving classification performance for high-dimensional
data sets, the improvement in accuracy observed here was
greater overall than in earlier studies employing a similar
procedure.'”"!

Our computational method allowed us to identify the
specific physical-chemical properties that are responsible for
the broad-spectrum activities of AMPs. Feature importance
plots derived from LASSO coefficients are used to understand
the relevance of each feature in predicting the class of a peptide
as single-action or triple-action. In these plots, the importance
of each feature is directly proportional to the absolute value of
its coeflicient. The coefficients themselves have units
corresponding to the scale of the dependent variable and the
independent variables. The scale of the LASSO coefficients can
vary widely and is not restricted to a fixed range like —1 to 1.
Instead, the coefficients represent the strength and direction of
the relationship between each feature and the target variable.
Larger absolute values of coefficients indicate more significant
features, while a coeflicient of zero implies that the feature has
been excluded from the model due to its lack of relevance. This
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method allows for the identification of key features that
contribute most significantly to the prediction, aiding in the
interpretability and refinement of the model. The x-axis for the
feature importance plots are presented in Figures 1, 2, and 3 is
identical for each panel and represents feature importance.
Figure 1 shows the most important features that distinguish
single-action from triple-action peptides in Set 1, where triple-
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Figure 1. Relative importance of different physical-chemical features
distinguishing single-action from triple-action peptides in Set 1
(where triple-action peptides are active against bacteria, viruses, and
fungi): (a) antibacterial-only, (b) antiviral-only, and (c) antifungal-
only. For each analysis, the top 10 positive and bottom 10 negative
features are displayed after sorting the features by their contribution
magnitude.

action peptides are active against bacteria, viruses, and fungi.
Features with positive coefficients are associated with triple-
action peptides, while negative coeflicients are linked to single-
action peptides. Table S1 in the Supporting Information shows
the complete list of features and definitions for all classification

tasks.

For the antibacterial-only classification (Figure 1la),
positively weighted features such as NL (asparagine-leucine
dipeptide) and AD (alanine-aspartate dipeptide) suggest that
dipeptide composition plays a critical role in determining
broad-spectrum activity. These dipeptides have been pre-
viously associated with membrane interactions, which are
crucial for the initial steps of multipathogen targeting.*
Additionally, the presence of hydrophobic and amphipathic
residues such as valine (HV dipeptide) and cysteine (C)
highlights the importance of structural properties that facilitate
peptide interactions with different microbial membranes.”"’
In contrast, negatively weighted features like DP (aspartate-
proline) and RP (arginine-proline) are more closely linked to
antibacterial-only peptides. Proline-containing dipeptides often
disrupt secondary structures, which may limit their effective-
ness against multiple pathogen types.”> The presence of
aspartate, which introduces a negative charge, likely reduces
the peptide’s ability to interact with various pathogen
membranes, further confining it to antibacterial activity.”” In
other words, the dominating physical-chemical properties for
the single-target peptides are too specific and too strong, and
limiting AMPs in being active against other threats.

For the antiviral-only classification (Figure 1b), positively
weighted features such as ST (serine-threonine), WI
(tryptophan-isoleucine), and M (methionine) are associated
with peptides that can target multiple pathogens. These
features reflect the structural flexibility and membrane
interaction properties required for broad-spectrum activity.
Tryptophan, for example, is known for its role in enhancing
peptide-membrane interactions due to its hydrophobicity and
ability to form strong contacts with lipid bilayers.”*** On the
other hand, negatively weighted descriptors like LW (leucine-
tryptophan) and LR (leucine-arginine) are more characteristic
of antiviral-only peptides. These dipeptides likely limit broad-
spectrum activity due to their specialized interactions with viral
components, reducing their effectiveness against other
pathogen types.

In the antifungal-only classification (Figure 1c), descriptors
like CL (cysteine-leucine), DF (aspartate-phenylalanine), and
SC (serine-cysteine) are positively associated with triple-action
peptides. These combinations of hydrophobic and polar amino
acids likely contribute to the peptides’ ability to function
against diverse pathogens. Solvent accessibility features such as
SolventAccessibilityD3050 and SolventAccessibilityD3001, which
measure the intermediate solvent exposure of residues, further
suggest that surface-exposed residues play a key role in broad-
spectrum antimicrobial activity. Specifically, SolventAccessibili-
tyD3050 is the fraction of the sequence that contains 50% of
amino acids with buried solvent accessibility (M,P,S,T,H,Y),
and SolventAccessibilityD3001 is the fraction of the sequence
that contains the first amino acid with intermediate solvent
accessibility (M).

Conversely, negatively weighted features like Moreau—
Broto—Auto—Hydrophobicity16 (hydrophobicity correlation
between amino acids 16 residues apart) and DG (aspartate-
glycine) suggest that certain hydrophobic properties, while
effective for fungal targeting, may limit the peptide’s ability to
target other pathogen types.”> The negative impact of solvent
accessibility descriptors indicates that certain residue exposure
patterns are associated with more specialized, single-pathogen
activity, probably supporting the specificity of such inter-
actions.
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Figure 2. Relative importance of different physical-chemical features distinguishing single-action from triple-action peptides in Set 2 (where triple-
action peptides are active against bacteria, fungi, and parasites): (a) antibacterial-only, (b) antifungal-only, and (c) antiparasitic-only. For parts a
and b, the top 10 positive and bottom 10 negative features are displayed after sorting the features by their contribution magnitude. For part c, all
features are shown.

In Set 2, where triple-action peptides are active against (Figure 2a), features such as DC (correlation in free energy
bacteria, fungi, and parasites, the feature importance for between residues 12 amino acids apart) and AL (alanine-
antibacterial-only, antifungal-only, and antiparasitic-only clas- leucine dipeptide) positively contribute to triple-action activity.
sifications (Figure 2) reveals similar patterns of positively and The importance of solvent accessibility and secondary
negatively weighted descriptors. For antibacterial-only peptides structure, as seen in descriptors like SecondaryStrD2050 and

12419 https://doi.org/10.1021/acs jpclett.4c03197
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Figure 3. Comparison of overlapping features for antibacterial-only and antiOfungal-only classifications for Triple Action Set 1 and Set 2.
Antibacterial-only features from Triple-Action Set 1 in part a (orange bars) and from Triple-Action Set 2 in part b (green bars). Antifungal-only
features from Triple-Action Set 1 in part c (orange bars) and from Triple-Action Set 2 in part d (green bars).

Solvent Accessibility D3025, emphasizes the need for structural
flexibility and surface exposure to target multiple patho-
gens.’ ™’ SecondaryStrD2050 is the fraction of the sequence
that contains 50% of the amino acids associated with the beta
strand secondary structure (group 2: V,LY,C,WF,T) and
SolventAccessibilityD3025 is the fraction of the sequence that
contains 25% of the amino acids associated with intermediate
solvent accessibility (group 3: M,P,S, T,H,Y). Negative features
like QSOgrant13 (quasi-sequence order descriptor based on
chemical distance) and ChargeD302S (distribution of
negatively charged residues) suggest that charge distribution
and specific sequence orders may limit the peptide’s ability to
target a wide range of pathogens.”®*’

For antifungal-only peptides (Figure 2b), positively selected
features include FL (phenylalanine-leucine dipeptide), VT
(valine-threonine dipeptide), and NP (asparagine-proline
dipeptide). These features suggest that hydrophobicity and
specific dipeptide compositions enhance the peptide’s ability to
target both fungi and other pathogens. However, negatively
weighted descriptors such as RQ_(arginine-glutamine) and GA
(glycine-alanine) indicate that excessive polar or charged
dipeptides may reduce the effectiveness of the peptide against
other types of pathogens. In the antiparasitic-only classification
(Figure 2c), hydrophobicity and polarizability descriptors, such
as MoreauBrotoAuto_Hydrophobicity24 (hydrophobicity corre-
lation between amino acids 24 residues apart) and Polar-
izabilityD2075 (fraction of the sequence that contains 75% of
the amino acids with polarizability values of 0.128—120.186:
C,P,N,VE,QJIL), contribute positively to triple-action classi-
fication. Methionine (M), known for its membrane-disrupting
capabilities, is also a key feature for broad-spectrum activity in
this classification.””"!

Figure 3 highlights the shared features between Set 1 and Set
2 when comparing antibacterial-only and antifungal-only
peptides against the corresponding triple-action peptides. Set
1 includes peptides that are active against bacteria, viruses, and

fungi, while Set 2 contains peptides that are active against
bacteria, fungi, and parasites. These properties can be
associated with the most universal features that distinguish
single-target and multitarget peptides. Note that some of the
shared features in Figure 3 are not displayed in Figures 1 and 2
because they are not among the top 10 positive or negative
features for those comparisons. However, they still belong to
the set of optimal selected features that are associated with the
highest classification accuracy for the corresponding task.
Notable universal features include AL (alanine-leucine) and
MoranAuto_ HydrophobicitylS (hydrophobicity correlation
over 15 residues), which consistently contribute to broad-
spectrum activity. These features underscore the importance of
optimal hydrophobicity and structural flexibility across differ-
ent pathogen types.'®*®*” While the same features appear in
both sets, their magnitude and influence vary, reflecting subtle
differences in the peptides’ interaction with pathogen
membranes. For example, the feature D (aspartate) shows a
stronger negative influence in Set 1 compared to Set 2,
suggesting that charge distribution plays a more critical role in
limiting broad-spectrum activity in some cases. Similarly,
positively weighted features like VP (valine-proline dipeptide)
and MoranAuto_Mutabilityl2 (correlation in mutability
(susceptibility of an amino acid to mutate during evolution)
between amino acids 12 amino acids apart) suggest that
hydrophobic and mutable regions within the peptide sequence
are fundamental for targeting multiple pathogens. These
findings agree with previous studies that highlight the
importance of moderate hydrophobicity, appropriate charge
distribution, and structural adaptability in broad-spectrum
AMPs.">*® Features related to solvent accessibility and
secondary structure, such as SecondaryStrD2050 (the distribu-
tion of amino acids associated with the f strand secondary
structure) and SolventAccessibilityD3025 (the distribution of
amino acids associated with intermediate solvent accessibility),
also indicate that the accessible surfaces and adaptable
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secondary structures are key to interacting with a variety of
microbial cell walls.***

The computational analysis identified key physical-chemical
features that distinguish broad-spectrum (triple-action) anti-
microbial peptides from single-action AMPs using LASSO for
feature selection and SVM for classification. By automating the
manual hyperparameter tuning process, we systematically
optimized the model for feature selection, leading to important
insights into the mechanisms of broad-spectrum peptide
activity. This approach not only improved the model’s ability
to classify triple-action peptides but also increased accuracy
compared to earlier studies using similar methods.'”'" The
identified features provide valuable insights into how broad-
spectrum AMPs function across different pathogen types. The
importance of solvent accessibility descriptors, such as Solvent
AccessibilityD3025 (the distribution of amino acids associated
with intermediate solvent accessibility), suggests that greater
surface exposure is required for these peptides to interact with
diverse microbial membranes. Similarly, secondary structure
descriptors like SecondaryStrD2050 (the distribution of amino
acids associated with the beta strand secondary structure) and
SecondaryStrD3075 (the fraction of the sequence that contains
75% of the amino acids associated with the coil secondary
structure: G)N,P,S,D) highlight the importance of conforma-
tional flexibility, which enables these peptides to penetrate and
disrupt a range of different membrane types.*® These results
agree with previous findings showing that flexibility and surface
exposure are crucial for antimicrobial activity.'”*’

Our theoretical analysis also suggests that charge distribu-
tion plays a critical role in these processes. Negative features
such as ChargeD3025 (distribution of negatively charged
residues) indicate that an even distribution of negative charges
across the peptide sequence reduces the broad-spectrum
efficacy. This finding is consistent with prior observations
showing that positively charged peptides, where charges are
clustered together, interact more effectively with negatively
charged microbial membranes, emphasizing the importance of
balancing charge and hydrophobic properties for multi-
pathogen targgeting.‘%’w'49 Additionally, broad-spectrum
AMPs require specific distributions of some properties,
including flexibility, polarizability, and hydrophobicity. De-
scriptors like GearyAuto  Polarizability22 (correlation in
polarizability between amino acids 22 amino acids apart) and
MoreauBrotoAuto_Hydrophobicity24 (hydrophobicity correla-
tion between amino acids 24 residues apart) suggest that
peptides with adaptable polarizability and hydrophobicity are
better equipped to target multiple pathogen types. This
adaptability is essential for breaching structurally distinct
pathogen membranes, supporting the peptides’ action against
bacteria, fungi, and viruses. 375051

A key finding of this study is the overlap in certain features
between different sets, such as AL (alanine-leucine dipeptide)
and MoranAuto_HydrophobicitylS (hydrophobicity correlation
across 1S residues). The consistent presence of these features
in both sets suggests that hydrophobicity and structural
adaptability are central to broad-spectrum activity. These
overlaps indicate that while peptides may differ in the specifics
of their pathogen targeting, certain core physical-chemical
properties are universally important for targeting a range of
pathogens. This finding suggests that the difference between
broad-spectrum and narrow-spectrum peptides lies not just in
the presence of certain features, such as hydrophobicity, charge
distribution, or flexibility, but in how these features are

distributed, balanced, and fine-tuned for interaction with
diverse microbial membranes. Broad-spectrum peptides appear
to have these properties optimized in a way that allows them to
adapt and function effectively across different types of
pathogens, such as bacteria, fungi, and viruses. In contrast,
narrow-spectrum peptides may possess similar features, but
these are more specifically tuned for interacting with a single
pathogen type, limiting their versatility to target a broader
range of microorganisms. Thus, peptides with more general-
ized properties may have the flexibility to function across
multiple pathogen types, whereas peptides with more narrowly
defined properties may be optimized for specific targets.

A notable limitation of the study is related to the difficulty of
ruling out potential targets for peptides unless demonstrated
inactivity is proven. Many peptides may possess activity against
other pathogens but may not have been tested beyond a
specific pathogen type, such as bacteria. Without evidence of
inactivity, we cannot conclusively classify some peptides as
single-target in our data sets. As multitargeting peptides
become more thoroughly tested, more accurate classifications
and feature analysis can be achieved. Additionally, multi-
targeting peptides, though not inherently rare, are exper-
imentally challenging to verify due to the extensive testing
required across multiple pathogens. The relatively small data
set used in this study may limit the generalizability of the
findings. As more data on triple-action peptides become
available, future models could incorporate more sophisticated
tuning methods or leverage advanced machine learning
techniques, such as deep learning or ensemble methods, to
enhance prediction accuracy.

While Least Absolute Shrinkage and Selection Operator
(LASSO) remains a widely used method for feature selection,
recent developments have introduced several promising
alternatives, such as Recursive Feature Elimination (RFE),
Boruta, and Shapley Additive exPlanations (SHAP) values.
RFE operates by iteratively removing the least important
features based on model weights until an optimal feature
subset is identified.">*® Boruta, an extension of Random
Forest, ranks feature importance by comparin% each feature’s
relevance to that of random permutations.54’5‘ SHAP values,
derived from cooperative game theory, quantify the contribu-
tion of each feature to a model’s prediction, offering insights
into feature importance through marginal contribution
analysis.’®*” However, these traditional methods often face
issues like computational inefficiency and potential biases,
particularly in high-dimensional data environments.*®

To address these challenges, more sophisticated techniques,
including Deep Neural Network (DNN)-based feature
selection, have emerged. DNNs leverage their capacity to
learn complex patterns and identify salient features, which
enhances both prediction accuracy and model interpretabil-
ity.”” Additionally, methods such as mixed-integer program-
ming and local false discovery rate estimation have been
developed to improve the robustness and interpretability of
DNN-based feature selection.’”** These advanced approaches
help mitigate overfitting, reduce biases, and provide clearer
insights into model behavior. In summary, while traditional
methods like those implemented in this study remain valuable,
the integration of DNN architectures and optimization
techniques represents a promising direction for future feature
selection in complex data environments.

It is important to note here that although our theoretical
analysis does not fully uncover the microscopic mechanisms of
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multitarget activities of some AMPs, it provides an important
first step in this direction by identifying specific features that
are most probably responsible for these phenomena.
Addressing microscopic mechanisms directly will require
more advanced theoretical and experimental studies to get
more details of the molecular picture. The value of our
theoretical method is that it suggests the directions in which
these studies should be directed.

In conclusion, this study represents a significant step toward
understanding the microscopic picture that defines multi-
targeting AMPs. By developing and automating the tuning
process, we optimized feature selection and identified key
physical-chemical properties associated with broad-spectrum
activity, emphasizing the universality of certain features. While
our approach primarily focused on feature selection, future
studies should expand this method to include more specific
prediction models that can guide the rational design of
multitargeting AMP-based therapies. Ultimately, this work
should provide a foundation for understanding the molecular
mechanisms of AMPs functioning.
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