
SMART-LLM: Smart Multi-Agent Robot Task Planning using Large
Language Models

Shyam Sundar Kannan†, Vishnunandan L. N. Venkatesh†, and Byung-Cheol Min

Abstract— In this work, we introduce SMART-LLM, an
innovative framework designed for embodied multi-robot task
planning. SMART-LLM: Smart Multi-Agent Robot Task Plan-
ning using Large Language Models (LLMs), harnesses the
power of LLMs to convert high-level task instructions provided
as input into a multi-robot task plan. It accomplishes this
by executing a series of stages, including task decomposition,
coalition formation, and task allocation, all guided by program-
matic LLM prompts within the few-shot prompting paradigm.
We create a benchmark dataset designed for validating the
multi-robot task planning problem, encompassing four distinct
categories of high-level instructions that vary in task complexity.
Our evaluation experiments span both simulation and real-
world scenarios, demonstrating that the proposed model can
achieve promising results for generating multi-robot task plans.
The experimental videos, code, and datasets from the work can
be found at https://sites.google.com/view/smart-llm/.

I. INTRODUCTION

In recent years, multi-robot systems have gained promi-
nence in various applications, from housekeeping tasks [1]
to search and rescue missions [2] and warehouse automa-
tion [3]. These systems, composed of multiple autonomous
robots, can greatly enhance efficiency, scalability, and adapt-
ability in numerous tasks. Typically, these robot arrays ex-
hibit heterogeneity in terms of types and skill levels among
individual agents. Consequently, the overall system com-
plexity is heightened, emphasizing the critical importance of
skillful task allocation among these agents. Effective alloca-
tion of complex tasks among multiple agents involves several
crucial steps, including task decomposition, assigning sub-
tasks to suitable agents, and ensuring correct task sequencing
[4]. This proficiency requires access to external knowledge
or domain-specific information about the task.

Traditional multi-robot task planning often struggles with
diverse tasks and complex environments [4], relying on
fixed algorithms. Relying on fixed algorithms complicates
the process of transitioning from one task to another without
substantial modifications to the code. These challenges inten-
sify when tasks are described in natural language, as such
descriptions can lack precision and completeness. Take, for
instance, the task presented in Fig. 1: “Closing the laptop
and watching TV in a dimly lit room”. Notably, this task
description does not explicitly mention turning off the lights
before watching TV. Given the incomplete and ambiguous

This material is based upon work supported by the National
Science Foundation under Grant No. IIS-1846221. The authors
are with SMART Lab, Department of Computer and Information
Technology, Purdue University, West Lafayette, IN 47907, USA
{kannan9,lvenkate,minb}@purdue.edu

† Equal contribution.

...

...

...R
o

b
o

t
1

C
lo

se
 t

h
e

la
p

to
p

 a
n

d
 w

at
ch

 T
V

 in
 a

d
im

ly
 li

t
ro

o
m

.

Task
Decomposition

Coalition
Formation

Task
Allocation

Find the Laptop

Close the Laptop

Find the Light
Switch

Turn off the light
switch

Find the TV

Turn on the TV R
o

b
o

t
n

R
o

b
o

t
2

Environment

E
xe

cu
te

 a
ft

er
 S

u
b

Ta
sk

 2

Robot n does not have skills to
perform any SubTask.

S
u

b
 T

as
k

1
S

u
b

 T
as

k
2

S
u

b
 T

as
k

3

...

Fig. 1: An overview of SMART-LLM: Smart Multi-Agent Robot Task
planning using Large Language Models (LLM). Given a high-level in-
struction, SMART-LLM decomposes the instruction into sub-tasks assigning
them to individual robots based on their specific skills and capabilities, and
orchestrating their execution in a coherent and logical sequence.

nature of the instruction, it is crucial to leverage extensive
prior knowledge to interpret the task and aid in efficient task
planning.

Large language models (LLMs), such as GPT-4 [5], GPT-
3.5 [6] and Llama2 [7], have demonstrated remarkable capa-
bilities in understanding natural language, logical reasoning,
and generalization. This presents exciting opportunities for
enhancing comprehension and planning in robotics. In this
paper, we introduce SMART-LLM, an innovative mechanism
for task assignment to embodied agents using LLMs. This
makes a paradigm shift from rule and optimization-based
task-planning methods. SMART-LLM provides LLMs with
Python scripts that encapsulate intricate robot skills and envi-
ronmental details, along with practical examples of task plan-
ning based on the robot’s capabilities and the environment.
Based on the given information, SMART-LLM taps into the
vast dataset of internet code snippets and documentation
available to LLMs and performs task planning. This allows
for a generalized and scalable task planner extendable to
any task. As illustrated in Fig. 1, when dealing with a given
task, SMART-LLM performs planning by decomposing the
task into sub-tasks and then delegating the same to robots
with the necessary skills to perform them.

The main contributions of this work are three-fold:
• Multi-Robot Task Planning Framework for integrat-

ing task decomposition, coalition formation, and skill-
based task assignment, by leveraging LLMs.

https://sites.google.com/view/smart-llm/

• Benchmark Dataset: A benchmark dataset designed for
evaluating multi-agent task planning systems, covering
a spectrum of tasks, ranging from elemental to complex
ones in the AI2-THOR [8] simulation platform.

• Implementation and Evaluation of the framework
in both simulated and real-world settings, undergoing
thorough testing across a wide array of tasks.

II. RELATED WORKS

Multi-Robot Task Planning. Multi-robot task planning
is important in robotics, requiring effective coordination
among robots. Typically, the process of multi-robot task plan-
ning encompasses four distinct phases: task decomposition,
coalition formation, task allocation, and task execution [4].
Task decomposition entails the subdivision of a given task
into manageable sub-tasks. The decomposition methods can
either be task-specific [9] or necessitate copious amounts
of data for generating policies [10]. Task-specific decom-
position methods cannot be generalized and gathering prior
knowledge to decompose a diverse range of tasks can pose
a significant challenge. A modern, intuitive strategy employs
natural language to articulate tasks and utilizes pre-trained
language models equipped with diverse domain knowledge
to segment them into sub-tasks and predict their sequential
order over time [11, 12]. Similarly, in SMART-LLM, we
employ large-language models to deconstruct tasks into
robot actions aligned with their skills, facilitating seamless
execution by the robot.

In coalition formation and task allocation, efficiently as-
signing decomposed tasks to multiple agents is crucial for
the effective completion of the given task. To this end,
a plethora of methodologies have been employed, encom-
passing negotiation [13], auctioning [14], consensus-based
strategies [15] and reinforcement learning [16]. While these
methods exhibit reliability, they are typically tailored and
optimized according to specific end goals and applications.
This necessitates additional effort when scaling them across
different applications and optimizing them under varied
constraints. In our approach, we take advantage of the
inherent generalizability of LLMs. This enables tasks to
scale seamlessly, allowing teams to be assigned in diverse
configurations without imposing additional modifications to
the constraints within the code.

Degrees of automation, contingent on the number of task-
planning steps a method can execute, have been conceptu-
alized [4]. Most methods predominantly fall into the first
or second level of automation. The first level exclusively
automates task execution [17, 18]. Meanwhile, the second
level automates either task allocation and execution [19,
20]; or coalition formation and execution [21]. The third
level of automation encompasses coalition, allocation, and
execution but does not involve task decomposition [22, 23].
In a pioneering stride towards the fourth level of automation
[24], a method adeptly manages all four facets of task plan-
ning using natural language prompts and Long Short Term
Memory (LSTM). Existing methods in the literature often
have shortcomings, such as not covering all task planning

steps; requiring extensive task-specific demonstration data
for model training [24], which often lacks generalizability
when faced with unseen tasks, or being limited to specific
tasks. Our method stands out by efficiently performing all
four task-planning steps and utilizing LLMs to generalize
across various tasks through a few-shot training approach.
LLMs for robotics. Large Language Models excel in
generalization, commonsense reasoning [6, 25], and are in-
creasingly sought after for inclusion in robotics systems [26,
27]. They play a vital role in crafting task plans for robots,
making use of few or zero-shot learning methods [6]. Various
techniques for generating these robotic task plans using
LLMs have emerged, encompassing value function-based
approaches [27, 28] and context-driven prompts [29]–[31].
Moreover, LLMs have found utility in providing feedback
and refining task plans to enhance robot performance [32]–
[34].

While LLMs excel at creating flexible task plans, they
face challenges when applied to larger multi-agent teams. In
the realm of multi-agent systems, progress has been made
in enhancing agent cooperation with the use of LLMs [35]–
[37]. These approaches involve equipping individual agents
with their own LLMs to improve interactions and boost
their collaborative skills. However, these methods prioritize
improving multi-agent system efficiency but do not tackle
the specific task of creating task plans for multi-robot teams.
Our approach focuses on task decomposition and allocation
in a heterogeneous robot team, considering individual robot
skills. We achieve multi-robot task planning without the need
for separate LLMs per robot. This simplifies planning and
provides a unified solution for multi-robot task coordination.

III. PROBLEM FORMULATION

Given a high-level language instruction I, the goal of
this work is to understand the instruction, compute the
necessary steps for task completion, and formulate a task
plan that enables its execution. Tasks are executed in a
manner that maximizes the utilization of the available robots,
by performing tasks in parallel when feasible. These tasks are
performed in an environment E that encapsulates numerous
entities and objects, O. We assume that the given instruction
I can be successfully executed in the environment E.

To execute the task, we have a set of N heterogeneous
embodied robot agents R = {R1,R2, ...,RN}. Let ∆ be the
set of all skills or actions that an agent may be capable of
performing. In this work, we assume that robot skills, ∆, are
either pre-implemented in the system. Each of the agents
possesses a diverse set of skills, S= {S1,S2, ...,SN} that they
can perform, each subject to specific constraints. Here, Sn

represents the list of skills of robot Rn, and Sn ⊆ ∆, for n =
1,2, ...N. For instance, for the robot skill PickUpObject,
there may be constraints on the maximum mass that a robot
can pick.

Now, the instruction I can be decomposed into a tem-
porarily ordered set of K sub-tasks, T = {T 1

t1 ,T
1

t2 , ...,T
K

t j
},

based on the robot skills, ∆, and the environment E, where
t j denotes the temporal order of a sub-task and j ≤ K. It

from skills import GoToObject <obj>, ... , PutObject <obj>

import robot skills

list of objects in the environment & its properties

decomposed task sample

 append description of input task

LLM

def turn_off_desk_lamp(robot_list):
 GoToObject (robot_list,'DeskLamp')
 SwitchOff (robot_list,'DeskLamp')

def turn_off_floor_lamp(robot_list):
 GoToObject (robot_list,'FloorLamp')
 SwitchOff (robot_list,'FloorLamp')

def watch_tv(robot_list):
 GoToObject (robot_list,'TV﻿')
 SwitchOn (robot_list,'TV')

Parallelize SubTask 1 and SubTask 2
t1 = threading.Thread(target=turn_off_desk_lamp, args=(robots[0],))
t2 = threading.Thread(target=turn_off_floor_lamp, args=(robots[1],))
Start executing SubTask 1 and SubTask 2 in parallel
t1.start()
t2.start()
Wait for both SubTask 1 and SubTask 2 to finish
t1.join()
t2.join()

Execute SubTask 3 after SubTask 1 and SubTask 2
watch_tv(robots[2])

Independent subtasks:
SubTask 1: Turn off the Desk Lamp.
SubTask 2: Turn off the Floor Lamp.
SubTask 3: Watch TV.

<< Code: function definition of each sub-task>>
Parallelize SubTask 1 and SubTask 2
t1 = threading.Thread(target=turn_off_desk_lamp)
t2 = threading.Thread(target=turn_off_floor_lamp)
Start executing SubTask 1 and SubTask 2 in parallel
t1.start()
t2.start()
Wait for both SubTask 1 and SubTask 2 to finish
t1.join()
t2.join()
Execute SubTask 3 after SubTask 1 and 2 are complete
watch_tv()

output of coalition formation

def put_onion_in_fridge(robot_list):
 GoToObject (robot_list,'O﻿nion')
 ...
 CloseObject (robot_list,'Fridge')

def put_tomato_in_fridge(robot_list):
 GoToObject (robot_list,'O﻿nion')
 ...
 CloseObject (robot_list,'Fridge')

t1 = threading.Thread(target=put_onion_in_fridge, args=
 (robots[0],))
t2 = threading.Thread(target=put_tomato_in_fridge, args=
 (robots[1],))
Start executing SubTask 1 and SubTask 2 in parallel
t1.start()
t2.start()
t1.join()
t2.join()

decomposed task sample

output of task decomposition

list of robots & objects in the environment

coalition formation policy (generalized summary)

decomposed task sample

robots = [{"name":"robot1", “skills”: [“GoToObject”, ..]},
 ... {"﻿name":"robotn", “skills”: [“GoToObject”, ..]}]

list of robots

SOLUTION
<<same as coalition formation policy from Stage 2>>

coalition formation policy (generalized summary)

allocated task sample

final executable code (output)

LLM LLM

S
u

b
-t

as
k

1
S

u
b

-t
as

k
3

Waiting for SubTask 1
& SubTask 2

to be completed.

GoToObjectGoToObject GoToObjectGoToObject GoToObjectGoToObject GoToObjectGoToObject GoToObjectGoToObject GoToObjectGoToObject SwitchOffSwitchOff

GoToObjectGoToObject GoToObjectGoToObject GoToObjectGoToObject GoToObjectGoToObject GoToObjectGoToObject GoToObjectGoToObject SwitchOffSwitchOff

GoToObjectGoToObject GoToObjectGoToObject GoToObjectGoToObject GoToObjectGoToObject SwitchOnSwitchOn

Task Description:
Turn off the desk and floor light and watch TV.

SOLUTION
<<identify the sub-tasks and identify robot skills>>
<<match robot skills/properties to sub-tasks>>
<<identify skill gaps and form robot teams if required>>
<<assign sub-tasks to robot or teams>>

All the robots have the same set of skills.
For turn off desk lamp subtask assign robot1.
For turn off floor lamp subtask assign robot2.
For watch TV subtask assign robot3.
No robot teams are needed.

t1.join()
t2.join()

t1.start()
t2.start()

import threading

def put_onion_in_fridge():

 GoToObject('Onion')
 ...
 # 6: Close the Fridge.
 CloseObject('Fridge')

def put_tomato_in_fridge():

 GoToObject('Tomato')
 ...
 # 6: Close the Fridge.
 CloseObject('Fridge')

t1 = threading.Thread(target=put_onion_in_fridge)
t2 = threading.Thread(target=put_tomato_in_fridge)

Parallelize SubTask 1 and SubTask 2

0: SubTask 2: Put Tomato in fridge
1: Go to the Tomato.

Wait for both SubTask 1 and SubTask 2 to finish

Start executing SubTask 1 and SubTask 2 in parallel

Task Description: Put Onion and Tomato in the fridge

GENERAL TASK DECOMPOSITION
Independent subtasks:
SubTask 1: Put Onion in fridge
SubTask 2: Put Tomato in fridge

CODE

 # 0: SubTask 1: Put Onion in fridge
 # 1: Go to the Onion.

objects = [{"name":"Book", "mass":0.5},
 ...
 {"name":"FloorLamp"", "mass":3.2}]

Stage 1: Task Decomposition

Stage 4: Task Execution

GENERAL TASK DECOMPOSITION
Independent subtasks:
<< same as task decompositi﻿on example>>

CODE

 << same as task decomposition example >>

 << same as task decompositi﻿on example﻿ >>

def put_onion_in_fridge():

def put_tomato_in_fridge():

 t1 = threading.Thread(target=put_onion_in_fridge)
...
t2.join()

Stage 2: Coalition Formation

robots = [{"name":"robot1", “skills”: [“GoToObject”, ..]},
 ... {"﻿name":"robotn", “skills”: [“GoToObject”, ..]}]

objects = [{"name":"Book", "mass":0.5},
 ... {"name":"FloorLamp", "mass":3.2}]

GENERAL TASK DECOMPOSITION
Independent subtasks:
<< same as task decompositi﻿on example>>

CODE

 << same as task decomposition example >>

 << same as task decompositi﻿on example﻿ >>

def put_onion_in_fridge():

def put_tomato_in_fridge():

 t1 = threading.Thread(target=put_onion_in_fridge)
...
t2.join()

Stage 3: Task Allocation

S
u

b
-t

as
k

2

(Section IV.A) (Section IV.B) (Section IV.C)

(Section IV.D)

time

DEC COL ALO

Fig. 2: System overview: SMART-LLM consists of four key stages: i) Task Decomposition: a prompt consisting of robot skills, objects, and task
decomposition samples is combined with the input instruction. This is then fed to the LLM model to decompose the input task; ii) Coalition Formation:
a prompt consisting of a list of robots, objects available in the environment, sample decomposed task examples along with corresponding coalition policy
describing the formation of robot teams for those tasks, and decomposed task plan for the input task from the previous stage, is given to the LLM, to
generate a coalition policy for the input task; iii) Task Allocation: a prompt consisting of sample decomposed tasks, their coalition policy and allocated
task plans based on the coalition policy is given to the LLM, along with coalition policy generated for the input task. The LLM then outputs an allocated
task plan based on this information; and iv) Task Execution: based on the allocated code generated, the robot executes the tasks. “...” is used for brevity.

is worth noting that some of the sub-tasks can be executed
in parallel, having the same temporal precedence. Let T k

S
be the list of skills needed by a robot to complete a sub-
task, T k

t j
, where T k

S ⊆ ∆ and T k
t j
∈ T. Based on T k

S , the sub-
task can be allocated to a robot R with skills S if T k

S ⊆ S,
where R ∈ R and S ∈ S. In cases where no single robot
satisfies this constraint, a team of two or more robots is
required to perform the sub-task. In such scenarios, we form
a team of Q robots, A = {A1,A2, ...,AQ}, each possessing
skills SA = {S1

A,S
2
A, ...,S

Q
A}, such that T k

S ⊆
⋃
SA. In summary,

given I, E and O, the instruction, I is divided into sub-tasks
and allocated to robots based on their skills, as

SMART -LLM(I,E,O,{R1, ..,RN})⇒{T 1
t1 → R1, ..T k

t j
→ RN}

(1)

IV. METHODOLOGY

The proposed approach utilizes LLMs to perform Task
Decomposition, Coalition Formation, and Task Allocation
within the context of multi-robot task planning. Our approach
employs Pythonic prompts to guide the LLM in generating
code for task decomposition and allocation. We opt for
Pythonic prompts over natural language prompts because
they facilitate the generation of executable code directly
from the LLMs. Moreover, Pythonic prompts adhere to a
structured syntax, enhancing the LLM’s comprehension of
the prompts [38].

We provide concise prompt samples with line-by-line
comments and block comments giving task summaries for
each step, aiding the LLM in understanding and producing
code effectively. The prompts were structured to mimic

typical code, complete with comments to delineate sample
tasks. Details regarding robot skills and object properties
were encoded as Python dictionaries, providing a concise
representation that the LLM could readily comprehend [38]
and also help reduce the token size. The comments were
meticulously structured, incorporating detailed instructions
on task execution and allocation requirements, enabling the
LLM to comprehend and replicate the process for new tasks.

A. Stage 1: Task Decomposition

In this stage, we decompose the given instruction, I, into
a set of independent sub-tasks, T, along with a sequence
of actions for performing each sub-task. Details about the
environment, E, objects present in it O, and the list of
robot skills ∆ are also provided as input. This information
about the environment and the robot’s skills is utilized to
decompose the task, I such that it can be performed in
that environment using the skills possessed by the robots
as LLMDEC(I,E,O,∆)⇒{T 1

t1 , ..,T
K

t j
}.

Following the initial few-shot LLM prompting, we provide
the LLM with various pieces of information: details about
the robot’s skills, information about the environment, several
examples of sample tasks, and corresponding Python code-
based decomposed plans. The LLM takes all this information
along with the input task, I, that needs to be decomposed
and generates the sub-tasks, T. In the Stage 1 block of
Fig. 2 corresponding to task decomposition, the purple box
corresponds to the list of robot skills, ∆; the blue box
corresponds to details about the environment, E; green box
corresponds to the decomposed task samples given as part of
the prompt; and red box corresponds to the given instruction
I. The red box in the Stage 2 block of Fig. 2 is the output
from the LLM, corresponding to the sub-tasks, T.

B. Stage 2: Coalition Formation

Coalition formation is used to form robot teams to perform
each of the sub-tasks computed through task decomposition.
In task decomposition, the primary task is broken down
into sub-tasks, T based on common sense and the various
entities present in the environment, E. However, this initial
breakdown does not take into account the specific skills of
individual robots, Sn, or their capabilities to perform each
sub-task. Therefore, in this stage, we prompt the LLM to
analyze the list of skills needed to perform each sub-task, T k

S ,
and the skills of individual robots, Sn to identify the suitable
robot(s) for each sub-task. To achieve this, we prompt the
LLM with samples of decomposed tasks and corresponding
coalition formation policies, P that describe how available
robots can be assigned to the sub-tasks.

The coalition policy consists of statements regarding
whether robots possess all the necessary skills to perform a
sub-task and how any skill gaps in a single robot’s ability to
perform a sub-task can be addressed by involving additional
robots. The samples we include encompass various cases:

• In scenarios, where a single robot possesses all the
required skills to perform a sub-task, leading to a one-
to-one assignment of robots to tasks.

• Instances where no single robot possesses all the skills
needed for a sub-task, resulting in multiple robots
collaborating on the same task.

• Cases where a robot possesses the necessary skills for
a sub-task but is constrained by certain limitations (for
example, a robot with a maximum weight limit for
a pick-up task). In such cases, additional robots are
employed to overcome these constraints.

By presenting these samples along with the decomposed
task, T, and a list of available robots R and their skills S,
the LLM generates a new coalition formation policy that
outlines how the given robots can be assigned to perform
the input task as LLMCOL(T,R,S)⇒ P. The Stage 2 block
of Fig. 2 corresponding to coalition formation, the green box
represents the sample decomposed tasks given as part of the
prompt; the blue box shows the available robots R and their
skills S along with details about the environment E; the
orange box delineates a general summary of the coalition
policy, whereas in the experiments we utilize actual coalition
policy for the sample decomposed tasks; and the red box is
the decomposed task for which a coalition policy needs to be
generated. The red box in the Stage 3 block of Fig. 2 is the
output from the LLM, corresponding to coalition formation
policy for the sub-tasks, T and the instruction I.

C. Stage 3: Task Allocation

Task allocation involves the precise assignment of either
a specific robot or a team of robots to individual sub-tasks,
guided by the coalition formation policy established in the
preceding phase. Similar to the previous stages, a prompt
consisting of decomposed task samples, coalition formation
policies, and allocated plans for those tasks is constructed.
By incorporating the decomposed sub-tasks, T, and the
previously generated coalition formation policy, P for the
given input task, I, we instruct the LLM to distribute robots
to each sub-task according to the coalitions and produce
executable code as LLMALO(T,P,R) ⇒ {T 1

t1 → R1, ..T k
t j
→

RN}. Depending on the coalition policy, a sub-task may be
allocated to either a single robot or a group of robots.

The Stage 3 block in Fig. 2 shows sample decomposed
plans (green box), the list of available robots and their skills
(blue box), their coalition policies (orange box), and their
allocated plans (violet box) used as part of the prompt, along
with the coalition policy for input task (red box), to generate
the final executable code in the Stage 4 block (red box).

D. Stage 4: Task Execution

The LLM generates task plans for multi-robot teams
through task allocation, which are then executed by an
interpreter with either a virtual or physical team of robots.
These plans are executed by making API calls to the robots’
low-level skills, ensuring the efficient execution of the tasks.
As shown in Stage 4 of Fig. 2, the allocated task plan (red
box) for the example task I = “turn off the desk and floor
light and watch TV” is executed by a team of three robots in
a certain temporal order. In this stage, the figure also displays
the sequence of robot views as they perform the task along

with captions indicating the ongoing task step. Captions
marked in green correspond to specific actions completed
by the robot.

V. EXPERIMENTS

A. Benchmark Dataset
To evaluate the performance of SMART-LLM and facili-

tate a quantitative comparison with other baseline methods,
we created a benchmark dataset tailored for the evaluation of
natural language-based task planning in multi-robot scenar-
ios. This dataset originates from environments and actions
within AI2-THOR [8], a deterministic simulation platform
for typical household activities. The dataset encompasses 36
high-level instructions that articulate tasks and corresponding
AI2-THOR floor plans, providing the spatial context for task
execution. Given the multi-robot facet of our dataset, we
include information on the number of robots available to
perform a task and a comprehensive list of their respective
skills. The number of available robots for each task ranges
from 1 to 4, with varying individual skills, allowing for
scalability evaluation of task planning methods.

In the dataset, we also include the final ground truth
states for the tasks, capturing the definitive states of relevant
objects and their conditions within the environment after task
completion. This ground truth delineates a set of symbolic
goal conditions crucial for achieving task success. It includes
details such as the object’s position in the environment and
its conditions like heated, cooked, sliced, or washed
after the task is correctly executed. In addition to the final
ground truth states, we provide data on the number of
transitions in robot utilization during task execution. Transi-
tions occur when one group of robots completes their sub-
tasks, allowing another group to take over. This quantifies
the utilization of the multi-robot system. If tasks are not
appropriately parallelized during experiments and robots are
not fully utilized, sub-tasks may be performed sequentially
rather than concurrently, resulting in more transitions in robot
utilization compared to ground truth utilization.

To evaluate the performance of our proposed method
across diverse task complexities, our dataset comprises four
task categories:

• Elemental Tasks are designed for a single robot. In
these scenarios, a single robot is assumed to possess all
the necessary skills and abilities, eliminating the need
for coordination with multiple robots.

• Simple Tasks involve multiple objects and can be
decomposed into sequential or parallel sub-tasks but not
both concurrently. Again, all the robots possess all the
necessary skills.

• Compound Tasks are similar to Simple Tasks, with
flexibility in execution strategies (sequential, parallel,
or hybrid). However, the robots are heterogeneous,
possessing specialized skills and properties, allowing
individual robots to handle sub-tasks that match their
skills and properties.

• Complex Tasks are intended for heterogeneous robot
teams and resemble Compound Tasks in their character-

istics like task decomposition, multi-robot engagement,
and the presence of multiple objects. Unlike Com-
pound Tasks, individual robots cannot independently
perform sub-tasks due to limitations in their skills or
properties, necessitating strategic team assignments to
leverage their combined capabilities for effective task
completion.

The dataset comprises 6 tasks categorized as elemental
tasks, 8 tasks as simple tasks, 14 tasks as compound tasks,
and 8 tasks as complex tasks.

B. Simulation Experiments

Our method’s validation takes place within the AI2-THOR
simulated environment, where we employ our benchmark
dataset for rigorous evaluation and comparative analysis
against baseline approaches. Our experimental setup encom-
passes a varied set of example prompts, including 5 Pythonic
plan examples for task decomposition, 3 for coalition for-
mation, and 4 for task allocation. These example prompts
cover tasks that can be parallelized using threading, tasks
that can only be executed sequentially, and tasks that involve
both parallel and sequential execution. This diverse range
of examples is strategically tailored to mirror the inherent
complexities present in distinct phases of multi-robot task
planning.

It is worth noting that the example prompts were distinct
from the tasks in the dataset and were based on different AI2-
THOR floorplans not included in the dataset. Consequently,
all the tasks in the dataset are considered unseen during
testing. We evaluate SMART-LLM with various language
models as its backbone. We employ GPT-4 [5], GPT-3.5
[6], Llama-2-70B [7], and Claude-3-Opus [40] to assess
SMART-LLM’s performance across diverse tasks and with
various language models. We also compare our method to
two alternative baselines. In the first baseline, we use our task
decomposition method and prompts and randomly assign
sub-tasks to available robots. The second baseline uses our
task decomposition method along with a rule-based method
for task allocation implemented based on [39]. Both baseline
methods utilize GPT-4 to perform the task decomposition.

C. Real-Robot Experiments

In our real experiments with mobile robots, we assess
the efficacy of SMART-LLM in handling tasks such as
addressing visibility coverage challenges [41] and capturing
images of objects. These tasks encompass diverse regions
of varying sizes that necessitate visibility coverage and
objects requiring image capture. Both aerial and ground
robots, each with unique skill sets and visibility capabilities,
are at our disposal for task execution. SMART-LLM is
utilized to generate task plans according to these specific
requirements. The number of robots required for achieving
complete visibility coverage is contingent upon the size of
the region and the capabilities of the robots involved. We
presume that our robots are endowed with essential low-level
skills, including GoToLocation, ClickPicture, and
Patrol, essential for proficient task execution. To formulate

TABLE I: Evaluation of SMART-LLM and baselines in the AI2-THOR simulator for different categories of tasks in the benchmark dataset.

Methods
Elemental Simple Compound Complex

SR TCR GCR RU Exe SR TCR GCR RU Exe SR TCR GCR RU Exe SR TCR GCR RU Exe

SMART-LLM (GPT-4) 1.00 1.00 1.00 1.00 1.00 0.62 1.00 1.00 0.62 1.00 0.69 0.76 0.85 0.92 1.00 0.71 0.85 0.92 1.00 0.97

SMART-LLM (GPT-3.5) 0.83 0.83 0.83 1.00 0.91 0.62 0.87 0.93 0.62 0.95 0.42 0.50 0.61 0.71 0.85 0.14 0.28 0.35 0.85 0.62

SMART-LLM (Llama2) 1.00 1.00 1.00 1.00 1.00 0.75 0.87 0.93 0.87 1.00 0.64 0.69 0.80 0.87 0.90 0.63 0.71 0.83 0.90 0.89

SMART-LLM (Claude3) 1.00 1.00 1.00 1.00 1.00 0.87 1.00 1.00 0.93 1.00 0.69 0.76 0.81 0.87 1.00 0.71 0.71 0.87 0.97 0.92

Decomp (ours) + Rand 1.00 1.00 1.00 1.00 1.00 0.37 0.62 0.62 0.37 0.60 0.08 0.16 0.25 0.41 0.37 0.00 0.00 0.15 0.85 0.38

Decomp (ours) + Rule [39] 1.00 1.00 1.00 1.00 1.00 0.62 1.00 1.00 0.62 1.00 0.57 0.57 0.65 0.81 0.74 0.14 0.14 0.35 0.85 0.54

task plans within this framework, we rely on the same prompt
samples employed in our simulation experiments, which are
grounded in the AI2-THOR simulator.

D. Evaluation Metrics

We employ five evaluation metrics: Success Rate (SR),
Task Completion Rate (TCR), Goal Condition Recall (GCR),
Robot Utilization (RU), and Executability (Exe), following
the methodology of [29]. Our evaluations are based on the
dataset’s final ground truth states, which we compare to the
achieved states post-execution to assess task success.

• Exe is the fraction of actions in the task plan that can be
executed, regardless of their impact on task completion.

• RU evaluates the efficiency of the robot team by com-
paring the experiment’s transition count to the dataset’s
ground truth transition count. RU equals 1.0 when they
match, 0 when transitions equal sub-task count, and falls
between 0 and 1 otherwise.

• GCR is quantified using the set difference between
ground truth final state conditions and final state
achieved, divided by the total number of task-specific
goals in the dataset.

• TCR indicates task completion, irrespective of the robot
utilization. If GCR = 1, then TCR = 1 else 0.

• SR is success rate and is 1 when both GCR and RU are
1, else it is 0. The task is considered successful when
completed with appropriate robot utilization.

VI. RESULTS AND DISCUSSION

A. Simulation Experiments

Table I summarizes the average results across each cat-
egory in the dataset for our method with various LLM
backbones and baseline methods on unseen dataset tasks.
Overall, SMART-LMM consistently delivers favorable out-
comes irrespective of the LLM backbone employed. In
the elemental task, SMART-LLM adeptly decomposed the
given task and assigned the robot accordingly, except when
employing the GPT-3.5 backbone, which encountered chal-
lenges in decomposing certain tasks. However, when accurate
task decompositions were provided, the baseline method with
random allocation performed successfully, given that that all
robots possessed all the necessary skills.

In the simple tasks, the outcomes hinged on the LLM’s
capacity to decompose the given task in the appropriate
sequence for execution. Notably, SMART-LLM utilizing

Claude-3 as the backbone achieved superior results, although
other LLMs also demonstrated commendable performance.
GPT-4 and Claude-3 attain a perfect TCR score of 1.0 but
have a lower SR of 0.62 and 0.87 due to sequential execution
instead of parallel execution by two robots, hence impacting
RU. Random task allocation often faltered, whereas rule-
based allocation succeeded when task decompositions from
LLM followed a logical sequence, yielding identical results
to those achieved using LLM for allocation.

In compound and complex tasks, our method consistently
achieves favorable results across all LLM backbones, with a
success rate of 70%. We observed occasional struggles with
task sequencing and robot team assignment in SMART-LLM,
which may be mitigated by including additional prompt
samples. However, the token limitations of certain LLMs
hinder this optimization. Particularly, GPT-3.5 demonstrates
underperformance compared to other LLM models, likely
due to its deficiency in logical reasoning capabilities. In-
terestingly, Llama 2, with only 70B parameters compared
to trillions in other models, performs equally well. This
success can be attributed to the prompting structure of
SMART-LMM, enabling efficient performance even with
smaller and simpler models. Consequently, SMART-LLM is
deployable on local machines as well. Our decomposition
method, employing random allocation, generally falters for
skill-based task assignments due to its inability to consider
the environment’s state and the robot’s skills. Rule-based
allocation demonstrates satisfactory performance for com-
pound tasks requiring the identification of robots with the
appropriate skills. However, it falters in compound tasks
involving object properties and complex tasks where team
formation relies on specialized constraints. While these
shortcomings could be mitigated by incorporating addi-
tional constraints into the code, this approach would require
continual modifications or additions to accommodate new
scenarios. Such practices compromise the scalability and
ease of adaptation of the method. This underscores the
scalability of SMART-LLM, as it does not necessitate any
modifications for newer tasks, rendering the method highly
scalable. Videos showing all the experiments can be accessed
via https://youtu.be/TnyCKwgTm3U.

Infeasible Scenarios. In addition to the results presented in
Table I, we conducted assessments involving more intricate
tasks for which none of the robots possessed the required

https://youtu.be/TnyCKwgTm3U

skills. This particular scenario is not included in Table I
because no feasible code can be generated for the metrics
to be measured. Notably, our approach utilizing the GPT-4
and Claude-3 backbones exhibited the capacity to discern this
situation and refrained from generating any task allocation
plan. In contrast, our method employing GPT-3.5 and Llama2
produced a task allocation plan involving robots ill-suited for
the designated tasks. This disparity underscores the enhanced
logical reasoning capabilities of GPT-4 and Claude-3 in
recognizing and responding to such scenarios.
Variability in Performance. The inherent non-deterministic
characteristics of LLM introduce a degree of variability in
its outcomes [42]. To assess this variability, we conducted
5 separate runs, each on a randomly selected task from
every category within our dataset. Table II provides the mean
and standard deviations of the results observed across these
trials for our approach using GPT-4 as the backbone. For
elemental, simple, and complex tasks, our method consis-
tently yielded comparable results. Nevertheless, in the case
of complex scenarios, we encountered inconsistency, leading
to occasional failures in robot task allocation.

TABLE II: Variability in performance.

Method SR TCR GCR RU Exe
Elemental 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Simple 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Compound 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Complex 0.48±0.40 0.48±0.40 0.73±0.22 1.00±0.00 0.81±0.15

Ablation Study. We utilized a benchmark dataset to evaluate
different variations of our method, examining the impact of
comments (both line-by-line and task summaries) in Python
prompts. We validated our method with prompts lacking
such comments. Additionally, we studied the influence of
the coalition formation stage by removing it and directly
allocating tasks based on task decomposition output. Table
III summarizes the ablations of our method using GPT-4 as
the backbone. Removing comments generally reduces the
success rate, underlining the value of natural language in-
structions with code. Notably, when comments are removed,
task decomposition and allocation perform similarly across
simple and elemental tasks but suffer in compound and
complex tasks, indicating that comments aid in understanding
reasoning and logical structures. The removal of coalition
formation led to a decrease in the success rate. This decline
was primarily attributed to the absence of detailed rational
reasoning for task allocation. Without coalition formation, el-
emental tasks deviated the most, and the success rate dropped
from 1.0 to 0.66, as all task allocation samples involved
scenarios requiring robot teaming, leading to unnecessary
multi-robot allocation for elemental tasks.

B. Real-Robot Experiments

In real-robot experiments, we first tested our method for
coverage visibility tasks where robots with different visibility
areas need to cover regions of different areas. When tested
across various visibility constraints, our method generated
appropriate task plans with a suitable number of robots.

TABLE III: Ablation studies.

Method SR TCR GCR RU Exe

Ours 0.75 0.90 0.94 0.88 0.99

No Comments 0.48 0.65 0.73 0.75 0.78

No Summary 0.61 0.74 0.80 0.78 0.81

No Comm. & Summ. 0.41 0.61 0.66 0.59 0.69

No Coalition 0.60 0.68 0.75 0.85 0.82

Though the task was completely unseen and there were no
sample prompts involving properties such as visibility, our
method successfully generated the plan and executed the
same. Depending on the size of the region to cover and
the robot’s visibility, the method allocated various numbers
of robots to a region to yield complete visibility. In Fig.
3, for the instruction “patrol the regions”, one or more
robots are assigned to regions based on the region size and
robots’ visibility, and they patrol those regions. It can be
seen that two robots are allocated to the larger region on the
left and only one robot to the smaller region on the right.
Furthermore, we evaluated our approach in tasks involving
navigation and capturing images of predetermined objects.
Despite these skills being entirely unseen, SMART-LLM
successfully generated plans in the correct sequence and
captured images of the specified objects.

b) After task planning

region1region1 region2region2

robot1robot1

robot3robot3
robot2robot2

a) Before task planning

region1region1 region2region2

robot1robot1

robot2robot2

robot3robot3
22

(visibility_area: 5m)(visibility_area: 5m)

(area: 4m)(area: 4m)
22

(area: 9m)(area: 9m)
22

22(visibility_area: 5m)(visibility_area: 5m)

22
(visibility_area: 5m)(visibility_area: 5m)

Fig. 3: Real-robot experiment: a) team of robots and the regions to be
patrolled; b) robots after task planning and patrolling their respective regions
allocated based on visibility area.

VII. CONCLUSIONS AND FUTURE WORK

In our research, we delve into the potential of LLMs in the
realm of generating task plans for heterogeneous robot teams.
Our approach introduces prompting techniques, tailored to
enhance the efficiency of the four key stages of multi-robot
task planning. Each prompt takes into account the attributes
of the environment and the capabilities of the individual
robots, to generate a task plan.

Our experiments validate that the proposed method can
handle task instructions of varying complexities. Notably,
our approach exhibits remarkable adaptability, allowing it to
seamlessly generalize to new and unexplored environments,
robot types, and task scenarios. This method streamlines the
transition from simulations to real-world robot applications,
enabling task plan samples from simulations to be used for

generating task plans for real robot systems. In the future,
we aim to enhance our work by implementing dynamic
task allocation among robots and exploring multi-agent LLM
frameworks for task planning.

REFERENCES

[1] P. Benavidez, M. Kumar, S. Agaian, and M. Jamshidi, “Design of a
Home Multi-robot System for the Elderly and Disabled,” in 2015 10th
System of Systems Engineering Conference (SoSE), 2015.

[2] J. P. Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. N. Gia,
H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund, “Col-
laborative Multi-Robot Search and Rescue: Planning, Coordination,
Perception, and Active Vision,” IEEE Access, 2020.

[3] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
“Integrated Task Assignment and Path Planning for Capacitated Multi-
Agent Pickup and Delivery,” IEEE Robotics and Automation Letters,
2021.

[4] Y. Rizk, M. Awad, and E. W. Tunstel, “Cooperative Heterogeneous
Multi-Robot Systems: A Survey,” ACM Computing Surveys (CSUR),
2019.

[5] OpenAI, “GPT-4 Technical Report,” 2023.
[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language
Models are Few-shot Learners,” Advances in neural information
processing systems, 2020.

[7] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama
2: Open Foundation and Fine-Tuned Chat Models,” arXiv preprint
arXiv:2307.09288, 2023.

[8] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Her-
rasti, M. Deitke, K. Ehsani, D. Gordon, Y. Zhu, et al., “AI2-
THOR: An Interactive 3D Environment for Visual AI,” arXiv preprint
arXiv:1712.05474, 2017.

[9] J. Motes, R. Sandström, H. Lee, S. Thomas, and N. M. Amato, “Multi-
Robot Task and Motion Planning with Subtask Dependencies,” IEEE
Robotics and Automation Letters, 2020.

[10] K. Shiarlis, M. Wulfmeier, S. Salter, S. Whiteson, and I. Posner,
“TACO: Learning Task Decomposition via Temporal Alignment for
Control,” in International Conference on Machine Learning, 2018.

[11] P. A. Jansen, “Visually-Grounded Planning without Vision: Language
Models Infer Detailed Plans from High-Level Instructions,” arXiv
preprint arXiv:2009.14259, 2020.

[12] K. Sakaguchi, C. Bhagavatula, R. L. Bras, N. Tandon, P. Clark, and
Y. Choi, “prosScript: Partially Ordered Scripts Generation via Pre-
trained Language Models,” arXiv preprint arXiv:2104.08251, 2021.

[13] Y. Kong, M. Zhang, and D. Ye, “A Negotiation-based Method for
Task Allocation with Time Constraints in Open Grid Environments,”
Concurrency and Computation: Practice and Experience, 2015.

[14] M. Braquet and E. Bakolas, “Greedy Decentralized Auction-based
Task Allocation for Multi-Agent Systems,” IFAC-PapersOnLine, 2021.

[15] F. Zitouni, S. Harous, and R. Maamri, “A Distributed Approach to
the Multi-Robot Task Allocation Problem using the Consensus-based
Bundle Algorithm and Ant Colony System,” IEEE Access, 2020.

[16] W. Qin, Y.-N. Sun, Z.-L. Zhuang, Z.-Y. Lu, and Y.-M. Zhou,
“Multi-agent reinforcement learning-based dynamic task assignment
for vehicles in urban transportation system,” International Journal of
Production Economics, 2021.

[17] S. Barrett and P. Stone, “Cooperating with Unknown Teammates
in Complex Domains: A Robot Soccer Case Study of Ad Hoc
Teamwork,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2015.

[18] P. Stegagno, M. Cognetti, L. Rosa, P. Peliti, and G. Oriolo, “Relative
Localization and Identification in a Heterogeneous Multi-Robot Sys-
tem,” in IEEE International Conference on Robotics and Automation,
2013.

[19] G. P. Das, T. M. McGinnity, S. A. Coleman, and L. Behera, “A
Distributed Task Allocation Algorithm for a Multi-Robot System in
Healthcare Facilities,” Journal of Intelligent & Robotic Systems, 2015.

[20] T. Mina, S. S. Kannan, W. Jo, and B.-C. Min, “Adaptive Workload
Allocation for Multi-Human Multi-Robot Teams for Independent and
Homogeneous Tasks,” IEEE Access, 2020.

[21] Z. Liu, X.-g. Gao, and X.-w. Fu, “Coalition Formation for Multiple
Heterogeneous UAVs Cooperative Search and Prosecute with Com-
munication Constraints,” in Chinese Control and Decision Conference
(CCDC), 2016.

[22] E. G. Jones, B. Browning, M. B. Dias, B. Argall, M. Veloso,
and A. Stentz, “Dynamically Formed Heterogeneous Robot Teams
Performing Tightly-Coordinated Tasks,” in IEEE International Con-
ference on Robotics and Automation, 2006.

[23] M. Padmanabhan and G. Suresh, “Coalition Formation and Task
Allocation of Multiple Autonomous Robots,” in 2015 3rd International
Conference on Signal Processing, Communication and Networking
(ICSCN), 2015.

[24] X. Liu, X. Li, D. Guo, S. Tan, H. Liu, and F. Sun, “Embodied multi-
agent task planning from ambiguous instruction,” Robotics: Science
and Systems, 2022.

[25] A. Madaan, S. Zhou, U. Alon, Y. Yang, and G. Neubig, “Language
Models of Code are Few-shot Commonsense Learners,” arXiv preprint
arXiv:2210.07128, 2022.

[26] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language Models
as Zero-Shot Planners: Extracting Actionable Knowledge for Embod-
ied Agents,” in International Conference on Machine Learning, 2022.

[27] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, et al., “Do As I
Can, Not As I Say: Grounding Language in Robotic Affordances,”
arXiv preprint arXiv:2204.01691, 2022.

[28] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2Motion:
From Natural Language Instructions to Feasible Plans,” arXiv preprint
arXiv:2303.12153, 2023.

[29] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “ProgPrompt: Generating Situated
Robot Task Plans using Large Language Models,” in 2023 IEEE
International Conference on Robotics and Automation, 2023.

[30] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrishnan, M. S.
Ryoo, A. Stone, and D. Kappler, “Open-Vocabulary Queryable Scene
Representations for Real World Planning,” in 2023 IEEE International
Conference on Robotics and Automation, 2023.

[31] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg,
S. Rusinkiewicz, and T. Funkhouser, “TidyBot: Personalized Robot
Assistance with Large Language Models,” Autonomous Robots, 2023.

[32] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “ChatGPT for
Robotics: Design Principles and Model Abilities,” Microsoft Auton.
Syst. Robot. Res, 2023.

[33] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar, et al., “Inner Monologue:
Embodied Reasoning through Planning with Language Models,” arXiv
preprint arXiv:2207.05608, 2022.

[34] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing Reasoning and Acting in Language Models,”
arXiv preprint arXiv:2210.03629, 2022.

[35] Y. Talebirad and A. Nadiri, “Multi-Agent Collaboration: Har-
nessing the Power of Intelligent LLM Agents,” arXiv preprint
arXiv:2306.03314, 2023.

[36] Z. Liu, W. Yao, J. Zhang, L. Xue, S. Heinecke, R. Murthy, Y. Feng,
Z. Chen, J. C. Niebles, D. Arpit, et al., “BOLAA: Benchmarking and
Orchestrating LLM-Augmented Autonomous Agents,” arXiv preprint
arXiv:2308.05960, 2023.

[37] S. Hong, X. Zheng, J. Chen, Y. Cheng, C. Zhang, Z. Wang,
S. K. S. Yau, Z. Lin, L. Zhou, C. Ran, et al., “MetaGPT: Meta Pro-
gramming for Multi-Agent Collaborative Framework,” arXiv preprint
arXiv:2308.00352, 2023.

[38] Z. Wu, L. Qiu, A. Ross, E. Akyürek, B. Chen, B. Wang, N. Kim,
J. Andreas, and Y. Kim, “Reasoning or Reciting? Exploring the Capa-
bilities and Limitations of Language Models through Counterfactual
Tasks,” arXiv preprint arXiv:2307.02477, 2023.

[39] T. Gunn and J. Anderson, “Dynamic heterogeneous team formation
for robotic urban search and rescue,” Journal of Computer and System
Sciences, 2015.

[40] “Anthropic Claude 3.” [Online]. Available: https://www.anthropic.
com/news/claude-3-family

[41] T. Alam, M. M. Rahman, P. Carrillo, L. Bobadilla, and B. Rapp,
“Stochastic Multi-Robot Patrolling with Limited Visibility,” Journal
of Intelligent & Robotic Systems, 2020.

[42] S. Ouyang, J. M. Zhang, M. Harman, and M. Wang, “LLM is Like
a Box of Chocolates: The Non-determinism of ChatGPT in Code
Generation,” arXiv preprint arXiv:2308.02828, 2023.

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

	Introduction
	Related Works
	Problem Formulation
	Methodology
	Stage 1: Task Decomposition
	Stage 2: Coalition Formation
	Stage 3: Task Allocation
	Stage 4: Task Execution

	Experiments
	Benchmark Dataset
	Simulation Experiments
	Real-Robot Experiments
	Evaluation Metrics

	Results and Discussion
	Simulation Experiments
	Real-Robot Experiments

	Conclusions and Future Work
	References

