

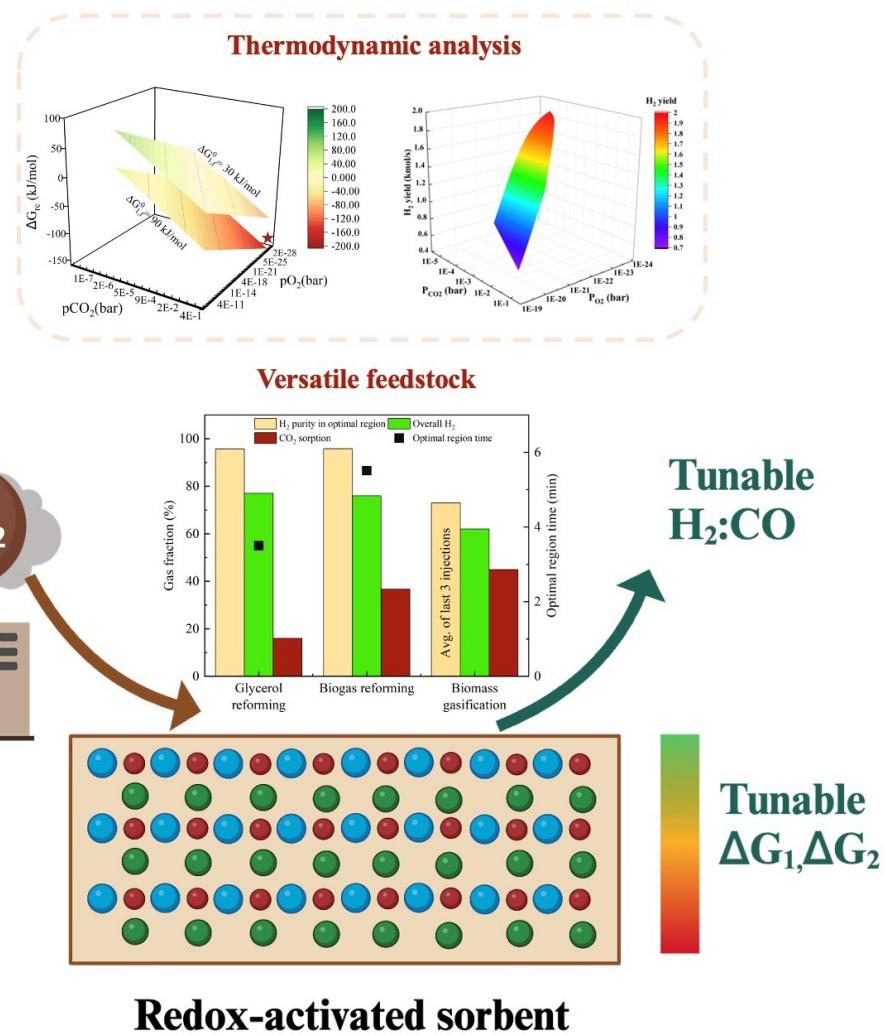
1 **Isothermal CO₂ Separation Enabled by Redox-active Mixed Oxide Sorbents**

2 *Mahe Rukh[†], Runxia Cai[†], Leo Brody, Fanxing Li^{*}*

3 *Department of Chemical and Biomolecular Engineering, North Carolina State University, 911*

4 *Partners Way, Raleigh, North Carolina 27695-7905, USA*

5 [†] *These authors contributed equally to this work*


6 ^{*}*Corresponding author, fli5@ncsu.edu*

7 **Abstract**

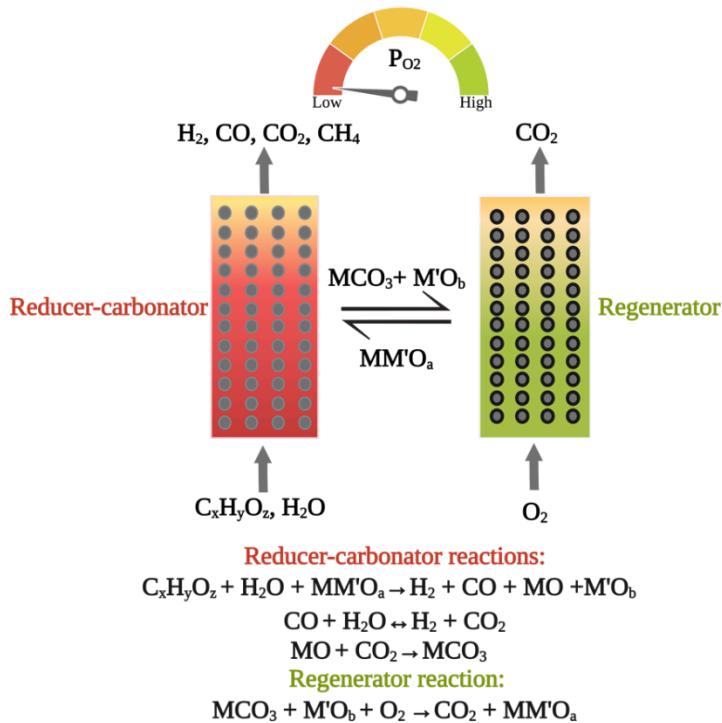
8 This study reports an isothermal CO₂ capture strategy using redox-active perovskite oxides and
9 demonstrates its application in sorption-enhanced hydrogen production. Using a thermodynamic
10 analysis, we investigated the relationship between the equilibrium oxygen partial pressure and the
11 extent of CO₂ sorption as well as the theoretical hydrogen purity. To validate the concept, calcium
12 and cobalt co-doped SrFeO₃ (Sr_{1-x}Ca_xFe_{1-y}Co_yO_{3-δ}) samples were screened experimentally to
13 assess their (isothermal) CO₂ sorption capacity and reducibility. The optimal sorbent,
14 Sr_{0.6}Ca_{0.4}Fe_{0.7}Co_{0.3}O_{3-δ} (SCFC-6473), underwent further characterizations and was used for
15 isothermal sorption-enhanced steam reforming (iSESR) of glycerol to produce H₂, achieving 93
16 vol% H₂ purity. In addition, we present iSESR of biogas and isothermal sorption-enhanced
17 gasification (iSEG) of pulverized pine by Sr_{0.875}Ba_{0.125}MnO_{3-δ} (SBM 718) to validate the
18 generalizability of the proposed concept for a variety of applications. Nearly 90% syngas
19 efficiency was demonstrated for iSEG of biomass while producing a hydrogen enriched (73 vol.%)
20 syngas product.

21

22

29 **1.0 Introduction**

30 CO₂ emissions have almost tripled since 1960, primarily driven by fossil fuel combustion and
31 industrial processes.[1] Renewable energy sources such as solar, wind, and biomass are the
32 ultimate solution towards a low-carbon society.[2,3] However, they still face challenges for
33 widespread adoption. For instance, wind and solar energy are largely limited to power generation
34 and confront challenges related to intermittency, which can hinder their integration into wide-area
35 synchronous grids.[4] Biomass, on the other hand, provides a renewable carbon source for energy,
36 fuel, and chemical production. However, state-of-the-art approaches for biomass conversion, such
37 as gasification and pyrolysis, face challenges in terms of complexity, efficiency, and economic
38 viability.[5,6] Therefore, there is a growing demand for intensified processes that can efficiently
39 convert biomass into hydrogen or hydrogen-enriched syngas. One promising approach is sorption-
40 enhanced reforming or gasification of biomass and biomass derivatives, which involves the
41 thermochemical conversion of the carbonaceous feedstock in the presence of a CO₂ sorbent at high
42 temperatures. However, the main challenge resides in severe limitations in sorbent performance,
43 since most sorbents require a significant temperature swing during the endothermic sorbent
44 regeneration step and are prone to deactivation.[7–11] The same limitations also apply to sorbent-
45 based CO₂ capture technologies in the context of carbon capture and sequestration in fossil fuel
46 conversion.[12–19]


47 All sorbent-based CO₂ capture methods require a regeneration or decarbonation step aside from
48 carbon mineralization, which aims to permanently store CO₂ as stable carbonates. Although a
49 decrease in CO₂ pressure by vacuuming could, in theory, drive the decarbonation reaction,
50 vacuuming alone is usually unable to provide a sufficient driving force for regeneration due to the
51 strong sorbent-CO₂ interactions. Moreover, achieving and maintaining low vacuum conditions (e.g.

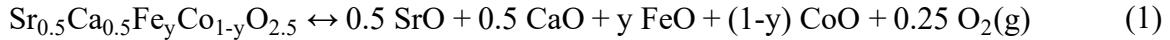
52 below 5 kPa) at large scale is a significant cost challenge.[20,21] For practical usage of high-
53 temperature sorbents for thermochemical biomass conversion ($> 500^{\circ}\text{C}$), a substantial temperature
54 increase is required to achieve efficient regeneration of sorbents.[7,8,11,22,23] The large
55 temperature swing and strong endothermicity of the decarbonation step lead to a high energy and
56 economic penalty.[10,24–26] Therefore, a CO_2 -sorbent that can operate isothermally would
57 greatly simplify the reactor system design and improve the process efficiency. Unfortunately,
58 existing high-temperature sorbents, such as CaO or modified CaO ,[13,27–39] and mixed alkali
59 oxide and alkaline-earth oxide [24,40–50], all typically require a large temperature increase (> 100
60 $^{\circ}\text{C}$) in the context of sorption-enhanced biomass gasification.[51–53] Moreover, they tend to
61 deactivate under repeated carbonation-decarbonation cycles, unless an energy-intensive sorbent
62 re-activation step is implemented.[54,55]

63 This study presents and validates a unique approach to design a new class of sorbent materials
64 capable of isothermal operation with excellent cyclic stability. This is accomplished by carefully
65 choosing redox-active mixed oxides that are responsive not only to shifts in external CO_2 partial
66 pressure (p_{CO_2}) but also to variations in the oxygen partial pressure (p_{O_2}). The redox-active
67 component, which induces carbonation under a reducing (low p_{O_2}) environment and
68 decarbonation under an oxidizing (high p_{O_2}) environment, introduces a new dimension in sorbent
69 design and operation. This enables their efficient utilization, especially in the realm of carbon-free
70 hydrogen production from biogenic feedstocks. Specifically, we first present a thermodynamic
71 analysis framework to establish the feasibility of the proposed sorbent design strategy and to
72 facilitate the rational selection of suitable sorbent materials. The performance of these sorbents,
73 e.g. $\text{Sr}_x\text{Ca}_{1-x}\text{Fe}_y\text{Co}_{1-y}\text{O}_{3-\delta}$ (SCFC), $\text{Sr}_x\text{Ba}_{1-x}\text{Fe}_y\text{Mn}_{1-y}\text{O}_{3-\delta}$ (SBM) was subsequently validated

74 experimentally. We initially tested the SCFC materials using TGA on eight different samples.
75 Following this, SCFC 6482 was examined with *in-situ* XRD to investigate the dynamic phase
76 transitions. Subsequently, we tested SCFC 6473 for sorption-enhanced glycerol reforming in a
77 fixed bed configuration. Lastly, SBM 718 was evaluated for both sorption-enhanced biogas
78 reforming and biomass gasification to demonstrate the versatility of isothermal sorption
79 enhancement across various feedstocks.

80 As illustrated in Fig. 1, the isothermal CO₂ capture strategy utilizes two reactors with varying
81 oxygen partial pressure (P_{O_2}). In the first step, during the conversion of a carbonaceous fuel such
82 as biomass, reducing gases such as H₂, CO, and/or CH₄ are generated, creating a low P_{O_2}
83 environment. The redox-active mixed metal oxides are accordingly reduced, freeing up the highly
84 basic A-site cations such as Sr²⁺ to capture CO₂. The degree to which the sorbents are carbonated
85 is largely determined by the extent of metal oxide reduction under the reducing environment. In
86 the sequential regeneration under a high P_{O_2} environment, the carbonated sorbent and reduced
87 metal oxides will be contacted with air or O₂ to restore the mixed metal oxide phase, releasing the
88 CO₂. Integration of redox reactions with CO₂ absorption/desorption can also tailor the heat
89 distributions between the two reaction steps, enhancing the process efficiency. Coupling the
90 carbonation and decarbonation reactions with the external redox environment also creates an
91 additional dimension in tailoring the sorbent's operating window and performance by adjusting its
92 cation composition and redox properties, as elaborated below.

Fig. 1 Schematic diagram of the isothermal redox-active sorbent looping CO₂ capture scheme.


MM'O_a represents a generic mixed oxide sorbent.

93

94 **2.0 Thermodynamic analysis approach**

95 The thermodynamic analysis began with the effects of oxygen chemical potential (or equivalently
 96 oxygen partial pressure) on the thermodynamic feasibility of CO₂ absorption. Sr_xCa_{1-x}Fe_yCo_{1-y}O_{2.5}
 97 and Sr_xBa_{1-x}Fe_yMn_{1-y}O_{2.5} were selected as examples of redox-active CO₂ sorbents. Herein, x
 98 denotes the Sr molar fraction in the A-site, and y represents the Fe molar fraction in the B-site. For
 99 example, a simplified reaction scheme of CO₂ sorption by Sr_{0.5}Ca_{0.5}Fe_yCo_{1-y}O_{2.5} involve Reactions
 100 1-3. Under a reducing, low p_{O_2} environment, the B-site cation in the perovskite or brownmillerite
 101 phase is reduced, “freeing up” the highly basic A-site oxide (Reaction 1). The A-site oxide would
 102 then react with CO₂ to form carbonates (Reaction 2 and 3). The low p_{O_2} environment is consistent

103 with typical gasification or reforming conditions, which produces reducing gases such as H₂ and
 104 CO.

105 For single-phase sorbent undergoing an isothermal process, the change in chemical potential is
 106 equivalent to the change in Gibbs free energy (ΔG), and the standard pressure of the gaseous
 107 species is set to unity. The fugacity of a component in an ideal gas mixture is equal to its partial
 108 pressure P_j . Hence, the Gibbs free energies of Reactions 1-3 can be described by Eqs. (4-6)

$$\Delta G_{1,c} = \Delta G_{1,f}^0 + RT \ln p_{O_2}^{0.25} \quad (4)$$

$$\Delta G_{2,c} = \Delta G_{2,f}^0 + RT \ln p_{CO_2}^{-1} \quad (5)$$

$$\Delta G_{3,c} = \Delta G_{3,f}^0 + RT \ln p_{CO_2}^{-1} \quad (6)$$

109 The overall Gibbs free energies combining Reactions 1-3 can be described by Eq. (7).

$$\Delta G_{rc} = \Delta G_{1,f} + 0.5(\Delta G_{2,f} + \Delta G_{3,f}) \quad (7)$$

110 Reactions 1-3 are reversed when the redox-active CO₂ sorbent is decarbonated and regenerated,
 111 so the change in the overall Gibbs energy during the regeneration step (ΔG_{re}) can be described
 112 by Eq. (11) after combining Eqs. 8-10.

$$\Delta G_{1,r} = -\Delta G_{1,f}^0 + RT \ln p_{O_2}^{-0.25} \quad (8)$$

$$\Delta G_{2,r} = -\Delta G_{2,f}^0 + RT \ln p_{CO_2} \quad (9)$$

$$\Delta G_{3,r} = -\Delta G_{3,f}^0 + RT \ln p_{CO_2} \quad (10)$$

113 A negative ΔG_{rc} for a given perovskite sorbent indicates thermodynamic favorability of
 114 reduction-carbonation under a specific O_2 partial pressure, p_{O_2} , and CO_2 partial pressure, p_{CO_2} .
 115 Likewise, a negative ΔG_{re} indicates a thermodynamic favorability of decarbonation.

$$\Delta G_{re} = \Delta G_{1,r} + 0.5(\Delta G_{2,r} + \Delta G_{3,r}) \quad (11)$$

116 Furthermore, in the context of sorption-enhanced hydrogen production, the most abundant
 117 component in the gas phase, i.e., hydrogen and steam, can be utilized to estimate the oxygen partial
 118 pressure of the system. In this case, the oxygen partial pressure is correlated with $\frac{p_{H_2}}{p_{H_2O}}$, which
 119 can be described by Reaction (12). Therefore, both ΔG_{rc} and ΔG_{re} are the functions of $\Delta G_{1,f}^0$,
 120 $\frac{p_{H_2}}{p_{H_2O}}$ and p_{CO_2} . To assess the thermodynamic favorability of carbonation and regeneration steps,
 121 the following ranges were considered: standard formation energy of the perovskite oxide $\Delta G_{1,f}^0$,
 122 $=30\sim90$ kJ/mol (the range was roughly estimated based on the DFT calculation), $\Delta G_{1,f}^0$,
 123 $p_{CO_2} = 0.00001\sim0.9$ bar. During the regeneration step, $\frac{p_{H_2}}{p_{H_2O}}$ was varied between 1^{-10} to 1 which

124 corresponded to the following p_{O_2} range: 0.99~2⁻²⁰ bar. We varied the p_{H_2} and p_{H_2O} ratio to
125 cover a realistic range of reactor conditions for the SESR process.[56]

126 Given the vast material design space for redox activated sorbents, the presented thermodynamic
127 framework is useful as a first pass for narrowing down suitable candidate materials (without
128 considering kinetic and transport effects). Sorbent design and operation principles for the
129 isothermal process are briefly discussed in this section. The isothermal sorption-enhancement
130 approach incorporates oxygen partial pressure as an additional design variable, enabling a more
131 precise prediction of favorable phase transition conditions. We initiate our investigation by
132 exploring the impacts on process variables, namely (i) perovskite composition, (ii) p_{O_2} , and (iii)
133 p_{CO_2} , on the thermodynamic favorability of using $Sr_{0.5}Ca_{0.5}Fe_yCo_{1-y}O_{2.5}$ and $Sr_{0.5}Ba_{0.5}Fe_yMn_{1-y}O_{2.5}$ perovskite oxides for sorption-enhancement. Fig. 2a and 2c illustrate the dependence of
134 reduction-carbonation and regeneration-decarbonation ΔG on the gas environment using the
135 former composition, and Fig. 2b and 2d display the relationship for the latter. The two planes in
136 each figure represent ΔG of a specific composition of sorbent with a fixed $\Delta G_{1,f}^0$ of 30 or 90
137 kJ/mol. Additionally, the equilibrium composition analysis was conducted using Aspen Plus
138 simulation software. A detailed description of the methodology used for this analysis can be found
139 in the supplementary file.

141

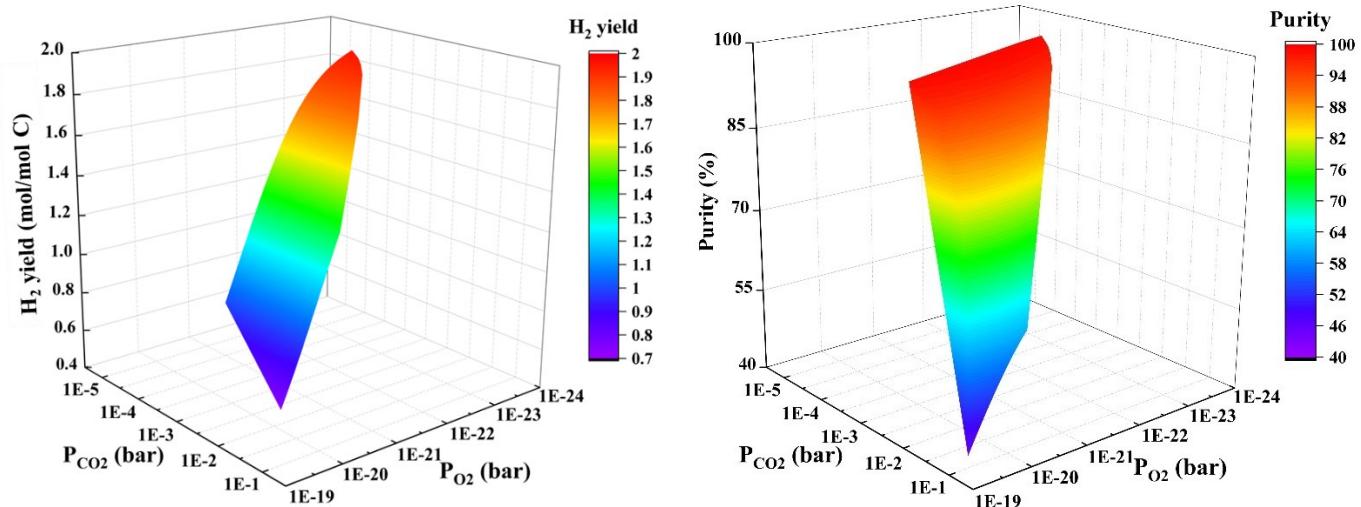
Fig. 2 Overall Gibbs free energy change in the *carbonation step* as a function of $\Delta G_{1,f}^0$, p_{O_2} ,

and p_{CO_2} for (a) $Sr_{0.5}Ca_{0.5}Fe_yCo_{1-y}O_{2.5}$ (b) $Sr_{0.5}Ba_{0.5}Fe_yMn_{1-y}O_{2.5}$; and overall Gibbs free energy

change in the *regeneration step* as a function of $\Delta G_{1,r}^0$, p_{O_2} , and p_{CO_2} for (c) $Sr_{0.5}Ca_{0.5}Fe_yCo_{1-y}O_{2.5}$ (d) $Sr_{0.5}Ba_{0.5}Fe_yMn_{1-y}O_{2.5}$ ($T=750$ °C and $P_{total}=1$ atm). The highly favorable region is marked with a star symbol.

143 **3.0 Results and Discussion**

144 **3.1 Thermodynamic analysis**


145 As shown in Figs. 2a and 2b, the carbonation reaction is favored by an increase in CO₂ partial
146 pressure and/or a decrease in O₂ partial pressure, as reflected by a more negative ΔG_{rc} under such
147 conditions. This feature is distinct from that of conventional sorbents which responds solely to
148 CO₂ partial pressure change. This increased flexibility, i.e., response of the carbonation reaction
149 to p_{O_2} , enhances the tunability of the carbonation process compared to traditional sorbents. By
150 reducing the O₂ partial pressure, the carbonation reaction can be favorable even at low CO₂
151 concentrations, ensuring a high hydrogen purity. The equilibrium CO₂ pressure of BaCO₃ at 750
152 °C (0.0036 bar) is much lower than that of CaCO₃ (0.26 bar). Therefore, carbonation is more
153 thermodynamically favorable when the A site incorporates Ba instead of Ca.

154 Opposite to the carbonation step, the regeneration step is favored under decreased CO₂ partial
155 pressure and increased O₂ partial pressure (Figs. 2c/d). Regenerating the Ba-doped perovskites is
156 more difficult than for the Ca-doped perovskites, requiring lower CO₂ concentrations and higher
157 O₂ concentrations. Therefore, identifying the appropriate compositions of perovskite for the
158 isothermal operation requires a careful balance of both the carbonation and regeneration steps.
159 Beyond the two sorbents considered here, this simple and generalized approach can be used to
160 assess the thermodynamic feasibility of other redox-active sorbents for the sorption-enhanced
161 processes.

162 The H₂ yield and H₂ purity, predicted from equilibrium composition analysis for a carbon (char)
163 gasification process, are illustrated in Fig. 3. The details of the equilibrium analysis are presented

164 in the SI file. Within the $p_{O_2,eq}$ range considered, C was fully gasified into syngas (H₂ and CO).
 165 Resulting from effective capture of CO₂, a maximum H₂ yield of 1.96 mol/mol C can be achieved
 166 at $p_{O_2,eq}$ of 1.49×10^{-23} bar and $P_{CO_2,eq}$ of 2.24×10^{-4} bar. This H₂ yield is close to the theoretical
 167 maximum of 2 mol/mol C. Meanwhile, the H₂ purity is 99.2 vol %. The H₂ yield gradually declined
 168 with increasing $p_{O_2,eq}$ due to (partial) combustion of the produced H₂, which can balance the heat
 169 requirement for the gasification process. On the other hand, increased CO₂ removal by the sorbent,
 170 e.g. higher A-site basicity and/or higher B-site reducibility, can increase H₂ purity, and vice versa.
 171 Therefore, adjusting the $p_{O_2,eq}$ and $P_{CO_2,eq}$ of the sorbent by tuning its compositions can vary the
 172 maximum H₂ yield and purity in the isothermal gasification process. This versatility makes it
 173 feasible to produce hydrogen enriched syngas product for various applications such as hydrogen
 174 production, Fischer-Tropsch synthesis, methanol production, or methanation reaction.

175

176 (a)

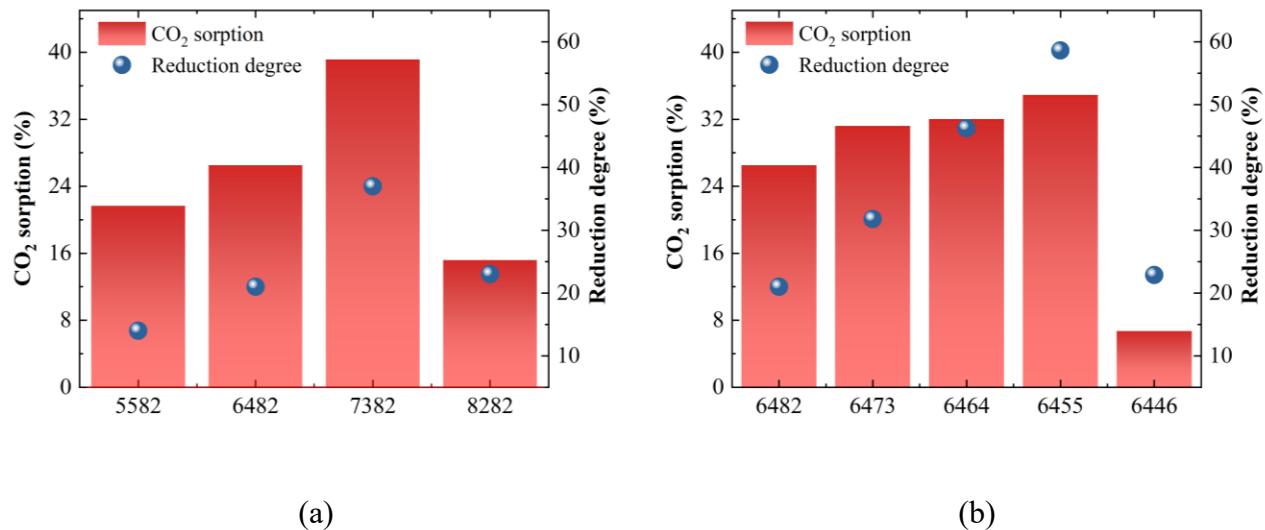

(b)

Fig. 3 The impact of $p_{CO_2, eq}$, $p_{O_2, eq}$ on the (a) theoretical H₂ yield and (b) H₂ purity.

176

177 **3.2 Thermogravimetric analysis**

178 The feasibility of isothermal CO₂ separation was first validated in a TGA using SCFC perovskite
179 oxides. **Fig. 4** summarizes the CO₂ sorption capacity and the reduction degree of the 8 screened
180 samples. These materials all demonstrated isothermal CO₂ capture at 750 °C. In general, the
181 sorption capacities correlate well with the degree of reduction, confirming our sorbent design
182 strategy. Particularly, SCFC 7382 demonstrated the highest sorption capacity and reduction degree
183 among the samples belonging to the SCFC x(1-x)82 group, while SCFC 6455 exhibited the best
184 performance in the SCFC 64y(1-y) groups. The presence of greater than 70% Sr in the A-site
185 resulted in a decrease in CO₂ sorption but a notable increase in degree of reduction, likely due to
186 the less favorable regeneration of SrCO₃ at 750 °C. For SCFC 64y(1-y) group, on the other hand,
187 as the molar amount of cobalt in the A-site increased from 10% to 50%, both sorption capacity
188 and reduction degree increased due to the enhanced reduction rate.[57] When Co doping exceeded
189 50%, both sorption capacity and reduction degree decreased, highlighting the importance of of
190 balancing the B-site cation compositions and reducibility.

Fig. 4 Comparisons of CO₂ sorption capacity and reduction degree among eight SCFC samples

191

192 **3.3 Phase transition behavior under in-situ XRD**

193 The phase transition behaviors of the sorbents were also confirmed using *in-situ* XRD. As
 194 illustrated in Fig. 5, *in-situ* XRD confirmed the phase reversibility of the perovskite sorbent during
 195 isothermal operation. Initially, SCFC-6482 underwent a complete cycle of carbonation and
 196 regeneration for pre-treatment. Subsequently, the samples were subjected to a series of different
 197 gas atmospheres. The Fe₃O₄ peak first appeared at the beginning of the CO₂ region. The gradual
 198 intensification of the Fe₃O₄ peak at ~35° confirmed the reduction of perovskite oxide to the B-site
 199 metal oxides. Cobalt oxide peaks were ambiguous, likely attributed to the low doping amount of
 200 cobalt in this sample. The diffraction pattern of the sample showed a visible increase in peak
 201 intensity around $2\theta = 24.91^\circ$ and 25.58° , which slightly shifted from the characteristic peaks of pure
 202 SrCO₃ at room temperature ($2\theta = 25.17^\circ$ and 25.8°). In addition, CaCO₃ peak briefly appeared at
 203 ~28° in the CO₂-only region. It was swiftly decomposed to CaO ($2\theta = 36.25^\circ$) and remained visible

204 throughout the co-feeding stage. Importantly, the *in-situ* XRD results revealed the synergistic
 205 effect of H₂ and CO₂. Compared to co-feeding of H₂ and CO₂, feeding H₂ alone only resulted in a
 206 weak Fe₃O₄ peak, indicating a slow reduction of the sorbents. This observation is consistent with
 207 the results of the thermodynamic analysis, which shows the synergistic effects of p_{O_2} and p_{CO_2} .

208

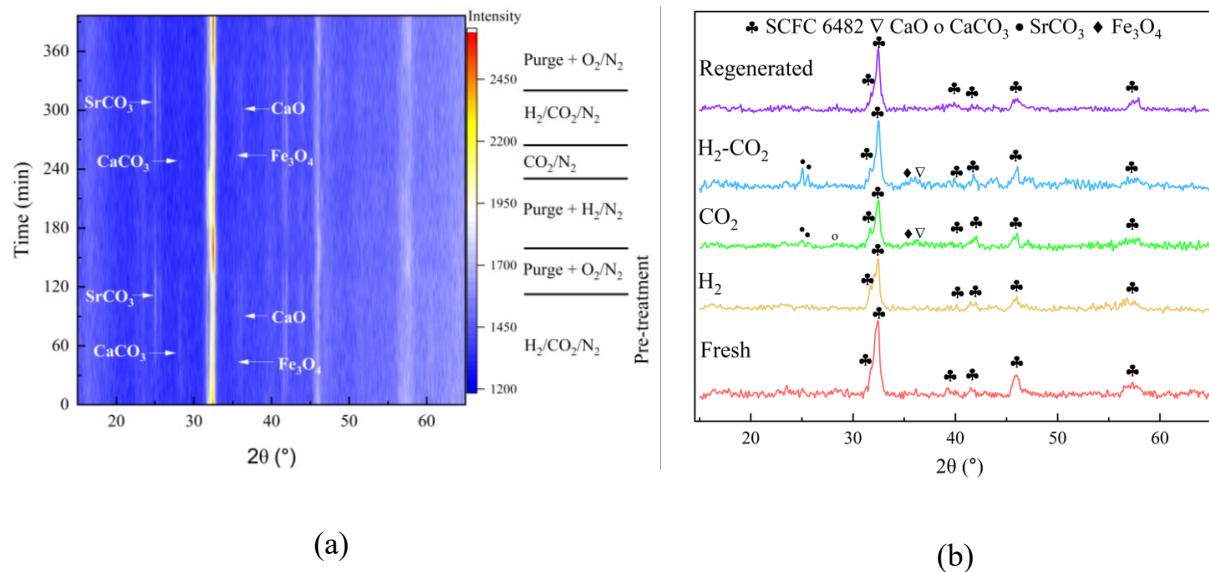
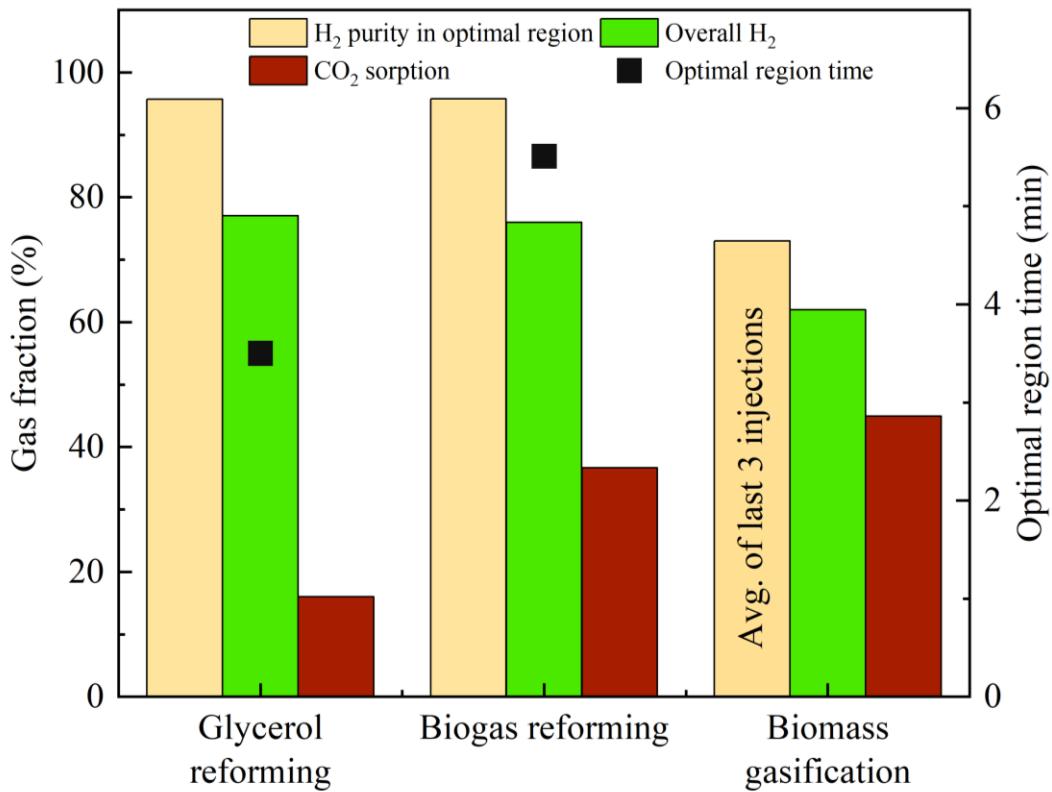


Fig. 5 (a) *In-situ* XRD diffraction pattern contour plots of SCFC-6482 under 750°C (b) *In-situ* XRD patterns of fresh, reduced, and regenerated stages for co-feed and single-feed streams.

209

210 3.4 Isothermal sorption-enhanced reforming and gasification experiment


211 In a packed bed reactor, the SCFC 6473 sorbent demonstrated effective isothermal sorption
 212 performance for glycerol reforming, utilizing commercial NiO/Al₂O₃ for catalytic activity. CO₂
 213 production in the initial 3 minutes of each cycle, attributed to unselective glycerol oxidation due
 214 to reduction of ABO_{2.5+δ} to ABO_{2.5}, which was addressed with a pre-reduction step (5 vol% H₂, 20

215 mins) before each cycle, resulting in 7.53 vol% decrease in CO₂ generation. Successive sorbent
216 saturation led to decreased syngas yield and increased CO₂ concentration. The optimal H₂
217 production region, defined by CO_x concentration below 4.5 vol%, lasted an average of 5 minutes
218 across 14 cycles, with a stable sorption capacity of approximately 16%. Analysis of reaction profile
219 from mass spectrometry confirmed sorbent efficacy, exhibiting concentrated hydrogen during
220 reforming and a notable CO₂ peak during regeneration (Fig. S3(a)). H₂ purity, particularly during
221 the optimal region, consistently reached around 93 vol%, averaging approximately 76 vol%
222 overall.

223 In addition to glycerol reforming, SBM 718, a Ba-containing sorbent, was tested for isothermal
224 sorption-enhanced steam reforming of biogas at 850°C and S/C=2. During initial reforming period,
225 CO₂ release occurred due to gradual reduction of Sr_{0.875}Ba_{0.125}MnO_{3-δ} to Sr_{0.875}Ba_{0.125}MnO_{2.5} (Fig.
226 S4(b)). Further reduction led to SrO and BaO formation, capturing CO₂ and favoring H₂
227 production. Similarly to glycerol reforming experiment, a sequential regeneration released
228 significant CO₂, validating sorbent efficacy for isothermal sorption-enhanced hydrogen
229 production. Gas concentrations remained consistent over 14 cycles, with an average overall H₂
230 concentration of ~78% and CO₂ under 10 vol%. The average sorption capacity observed is 36.65%,
231 with the optimal H₂ production region lasting ~5.45 minutes where H₂ concentration averaged at
232 ~96%. Furthermore, minimal deactivation was observed indicating sorbent durability.

233 The efficacy of SBM 718 in sorption-enhanced gasification of biomass (SEBG) was also evaluated
234 in a laboratory-scale bubbling fluidized bed reactor at 850°C (Fig. S5). Fig. S6 (a) and (b) illustrate
235 the gas compositions during the gasification step with five pulse injections of biomass. The 1st
236 injection primarily resulted in significant CO₂ release with minimal H₂ production. However, H₂
237 gradually increased with each subsequent injection, peaking at an average of 73% in the last three

238 injections, while CO₂ fraction diminished to 11%. The high valent state of Mn cation in the 1st
 239 injection led to significant CO₂ release, but the subsequent reduction led to SrO and BaO formation,
 240 effectively capturing CO₂ and favoring water-gas-shift for H₂ generation. During the regeneration,
 241 substantial CO₂ release corresponded to approximately 45% sorption capacity, affirming the
 242 robustness of redox-active perovskite oxides for isothermal sorption-enhanced processes.
 243 Furthermore, estimated high heating value (HHV) efficiencies stand at 75% and 91% based on 5
 244 and the last 4 injections, respectively. Correspondingly, low heating value (LHV) efficiencies for
 245 the same sets of injections are 73% and 88%, indicating enhanced energy conversion efficiency of
 246 the proposed system.

248 **Fig. 6** Summary of isothermal sorption-enhanced glycerol reforming, biogas reforming and
 249 biomass gasification experimental results.

250 **4.0 Conclusion**

251 In summary, this study reports theoretical analysis and experimental validation of a unique family
252 of redox-activated sorbents for isothermal sorption-enhanced reforming and gasification.
253 Hydrogen and hydrogen enriched syngas was produced from a variety of biogenic feedstocks,
254 showing a ~90% syngas generation efficiency from woody biomass with up to 73% H₂
255 concentration in the gasification product. Sorbents with various compositions, supported by
256 thermodynamic analysis, showed excellent isothermal performance and cyclic stability. The
257 isothermal approach, which also facilities autothermal operation through the redox-reactions of
258 the B-site transition metal in the sorbent, offer distinct advantages compared to conventional
259 sorbents in terms of energy efficiency, cyclic stability, tunability, and versatility in handling
260 various biogenic feedstocks.

261 **Supporting information**

262 Thermodynamic analysis, Aspen simulation flowsheet, material synthesis, XRD, experimental
263 procedure, and calculation methods.

264 **Acknowledgements**

265 This work was supported by the U.S. Department of Energy Office of Energy Efficiency &
266 Renewable Energy (no. EE0008809) and the US National Science Foundation (CBET-1923468).
267 The authors would like to acknowledge Prof. Stephen Kelley and Mr. Andrew Jones for providing
268 and characterizing the woody biomass samples. We also acknowledge the use of the Analytical
269 Instrumentation Facility (AIF) at the North Carolina State University, which is supported by the
270 State of North Carolina and the National Science Foundation.

271

272 **References**

273 [1] NOAA climate.gov, Climate change and atmospheric Carbon Dioxide,
274 <https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide#:~:text=Since%20the%20middle%20of%20the,the%20Global%20Carbon%20Budget%202023>, (accessed May 21, 2024)

278 [2] S. Bilgen, K. Kaygusuz, A. Sari, Renewable Energy for a Clean and Sustainable Future,
279 Energy Sources 26 (2004) 1119–1129. <https://doi.org/10.1080/00908310490441421>.

280 [3] P. Moriarty, D. Honnery, Intermittent renewable energy: The only future source of
281 hydrogen?, Int. J. Hydrog. Energy 32 (2007) 1616–1624.
<https://doi.org/10.1016/j.ijhydene.2006.12.008>.

283 [4] P. Moriarty, D. Honnery, Can renewable energy power the future?, Energy Policy 93 (2016)
284 3–7. <https://doi.org/10.1016/j.enpol.2016.02.051>.

285 [5] A. Arregi, M. Amutio, G. Lopez, J. Bilbao, M. Olazar, Evaluation of thermochemical routes
286 for hydrogen production from biomass: A review, Energy Convers. Manag. 165 (2018)
287 696–719. <https://doi.org/10.1016/j.enconman.2018.03.089>.

288 [6] P. Parthasarathy, K.S. Narayanan, Hydrogen production from steam gasification of biomass:
289 Influence of process parameters on hydrogen yield – A review, Renew. Energy 66 (2014)
290 570–579. <https://doi.org/10.1016/j.renene.2013.12.025>.

291 [7] A.M. Parvez, S. Hafner, M. Hornberger, M. Schmid, G. Scheffknecht, Sorption enhanced
292 gasification (SEG) of biomass for tailored syngas production with in-situ CO₂ capture:
293 Current status, process scale-up experiences and outlook, Renew. Sustain. Energy Rev. 141
294 (2021) 110756. <https://doi.org/10.1016/j.rser.2021.110756>.

295 [8] F. Dashtestani, M. Nusheh, V. Siriwongrungson, J. Hongrapipat, V. Materic, S. Pang, CO₂
296 Capture from Biomass Gasification Producer Gas Using a Novel Calcium and Iron-Based
297 Sorbent through Carbonation–Calcination Looping, Ind. Eng. Chem. Res. 59 (2020)
298 18447–18459. <https://doi.org/10.1021/acs.iecr.0c03025>.

299 [9] C. Pfeifer, B. Puchner, H. Hofbauer, In-Situ CO₂-Absorption in a Dual Fluidized Bed
300 Biomass Steam Gasifier to Produce a Hydrogen Rich Syngas, Int. J. Chem. React. Eng. 5
301 (2007). <https://doi.org/10.2202/1542-6580.1395>.

302 [10] C. Dang, Y. Li, S.M. Yusuf, Y. Cao, H. Wang, H. Yu, F. Peng, F. Li, Calcium cobaltate: a
303 phase-change catalyst for stable hydrogen production from bio-glycerol, *Energy Environ.*
304 *Sci.* 11 (2018) 660–668. <https://doi.org/10.1039/C7EE03301J>.

305 [11] X. Zhao, H. Zhou, V.S. Sikarwar, M. Zhao, A.-H.A. Park, P.S. Fennell, L. Shen, L.-S. Fan,
306 Biomass-based chemical looping technologies: the good, the bad and the future, *Energy*
307 *Environ. Sci.* 10 (2017) 1885–1910. <https://doi.org/10.1039/C6EE03718F>.

308 [12] J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O’Hare, Z. Zhong,
309 Recent advances in solid sorbents for CO₂ capture and new development trends, *Energy*
310 *Env. Sci* 7 (2014) 3478–3518. <https://doi.org/10.1039/C4EE01647E>.

311 [13] M. Erans, V. Manovic, E.J. Anthony, Calcium looping sorbents for CO₂ capture, *Appl.*
312 *Energy* 180 (2016) 722–742. <https://doi.org/10.1016/j.apenergy.2016.07.074>.

313 [14] M.T. Dunstan, A. Jain, W. Liu, S.P. Ong, T. Liu, J. Lee, K.A. Persson, S.A. Scott, J.S.
314 Dennis, C.P. Grey, Large scale computational screening and experimental discovery of
315 novel materials for high temperature CO₂ capture, *Energy Environ. Sci.* 9 (2016) 1346–
316 1360. <https://doi.org/10.1039/C5EE03253A>.

317 [15] C.Y. Lau, M.T. Dunstan, W. Hu, C.P. Grey, S.A. Scott, Large scale in silico screening of
318 materials for carbon capture through chemical looping, *Energy Environ. Sci.* 10 (2017)
319 818–831. <https://doi.org/10.1039/C6EE02763F>.

320 [16] M. Krödel, A. Landuyt, P.M. Abdala, C.R. Müller, Mechanistic Understanding of CaO-
321 Based Sorbents for High-Temperature CO₂ Capture: Advanced Characterization and
322 Prospects, *ChemSusChem* 13 (2020) 6259–6272. <https://doi.org/10.1002/cssc.202002078>.

323 [17] M.T. Dunstan, F. Donat, A.H. Bork, C.P. Grey, C.R. Müller, CO₂ Capture at Medium to
324 High Temperature Using Solid Oxide-Based Sorbents: Fundamental Aspects, Mechanistic
325 Insights, and Recent Advances, *Chem. Rev.* 121 (2021) 12681–12745.
326 <https://doi.org/10.1021/acs.chemrev.1c00100>.

327 [18] S. Masoudi Soltani, A. Lahiri, H. Bahzad, P. Clough, M. Gorbounov, Y. Yan, Sorption-
328 enhanced Steam Methane Reforming for Combined CO₂ Capture and Hydrogen
329 Production: A State-of-the-Art Review, *Carbon Capture Sci. Technol.* 1 (2021) 100003.
330 <https://doi.org/10.1016/j.ccst.2021.100003>.

331 [19] H. An, T. Song, L. Shen, C. Qin, J. Yin, B. Feng, Coal gasification with in situ CO₂ capture
332 by the synthetic CaO sorbent in a 1 kWth dual fluidised-bed reactor, *Int. J. Hydrol. Energy*
333 37 (2012) 14195–14204. <https://doi.org/10.1016/j.ijhydene.2012.06.077>.

334 [20] A.S. Akdag, I. Durán, G. Gullu, C. Pevida, Performance of TSA and VSA post-combustion
335 CO₂ capture processes with a biomass waste-based adsorbent, *J. Environ. Chem. Eng.* 10
336 (2022) 108759. <https://doi.org/10.1016/j.jece.2022.108759>.

337 [21] P.A. Webley, A. Qader, A. Ntiamoah, J. Ling, P. Xiao, Y. Zhai, A New Multi-bed Vacuum
338 Swing Adsorption Cycle for CO₂ Capture from Flue Gas Streams, *Energy Procedia* 114
339 (2017) 2467–2480. <https://doi.org/10.1016/j.egypro.2017.03.1398>.

340 [22] B. Acharya, A. Dutta, P. Basu, Chemical-Looping Gasification of Biomass for Hydrogen-
341 Enriched Gas Production with In-Process Carbon Dioxide Capture, *Energy Fuels* 23 (2009)
342 5077–5083. <https://doi.org/10.1021/ef9003889>.

343 [23] J. Udomsirichakorn, P. Basu, P. Abdul Salam, B. Acharya, CaO-based chemical looping
344 gasification of biomass for hydrogen-enriched gas production with in situ CO₂ capture and
345 tar reduction, *Fuel Process. Technol.* 127 (2014) 7–12.
346 <https://doi.org/10.1016/j.fuproc.2014.06.007>.

347 [24] L. Brody, R. Cai, A. Thornton, J. Liu, H. Yu, F. Li, Perovskite-Based Phase Transition
348 Sorbents for Sorption-Enhanced Oxidative Steam Reforming of Glycerol, *ACS Sustain.*
349 *Chem. Eng.* 10 (2022) 6434–6445. <https://doi.org/10.1021/acssuschemeng.2c01323>.

350 [25] M. Ramezani, P. Tremain, E. Doroodchi, B. Moghtaderi, Determination of
351 Carbonation/Calcination Reaction Kinetics of a Limestone Sorbent in low CO₂ Partial
352 Pressures Using TGA Experiments, *Energy Procedia* 114 (2017) 259–270.
353 <https://doi.org/10.1016/j.egypro.2017.03.1168>.

354 [26] A. Martínez, Lime enhanced biomass gasification. Energy penalty reduction by solids
355 preheating in the calciner, *Int. J. Hydrol. Energy* 37 (2012) 15085–15095.

356 [27] M. Zhao, M. Bilton, A.P. Brown, A.M. Cunliffe, E. Dvininov, V. Dupont, T.P. Comyn, S.J.
357 Milne, Durability of CaO–CaZrO₃ Sorbents for High-Temperature CO₂ Capture Prepared
358 by a Wet Chemical Method, *Energy Fuels* 28 (2014) 1275–1283.
359 <https://doi.org/10.1021/ef4020845>.

360 [28] G. Gadikota, A.A. Park, Chapter 8 - Accelerated Carbonation of Ca- and Mg-Bearing
361 Minerals and Industrial Wastes Using CO₂, in: P. Styring, E.A. Quadrelli, K. Armstrong

362 (Eds.), Carbon Dioxide Util., Elsevier, Amsterdam, 2015: pp. 115–137.
363 <https://doi.org/10.1016/B978-0-444-62746-9.00008-6>.

364 [29] Z. Yang, M. Zhao, N.H. Florin, A.T. Harris, Synthesis and Characterization of CaO
365 Nanopods for High Temperature CO₂ Capture, *Ind. Eng. Chem. Res.* 48 (2009) 10765–
366 10770. <https://doi.org/10.1021/ie901137s>.

367 [30] M. Zhao, J. Shi, X. Zhong, S. Tian, J. Blamey, J. Jiang, P.S. Fennell, A novel calcium
368 looping absorbent incorporated with polymorphic spacers for hydrogen production and CO
369 ₂ capture, *Energy Env. Sci.* 7 (2014) 3291–3295. <https://doi.org/10.1039/C4EE01281J>.

370 [31] V. Manovic, P.S. Fennell, M.J. Al-Jeboori, E.J. Anthony, Steam-Enhanced Calcium
371 Looping Cycles with Calcium Aluminate Pellets Doped with Bromides, *Ind. Eng. Chem.*
372 *Res.* 52 (2013) 7677–7683. <https://doi.org/10.1021/ie400197w>.

373 [32] N. Phalak, W. Wang, L.-S. Fan, Ca(OH)₂-Based Calcium Looping Process Development at
374 The Ohio State University, *Chem. Eng. Technol.* 36 (2013) 1451–1459.
375 <https://doi.org/10.1002/ceat.201200707>.

376 [33] A.M. Kierzkowska, R. Pacciani, C.R. Müller, CaO-Based CO₂ Sorbents: From
377 Fundamentals to the Development of New, Highly Effective Materials, *ChemSusChem* 6
378 (2013) 1130–1148. <https://doi.org/10.1002/cssc.201300178>.

379 [34] M. Krödel, A. Oing, J. Negele, A. Landuyt, A. Kierzkowska, A.H. Bork, F. Donat, C.R.
380 Müller, Yolk–shell-type CaO-based sorbents for CO₂ capture: assessing the role of
381 nanostructuring for the stabilization of the cyclic CO₂ uptake, *Nanoscale* 14 (2022) 16816–
382 16828. <https://doi.org/10.1039/D2NR04492G>.

383 [35] M. Broda, A.M. Kierzkowska, C.R. Müller, Application of the Sol–Gel Technique to
384 Develop Synthetic Calcium-Based Sorbents with Excellent Carbon Dioxide Capture
385 Characteristics, *ChemSusChem* 5 (2012) 411–418. <https://doi.org/10.1002/cssc.201100468>.

386 [36] F.-C. Yu, N. Phalak, Z. Sun, L.-S. Fan, Activation Strategies for Calcium-Based Sorbents
387 for CO₂ Capture: A Perspective, *Ind. Eng. Chem. Res.* 51 (2012) 2133–2142.
388 <https://doi.org/10.1021/ie200802y>.

389 [37] L.B. Braga, Hydrogen production by biogas steam reforming_ A technical, economic and
390 ecological analysis, *Renew. Sustain. Energy Rev.* 28 (2013) 166–173.

391 [38] M. Krödel, C. Leroy, S.M. Kim, M.A. Naeem, A. Kierzkowska, Y.-H. Wu, A. Armutlulu,
392 A. Fedorov, P. Florian, C.R. Müller, Of Glasses and Crystals: Mitigating the Deactivation

393 of CaO-Based CO₂ Sorbents through Calcium Aluminosilicates, JACS Au 3 (2023) 3111–
394 3126. <https://doi.org/10.1021/jacsau.3c00475>.

395 [39] M. Krödel, L. Abduly, M. Nadjafi, A. Kierzkowska, A. Yakimov, A.H. Bork, F. Donat, C.
396 Copéret, P.M. Abdala, C.R. Müller, Structure of Na Species in Promoted CaO-Based
397 Sorbents and Their Effect on the Rate and Extent of the CO₂ Uptake, Adv. Funct. Mater. 33
398 (2023) 2302916. <https://doi.org/10.1002/adfm.202302916>.

399 [40] A. López-Ortiz, N.G.P. Rivera, A.R. Rojas, D.L. Gutierrez, Novel Carbon Dioxide Solid
400 Acceptors Using Sodium Containing Oxides, Sep. Sci. Technol. 39 (2005) 3559–3572.
401 <https://doi.org/10.1081/SS-200036766>.

402 [41] X. Yan, Y. Li, X. Ma, J. Zhao, Z. Wang, Performance of Li₄SiO₄ Material for CO₂ Capture:
403 A Review, Int. J. Mol. Sci. 20 (2019) 928. <https://doi.org/10.3390/ijms20040928>.

404 [42] S. Jeoung, J.H. Lee, H.Y. Kim, H.R. Moon, Effects of porous carbon additives on the CO₂
405 absorption performance of lithium orthosilicate, Thermochim. Acta 637 (2016) 31–37.
406 <https://doi.org/10.1016/j.tca.2016.05.010>.

407 [43] M.J. Venegas, E. Fregoso-Israel, R. Escamilla, H. Pfeiffer, Kinetic and Reaction
408 Mechanism of CO₂ Sorption on Li₄SiO₄: Study of the Particle Size Effect, Ind. Eng. Chem.
409 Res. 46 (2007) 2407–2412. <https://doi.org/10.1021/ie061259e>.

410 [44] L. Brody, M. Rukh, R. Cai, A.S. Bosari, R. Schomäcker, F. Li, Sorption-enhanced steam
411 reforming of toluene using multifunctional perovskite phase transition sorbents in a
412 chemical looping scheme, J. Phys. Energy 5 (2023) 035004. <https://doi.org/10.1088/2515-7655/acdbe9>.

413 [45] J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Perovskites in
414 catalysis and electrocatalysis, Science 358 (2017) 751–756.
415 <https://doi.org/10.1126/science.aam7092>.

416 [46] Y.S. Lin, Q. Yang, J. Ida, High temperature sorption of carbon dioxide on perovskite-type
417 metal oxides, J. Taiwan Inst. Chem. Eng. 40 (2009) 276–280.
418 <https://doi.org/10.1016/j.jtice.2008.12.010>.

419 [47] M.T. Dunstan, H. Laeverenz Schlogelhofer, J.M. Griffin, M.S. Dyer, M.W. Gaultois, C.Y.
420 Lau, S.A. Scott, C.P. Grey, Ion Dynamics and CO₂ Absorption Properties of Nb-, Ta-, and
421 Y-Doped Li₂ZrO₃ Studied by Solid-State NMR, Thermogravimetry, and First-Principles

422

423 Calculations, *J. Phys. Chem. C* 121 (2017) 21877–21886.
424 <https://doi.org/10.1021/acs.jpcc.7b05888>.

425 [48] M.T. Dunstan, J.M. Griffin, F. Blanc, M. Leskes, C.P. Grey, Ion Dynamics in Li_2CO_3
426 Studied by Solid-State NMR and First-Principles Calculations, *J. Phys. Chem. C* 119
427 (2015) 24255–24264. <https://doi.org/10.1021/acs.jpcc.5b06647>.

428 [49] Y. Zeng, N.J. Szymanski, T. He, K. Jun, L.C. Gallington, H. Huo, C.J. Bartel, B. Ouyang,
429 G. Ceder, Selective formation of metastable polymorphs in solid-state synthesis, *Sci. Adv.*
430 10 (2024) eadj5431. <https://doi.org/10.1126/sciadv.adj5431>.

431 [50] A. Miura, C.J. Bartel, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, Y. Wang, T.
432 Yaguchi, M. Shirai, M. Nagao, N.C. Rosero-Navarro, K. Tadanaga, G. Ceder, W. Sun,
433 Observing and Modeling the Sequential Pairwise Reactions that Drive Solid-State Ceramic
434 Synthesis, *Adv. Mater.* 33 (2021) 2100312. <https://doi.org/10.1002/adma.202100312>.

435 [51] K.S. Sultana, D.T. Tran, J.C. Walmsley, M. Rønning, D. Chen, CaO Nanoparticles Coated
436 by ZrO_2 Layers for Enhanced CO_2 Capture Stability, *Ind. Eng. Chem. Res.* 54 (2015)
437 8929–8939. <https://doi.org/10.1021/acs.iecr.5b00423>.

438 [52] J. Yin, C. Qin, B. Feng, L. Ge, C. Luo, W. Liu, H. An, Calcium Looping for CO_2 Capture at
439 a Constant High Temperature, *Energy Fuels* 28 (2014) 307–318.
440 <https://doi.org/10.1021/ef401399c>.

441 [53] Y.A. Criado, B. Arias, J.C. Abanades, Effect of the Carbonation Temperature on the CO_2
442 Carrying Capacity of CaO, *Ind. Eng. Chem. Res.* 57 (2018) 12595–12599.
443 <https://doi.org/10.1021/acs.iecr.8b02111>.

444 [54] F. Donat, N.H. Florin, E.J. Anthony, P.S. Fennell, Influence of High-Temperature Steam on
445 the Reactivity of CaO Sorbent for CO_2 Capture, *Environ. Sci. Technol.* 46 (2012) 1262–
446 1269. <https://doi.org/10.1021/es202679w>.

447 [55] A.D. Lalsare, High Pressure Steam Reactivation of Calcium Oxide Sorbents For Carbon
448 Dioxide Capture Using Calcium Looping Process, The Ohio State University, 2016.
449 https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=osu1462444410 (accessed July 4, 2023).

450 [56] W. Luo, A. Asthagiri, An ab initio thermodynamics study of cobalt surface phases under
451 ethanol steam reforming conditions, *Catal Sci Technol* 4 (2014) 3379–3389.
452 <https://doi.org/10.1039/C4CY00582A>.

454 [57] E.J. Popczun, T. Jia, S. Natesakhawat, C.M. Marin, T. Nguyen-Phan, Y. Duan, J.W. Lekse,
455 Investigation of $\text{Sr}_{0.7}\text{Ca}_{0.3}\text{FeO}_3$ Oxygen Carriers with Variable Cobalt B-Site
456 Substitution, *ChemSusChem* 14 (2021) 1893–1901.
457 <https://doi.org/10.1002/cssc.202002849>.

458

459

460

461

462

463

464

465

466

467

468

469