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Abstract—Human state recognition is a critical topic with
pervasive and important applications in human-machine systems.
Multi-modal fusion, which entails integrating metrics from vari-
ous data sources, has proven to be a potent method for boosting
recognition performance. Although recent multi-modal-based
models have shown promising results, they often fall short in fully
leveraging sophisticated fusion strategies essential for modeling
adequate cross-modal dependencies in the fusion representation.
Instead, they rely on costly and inconsistent feature crafting
and alignment. To address this limitation, we propose an end-to-
end multi-modal transformer framework for multi-modal human
state recognition called Husformer. Specifically, we propose using
cross-modal transformers, which inspire one modality to rein-
force itself through directly attending to latent relevance revealed
in other modalities, to fuse different modalities while ensuring
sufficient awareness of the cross-modal interactions introduced.
Subsequently, we utilize a self-attention transformer to further
prioritize contextual information in the fusion representation.
Extensive experiments on two human emotion corpora (DEAP
and WESAD) and two cognitive load datasets (MOCAS and
CogLoad) demonstrate that in the recognition of the human state,
our Husformer outperforms both state-of-the-art multi-modal
baselines and the use of a single modality by a large margin,
especially when dealing with raw multi-modal features. We also
conducted an ablation study to show the benefits of each com-
ponent in Husformer. Experimental details and source code are
available at: https://github.com/SMARTIab-Purdue/Husformer.

Index Terms—Cognitive Load Recognition, Emotion Predic-
tion, Multi-modal Fusion, Cross-modal Attention, Transformer

I. INTRODUCTION

ECOGNITION of human states, such as affective states

(commonly known as emotions) or cognitive load (often
referred to as mental stress) plays a pivotal role in human-
machine interaction systems [!], [2]. It enables machines to
perceive, understand, and adapt to different human emotional
or cognitive states, improving the performance of the whole
systems [3], [4], [5]. The methods used to assess human
emotions or cognitive load can be generally divided into two
main categories based on the types of signals used: physio-
logical and behavioral [6]. Physiological assessments involve
measuring human physiological metrics, such as galvanic skin
response (GSR), electroencephalography (EEG), electroocu-
lography (EOG), electrocardiography (ECG), electromyogram
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(EMG), and heart rate (HR). These metrics change in response
to involuntary reactions of the human nervous system under
specific states [7]. On the other hand, behavioral assessments
analyze subconscious human behavioral responses, including
facial expressions, body and eye movements, and mouse
movements, and associate them with different human states.

Unfortunately, due to the inherent complexity of human
state reasoning, relying solely on signals from a single modal-
ity is unlikely to yield optimal recognition performance,
especially in terms of accuracy and robustness [6], [8],
[9]. Each modality exhibits different sensitivities to varying
task environments and subject characteristics, rendering the
identification of a universally effective modality for every
scenario and individual unfeasible. Furthermore, a reliance on
unimodal data sources increases susceptibility to noise and
signal disruptions, which can lead to considerable inaccuracies
or even complete system failures.

Recently, multi-modal fusion-based methods for human
state recognition have emerged, combining data from vari-
ous modalities to overcome the limitations of single-modal
approaches [10], [11], [12], [13], [14]. The adoption of multi-
modal signals can reduce the noise-to-signal ratio and enhance
tolerance against sensor failures. More importantly, fusing
different metrics collected from the same subject under one
particular human state through multiple modalities can reveal
important and comprehensive indexes of human emotion and
cognitive load that are inaccessible via a single modality
[6], [9]. Nevertheless, the inherent heterogeneity of multiple
modalities poses challenges in generating an efficient fusion
index of the human state. These challenges include: 1) the
usual misalignment among different modalities, resulting in
varied feature lengths and temporal resolutions; 2) the risk
of incorporating biased or irrelevant information when merg-
ing multi-modal features due to noncommensurability across
modalities; and 3) the necessity to infer long-term and complex
dependencies across modalities for precise fusion [0].

Current multi-modal fusion approaches for human state
recognition remain in their early stages and have not yet
fully addressed the challenges arising from the heterogeneity
across multiple modalities. Most methods rely on extensive
feature engineering and alignment to concatenate features from
different modalities and produce the fusion representation [6],
[15], [16]. However, such direct concatenation fusion schemes
often overlook the latent correlations across modalities and
may still face limitations due to non-instantaneous coupling,
even when manually aligned. While there are methods to
facilitate learning of cross-modal interactions through shared
representations [14], [17], [18], [19], [20], these approaches
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Fig. 1. Framework of the proposed Husformer, taking multi-modal data input from four example modalities: EEG, EMG, GSR, and eye blinking (EB). The
multi-modal data inputs, X € REGPO) | where Ly and Dy separately present the length and dimension of the input sequence of one modality, are
passed through multiple one-dimension temporal convolution layers, Conv1D ) (Section III-B), and then encoded with positional information to produce
the low-level unimodal features Y(,) € RE)'P which all have the same dimension D (Section III-C); these are concatenated to generate the low-level fusion
representation Y € RLF-D . This representation is then fed alongside the unimodal low-level features of each modality into each respective cross-modal
attention transformer, wherein the target modality is adapted and reinforced according to the other resource modalities through learning the attention between its
unimodal features and the low-level representation (Section III-D). Then all reinforced unimodal features Z ) € RL)P are concatenated into the mid-level
fusion representation, which is passed through a self-attention transformer to generate the high-level fusion representation Zr € RLF>DP with important
contextual information prioritized. Finally, the high-level fusion representation is transported to fully connected layers to make predictions (Sections III-E and

1II-F).

typically employ network structures that are insufficiently deep
to effectively grasp complex cross-modal dependencies and es-
tablish necessary complementarity among different modalities.
Moreover, the prerequisite feature engineering processes in
these methods are not only resource-intensive but also subject
to variability across different modalities. Parameter optimiza-
tion in such contexts requires significant expert knowledge
and thorough cross-validation [7], [21], which undermines
the simplicity of the model and its applicability to new task
scenarios. Additionally, to the best of our knowledge, existing
multi-modal methods have not been demonstrably effective
in predicting both human affective states and cognitive loads.
Most are designed for specific modality combinations and
task scenarios, which raises concerns about their general
applicability.

To address the aforementioned gaps, we introduce Hus-
former: an end-to-end multi-modal transformer designed for
human state recognition. The model can efficiently learn repre-
sentations of human emotion or cognitive load from heteroge-
neous multi-modal data streams. Fig. | illustrates its structure
with four example input modalities: EEG, EMG, GSR, and
eye blinking (EB). The core components of Husformer are
the cross-modal attention module and self-attention module,
which consist of multiple cross-modal attention transformers
and one self-attention transformer, respectively. The cross-
modal attention transformers model the latent interactions

across modalities by continuously adapting and reinforcing
features from one modality with those of other modalities (e.g.,
EEG <+ EMG, GSR, and EB). Unlike direct concatenation
of multi-modal modalities or learning cross-modal shared
representations through shallow neural networks, our cross-
modal attention mechanism encourages the target modality to
directly attend to low-level features in other modalities, where
strongly relevant and complementary information is revealed.
This leads to more adaptive and efficient complementarity and
cooperation across multiple modalities. The subsequent self-
attention transformer prioritizes important contextual informa-
tion in the fusion representation concatenated from reinforced
unimodal features of all modalities supplied by the cross-
modal attention transformers. This finally generates a weighted
high-level fusion representation based on which predictions are
made.

To evaluate the performance of Husformer, we conducted
extensive experiments on four multi-modal datasets: DEAP
[22] and WESAD [23] for emotion recognition, and MOCAS
[24] and CogLoad [25] for cognitive load estimation. Ad-
ditionally, we performed a comprehensive ablation study to
investigate the benefits of each module in Husformer.

The main contributions of this work can be summarized as
follows:

e Husformer is an end-to-end model that learns directly and
efficiently from heterogeneous multi-modal physiological



and behavioral signals without the massive feature crafting
and alignment required in previous works.

We introduce cross-modal attention transformers to fuse
features from different modalities and sufficiently model
long-term cross-modal interactions, and then a self-attention
transformer to prioritize effectual contextual information in
the fusion representation.

To the best of our knowledge, this is the first time a generic
model for human state recognition is presented and proven
to be effective for both human emotion and cognitive load.
Our extensive experiments on four publicly available
datasets demonstrate the benefits of the Husformer and each
of its constituent modules.

II. BACKGROUND

This section reviews existing research on human state
recognition using multi-modal fusion approaches and the pre-
liminary transformer networks that serve as the basis of our
model.

A. Multi-Modal Fusion for Human State Recognition

The concept of ‘human state’ refers to either the emotional
state or cognitive load borne by an individual. Given the
complex nature of the human state, a single modality is insuf-
ficient to achieve recognition with satisfactory performance in
terms of accuracy and robustness, especially in real-world task
scenarios where signals are more subject to interruption, noise,
and delay [9]. To solve this issue, the multi-modal fusion that
integrates human signals from more than one source modality
into a synchronized compact representation has been adopted.

Nevertheless, multi-modal fusion methods for human state
recognition are still at the initiatory stages and suffer from
several defects in fusion strategies. Firstly, the direct con-
catenation of different modalities at the sensor, feature, or
decision level has been adopted for most existing works to
produce the fusion representation [6], [15]. This approach may
introduce superfluous information, bias, or noise due to feature
noncommensurability across different modalities. For exam-
ple, the mere fusion of heart rate (HR) with other modalities
might offer additional valuable information in some tasks but
cause disruption in others. This is because HR-related signals
are influenced not only by cognitive load and emotion, but
also by irrelevant physical activities [6]. Moreover, the direct
fusion of different modalities with unbalanced length and
temporal dimensions necessitates extensive feature alignment
preprocessing. This could diminish the richness and diversity
of the input data, potentially constraining the model’s capacity
to discern complex patterns and relationships within or across
modalities. In general, simple concatenation operations are
insufficient for modeling cross-modal interactions, likely fail-
ing to uncover crucial representations that multi-modal fusion
could otherwise reveal.

Recently, advanced fusion schemes have emerged, aiming to
address these challenges by modeling cross-modal interactions
through the training of shared representations across different
modalities. For instance, Tang et al. [14] employed Restricted
Boltzmann Machines (RBM) [26] to train a hidden layer,

anticipated to learn the shared representations of sub-layers
from diverse modalities. Tsai et al. [27] introduced cross-
modal temporal correlations by learning shared weights across
sub-layers of different modalities. Qiu et al. [18] leveraged
Deep Canonical Correlation Analysis (DCCA) [28] to amplify
the correlations among features of two modalities. Nonethe-
less, these methods, utilizing shallow network structures, may
not thoroughly capture intricate correlations across diverse
modalities, particularly from raw multi-modal signals where
features are more disjointed. Additionally, the DCCA used by
Qiu et al. [18] and Liu et al. [19] is confined to analyzing
the correlation between only two modalities, constraining
the model’s applicability to general task scenarios that may
necessitate the concurrent fusion of more than two modalities

Furthermore, existing works usually require extensive fea-
ture crafting and alignment procedures to reach sound recog-
nition performance due to the abundant collinearity or hetero-
geneity in the raw multi-modal features. In addition, differ-
ent modalities are usually preprocessed by different methods
whose optimal parameters are initially unknown. For instance,
Zhou et al. [29] employed infinite impulse response (IIR) high-
pass and Hanning window filters for EEG modality feature
engineering, while GSR and HR modalities were processed
using continuous decomposition analysis and other physio-
logical methods. Subsequently, procedures like independent
component analysis (ICA) and manual feature selection based
on prior knowledge were utilized for a second round of
preprocessing. Such intricate, non-uniform feature engineering
procedures detract from the model’s simplicity and univer-
sality, rendering it less suitable for general task scenarios
and particularly for real-world applications. This contradicts
the fundamental aim of multi-modal fusion. Moreover, to our
knowledge, existing studies primarily focus on recognizing ei-
ther affective or cognitive states, often tailored to specific tasks
and not validated on publicly available datasets. Consequently,
these models lack the generality and replicability essential for
broader applicability.

Distinct from these prior studies, our proposed Husformer
1) focuses on the general recognition of human emotion or
cognitive load; 2) does not require extensive feature alignment
and extensive feature crafting procedures in existing works,
but rather learns from raw multi-modal feature streams; and
3) utilizes cross-modal attention layers as the fusion strategy,
thereby introducing efficient cooperation and complementary
adaptions across modalities regardless of the number of modal-
ities.

B. Transformer Network

The transformer network [30] was originally proposed
to solve sequence-to-sequence machine translation tasks in
the natural language processing area. Unlike the traditional
encoder-to-decoder structure, the transformer network adopts
a multi-head self-attention mechanism to substitute for the
attention-based convolution and recurrence layers. The self-
attention mechanism aims to calculate a global representation
of a sequence input that reveals meaningful contextual infor-
mation by relating different components within the sequence.



A self-attention block adapts each entity in a sequence by
considering the global contextual information of the whole
sequence. Multi-head self-attention splits the attention into
multiple latent sub-spaces (heads), which enables the modeling
of multiple complex contextual relations across elements in the
sequence, leading to a more comprehensive global represen-
tation.

III. APPROACH

In this section, we present Husformer, an end-to-end multi-
modal transformer for multi-modal human affective or cog-
nitive state recognition that learns the fusion representation
directly and efficiently from multi-modal data streams.

A. Overview

As shown in Fig. 1, at a high level, the Husformer employs
a position-wise feed-forward process to merge multi-modal
signal series from multiple cross-modal transformers (Sec-
tion III-D). Within each cross-modal transformer, the target
modality is continuously enriched with low-level features from
other modalities by computing the latent cross-modal attention
between the target low-level unimodal feature and the low-
level fusion representation. A sequence-to-sequence model,
specifically a self-attention transformer, is then used to handle
the mid-level fusion representation sequence, which includes
all enhanced unimodal features, producing the adaptively
weighted high-level fusion representation (Section III-E). This
is achieved by computing multi-head self-attention (Section
II-B), where the self-attention transformer examines the pair-
wise relationships across elements in the mid-level fusion
representation, namely the bolstered unimodal features, to
calculate adaptive weights at various positions, thereby empha-
sizing essential contextual information. Ultimately, the high-
level fusion representation undergoes processing through fully
connected layers for prediction (Section III-F).

B. Temporal Convolutions

Let s s denote modalities. And let
present the raw multi-
modal data sequences input from these  modalities.

and represent the sequence length (e.g., channel number)
and dimension (e.g., sampling rate) of each unimodal input
respectively in this paper. The multi-modal input sequences are
passed through multiple one-dimension temporal convolution
layers with different kernels to generate multiple convoluted

sequences with the same di-
mension

6]
where denotes the temporal convolution kernel
sizes for modalities s s .

Each convoluted sequence aims to contain low-level tem-
poral features of each modality. Furthermore, it is important
that after temporal convolutions, different unimodal input
sequences are projected to the same dimension, making the
dot-product calculation in the following cross-modal attention
module mathematically feasible.

C. Positional Encoding

As mentioned in the introduction of the transformer net-
work (Section II-B), the transformer model has no inherent
awareness of the positional information of each sequence
component, such as the relative or absolute position of features
within a modality sequence. To introduce sufficient awareness
of relations across neighboring elements, i.e., features of
adjacent channels within one modality sequence, and thus
spatial information, we follow the method proposed in [30] and
apply positional encoding (PE) to the convoluted sequences

using and functions with different fre-
quencies. The PE of one convoluted sequence can
be defined as a matrix:
2
where and —.
Each characteristic dimension (i.e., column) of is

a position index displayed in the sinusoidal pattern. The
calculated PEs , are then aug-

mented with convoluted sequences to obtain low-
level unimodal feature sequences with both initial temporal
and spatial information encoded :

3

Additionally, the extracted low-level unimodal feature se-
quences of all modalities are then concatenated to produce
the low-level fusion representation :

“4)

D. Cross-modal Attention Module

To provide sufficient complementary interactions and adap-
tions across different modalities, we respectively feed the low-
level unimodal feature sequence of each modality

with the low-level multi-modal fusion representation
to a cross-modal attention module that is
comprised of multiple cross-modal transformer networks. Each
cross-modal transformer is designed to continuously bolster
the low-level unimodal features of the target modality using
features from other source modalities. This is achieved by
learning cross-modal attention between the input unimodal
sequence and the low-level fusion representation. Essen-
tially, this learned attention encourages each target modal-
ity to directly access the low-level features of other source
modalities encoded in the fusion representation. This process
adaptively identifies relevant and beneficial information that
can act as complementary reinforcements. This module not
only promotes a nuanced understanding of correlations across
modalities, but also mitigates potential artifacts and feature
inconsistencies in raw multi-modal features. It achieves this by
selectively ignoring irrelevant components, such as disrupted
or non-responsive features in the low-level unimodal feature
sequence, during cross-modal attention computation.



|| R

N
Cross-modal Attention

Cross-Modal CM(Yy— Yy)
i

Attention Score .. ..

QUi i
. softmax(—n_fus )V
T B

o

QniKius i
) Lp, D

Dy ) K, s € Rl Px

softmax(

Target Unimodal Feature Fusion Representation

(a) Iustration of the cross-modal attention between each low-level unimodal
feature and the low-level fusion representation.

. b -
e

~
Cross-modal

7 . i:;‘;f ‘;r Transformer
/ 4 CMT(Yg — Yy) \
| ——»  Add&Norm |
| i
| i
| i
i —»  Add&Norm |
i xU i
| |
| i
| i
| i
| i
| i
| i
! i
| e /
Nz
-

(b) Ilustration of the cross-modal Transformer network stacked by
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Fig. 2. Architectural description of cross-modal attention and cross-modal
transformer network.

1) Cross-modal Attention: The purpose of our cross-modal
attention is to learn an attention score between a target low-
level unimodal feature sequence Yy, € REi-P and the low-
level multi-modal fusion representation Y € R¥#-P which
guides the adaption and reinforcement for the target unimodal
features using other source unimodal features embedded in the
fusion representation. We formulate unimodal Query Q.;,
fusion Key Kp,s and Value Vg, as:

Quni = Yar, - Wouni
Kpys =Yp - WKFUS (5
VFUS = YF . WVFus

where Wooni € RPPe, Wyrw. € RPPE and Wyrus €
RP-Pv are learnable weights.

As depicted in Fig. 2a, similar to the self-attention process
described in [30], the latent adaption and reinforcement from
the fusion representation to the target unimodal feature, i.e.,
the learned cross-modal attention Y eadj € REmiDv | in the

5t head cross-modal attention can be defined as:

Yﬁj‘ldi =CM(Yp — YM )
= Attention( Unis Kﬁ:ugy VFue)
T (6)
KJ .
= softmax M Vs

VDx

where the softmax(.) € REM:-LF presents the scaled cross-
modal attention score matrix between the fusion representation
and the target unimodal feature.

We define the YheadJ in (6) as the single-head cross-modal
attention. Accordmgly, the multi-head cross-modal attention
between the i*" target modality and the fusion representation
can be formulated as:

= Concat <Yj\'}f“d1 e

y Ml
' : (7)
head,
e )

where Yj\%“l € REmimPv and m is the head number.

2) Cross-modal Transformer: Drawing upon the structure
of the self-attention transformer network as detailed in [30],
we have developed the cross-modal transformer by integrating
the previously defined multi-head cross-modal attention. As
illustrated in Fig. 2b, the cross-modal transformer, denoted
as CMT Yi—Yar,» Processes the " target unimodal feature
sequence alongside the low-level fusion representation. It
consists of several identical layers, each comprising a multi-
head cross-modal attention block paired with a position-wise
feed-forward network. It also includes residual connections
and layer normalization for enhanced efficiency and stability.
Formally, a cross-modal transformer network with U cross-
modal attention encoder layers calculates the reinforced uni-
modal feature sequence Zy;, € REMiD feed-forwardly as:

70 = vp

ZN) = Yar,

24 = oMl izl -
= 2y + L(zy )
Zy) =Fo(L(Z)))) + L(Z3])

L(Zy ")) ®)

where u € [1,U] presents the u!? cross-modal attention

encoder layer, IL(.) and Fy(.) denote the layer normalization
operation and position-wise feed-forward network with a pa-
rameter set 6, respectively.

In each cross-modal transformer, the target unimodal fea-
tures are continuously encoded and enhanced with external
information from other source unimodal features embedded
in the fusion representation. Specifically, the low-level uni-
modal features of source modalities from the low-level fusion
representation are converted to different pairs of the fusion
Keys and Values in (5) to compute the multi-head cross-modal
attention of the target modality in (7). Following the process



described in (8), each target modality is merged with other
source modalities by a position-wise feed-forward process
from each cross-modal transformer.

E. Self-attention Module

The outputs of the cross-modal attention module, namely the
enhanced unimodal features for each modality,
are aggregated into a single sequence. This forms the mid-level
fusion representation , which
is then fed into the self-attention transformer [30]. The role of
the self-attention transformer here is to create a weighted high-
level fusion representation , wherein essential
contextual information is accentuated.

Specifically, the self-attention transformer dynamically as-
signs self-attention scores across different positions within
the input sequence. This process involves each minimal unit
of the enhanced unimodal features of various modalities,
incorporating the global contextual information of the entire
sequence. Consequently, the elements within the sequence
are endowed with adaptive weights, thereby constructing a
high-level global representation. In this representation, critical
contextual information pertinent to human state recognition,
such as sensitive and efficient features in specific task sce-
narios, is underscored, while less relevant features, like those
disrupted and insensitive, are de-emphasized. This adaptive
self-attention mechanism effectively mitigates potential feature
noncommensurability across modalities, thereby augmenting
the efficiency of the model.

F. Model Training

At the final step, the output of the self-attention module,
namely, the high-level global feature , is passed
through two linear layers with a residual connection operation
and a softmax nonlinear activation function that calculates
prediction probabilities  as:

©))

where and  present two linear layers with parameter sets

and , and contains the prediction probability for each
class.

To reduce the class imbalance resulting from biased data
distribution and varied recognition difficulty, we adopt the
multi-class focal loss function [31] for training, which is
formulated as:

(10)

where is the total number of classes, and correspond to
the true label and predicted probability for class respectively,
and  present the balancing parameter that controls the
trade-off between the positive and negative samples within
class and a focusing parameter that down-weights the
contribution of well-classified samples respectively.
The overall procedures of Husformer model training are
summarized in Algorithm 1.

Algorithm 1 Procedures of Husformer Training

1: Given multi-modal data series of modal-
ities and true classification labels

2: Given training steps

3: Initialize convolution kernel sizes , Cross-
modal attention weights , self-

attention weights
eters

and other model param-

5: // Convolutions and Positional Encoding

6: Compute low-level unimodal feature sequences
by (1)-(3)

7: Compute low-level fusion representation by (4)

8: while do

: /I Cross-modal Attention Module

10: Compute reinforced unimodal feature sequences
by (8)

11: /I Self-attention Module

12: Compute high-level fusion representation

13: /I Linear Layers

14: Compute prediction probability by (9)

15: /I Model Optimization

16: Compute loss by (10)

17: Update model parameters using backpropagation

18:

19: end while

IV. EXPERIMENTAL SETTING

In this section, we detail the experiments conducted on
four publicly available multi-modal datasets, which are widely
recognized in the field of human affective and cognitive
state recognition. Our experiments are designed to bench-
mark the performance of our Husformer against five state-
of-the-art baselines in multi-modal fusion-based human state
recognition. To comprehensively assess the efficacy of our ap-
proach, we also report the performance achieved using single
modalities on each dataset. This comparison aims to ascertain
whether our multi-modal fusion-based Husformer surpasses
the recognition capabilities of methods relying on individual
modalities. Furthermore, an ablation study was conducted to
elucidate the individual contributions and advantages of each
module within the Husformer framework.

A. Datasets

We selected two multi-modal affective datasets: DEAP
[22] and WESAD [23], and two multi-modal cognitive load
datasets: MOCAS [32] and Cogload [25] for experiments. For
each dataset, we used the original features of each modality as
provided, without any further feature alignment or engineering.

The DEAP dataset contains multiple physiological signals,
including EEG, EMG, EOG, and GSR, collected from 32
participants watching 40 different music video clips that
elicited different emotional states. After each video clip,
participants were requested to report their affective state levels
in terms of arousal, valence, liking, and dominance from
1 to 9 using the Self-Assessment Manikin (SAM). In our



TABLE I
DESCRIPTION OF UTILIZED MODALITIES IN THE DEAP DATASETS.
FREQUENCY: TIME SAMPLING RATE; CHANNELS: NUMBER OF CHANNELS;
AND ARRAY SHAPE: NUMBER OF DATA ROWS X CHANNELS X FREQUENCY.

Raw DEAP Dataset

Modality =~ Frequency  Channels Array Shape
EEG 512 32 69535x32x512
EMG 512 4 69535x4x512
EOG 512 4 69535x4x512
GSR 512 1 69535x1x512

Preprocessed DEAP Dataset

Modality ~ Frequency  Channels Array Shape
EEG 128 32 80640%32x128
EMG 128 2 80640x2x 128
EOG 128 2 80640x2x128
GSR 128 1 80640x 1x128

TABLE II

DESCRIPTION OF UTILIZED MODALITIES IN THE WESAD DATASET

WESAD Dataset

Modality Frequency  Channels Array Shape
GSR (chest) 700 1 27287 x1x700
BVP (wrist) 64 1 27287 x1x64
EMG (chest) 700 1 27287 x1x700
ECG (chest) 700 1 27287 x1x700
RESP (chest) 700 1 27287 x1x700
GSR (wrist) 4 1 27287x 1x4

experiment, we utilized two versions of the DEAP dataset:
the downloaded Data-original.zip, which contained collected
raw multi-modal features, was regarded as the raw DEAP
dataset, while the downloaded Data-preprocessed.zip, which
crafted features with several procedures', was regarded as the
preprocessed DEAP dataset. Valence and arousal were selected
as the evaluation criteria of human emotion, where we mapped
the scales (1-9) into three levels: “negative” or “passive”(1-3);
“neutral” (4-6); and “positive” or “active” (7-9).

The WESAD dataset contains physiological data, consisting
of GSR, BVP, EMG, ECG and respiration (RESP), collected
by one chest-worn and one wrist-worn wearable sensor from
15 participants who conducted different tasks that aimed to
elicit different emotional states. Specifically, participants were
asked to close their eyes for seven minutes to stimulate the
neutral state. The stress state was elicited by the Trier Social
Stress Test (TSST) [33], where participants delivered a five-
minute speech on their personal traits to three-person panels.
Moreover, for the amusement state, participants were required
to watch funny videos for 392 seconds. After each task,
participants reported subjective emotional states using SAM
and other self-report questionnaires, and three kinds of labels,
i.e., neutral vs. stress vs. amusement, were provided.

The MOCAS dataset contains physiological data, including
5-channel EEGs, EEG band powers (or EEG_POW, including
theta, low and high beta, alpha, and gamma bands of 5-
channel EEGs), BVP, GSR and HR, and behavioral data,
including Eye Aspect Ratio (EAR) and Action units (AUs),
from 21 participants conducting Closed-Circuit Television
(CCTV) monitoring tasks that aimed to elicit different levels
of cognitive load. After each task, participants were required to
report subjective cognitive load via NASA-TLX. Based on the
weighted NASA-TLX scores, three categories of annotations,

Lhttps://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html

TABLE III
DESCRIPTION OF UTILIZED MODALITIES IN THE MOCAS DATASETS

Raw MOCAS Dataset

Modality Frequency  Channels Array Shape
EEG 128 6 215341x5x128
EEG_POW 8 25 215341 x25%8
BVP 128 1 215341 x1x128
GSR 6 1 215341x1x6
EAR 1 1 215341 x1x1
Preprocessed MOCAS Dataset
Modality Frequency  Channels Array Shape
EEG 128 6 215341x5x%x128
EEG_POW 8 25 215341x25%8
BVP 128 1 215341 x1x128
GSR 6 1 215341x1x6
EAR 1 1 215341 x1x1
TABLE IV

DESCRIPTION OF UTILIZED MODALITIES IN THE COGLOAD DATASET

CogLoad Dataset

Modality ~ Frequency  Channels  Array Shape
HR 1 1 89225x 1x1
IBI 1 1 89225x1x1

GSR 1 1 89225x1x1
SKT 1 1 89225x 1x1
ACC 1 2 89225x2x1

ie., low vs. medium vs. high, cognitive load were given.
Apart from the raw multi-modal physiological and behavioral
features collected from two off-the-shelf wearable sensors:
Empatica E4 and Emotiv Insight, and a webcam, the MOCAS
also contains the data prepossessed by NeuroKit2 [34] and
other methods [32]. In this experiment, we utilized both raw
and preprocessed MOCAS datasets.

The Cogload dataset contains physiological signals, in-
cluding HR, IBI, GSR, SKT, and motion data (ACC) col-
lected from 23 participants through a Microsoft band. The
participants conducted six dual tasks including primary and
secondary cognitive-load tasks that were expected to stimulate
target levels of cognitive load. The primary task was randomly
selected from six psycho-physiological tests proposed in [35].
The secondary task was to click on the appearing target on
the screen while conducting the primary task. After each
task, participants were asked to report subjective cognitive
load based on the TLX mental demand of the NASA-TLX
questionnaire, and the data collected in the baseline (rest)
section was labeled as -1. In our experiment, we mapped
the subjective scales into three classes of labels: low (-1-3),
medium (4-6), and high (7-9).

In our experiments, to simulate realistic application sce-
narios, the input sample of each modality is a 2-D feature
matrix extracted from a 1-second segment with the dimension
of , 1.e., the channel number plus the sampling
frequency of the modality. The details of the modalities used
in the aforementioned datasets are described in Tables I-IV.

B. Baselines

We selected five state-of-the-art baselines of multi-modal
fusion-based human state recognition as the comparisons with
our proposed Husformer:

EF-SVM: Support Vector Machines (SVMs) with early

fusion [36], [37], [21]. This is a popular benchmark model


https://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html

for human state recognition, which concatenates different
modalities together at the sensor or feature level and builds
an SVM as the classifier for the fused representation.
LF-SVM: SVMs with late fusion [38], [37], [21]. This
model is also a strong benchmark to predict the human
state, which fuses different modalities at the decision level.
Each modality is processed with an SVM classifier to make
individual predictions, which are combined together through
a voting scheme. In our experiment, we select Dempster-
Shafer Theory (DST) voting [39], [40], which is reported
as the best-performing voting scheme by [21], as the late
fusion process.

EmotionMeter [17]. This is a multi-modal deep learning
model for human emotion prediction. Multiple individual
RBMs are built to process features of each modality, where
the hidden layers of those individual RBMs are concatenated
together to learn the shared representations across different
modalities. Then a linear SVM is adopted for classification
using the learned shared representations.

MMResLSTM: Multimodal Residual Long Short-Term
Memory Neural Network [41]. This is another state-of-the-
art multi-modal deep learning model for human emotion
recognition. Multiple individual LSTM blocks are con-
structed for each modality, where each LSTM layer of
these individual LSTM blocks shares the same weights to
learn the temporal correlations across different modalities.
Finally, the outputs of all LSTM blocks are concatenated
and passed through a dense layer to make predictions. Layer
normalization and residual connection are also applied to
accelerate the training process.

MMFN: Multi-modal fusion network with complementarity
and importance for emotion recognition [20]. This is a
recent deep learning model for multimodal human emotion
recognition, utilizing the dot-product attention mechanism
to discern both the complementarity and importance across
different modalities. Within the MMFN, features from each
modality are initially introduced into an importance atten-
tion module. In this module, each set of unimodal features is
multiplied by a learnable corresponding importance weight,
creating multiple unimodal representations. These repre-
sentations are subsequently forwarded to a complementary
attention module. This stage begins by forming feature
matrices that encapsulate the relationship between each two
modalities. The module then determines complementary
weights by applying the softmax function to these matrices
and conducting element-wise multiplication with the origi-
nal feature vectors of each modality. These complementary
vectors from each modality are merged and supplied to a
bidirectional LSTM network for emotion prediction.

Moreover, to comprehensively evaluate if our Husformer
could improve the performance compared with using single
modality, we also implemented Long Short-Term Memory
Nerual Network (LSTM) [42], Graph Neural Network (GNN)
[43] and Transformer [30], which were broadly utilized for
single-modal-based human state recognition [44], [45], [46],
to test every single modality in each dataset, and the best-
performing results among these three models were reported.

C. Evaluation and Metrics

For each dataset, we randomly shuffled all data and con-
ducted the -folder cross-validation ( ) [47], [48]. We
reported the average multi-class accuracy () and multi-
class average Fl-score () [49] with standard deviations for
each model in each experiment. Furthermore, samples from
the same trials, such as a film clip in the DEAP dataset
or a monitoring task in the MOCAS dataset, were included
in either the training or test sets. We also conducted two-
sample independent t-tests to compare the classification results
of different models, and the significance is asserted when

D. Implementation Details

All training and experiments were conducted on an NVIDIA
Tesla V100 GPU. We trained all baseline networks by fol-
lowing the implementation procedures described in their re-
spective original papers. Also, for the SVM classifier, we
followed the approach described in [21] to select the Radial
Basis Function (RBF) kernel and optimize the values of C and

. Note that EF-SVM cannot be directly applied to unaligned
datasets, which means datasets that contain multiple modalities
with different time sampling rates, since the concatenation
operation is mathematically impossible due to different feature
dimensions. Therefore, we added multiple one-dimensional
convolution sub-networks with the same structures and param-
eters as those in the Husformer before the EF-SVM to extract
low-level unimodal features with the same dimension for the
concatenation operation on unaligned datasets, i.e., WESAD
and MOCAS datasets. The detailed information regarding
the selection and settings of the Husformer hyperparameters
utilized in our experiments can be found in Appendix A.

E. Ablation Study

To evaluate the benefits of each module in our Husformer,
we also built three ablation models for the ablation study:
HusFuse: Deleting the cross-modal attention module in
the Husformer, and fusing the low-level features of all
modalities directly to the self-attention module.
HusLSTM: Replacing the self-attention transformer in the
Husformer with an LSTM layer, which is widely used as a
backbone network in emotion or cognitive load prediction
tasks.
HusFair: Replacing the cross-modal attention module in
the Husformer with the directional pairwise cross-modal
attention widely adopted in multi-modal natural language
processing and computer vision areas [50], [27]. However,
Husformer differs from HusPair in that it focuses on the
cross-modal attention between each individual modality and
the multi-modal fusion signal, rather than between one sin-
gle modality and another. This allows the model to consider
the coordination of more than a pair of modalities at the
same time, reducing the potential information redundancy
caused by parallel pairwise fusion.
Furthermore, to ensure a fair comparison, we kept the
hyper-parameters of ablation models the same as those in the
Husformer during the experiments.



TABLE V

PERFORMANCE OF DIFFERENT MODELS ON RAW DEAP AND PREPOSSESSED DEAP DATASETS IN TERMS OF AVERAGE MULTI-CLASS AVERAGE

ACCURACY (Acc) AND MULTI-CLASS AVERAGE F1-SCORE (F'1) WITH STAND DEVIATIONS. RESULTS OF OTHER MODELS THAT ARE WITHIN 5% OF

Husformer’s PERFORMANCE ON Acc OR F'1 ARE HIGHLIGHTED. . HIGHER VALUES INDICATE BETTER PERFORMANCE.

Dataset i Raw DEAP i Preprocessed DEAP
Criteria Valence Arousal Valence Arousal
Metric Acc(%)™ F1(%)" Acc(%)" F1(%)" Acc(%)™ F1(%)" Acc(%)" F1(%)"

EF-SVM 43.95+2.17 47.36+£2.53  46.02+2.10  48.69+2.16 70.68+6.30  72.40+6.52  71.04£5.97 71.18%+6.14
LF-SVM 45.094+4.82  49.90+5.18  48.184+4.01 51.40+3.96 67.59+5.60 69.37+£5.77  70.24+495 71.114+5.09
EmotionMeter 61.714£3.45 62.0043.39 62.084+3.16 62.184+3.08 85.26+£2.52  79.5942.70  80.024+3.32  80.18+3.25
MMResLSTM 65.68+2.13  66.39+£2.05 66.31£1.78  66.391+1.86 86.78+2.56 87.03+2.55 86.55+1.78  87.13+2.25
MMFN 70.4243.14  71.564+3.66  70.374+4.02  72.424+3.97 85.7845.32 85.65+5.61 84.27+6.37  87.42+5.91
HusFuse 67.454+3.23 68.64+3.16 67.85+2.67 68.08+2.53 80.48+1.58 80.77+1.71 81.26+£1.38  81.42+1.48
HusLSTM 72.66+2.34  73.0942.37 71.03£1.90 71.40+1.93 83.41£1.90 84.154£2.09 84.61+1.58 84.73+1.47
HusPair 77.14+2.40 76.71+2.18 77.55+2.22  77.05+2.09 89.42+3.33  89.26+2.99 90.31+2.99  90.15+3.06
Husformer [ [ 79.64+1.52 79.87+1.54 79.94+2.18 80.44+2.25 [ [ 90.67+2.20  90.74+2.29 91.33+1.59  91.35+1.67

TABLE VI

PERFORMANCE OF DIFFERENT MODELS ON WESAD, RAW MOCAS, PREPROCESSED MOCAS, AND COGLOAD DATASETS IN TERMS OF AVERAGE
MULTI-CLASS AVERAGE ACCURACY (Acc) AND MULTI-CLASS AVERAGE F1-SCORE (F'1) WITH STAND DEVIATIONS. RESULTS OF OTHER MODELS THAT
ARE WITHIN 5% OF THE Husformer’s PERFORMANCE ON Acc OR F'1 ARE HIGHLIGHTED. *: HIGHER VALUES INDICATE BETTER PERFORMANCE.

Dataset i WESAD i Raw MOCAS [[ Preprocessed MOCAS [ CogLoad
Metric [ Acc(%)" F1(%)" [ Acc(%)" F1(%)" ][ Acc(%)* F1(%)" [ Acc(%)* F1(%)"

EF-SVM 42.4644.34 44.39+4.08 51.48+4.39  51.6345.00 62.73+£4.91 61.87+4.19 41.67+£3.80 47.5243.14
LF-SVM 44.984+2.48 47.51+3.00 48.74+3.40  48.85+3.42 59.8045.16  60.68+5.07 38.984+2.71  45.8742.12
EmotionMeter 63.01+1.41 63.214+1.34 71.1543.48  70.98+3.39 78.80+2.54  79.94+2.61 59.57£1.42  62.994+1.30
MMResLSTM 65.764+1.12 66.3241.24 75.334+2.41  75.4442.21 82.81+1.34  83.254+1.40 61.44+1.67 63.39+1.71
MMEN 64.68 £11.12  59.21 £12.05 65.384+8.26  70.714+9.83 81.174+6.17  83.5445.16 65.50+1.17 65.93+1.42
HusFuse 68.77+1.56 68.48+1.31 70.654+2.36  71.224+2.39 78.00+2.10 78.81£1.86 58.4940.68  57.65+0.83
HusLSTM 70.64+1.21 71.0041.28 78.984+2.72  79.284+2.61 82.404+1.80  82.54+1.78 67.09£1.06  66.601+1.02
HusPair 73.57+1.72 73.774+2.13 82.12+£1.83  82.4641.63 88.83+3.97 88.75+3.99 65.11+£3.07  66.55+3.25
Husformer [ [ 78.681+2.05 79.51+2.28 [ [ 87.37+2.40 87.47+2.55 [ [ 90.09+2.25  90.17+2.17 [ [ 74.061+2.48  74.93+2.77

V. RESULTS AND ANALYSIS
A. Quantitative Measurements

1) Comparative Results with Baselines: Tables V and VI
summarize the performance of our Husformer when compared
with the five multi-modal baselines of human state recognition
in terms of and with stand deviations during the exper-
iments. From the comparative results, it is evident that our pro-
posed Husformer consistently surpasses the other five state-of-
the-art baselines in recognizing both human affective states (as
seen on the DEAP and WESAD datasets) and cognitive load
(as evidenced on the MOCAS and Cogl.oad datasets). Fur-
thermore, this superior performance is maintained across all
four datasets, each with its unique combination of modalities.
Such consistency underscores the potential of the Husformer
to serve as a robust backbone network for a broad spectrum of
human state prediction tasks. Additionally, such performance
enhancements are more evident on datasets without further
feature engineering (raw DEAP, raw MOCAS, WESAD, and
CogLoad datasets). This suggests that the Husformer can learn
from raw multi-modal features series more efficiently, and
thus is more applicable to real-world task scenarios where
extensive feature crafting and alignment is quite impractical
and expensive. These performance improvements mainly result
from the following reasons:

Experimental results show that our Husformer significantly

outperforms EF-SVM and LF-SVM regarding and

across all datasets. This is reasonable since these two meth-
ods resort to a straightforward concatenation of multiple

modalities either at the feature or decision level. Such an
approach neglects the potential correlations among different
modalities and may become susceptible to the curse of
dimensionality, as pointed out by [51]. In contrast, Hus-
former seamlessly integrates unimodal features using a feed-
forward process within its multi-layered cross-modal atten-
tion transformers, ensuring a thorough consideration of the
synergistic interactions across various modalities. Further-
more, the disregard of cross-modal interactions by EF-SVM
and LF-SVM also leads them to lag behind other baselines:
EmotionMeter and MMResLSTM. This performance dip is
evident with a roughly 10% decrease in both and
. Such comparative outcomes underscore the pivotal role
of recognizing and leveraging cross-modal correlations in
multi-modal human state detection.
Additionally, the SVM architecture, foundational to both
EF-SVM and LF-SVM, is known to falter in efficiency
when handling vast datasets [52]. Its vulnerability to missing
values, outliers, and noisy data means an over-dependence
on meticulous data cleansing and judicious feature selection
[53]. While certain research underscores the capability of
EF-SVM and LF-SVM to estimate human states accurately
with rigorous data preprocessing and feature engineering
[21], it is logical to conclude that these methods may
falter when managing relatively unprocessed multi-modal
features.
The experimental results show that our proposed Husformer
significantly outperforms EmotionMeter in terms of and



on all datasets. We believe this superior performance
stems from the inherent limitations of EmotionMeter. While
EmotionMeter does account for cross-modal interactions by
implementing shared hidden layers for joint representation
learning, its RBMs fall short in capturing crucial time-
dependent cross-modal interactions. Given that temporal
dynamics play a pivotal role in signals mirroring human
states [41], this oversight likely undermines its efficacy.
On the other hand, MMResLSTM and MMFN outperform
EmotionMeter, and are in close competition with our Hus-
former on the preprocessed DEAP dataset. This is attributed
to their more advanced strategies in exploring cross-modal
relations: MMResLSTM constructs LSTM layers that share
the same weights for different modalities to learn shared
representations, which can model the temporal cross-modal
correlations effectively; and the MMFN computes the com-
plementarity and importance within multiple modalities with
dot-product attention.
However, on other datasets, particularly those with minimal
feature engineering, Husformer consistently outshines both
MMResLSTM and MMFN in terms of and . We be-
lieve this superiority arises from the greater effectiveness of
the cross-modal attention mechanism within the Husformer
in terms of capturing cross-modal dependencies. Unlike
weight-sharing strategies in MMResLSTM, our approach
fosters cross-modal interactions by prompting one modality
to directly engage with the unimodal features of other
modalities. This process identifies and leverages strongly
complementary representational information to enhance the
primary modality.
Moreover, when compared to the dot-product or weight at-
tention techniques employed by MMFN, Husformer’s cross-
modal attention mechanism facilitates more intricate and
adaptable inter-modality interactions. It allows complemen-
tary information from various modalities to fluidly integrate
into a single unimodal representation by fusion of Keys
and Values under the condition of the unimodal Queries
as described in (5). Additionally, in contrast to the dot-
product attention used in MMFN, the cross-modal attention
can process all positions (or tokens) within the feature
sequences simultaneously, leading to a more comprehensive
capture of long-range dependencies. As a consequence,
MMFN may primarily learn short-term attention, potentially
treating unrelated or noisy data as significant information.
This distinction is markedly evident by the considerable
deviations in and , especially observable on the
WESAD dataset.

2) Comparative Results with Single Modality: Fig. 3 con-
trasts the performance of our Husformer with the high-
est recognition results achieved using a single modality
for each dataset, benchmarked against the generally best-
performing multi-modal fusion baseline, MMResLSTM, in
terms of . Comprehensive classification results for every
individual modality across datasets, considering both and

, are detailed in Appendix B. As evidenced in Fig. 3,
Husformer consistently surpasses the top single-modal-based
recognition outcomes across all four datasets in terms of

100
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Fig. 3. Performance comparison of our proposed Husformer and the best-
performing multi-modal fusion baseline, MMResLSTM, with the highest
recognition result achieved using a single modality on each dataset in terms
of multi-class average accuracy (Acc).

We believe this superior performance is because Husformer
can effectively harness the benefits of multi-modal fusion in
human state recognition. These advantages include extracting
vital representation information by integrating metrics from
multiple sources, which is not possible with a single source
[54], and enhancing the signal quality by minimizing noise
[6].

Interestingly, the MMResLSTM, despite its multi-modal fu-
sion prowess that sets it ahead of other baselines, does not
surpass the results of transformer networks focused solely on
EEG-related modality when tested on both raw DEAP and
preprocessed MOCAS datasets. This observation underscores
the potency of the cross-modal attention and self-attention
mechanisms in Husformer again. Specifically, these features in
Husformer not only adeptly model intricate and extended com-
plementary cross-modal interactions, but also accentuate the
most relevant contextual representations, allowing Husformer
to harness the benefits of multi-modal fusion more effectively.

3) Results of the Ablation Study: Tables V and VI present
the performance of the Husformer in terms of and on
each dataset, compared to three ablation models, the HusFuse,
HusPair, and HusLSTM. From the results, we can observe
the effectiveness of the cross-modal and self-attention module
inside the Husformer as follows:

Effectiveness of the cross-modal attention module

Compared to the HusFuse, which removes the cross-
modal attention module from the Husformer, the Husformer
achieves an absolute improvement in terms of and

This improvement can be attributed to the fact that the
HusFuse fuses low-level features from different modalities
together using a simple concatenation operation, instead of
utilizing a feed-forward process from cross-modal trans-
formers. While the self-attention processes in the HusFuse
can be viewed as a way to consider cross-model interactions,
by relating entities of the sequence concatenated from low-
level features of different modalities to contextual infor-
mation to calculate the high-level fusion representation, it
fails to provide direct complementary adaptions for features
of one modality with those of other modalities during the
fusion process. This result highlights the effectiveness of



TABLE VII
THE NUMBER OF PARAMETERS AND GPU MEMORY USAGE DURING TRAINING OF THE Husformer AND Huspair ON EACH DATASET. NOTE THAT BOTH
MODELS HAD THE SAME BATCH SIZE DURING TRAINING. PARA: THE NUMBER OF PARAMETERS; MEM: GPU MEMORY USAGE.

Dataset || Raw DEAP [[ Preprocessed DEAP | WESAD I Raw MOCAS [[ Preprocessed MOCAS ] CogLoad

Metric  [[ Para Mem [[ Para Mem [[ Para Mem Para Mem  [[ Para Mem [[ Para Mem

HusPair 290M  3253.24MB 292M  2908.66MB 3.90M  5416.90MB 6.2IM  519.67MB 6.22M 531.80MB 3.12M  202.47MB
Husformer 0.63M  1999.56MB 0.66M  1773.59MB 0.71IM  3084.35MB 0.74M  210.97MB 0.75M 220.53MB 0.72M 94.28MB

the proposed cross-modal attention-based fusion strategy
compared to simple concatenation with self-attention.
Compared with the HusPair, which replaces the cross-modal
attention module in the Husformer with the directional pair-
wise cross-modal attention in [27], the Husformer achieves
an improvement in and . We argue that this is
because the pairwise cross-modal attention in the HusPair
can only consider the complementary interactions between a
pair of modalities at once and thus ignores the coordination
among more than two modalities. In contrast, our proposed
cross-modal attention computes the complementary interac-
tions between the low-level unimodal features of one target
modality and the low-level fusion representation embedded
with unimodal features of the other source modalities. This
allows the model to consider the coordination across all
modalities at the same time, hence considering more long-
term and comprehensive cross-modal interactions. More-
over, it has been shown that the pairwise fusion approach
can produce redundant fusion information that may serve as
additional noise rather than effectual multi-modal features
[55].

We can also observe that HusPair is quite comparable to
the Husformer on the DEAP datasets and preprocessed
MOCAS dataset. However, as presented in Table VII, the
parameter number of the HusPair is about 4 8 times
that of the Husformer. This is because the number of the
pairwise cross-modal attention transformers in the HusPair
increases exponentially with the increase in the number
of modalities. Specifically, when applied to multi-modal
fusion of modalities, the pairwise cross-modal attention
requires cross-modal transformers, while ours only
requires  of them. For instance, on the WESAD dataset
that contains six modalities, the HusPair requires Cross-
modal transformers, while our Husformer only requires of
them. Such a high volume of parameters can result in slow
convergence and high training difficulty. For example, on the
preprocessed DEAP and the preprocessed MOCAS, where
the HusPair gets its most competitive results, we empirically
observe that the Husformer can converge faster to a lower
loss of mean absolute error compared to the HusPair during
the training process (see Fig. 4).

Moreover, we posit that the pairwise cross-modal attention
mechanism in HusPair, which may be prone to over-
parameterization, could lead to attention redundancy. This is
particularly likely when the complexity of the features does
not match that of the attention mechanism, resulting in the
model mistaking noise or artifacts as meaningful attention
components. For instance, in the Cogload dataset, which
features relatively lower feature-length (channel number)
and dimension (sampling frequency) compared to other

Fig. 4.
the preprocessed DEAP and MOCAS datasets in terms of validation set
convergence.
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Learning curves of Husformer when compared to HusPair on

datasets, HusPair’s performance notably diminishes. In fact,
it lags behind Husformer by a margin of 10%, as evidenced
in Tables V and VI. The high storage and computational
demands of HusPair (refer to Table VII), coupled with its
less effective performance on datasets with simpler modal-
ities, restrict its practicality in diverse multi-modal human
state recognition scenarios. Conversely, our Husformer not
only achieves comparable but in some cases significantly
superior performance, and it does so with substantially
fewer parameters than HusPair. These findings underscore
the efficiency and efficacy of our proposed cross-modal
attention mechanism in contrast to the directional pairwise
attention approach used in HusPair.

Effectiveness of the self-attention module

Compared with the HusLSTM that replaces the self-attention
module in the Husformer with an LSTM layer, the Hus-
former achieves an absolute improvement on and

We believe that such an improvement results from the fact
that the self-attention mechanism applied in the transformer
network [30] enables the model to capture long-term tem-
poral dependencies by considering the sequence consisting
of all reinforced unimodal features as a whole. In contrast,
the LSTM processes the sequence element by element,
which can suffer from long-dependency issues [56]. More-
over, the self-attention mechanism can adaptively highlight
meaningful contextual information while reducing useless
ones by computing adaptive attention scores at a different
position in the sequence, leading to a more effectual global
representation of the human state. This result confirms the
effectiveness of the self-attention module in the Husformer.

B. Qualitative Analysis

To demonstrate how the cross-modal attention and self-

attention in the Husformer work when learning from multi-
modal signals of the human state, we visualize the attention ac-
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Fig. 5. Visualization of an example cross-modal attention weight group
consisting of learned cross-modal attention matrices at the final layer of
each cross-modal transformer within 3 batches during the training on the raw
MOCAS dataset. Note that the cross-modal attention score matrix between
a target low-level unimodal feature and the low-level fusion representation
on one batch has the dimension of Ljy; X L, i.e., the length of the target
unimodal feature plus that of the fusion representation (BVP, GSR and EAR:
1 x 33; EEG: 5 x 33; EEG_POW: 25 x 33).

tivation for qualitative analysis. Fig. 5 shows an example cross-
modal attention weight group consisting of learned cross-
modal attention matrices at the final layer of each cross-modal
transformer within 3 batches during the training on the raw
MOCAS dataset. Note that the original cross-modal attention
score matrix between a target low-level unimodal feature
and the low-level fusion representation on one batch has the
dimension of (see Fig. 2a). We can observe that the
cross-modal attention has learned how to attend to positions
revealing relevant and meaningful information across the target
modality and source modalities embedded in the fusion rep-
resentation without the requirement of feature alignment. For
instance, higher cross-modal attention scores are assigned to
some intersections of the BVP and GSR unimodal features and
part of the EEG_POW unimodal features embedded in the later
part (8-32) of the fusion representation. This shows that our
cross-modal attention can reveal cross-modal contingencies
that are inaccessible with manual feature alignment.
Furthermore, we can observe that the learned cross-modal
attention is adaptive; i.e., different cross-modal attention pat-
terns are learned between different target modalities and the
fusion representation. Moreover, these patterns may differ for
the same target modality across different patches. For instance,
while the EEG modality is always encouraged to attend to
the later section (8-32) of the fusion representation, i.e., the
EEG_POW modality, the intersections assigned with higher
cross-modal attention scores vary across different batches.
However, despite the above adaptive differences, we can notice
that some stable and consistent cross-modal attention patterns
exist in different batches of the same target modality. For
example, higher cross-modal attention scores are always as-
signed to the intersections of the EEG_POW unimodal features
and the BVP, GSR and EEG unimodal features embedded in
the front positions (1-7) in the fusion representation. These
observations over the visualized cross-modal attention score
matrices demonstrate that our proposed cross-modal attention
module can capture and model an adaptive but relatively
consistent and long-term pattern of cross-modal interactions.
Fig. 6a shows an example of the output of the self-attention
transformer in the Husformer, namely the high-level fusion
representation , within 3 batches during training
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Fig. 6. Visualization of an example high-level fusion representation group
generated by the final layer of the self-attention transformer in the (a)
Husformer and (b) HusFuse within 3 batches during the training on the raw
MOCAS dataset. Note that the high-level fusion representation produced on
one batch has the dimension of Ly x D, i.e., 33 x 30.

on the raw MOCAS dataset. We can observe that the self-
attention has learned how to prioritize important contextual
information for human state recognition and reduce insignifi-
cant ones by assigning high (blue) and low (red) self-attention
scores to different positions in the fusion representation. Also,
similar to the cross-modal attention, the learned self-attention
is adaptive; i.e., different minimum units in the fusion rep-
resentation are assigned with self-attention scores in different
patterns, especially from the ‘Dimension’ axis. Meanwhile,
we can notice that the learned self-attention patterns of the
features of the same modality share many similarities across
different batches, especially for EEG and EEG_POW modali-
ties. These observations demonstrate that the self-attention in
the Husformer can highlight effectual contextual features of
the human state and diminish ineffectual ones in the fusion
representation with an adaptive while relatively steady pattern.

Meanwhile, Fig. 6b depicts an example of the high-level
fusion representation output of the self-attention transformer
in the HusFuse. Note that the inputs of the self-attention trans-
formers in the Husformer and HusFuse are concatenated by
unimodal features of each modality within the same fragments.
The only difference is that the unimodal features in the input of
the Husformer are reinforced by cross-modal attention trans-
formers while those in the HusFuse are not. Comparing the
different self-attention patterns assigned to the same fragments
of unimodal features in the fusion representation as illustrated
in Figs. 6a and 6b, we can notice that without the cross-
modal attention modeling the cross-modal interactions, the
self-attention learned in the HusFuse is less efficient. That
is, only few of high (blue) and low (red) self-attention scores
are assigned to features in the fusion representation, leading
to insufficient prominence of critical contextual information
and diminishing of unimportant information respectively. We



can also notice that the self-attention is less consistent. That
is, no stable self-attention patterns are shown on features of
the same modality across batches, especially between Batch_1
and Batch_3. Such differences demonstrate that the reinforce-
ments for unimodal features from the cross-modal attention
in the Husformer can help the self-attention highlight critical
contextual information in the fusion representation with a more
efficient and consistent pattern.

C. Real-world Experiment

Furthermore, we applied the Husformer to a real-world
CCTV monitoring task, similar to the procedure used in the
creation of the MOCAS dataset. In this task, 32 participants
were asked to identify abnormal objects from a video stream-
ing from a multi-robot system. The monitoring tasks were
differentiated into three levels based on the number of cameras
and robot speed, with the goal of simulating varying cognitive
workloads. Over the course of the study, each participant
engaged in eight separate tasks. Participants were equipped
with two wearable sensors: the E4 wristband and the Emotiv
Headset. These devices collected physiological modalities
such as BVP, GSR, EEG, and EEG_POW. Additionally, a
Realsense D350 camera was used to capture the behavioral
modality of EAR. All signals were gathered in real time
with a sampling rate of 100 Hz. After each monitoring task,
participants reported their subjective cognitive workload as the
annotations via the NASA_TLX survey.

Trained using the MOCAS dataset, the Husformer was able
to predict the cognitive workload (categorized as low, medium,
or high) of multiple participants at 100 Hz on an NVIDIA 3060
GPU. The mean predicted outputs throughout each monitoring
task were considered the final objective cognitive workload
output. Across the total of 256 task periods involving the
32 new human subjects, the Husformer achieved an average
accuracy rate of 70.31%. Furthermore, by leveraging the
objectively predicted cognitive loads from the Husformer, the
overall efficiency of the human-robot team was enhanced by
dynamically adjusting the workload assigned to each human
operator. More details can be found in [57].

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the Husformer, an end-to-end
multi-modal transformer framework for recognizing human
affective state or cognitive load from multiple modalities. The
Husformer fuses modalities with adaptive and sufficient cross-
modal interactions, enabling one modality to attend to features
of other modalities where strong cross-modal relevance exists.
It also adaptively highlights important contextual information
in the fusion representation. These two attention mechanisms,
operating at the inter-modal and fusion representation levels,
enable our model to efficiently learn from multi-modal fea-
tures, eliminating the need for extensive feature engineering
and alignment required in previous works. Our experimental
results on four public benchmark multi-modal datasets of
human emotion and cognitive load demonstrated the effec-
tiveness of the proposed Husformer for general human state

recognition, outperforming five other state-of-the-art multi-
modal-based baselines and demonstrating enhanced perfor-
mance over using a single modality. Additionally, our ablation
study highlighted the effectiveness of two key components in
the Husformer: the cross-modal attention and self-attention
modules.

Despite the promising results of the Husformer, we openly
acknowledge certain limitations, which, in turn, pave the way
for stimulating exciting future work. One limitation of the Hus-
former is its lack of adaptability to individual user variations,
potentially reducing its efficacy with new human subjects. This
limitation is manifested as a perceptible performance decline
from the MOCAS dataset to real-world experiments. For future
enhancements, it is imperative to integrate contextual infor-
mation, such as user-specific data encompassing personality
and demographic aspects. This inclusion will potentially steer
the attention mechanism more adeptly, bolstering the model’s
versatility and efficiency across a diverse array of users.

Another area of concern is the potential inefficiency of
the multimodal transformer network in situations of missing
modalities during testing or real-world deployment, where
some modalities might be either unavailable or substantially
disrupted. This challenge is not exclusive to our model, but is
also observed in other state-of-the-art multi-modal transformer
networks, as depicted in [58]. Subsequent studies should
place emphasis on enhancing the model’s robustness against
the challenges posed by missing or incomplete modal data.
Current advancements in the domain of missing modality
learning, as depicted in [59], [60], will be instrumental.

Moreover, the Husformer may tend toward overfitting when
grappling with highly unbalanced data. To counteract this,
we have meticulously designed and integrated a focal loss
function within our model. Nevertheless, continued research is
crucial to further augment the Husformer robustness against
imbalanced datasets. Prospective research should delve into
exploring and incorporating more advanced techniques or
algorithms adept at managing imbalance. This exploration may
encompass the integration of sophisticated sampling methods,
cost-sensitive learning, or other pertinent strategies, enhancing
the model performance and stability in confronting unbalanced
data. Additionally, while the Husformer demonstrates adept-
ness in predicting cognitive load and emotion independently,
it currently lacks the capacity for simultaneous predictions.
Future advancements anticipate the availability of comprehen-
sive datasets, annotated with both cognitive load and emotion
metrics. This development will necessitate the incorporation of
multi-task learning frameworks into the Husformer, enhancing
its functionality to effectively predict and analyze multiple
human state dimensions concurrently.
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APPENDIX A
HYPER-PARAMETERS OF THE Husformer

To optimize the hyper-parameters of the Husformer, we con-
ducted a grid search. This process involved altering one hyper-
parameter at a time, keeping others fixed, and observing the
corresponding model performance on a validation set, distinct
from the training and test sets. Specifically, we employed the
SGD optimization scheme, experimenting with learning rates
from le-5 to le-2, expanded to 2e-2 on the DAEP dataset.
During the model training process, we varied the epochs
from 40 to 160, halting training if the validation loss failed
to decrease for 15 consecutive epochs. Considering the data
shape and computation speed, we tested a batch size range
from 16 to 2048 for each dataset. For transformer parameters,
we examined the number of transformer layers between 2 to
10 and found that 5 layers offered an optimal balance between

model complexity and predictive capability. We also tested the
number of attention heads from 3 to 10 based on our dataset
and the complexity of the interactions we aimed to capture.
For the parameters of focal loss, we conducted a similar
exploration, testing alpha values from 0.1 to 0.9 and gamma
from 0.5 to 5. Furthermore, we experimented with the output
dimension of the temporal convolution layer from 10 to 60,
ultimately settling on a feature dimension of d=30 for feature
fusion. The selected hyperparameters for the Husformer are
outlined in Table VIIL

HYPER-PARAMETERS OF THE Husformer UTILIZED FOR EACH
EXPERIMENT
Parameter name Raw DEAP || Preprocessed DEAP ]| WESAD || Raw MOCAS ]| Preprocessed MOCAS Cogload
Batch Size 1024 1024 512 64 128 1024
Initial Learning Rate 23 23 le3 le-3 le-3 le-3
Optimizer SGD SGD SGD SGD SGD SGD
Transformer Hidden Unit Size 40 40 40 40 40 40
Crossmodal Attention Heads 3 3 3 5 5 3
Crossmodal Attention Block Dropout 01 ol 005 005 005 0.1
Output Dropout 01 o1 0.1 0.1 0.1 0.1
Focal Loss ac [0.1,0.1,0.8] [0.15,0.05.0.8] [040303] || 1020.1,07] [0.150.150.7] [0.1,0.1.0.8]
Focal Loss y 3 3 2 3 3 2
Epochs 120 120 80 100 100 120

CLASSIFICATION RESULTS USING EACH SINGLE MODALITY

TABLE IX
BEST PERFORMING CLASSIFICATION RESULTS OF USING SINGLE
MODALITY ON THE RAW DEAP AND PREPROCESSED DEAP DATASET IN
TERMS OF MULTI-CLASS AVERAGE ACCURACY (Acc) AND MULTI-CLASS
AVERAGE F1-SCORE (F'1) WITH STAND DEVIATIONS. ALL
BEST-PERFORMING RESULTS ARE OBTAINED WITH THE TRANSFORMER

NETWORK.

Dataset || Raw DEAP i Preprocessed DEAP

Criteria Valence Arousal Valence Arousal

Metric Ace(%)" FL(%)" Ace(%)" FL%)" Ace(%)" F1(%)" Ace(%)h F1(%)"
EEG 72.80+£2.03 729314220 | 73.27+1.72 73.71£1.93 84.98+1.40 85.09+1.42 84.86+0.30  84.86+0.80
EMG || 64.66£238 64.7142.33 | 65324224 65.66:1.83 || 76.69+1.04 76.71+4.02 | 74.09+0.89  74.07+0.86
EOG || 46.99+193 45.98+1.83 | 4827+1.57 5097144 || 62.76+1.85 65.57£145 | 64.42£044  65.43:£039
GSR || 45.18+2.56  45.63+238 | 46.70£233  48.07:£2.17 || 61.65£1.16  59.74:0.97 | 62.75:£091  57.28:0.88

BEST PERFORMING CLASSIFICATION RESULTS OF USING SINGLE
MODALITY ON THE ALL DATASETS IN TERMS OF MULTI-CLASS AVERAGE
ACCURACY (Acc) AND MULTI-CLASS AVERAGE F1-SCORE (F'1) WITH
STANDARD DEVIATIONS; *: CLASSIFICATION WITH TRANSFORMER, AND
# . CLASSIFICATION WITH GCN.

Dataset Raw MOCAS Preprocessed MOCAS WESAD CogLoad
Metric Acc()" F1(%)" Acc(%)" F1(7%)" Acc()" F1(%)" Acc(%)" F1(%)"
EEG 34.175057% | 3401£053% [[ 4480£037% | 46.215037% - - - -
EEG_POW || 68.25+1.31% | 67.871145% || 84.98:+174% | 84.9041.72% - -
GSR 3370+£0.61% | 35.59+0.64% || 43.44£0.57% | 46.9840.53% - - 56.45+£0.73% | 57.5240.80%
BVP 42.5541.63% | 43.4941.71% || 71.1842.03% | 71.14+£206% || 60.754£0.95% | 61.27+0.99% - -
EAR 473443.12% | 49.204220% || 51.46+042% | 48.37:£045% - -
EMG - - - - 527140.46% | 556240544
EDA - - - - 53.85+0.77% | 56450524
RESP - - - - 64.0941.20% | 65.85+1.04% - -
HR - - - - - - 30.54£1.13% | 300341214
RR - - - - - - 30.8842.328 | 42584247%
ACC - - - - - - 345941814 | 333541534
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