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Abstract— Learning from Demonstration (LfD) is a promis-
ing approach to enable Multi-Robot Systems (MRS) to acquire
complex skills and behaviors. However, the intricate interactions
and coordination challenges in MRS pose significant hurdles
for effective LfD. In this paper, we present a novel LfD
framework specifically designed for MRS, which leverages
visual demonstrations to capture and learn from robot-robot
and robot-object interactions. Our framework introduces the
concept of Interaction Keypoints (IKs) to transform the visual
demonstrations into a representation that facilitates the infer-
ence of various skills necessary for the task. The robots then
execute the task using sensorimotor actions and reinforcement
learning (RL) policies when required. A key feature of our
approach is the ability to handle unseen contact-based skills
that emerge during the demonstration. In such cases, RL is
employed to learn the skill using a classifier-based reward func-
tion, eliminating the need for manual reward engineering and
ensuring adaptability to environmental changes. We evaluate
our framework across a range of mobile robot tasks, covering
both behavior-based and contact-based domains. The results
demonstrate the effectiveness of our approach in enabling
robots to learn complex multi-robot tasks and behaviors from
visual demonstrations.

I. INTRODUCTION

Learning from Demonstration (LfD) represents a pivotal
advancement in robotics, shifting paradigmatic approaches
towards more intuitive, efficient skill acquisition in intelligent
systems. By leveraging human demonstrations, LfD facili-
tates the teaching of complex behaviors to robots without
the need for intricate programming, embodying a natural
progression towards more accessible human-robot interac-
tions. This methodology not only simplifies the programming
landscape but also heralds a new era of potential applications
that span the manufacturing, healthcare, and surveillance
sectors [1], [2]. The growing importance of LfD is evident
from its increasing presence in academic research [3].

Despite its growing promise, the exploration of LfD within
multi-robot systems (MRS) remains nascent, presenting a
unique array of challenges and opportunities [4], [3]. The
complexity inherent to MRS, marked by intricate robot-robot
and robot-environment interactions-significantly compounds
the challenges faced in LfD. Multi-robot contexts escalate
the variables and potential interactions exponentially, com-
plicating both the design and control of these systems com-
pared to their single-robot counterparts. These complexities
necessitate innovative approaches in the development of LfD
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Fig. 1: Concept for learning from demonstration for multi-robot systems
(MRS). The human expert demonstrator shows multiple tasks to the MRS,
which are then learned and executed.

algorithms capable of navigating the multifaceted dynamics
of MRS, including coordination and data processing between
multiple agents [3].

Recent research efforts in LfD for MRS have explored
a spectrum of demonstration methodologies, ranging from
simulator-based to vision-based demonstrations, each with
its advantages and limitations. Despite significant advances,
current approaches often struggle with task versatility and
an over-reliance on extensive demonstration sets. Moreover,
the predominant focus on nonvisual demonstration methods
hampers intuitive natural human-robot communication, un-
derscoring the critical need for more accessible, vision-based
frameworks [5].

Our work introduces a vision-based learning-from-
demonstration framework for multi-robot systems, leveraging
Visual Interaction Keypoints and Soft Actor-Critic (SAC)
methods. The choice of visual cues as the primary mode
of demonstration is motivated by their inherent capacity
for facilitating intuitive interactions between humans and
robots [5], despite their inherent shortcoming in conveying
tactile information. To overcome this challenge, we incor-
porate the SAC algorithm, which enables robots to master
tasks that require physical contact. Central to our method
is the utilization of a binary decision classifier alongside
interaction keypoints, which collectively fine-tune the reward
mechanism without resorting to modeled engineering. The
interaction keypoints pinpoint crucial moments of interac-
tion within the environment, such as instances of contact
between a robot and an object or the proximity of robots to
each other, thereby dividing complex tasks into manageable
subtasks. This segmentation not only boosts the efficiency
of the learning process but also improves the clarity with
which MRS can be understood and interpreted. A conceptual
overview of our framework is presented in Fig. 1.

MRS encompass various task categories, including nav-
igation and exploration [6], coordination and communica-



tion, decision-making and planning, assembly and manu-
facturing, manipulation and grasping, and intensive contact-
based tasks [7]. Our framework simplifies this complexity
by classifying tasks into Behavior-Based and Contact-
Based categories. Behavior-based tasks encompass activities
like pattern formation and surveillance, while contact-based
tasks involve direct physical interactions, such as pushing
or lifting. What distinguishes our framework is its novel
use of vision-based demonstrations to effectively learn and
execute tasks within these categories. It efficiently processes
behavior-based tasks using interaction keypoints from a
single clear demonstration. For contact-based tasks, although
multiple demonstrations may be required, the approach re-
mains more streamlined and less demanding than traditional
machine learning-based methods, enhancing both efficiency
and applicability.

The main contributions of this paper are:
• We propose a novel LfD framework for MRS that

utilizes Visual Keypoint inference and SAC methods,
addressing the gap in current research. This framework
is capable of performing behaviour and contact-based
tasks.

• We evaluate our framework through real-time experi-
ments on diverse tasks, demonstrating its efficacy in
collaborative behavior and contact-based tasks.

The remainder of this paper is organized as follows. We
begin with a comprehensive literature review focused on
MRS LfD, followed by a detailed definition of the problem.
The following sections outline our methodology, experimen-
tal setup, and results. We conclude with a discussion of
the limitations of our framework and potential directions for
future research.

II. RELATED WORK

While there is a plethora of research conducted in the
domain of single robot learning from demonstration [3],
[4], [8], this review of the literature explores MRS in the
context of LfD. It covers a range of demonstration meth-
ods, from simulator demonstrations to vision-based human
demonstrations, emphasizing the significant role of MRS in
LfD research.

Notable studies include [9], which introduces a confidence
execution algorithm for collaborative ball sorting, featuring
an adaptive interruption mechanism for when robots require
additional human demonstrations due to low confidence.
Knepper et al. discuss task conveyance through geometric
CAD designs for the assembly of furniture by robots with
specialized roles [10]. Huang et al. combine human demon-
strations with vision for bi-manual surgical tasks, employing
Gaussian Mixture Models for learning, illustrating collabora-
tive work even within a single robotic system [5]. The authors
in [11] and [12] demonstrate teleoperation for navigation and
door opening and a hierarchical reinforcement learning (RL)
framework for abstract behavior tasks, respectively. In robot
soccer, Freelan et al. in [13] employs reinforcement learning
and state-space automata [14] to teach set plays, highlighting

the domain’s extensive research in LfD and reinforcement
learning.

However, these advances often face challenges such as
task specificity, extensive demonstration requirements, and
lack of intuitive vision-based communication. Moreover, the
limited research in the context of LfD for MRS shows the
inherent complexity when dealing with an MRS that includes
interactions that can affect the environment exponentially.
Our framework addresses these issues by leveraging vision-
based demonstrations and interaction keypoints [15], [16]
for a wide range of tasks. Inspired by [17], we incorporate
SAC methods for their real-time efficacy in complex task
learning. Crucially, our framework processes behavior-based
tasks with Interaction Keypoints from a single, clear demon-
stration, streamlining the learning process. For contact-based
tasks, while multiple demonstrations may still be necessary,
our method is significantly more streamlined and less de-
manding than traditional machine learning approaches [18],
[3], [19], enhancing both efficiency and applicability.

III. PROBLEM DEFINITION

Our framework addresses the challenge of instructing
MRS to perform tasks based on visual demonstrations,
categorized into behavior-based and contact-based tasks. We
formalize the inputs, processes, and outputs as follows:
Inputs:

• D = {f1, f2, . . . , fn}: A sequence of n frames from
visual demonstrations captured by a 2D camera.

• O = {o1, o2, . . . , om}: A set of m recognized objects
within the frames.

• R = {r1, r2, . . . , rk}: A set of k identified robots within
the frames.

• G: The goal positions for objects and robots that con-
form to the deduced goal state from the demonstrations.

Outputs:
• IK = {ik1, ik2, . . . , ikp}: Interaction Keypoints, indi-

cating significant moments of interaction. p represents
the total number of interaction keypoints identified.

• TP : A Task Policy for performing the task.
• SRL: Skills developed through Reinforcement Learning

for contact-based tasks.
Problem 1: Behavior-Based Task Learning. The
behaviour-based task learning problem involves deriving
a task policy TP from visual demonstrations, utilizing
interaction keypoints and the spatial dynamics of robots and
objects:

TP = f(D, IK,O,R,G) (1)

where the function f encapsulates the algorithms or set
of processes that the LfD framework employs to interpret
the visual demonstrations. The resulting task policy TP
details the actions or behaviors that robots are to perform
to complete the demonstrated task.
Problem 2: Contact-Based Task Learning. The contact-
based task learning problem extends behaviour-based learn-
ing by incorporating reinforcement learning for learning
skills that involve physical contact interactions in the task,
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Fig. 2: The proposed learning from demonstration for multi-robot systems framework follows a streamlined process: Human experts visually demonstrate
tasks, captured by a 2D camera. These demonstrations undergo feature extraction in the Vision Tracking Module. The Task Policy Inference Module
segments the demonstrations and identifies Interaction Keypoints, forming a Task Policy. When new contact skills arise, the RL skill Learning/Practice
Module, using SAC networks, learns them with guidance from a binary decision classifier’s reward signals. Finally, the Robot Execution Module allocates
and executes tasks across multiple robots, showcasing the adaptability of the framework in various environmental conditions.

requiring additional demonstrations to train a decision clas-
sifier C for goal state recognition:

SRL = g(TP , C(Dadd), IK,O,R,G) (2)

where the function g represents the learning process that
integrates TP , IK, O, R, and G, with the output of a decision
classifier C trained on additional demonstrations Dadd to
synthesize reinforcement learning skills SRL for contact-
based tasks.

Our aim is to develop an integrated set of execution
policies Π that enables the MRS to autonomously perform
complex tasks, aligned with the learned behavior-based and
contact-based policies, and ultimately matching the goal
configuration G:

Π = h(TP , SRL, G) (3)

where the function h denotes the integration process that
amalgamates the task policy TP , skills SRL acquired from
reinforcement learning for contact-based interactions, and
the goal states G, to produce a set of executable policies
Π for the multi-robot system. This integration represents
the culmination of the learning from demonstration process,
enabling the robots to perform tasks effectively.

This symbolic representation defines the transformation
from input demonstrations to executable multi-robot be-
haviors, setting the foundation for detailed formulation in
subsequent sections of the paper.

IV. LEARNING FROM DEMONSTRATION FRAMEWORK
FOR MRS

The core of our approach is encapsulated within a LfD
framework, designed to enable MRS to learn and execute
tasks through visual demonstration, as depicted in Fig. 2.
This process begins with the acquisition of task demonstra-
tions D via a 2D camera within the vision system, capturing
RGB imagery that provides the robots with visual cues
necessary for task performance.

The Vision Tracking Module represents the first pro-
cessing stage within our framework. It analyzes the video
demonstrations, which vary in length depending on the com-
plexity of the task at hand. The module’s primary function
is to extract prominent features concerning the robots R
and objects O within each frame. These data are crucial to
building a comprehensive understanding of the subtasks to
be learned.

Following feature extraction, the Task Policy Inference
Module takes over to dissect the demonstrations into smaller,
interpretable segments. This process identifies Interaction
Keypoints IK, which are critical for delineating subtasks
and individual robot apriori skills from the demonstration.
These keypoints enable the formation of a Task Policy TP ,
a sequence of actions representing the learned skills and
decisions.

Should the inference process reveal the necessity for a
robot to learn a new contact-based skill not encapsulated
within the existing repertoire, the RL Module is activated.
Here, Soft Actor-Critic algorithms are employed to teach



the robots these new skills, with the support of additional
demonstrations as needed. The binary decision classifier C
refines the reward structure, guiding the RL process to ensure
effective skill acquisition.

The final step in our methodology involves the Robot
Execution Module, which is tasked with the allocation of
learned subtasks to the respective robots in the MRS. This
module effectively translates the high-level Task Policy TP
into actionable steps, using both preexisting apriori skills
and newly learned RL policies for task execution. Through
this vision-based LfD framework, we equip MRS with the
capacity not only to replicate demonstrated tasks, but also
to apply these learned behaviors to novel scenarios, bridging
the gap between demonstration and autonomous execution.

A. Vision Tracking Module

The Vision Tracking Module stands as a critical compo-
nent of our framework, underpinning both real-time task
execution and subsequent learning. It tracks a range of
environmental features—specifically, the 2D positions (x, y)
of objects O and robots R, as well as their goal positions
G. This module also captures more nuanced attributes such
as object shape and color, charting the relationships among
objects and robots.

The module assumes an occlusion-free environment, en-
suring clear visibility of all objects and robots for reliable
data capture. While this simplifies tracking, we anticipate
future iterations to tackle partial occlusions, broadening
the framework’s versatility. The approach relies on the
detectability of objects to maintain a finite, yet scalable,
database for object profiles, supporting system adaptability
by accommodating new objects as needed.

Object detection leverages the power of Mask R-CNN
[20], a state-of-the-art deep learning technique known for
its robust object detection and instance segmentation ca-
pabilities. Complementing this, shape and color detection
are performed using functionalities provided by OpenCV,
enabling the precise identification of object features such as
color, shape, corners and centers upon detection. For robot
tracking, we use ArUco markers [21], designed for efficient
pose estimation.

B. Task Policy Inference Module

This module leverages visual features captured by the
Vision Tracking Module to identify Interaction Keypoints,
which are critical for task segmentation and efficiency.
Drawing inspiration from methods that utilize keypoints for
task decomposition [15], [16], IKs enable the system to
break complex tasks into smaller, manageable subtasks. This
granularity allows each robot in the MRS to focus on specific
segments of the task, streamlining the learning process, and
improving system interpretability.
Interaction Types and Definitions: The module distin-
guishes four types of interactions within the MRS context:

1) Object-Robot Interactions (ϕi): Interactions between
objects and robots.

2) Object-Object Interactions (ψi): Interactions among
objects.

3) Robot-Robot Interactions (ωi): Interactions among
robots.

4) Behavior Triggering Keypoints: Environmental
changes, such as the introduction of a new artifact,
prompting a state transition from St to St∗ and act as
an action trigger.

Segmentation and Interaction Features: Interaction Key-
points aid in the temporal segmentation of tasks, highlighting
each robot’s role and interactions. Binary interaction features
(ϕi, ψi, ωi) denote the presence (1) or absence (0) of
interactions. The system also tracks the relative and absolute
positions of robots (Rri, Ari) and objects (Roi, Aoi), along
with motion flags f(Roi) and f(Rri) to indicate movement.
We can denote each segment at time t for multiple robots
as:

Θit = (θ1, θ2, . . . , θr) (4)

where task segment for a robot, θr, at an Interaction Keypoint
is defined as:

θr = (ϕi, Roi, f(Roi), Aoi, ψi, ωi, Rri, f(Rri), Ari) (5)

These segments undergo classification via a decision tree
[22], [23] to assign class labels Ci, corresponding to specific
robot skills, whether pre-learned or acquired through RL.
Policy Formation: The resulting policy, Π, sequences robot
interactions and actions as follows:

Π = {(C1, g1,Θ1t), (C2, g2,Θ2t), . . . , (Cm, gm,Θmt)}
(6)

where gm denotes the goal state for each segment Φmt,
reflecting the final environmental state within the segment.
Class label Cm links to a specific skill set for execution
during task realization.
Task Dimensionality: Task dimensionality, spanning from
m to r × m, is adjusted based on the synchronization of
the robot operations, ensuring the scalability of performance
with the quantity of the robot, mainly affecting the data
storage needs.

C. RL Skill Learning

Our framework utilizes RL within the LfD paradigm,
specifically focusing on demonstrations to generate reward
signals for agent training. This is crucial for introducing
new, often complex, collaborative contact-based manipula-
tion skills. Our model approaches these multi-robot manipu-
lation challenges as model-free RL problems, activating this
module when new skills are identified.
Soft Actor-Critic (SAC) Method: The SAC method is
chosen for its efficiency and suitability for real-time execu-
tion within dynamic multi-robot systems. Combining actor-
critic architecture with soft Q-learning, SAC ensures stable,
adaptive learning, balancing exploration and exploitation.
It employs a shared critic and individual actor networks
for personalized learning, supported by a replay buffer for



leveraging past experiences. This approach enhances respon-
siveness and learning diversity, following the SAC principles
by [24] and implemented in stable baselines [25].
State Space and Action Space: The SAC framework’s
state space is enriched with a 224x224 pixel image input
processed via a Resnet 50 architecture, effectively capturing
visual features crucial for task execution. This visual input
is combined with precise positional data of both the robots
and objects within the environment, ensuring comprehensive
situational awareness. Each robot’s action space is defined
by dual-speed parameters, controlling the two motors of our
mobile robot platform. This action space is deliberately kept
simple and generic, allowing for straightforward adaptation
to other mobile robot systems.
Rewards: Manual reward crafting for multi-robot tasks
presents significant challenges, especially in achieving gen-
eralization across diverse tasks. By integrating additional
demonstrations, our approach generalizes the reward func-
tion, leveraging a binary decision classifier for the determi-
nation of the reward signal, thus facilitating more intuitive
and effective reward configurations.

Given the demonstrations’ capability to highlight the task’s
goal through specific frames as shown in [2], we utilize
these frames to discern positive and negative goal examples.
Formally, let D = (In, yn) represent the dataset, where In
are the goal image frames, and yn are the binary labels
indicating positive (1) or negative (0) goal states.

The binary decision classifier C is trained on D to distin-
guish between goal states and non-goal states, optimizing its
ability to function as a proxy for the reward function:

C(In) → yn (7)

The total reward signal R for the SAC is derived from the
classifier’s output and is structured as follows, incorporating
weights for balance:

R = w1 ·C(In)+w2 · IKreward −w3 · IKFailpenalty (8)

where w1, w2, and w3 are weights that adjust the influence of
each component on the total reward. IKreward is designed to
be minimal and a significant penalty for failures, emphasiz-
ing the achievement of the task’s primary goal over mere
interaction with keypoints. This nuanced reward strategy
ensures that agents are incentivized to pursue the overarching
objectives while maintaining focus over individual robot
objectives efficiently.

D. Robot Execution Module

The Robot Execution Module translates the Task Policy,
derived from Section IV-B, into executable actions through
Task Allocation. This allocation assigns robots either prede-
fined apriori skills or RL skill policies from Section IV-C.

Apriori skills are sensory-motor actions each robot exe-
cutes independently, aligned with specific goal states within
the policy. Our framework includes four critical apriori skills
as depicted in Fig. 3: 1) Approach, where a robot moves
towards a target zone around an object or another robot; 2)

Approach (3 Robots) Align and Contact     
(2 Robots) 

Retreat (2 Robots) Detach Contact           
(1 Robot)

Fig. 3: Apriori skills are modeled as skills that each individual robot can
perform. These are individual robot skills and do not constitute multi robot
skills.

Move to Contact, achieving physical connection with an ob-
ject; 3) Detach Contact, where the robot disengages from the
object; and 4) Retreat, withdrawing from the object’s vicinity.
Executed with a precise low-level PD controller, these skills
enable basic task performance and fundamental Interaction
Keypoint detection, such as object-object, object-robot and
robot-robot interactions. This foundational capability is vital
for understanding interactions within our system and also
allows us to learn behavior-based tasks in a one-shot manner
from a single demonstration.

V. EXPERIMENTS AND RESULTS

Fig. 4: Experimental Testbed shows the Hamster robots in the environment
with a mounted overhead camera attached to the system.

Our experiments were carried out on a test bed featuring a
table with an overhead camera aligned parallel to the surface
of the table. The Hamster mobile robots [26] utilized for
these experiments are equipped with dual-wheeled motors
and IR proximity sensors, enabling precise navigation and
interaction with their environment. This setup, depicted in
Fig. 4, is designed to facilitate both real-time training and
the execution of tasks. Owing to the framework’s ability to
execute behavior-based tasks from a single demonstration,
it was imperative to evaluate performance under real-world
conditions. Consequently, we ensured that RL training for
contact-based tasks was also conducted in the real environ-
ment. This approach circumvents the simulation-to-reality
gap, which can often hinder the transition of contact-based
manipulation skills to practical application. By maintaining
consistency in training and testing exclusively in a real-world



setting, we aimed to validate the framework’s effectiveness
in live scenarios.

We evaluate the performance of our learning from demon-
stration for multi-robot systems framework across various
tasks, including a) Intruder Attack, b) Leader Follower, c)
Object Transport, d) Object Rotate, and e) Object Color Sort-
ing. The tasks (a) and (b) involve behavior-based objectives,
while (c), (d) and (e) focus on contact-based objectives. The
behavior-based tasks require robots to demonstrate specific
behaviors, while the contact-based tasks involve rich manipu-
lation, particularly in Object Transport, a well-studied area in
multi-robot domains. Additionally, we implement a baseline
method, a naive RL approach using the SAC algorithm. In
this method, rewards are manually engineered according to
each task’s nature.

The principal metric for assessment was the success rate
(SR), which represents the proportion of successful trials
within a set of 30. Success was strictly defined by the robots’
ability to fulfill the task’s requirements, be it encircling an
intruder with a defined boundary or executing accurate color-
specific object sorting.

It is worth to note that we primarily focus on measuring
the success or failure of task completion, employing metrics
such as SR. This choice is influenced by the current state
of Multi-Robot LfD approaches and the unique challenges
they present. Present-day multi-robot LfD approaches often
lack sophistication, and achieving reasonable skill goals is
a significant accomplishment. Thus, assessing the success
or failure of these tasks provides meaningful insights into
the framework’s capabilities. The absence of standardized
evaluation parameters or approaches in LfD is due to the
highly task-specific nature of these frameworks. Unlike more
established fields, there is no one-size-fits-all approach or a
baseline for comparison. Another challenge is the diversity
of robot platforms used in LfD, each with varying physical
structures, characteristics, and constraints. This diversity
makes it challenging to conduct direct quantitative compar-
isons between different LfD approaches.

Given these factors, our emphasis on success or failure in
task completion, along with the inclusion of a baseline RL
method, provides a practical and relevant evaluation strategy
for our framework.

A. Intruder Attack

The Intruder Attack task required a team of robots to
encircle an intruder. Given only one expert demonstration,
the robots had to adapt to variations in the intruder’s features
and positions. This behavior-oriented task leveraged the
robots’ apriori skills, specifically designed for approach and
surround strategies. The reward function of the naive RL
approach was predicated on the proximity of each robot to
the intruder, aiming for a formation within 10 cm of the
target. Success was evaluated based on the final positions
of the robots in relation to the intruder and each other, the
experiment achieving a success rate of 95% in a task with
3 robots and 92% with 5 robots when provided with just

single demonstration, despite variations in environment and
configurations.

B. Leader Follower

The Leader Follower task involved creating a follower
formation behind a moving leader object, using just one
expert demonstration as a reference. This behavior-oriented
task utilized the robots’ innate apriori skills to autonomously
align in a sequential formation. The naive RL method
calculated rewards based on the distance to maintain a
coherent line behind the leader. The successful creation of
this formation, as depicted in the accompanying figure, was
achieved with a success rate 100% when provided with a
single demonstration, which underscores the effectiveness of
the behaviors demonstrated.

C. Object Transport

For the Object Transport task, pairs of robots were re-
quired to collaboratively move an object to a designated
target location. The task complexity necessitated 50 demon-
strations to effectively train the classifier for a nuanced
reward signal. Employing a SAC architecture with a two-
layer Multilayer Perceptron (MLP) network of 64 units each,
the robots were trained over an 8-hour period. The SR,
determined by the final proximity of the object to the goal,
was recorded at 80%, demonstrating the robustness of the
framework in facilitating cooperative transport.

D. Object Rotate

The Object Rotate task demanded precision as robots
worked together to rotate an object by 180 degrees. To
accommodate the required precision, the task also involved
50 demonstrations to refine the classifier’s reward mecha-
nism. After 6 hours of training with a SAC model similar to
the Object Transport task, the robots accomplished a 67%
SR, with a permissible margin of error of +/- 2 degrees,
highlighting our framework’s potential in tasks requiring
exact maneuvers.

E. Object Color Sorting

Building on the Object Transport mechanics, the Object
Color Sorting task required the robots to sort objects by color
into corresponding goals. No additional RL training was
required, as the task extended previously learned transport
skills. With a batch of 4 objects of varying colors introduced
sequentially, the robots achieved a 77% SR, based on the
accurate sorting of all objects. Errors were mainly attributed
to the transport phase rather than the sorting, as robots
consistently recognized the correct location of the goal.

The success rates, as shown in Table I, validate the
effectiveness of our framework in both behavior and contact-
based tasks. The high SR across different task types signifies
our framework’s competency in real-time execution and
adaptability to task variations, especially when compared to
traditional training intensive methods such as the baseline
RL.

Furthermore, an ablation study on contact-based tasks,
presented in Table II, examined the performance under three



(a) Demonstration and multi-robot execution of the Intruder Attack task.

(b) Demonstration and multi-robot execution of the Leader Follower task.

(c) Demonstration and multi-robot execution of the Object Transport task.

Fig. 5: Examples of demonstrations and task execution are presented. The objects used during demonstrations are different from the objects used during
execution to showcase how our learning process is generalizable across different objects in the environment. For example, in (a), the yellow object was
used for demonstration, while the blue object was used for execution. Experiment videos showing more examples can be found in the supplementary video.

TABLE I: Success rates for all tasks. Each task underwent 30 trials.

Task Type Task Proposed
Methods (%) Baseline (%)

Behaviour-
based
Tasks

Intruder Attack
(3 Robots) 95 60

Intruder Attack
(5 Robots) 92 38

Leader Follower
(3 Robots) 100 65

Leader Follower
(4 Robots) 100 58

Contact-
based
Tasks

Object Transport 80 40
Object Rotate 67 42
Object Sorting 88 15

conditions: using the full proposed method, only IK rewards,
and only Classifier rewards. The complete framework con-
sistently outperformed the other conditions, reinforcing the
synergy between the Interaction Keypoints and the classifier-
based rewards in our method. For object transport, the
success rates dropped to 47% and 62% when relying solely
on IK rewards and Classifier rewards, respectively. Object
Rotate saw similar trends, with success rates of 24% for
IK rewards and 48% for Classifier rewards, confirming the
integral role of our hybrid reward strategy.

These results collectively emphasize our framework’s ef-

TABLE II: Success rates for all contact-based tasks with the skills learned
under different reward conditions. Each task underwent 30 trials.

Task Proposed
Methods

(%)

Only IK
Rewards

(%)

Only Classifier
Rewards (%)

Object Transport 80 47 62

Object Rotate 67 24 48

ficiency and its ability to generalize across various MRS
tasks with fewer demonstrations needed, paving the way for
practical applications in dynamic environments.

VI. DISCUSSION

Our investigation into the learning from demonstration
framework for multi-robot systems has yielded promising
results, revealing the framework’s potential in a real-time,
real-world setting. While the current version demonstrates
a robust capability for managing tasks defined by discrete
interaction keypoints, there is room to extend this proficiency
to trajectory-based tasks, thereby broadening the scope of the
framework’s applicability.

One significant realization from our experiments is the
value of real-time training and testing, which allowed us to
bypass the sim2real gap often encountered in contact-based



tasks. However, scalability remains a key challenge, as the
complexity of RL training grows with the number of robots,
necessitating strategies for scalable, task-agnostic learning.
Implementing our system in real-world scenarios like ware-
house management is feasible with adjustments. Without
an overhead camera, the system would rely on alternative
localization and sensing technologies, such as LiDAR and
onboard cameras, requiring enhanced onboard computing to
process data in real time and reduce dependence on external
resources. Future work could focus on developing more
efficient algorithms and frameworks that support incremental
learning as more robots are added, ensuring the system’s
adaptability across various environments.

Another exciting prospect is robot domain transfer, where
a universal LfD framework can be applied across various
robot types, simplifying MRS deployment. The adaptability
of our method comes from using high-level visual demon-
strations and IKs, which abstract task-specific details and
enable generalization across mobile robotic platforms. These
IKs focus on essential environmental interactions, reducing
dependency on specific robot kinematics or dynamics. Ad-
ditionally, the potential for heterogeneous multi-robot tasks,
involving collaborations between different robot types like
drones and ground robots, offers a promising area for further
exploration of our framework.

Although this paper represents an initial step toward
realizing a generalized LfD framework capable of handling
a multitude of tasks in various environments, the journey
ahead is expansive. Continuous research efforts are crucial to
overcome existing limitations and to harness the full potential
of MRS. The success we have demonstrated in a real-
world context lays a strong foundation for future endeavors,
aspiring towards a universally adaptable MRS framework.

VII. CONCLUSION

This paper presents an innovative Learning from Demon-
stration (LfD) framework for Multi-Robot Systems (MRS),
leveraging visual demonstrations and a binary decision clas-
sifier to streamline skill acquisition and task execution. By
reducing the need for extensive demonstrations, our approach
addresses the challenge of data intensity in LfD research.
Showing great promise for robust multi-robot learning, we
plan to enhance our framework’s scalability, support for het-
erogeneous robot teams, and trajectory-based skill inclusion.
These advancements pave the way for a future of highly
efficient and adaptable robot learning and collaboration,
advancing autonomous systems.
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