Running header: Comparative immunology The Promise of a Pointillist Perspective for Comparative Immunology Cynthia J. Downs¹, Marissa E. Sobolewski² ¹ Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, 1 Forestry Dr. Syracuse, NY, United States, ² Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States Corresponding Author: Cynthia J. Downs (cjdowns@esf.edu)

Abstract

Most studies in comparative immunology involve investigations into the detailed mechanisms of the immune system of a non-model organism. Although this approach has been insightful, it has promoted a deep understanding of only a handful of species, thus inhibiting the recognition of broad taxonomic patterns. Here, we call for investigating the immune defenses of numerous species within a pointillist framework, that is, the meticulous, targeted collection of data from dozens species and investigation of broad patterns of organismal, ecological, and evolutionary forces shaping those patterns. Without understanding basic immunological patterns across species, we are limited in our ability to extrapolate and/or translate our findings to other organisms, including humans. We illustrate this point by focusing predominantly on the biological scaling literature with some integrations of the pace of life literature, as these perspectives have been the most developed within this framework. We also highlight how the more traditional approach in comparative immunology works synergistically with a pointillist approach, with each approach feeding back into the other. We conclude that the pointillist approach promises to illuminate comprehensive theories about the immune system and enhance predictions in a wide variety of domains, including host-parasite dynamics and disease ecology.

Keywords: Comparative immunology, scaling, allometry, immune defense, pace of life

Comparative immunology entails studying the immune systems of non-model organisms from an evolutionary perspective, and it has demonstrated that the immune system is ubiquitous and necessary for all animals to survive (1, 2). It promises a unified understanding of the mechanisms underlying immune defenses and how immune systems are integrated with other physiological systems (1, 2). It has also established important organizing paradigms in immunology, including self/non-self discrimination, the danger hypothesis, and classification of innate vs. adaptive and cellular vs. humoral immune defenses, and placed the origins of specific types of defenses on the tree of life (1–4). Yet, for all its promise, most studies focus on a single or a handful of species and immunology has few frameworks for predicting the specific immune defenses of unstudied organisms and the diversity of immune systems across species. We argue that embracing comparative studies of dozens of species will advance the field of comparative immunology by revealing broad interspecific patterns and the underpinning constraints and selective forces for those patterns.

Two forms of comparative immunology

For such a large number of problems there will be some animal of choice or a few such animals on which it can be most conveniently studied.

~Krogh, 1929, J Am Phys, p 5

[A] general physiology which can describe the essential characteristics of matter in the living state is an ideal to which we may hope that our successors may attain after many generations, and I want to emphasize that the route by which we can strive toward the ideal is by a study of the vital functions in all their aspects throughout the myriads of organisms. [...] the general problem of [a physiological system] can be solved only when ... organs are studied wherever we find them and in all their essential modifications.

~Krogh, 1929, J Am Phys, p 4-5

These two quotes by Krogh illustrate two alternative approaches in Comparative Immunology. The first quote conveys the Krogh Principle (5). It describes the idea that there is one or a few ideal model species for every question. It encourages researchers to find the species

that best allows them to study their question and then apply those discoveries to other species. A broad interpretation of the Krogh Principle is the idea that certain animals, other than traditional model organisms and humans, should be studied to inform human physiology and immunology. This theme of shared biological mechanisms, discovered in one species and extrapolated to all, provides the logic behind studying the innate system of invertebrates to illustrate the innate system of vertebrates, for example (1). This idea has served as a guiding principle for comparative physiology and immunology studies. Indeed, immunological studies are rooted in a comparative approach, from the discovery of phagocytosis in starfish by Metchnikoff (6) to self-recognition mechanisms through allograph and xenograft transplantation in annelids (7, 8). Although the single-species approach has been highly productive, it limits our capacity to make predictions about the immune defenses of other unstudied species that may exhibit unexpected properties not yet observed.

The second quote appears in the same treatise on physiology by Krogh. It reminds readers that a general understanding of any physiological system, including the immune system, requires studying the same functional system in all species with all modifications in all their vivid splendor. It reminds scientists that variation matters as much as the mean and that patterns are missed when one does not investigate immune systems in a diversity of animals in a systematic way. A fully systematic approach requires many points to see the patterns because variation is information. In other words, this is a pointillism perspective of comparative immunology (Fig. 1). Pointillism painting is the practice of "applying small strokes or dots of color to a surface so that from a distance they visually blend together" (9). As an analogy, pointillism illustrates the second of the Krogh quote. The points of color meticulously applied to a canvas are like the targeted data points about the immune system meticulously collected for numerous species. The picture, or broad pattern of between-species variation of the immune system, only emerges when the dots are viewed from a distance. When applied to evolutionary questions, this pointillist perspective is encapsulated in comparative methods in evolutionary biology, which, since Darwin, have remained one of the most enduring and common approaches in evolutionary biology (10, 11).

Together, these Krogh quotes highlight the importance of an iterative approach, identifying unifying principles across all species and identifying novel physiology based on

variation and phenotypic plasticity within and between species. The Krogh Principle expressed in the first quote is a more commonly applied approach in comparative immunology, with discoveries yet to be uncovered by using the latter pointillism comparative approach arising from the spirit of the second quote.

101102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

100

97

98

99

The value of a pointillist comparative approach

Immunology has few organizing principles beyond self/non-self discrimination (12, 13), the associated danger theory (14, 15), and optimality theories (e.g., 16, 17). Ecoimmunology studies often invoke trade-off and allocation theories (18–20), which are forms of optimality theories, for explaining inter- and intraspecific variation in immune strategies. Insights from these hypotheses, however, are often condition-dependent and hard to generalize across species. One could argue that understanding disease and disorders, as is commonly the goal of medical immunology, requires understanding the underlying variation based on how these systems shift under ecological and evolutionary pressure.

Consider, for example, the literature on how nutritional condition shapes immune defenses. Some studies of food restricted individuals demonstrate tradeoffs between immune defenses and other physiological processes such as reproduction (e.g., 18, 19), and studies of individuals with surgically removed fat generally have reduced immune defenses (e.g., 21). Other studies failed to find a reduction of immune defenses in food restricted individuals (e.g., 22). Similarly, results from studies investigating the relationship between individual variation in nutritional condition and constitutive immune defenses within a constraints framework failed to find a consensus, with positive (e.g., 23), negative (e.g., 24), complex (25), or no direct relationships (e.g., 26, 27) depending on the study. This inconsistency among results suggests that a broad pointillism perspective might help identify missing explanatory variables and a broader pattern in the data. Indeed, a meta-analysis investigating the relationship between host condition and infection, which is physiologically regulated by the immune system, found substantial heterogeneity in the strength and direction of condition—infection relationships (28), demonstrating the importance of a pointillist perspective for identifying patterns necessary for interpreting single-species studies. If we gain insight into what conditions are associated with or for which taxa there is a relationship between body condition and immune function, then we can accurately predict when and in which species we will see an association. A goal of the pointillist

approach is to extrapolate from broad immunological patterns to make predictions about immune function in species not as deeply studied as classically evaluated model and non-model organisms studied via a Krogh's Principle perspective.

Transitioning from model organisms to Krogh's perspective to Pointillism

Much time and money have been spent investing in a deep understanding of a few model organisms. Researchers in the field of medical immunology are increasingly aware of the importance of a Krogh's perspective of comparative immunology to advance our understanding of immunobiology, including, but not limited to, the development of the immune system, immune tolerance, infectious disease response, and the evolution of different immune cell classes and proportions (29, 30). However, these studies often rely on an extrapolative approach with significant research invested in a handful of organisms. The number of organisms investigated has increased from using inbred mouse strains to include investigating naked mole rats (*Heterocephalus glaber*), spiny mice (*Acomys cahirinus*), and prairie voles (*Microtus ochrogaster*) for mammals, Burmese python (*Python bivittatus*) and green anole lizards (*Anolis carolinensis*) for Reptilia, zebra finches (*Taeniopygia castanotis*) for Aves, and wood frogs (*Lithobates sylvaticus*) and *Xenopus laevis* for the Amphibia (31–36). These single-species studies still exemplify the philosophy underpinning Kough's Principle. After the great successes of this approach, questions remain about the applicability for generalizing from this relatively small number of species to all species.

In medical immunology, relatively little attention has been paid to evaluating global variation and uncovering the comparative pattern between immune defenses and traits of interest across many species, and more species need to be sampled to extrapolate to the broader pointillist perspective. If a trait shows no variation with another trait of interest, then there is no concern for extrapolation across species based on data collected for a handful of organisms because those relationships are not context dependent. However, we need to understand how variation is patterned to understand the relative importance of pointillist perspective for a particular relationship or endpoint. Still, the question of how best to sample across the tree of life arises with any study involving numerous species to reduce the impact of sampling bias. This sampling concern is analogous to the problem of sampling sub-populations of cells in the brain to understand the complex, 3-D structure of the brain (37) or from any small sample of a

population to the whole. When identifying pointillist patterns in immune defenses, we are not extrapolating cell counts to understand the whole population of cells (37), but extrapolating a predicted immunological response from patterns observed for a sub-sampled number of species. Although evaluating every species is impossible, scientists should assess variation from pilot studies to identify the best sampling approaches and prioritizing studies for targeted, multispecies evaluations.

To begin this ambitious goal and to translate research from model organisms to humans and non-model organisms, more research is needed to fill the gaps in translation from Rodentia to Primates, with perhaps increased efforts in a handful of species, including *Xenopus*, earthworms, birds, and non-model mammals, for evolutionary comparison and to reveal broad patterns. Even so, without evaluating the underlying variation and its distribution, these derived general principles may be inaccurate because more variation among species likely indicates different selective pressure and unique adaptive responses in various species, and more sampling is needed to predict the general principles. Currently, we do not have sufficient species diversity to understand the breadth of the variation in immunobiology, limiting our ability to extrapolate to a new species or even perform power analyses. A pointillist approach can help uncover the underlying pattern of how immune traits change across phylogenetic groups, which is necessary to advance the promise of evolutionary immunology to inform medical immunology (38). Mapping this variation will help us understand when mathematical relationships across species between immune defenses and a trait of interest shift from simple linear relationships to nonlinear relationships, for which is essential for extrapolation.

Scaling of immune defenses as a case study of the pointillist comparative approach

Biological scaling, the study of how traits change with body size (39), provides a promising framework for asking questions about immune systems from a pointillist viewpoint (40–42). Body size likely shapes immune defenses because organismal traits thought to regulate immune defenses (e.g., metabolic rates, 43) and ecological and evolutionary traits that alter parasite exposure and the underpinning cost-benefit of, and thus selective forces on, immune defenses (e.g., sociality, diet, life history, e.g., 44, 45) scale with body mass (46–48). Additionally, if we think of hosts as islands (49), island biogeography theory predicts and data support that large-bodied hosts should have a greater abundance (50), diversity (51–53), prevalence (54), and

absolute biomass (55) of parasites and pathogens than small-bodied hosts (56). However, host islands also evolve, and these differences in parasite pressures in large and small hosts islands should act as a selective pressure to shape the immune system (56, 57) because of the strong selective pressure of parasites on immune defenses (18, 58).

A traditional scaling approach exemplifies the pointillist approach and allows for the application of physical parameters to make predictions about the immune systems of animals of different body sizes. Predicting how the physical structure of an organism and the underpinning physics constrains and shapes immune defenses has the potential to lead to the development of a theory to predict variation of immune defenses across species (40–42, 44). In addition to constraints internal to the organism, biological scaling theory has more recently incorporated constraints imposed by ecological and evolutionary factors through the lens of body size (57, 59–63). Over a century of scaling studies and associated theory (46–48, 61, 64, 65) focused on organismal and eco-evolutionary important traits serves as evidence of the success of such an approach.

Generally, body size scaling relationships are modeled as power laws, $Y = a M^b$ (Fig 1A), with linear transformations, $\log_{10} Y = \log_{10} a + b \log_{10} M$ (Fig 1B), where Y is the focal trait, M is body mass and the measure of body size, a is the intercept, and b is the scaling exponent (power law) or scaling coefficient (linear transformation) (48). In the linear transformed model, b describes the slope of the scaling relationship. Many immune defenses are concentration-based, and geometry predicts that concentrations scale as b = 0 under isometry. Many traits, however, scale allometrically, such that large organisms have disproportionately greater (hypermetric, b > 0) or lesser (hypometric, b < 0) concentrations than expected by geometry (Fig 2). Hypermetric and hypometric curves are nonlinear on their original scale, meaning that if a linear relationship is assumed, predicting the immune defenses of a new species, including humans, from a single species will lead to incorrect extrapolation. Studies of scaling relationships of immune defenses demonstrate that the architecture of immune systems changes systematically with body mass (56, 66–70), but the type of relationship (isometric vs. allometric) depends on the immune defense in question.

Isometry allows an extrapolation from a single species to others. Perhaps the most intuitive expectation for how concentration-based immune defenses scale with body mass is a prediction

of isometry (b = 0), because a reasonable prediction, as is formalized in the Protecton Hypothesis, is that each gram of tissue needs the same amount of protection regardless of the total mass of an organism (71). The Immune Complexity Hypothesis makes the same prediction, but derives its prediction from the delivery of immune components by the fractal architecture of the circulatory system and the rate an immune cell can search a unit of tissue (72, 73).

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

Some components of the immune system scale proportionally with body mass, that is, isometrically. Antioxidants inhibit free radicals that originate from the respiratory burst of phagocytes during an inflammatory response (74), and, as such, antioxidant concentrations are a proxy of the capacity of the organism to deal with immunopathology arising from an immune challenge (75–77). Antioxidants concentrations were proportional across mammals and birds (78). Similarly, constitutive complement-mediated antibacterial capacity (per mL) against three microbes (Escherichia coli, Salmonella enterica, and Micrococcus luteus) was proportional across >160 mammal species (56), as were lymphocyte concentrations in birds (67) and reptiles (70). Lymphocyte concentrations in mammals had a slope slightly less than but very close to 0 (b) [95% credibility interval]= 0.04 [0.08 to 0.02]; (79)). Because blood volume scales isometrically with body mass in mammals (80, 81), mammals of different sizes have close to proportional total numbers of lymphocytes. As constitutive concentrations of these immune defenses are regulated tightly by complex signaling and feedback cycles (82–84), these data imply that the regulatory set-point for these defenses did not change with body size despite the larger absolute surface area of large animals that is expected to provide a greater absolute invasion surface for parasites. The remarkable proportionality of these defenses with body mass is a pattern that could not be expounded upon without the pointillist comparative perspective, but it also means that studying the dynamics of these systems in one species may be more easily translated to understanding the dynamics in another species, including humans, because the responses are linear. Further, translation and application would also be more accurate in datasets with narrow variation around the regression line.

A caveat to these conclusions is that lymphocyte concentrations and antibacterial capacity constitute parts of the more extensive, complex, multifaceted immune system rather than the overall architecture of the integrated network, and the nuances may matter. For example, lymphocytes are identified and counted by morphology and consist of functionally different cell types (e.g., B cells, helper T cells, cytotoxic T cells, regulatory T cells, natural killer cells) that

cannot be distinguished by simple morphology-based leukocyte differentials (85). If the relative proportions of these different types of lymphocytes scale differently, then an extrapolation from a single species, such as a lab mouse, to another species becomes more challenging without understanding the broader pattern of scaling (66).

256257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

252

253

254

255

A pointillist perspective is necessary to predict immune defenses that scale allometrically. Allometric scaling describes patterns of traits that change predictability, but disproportionately with body mass, making extrapolation from a single species to another species challenging without first defining the overarching pattern. For example, a recent comparison of circulating heterophil concentrations of 126 reptiles and 115 birds with circulating neutrophil concentrations in 244 mammals revealed that concentrations for these functionally equivalent leukocytes are shaped differently by body mass in these groups (70), although the mechanism by which this occurs is unknow. The slope of the line describing the relationship between body mass and granulocyte concentration (both log_{10} -transformed) was indistinguishable from 0 for reptiles (b =0.02 [-0.01, 0.05]), steeper for mammals (b = 0.11 [0.09, 0.15]), and even steeper for birds (b = 0.02 [-0.01, 0.05]). 0.20 [0.16, 0.25]; Fig 3; (70)). Consequently, an assumption of proportional scaling for reptiles would lead to a reasonably correct prediction of the mean granulocyte concentration for any reptile species regardless of the mass of the organism used as a reference concentration or the mass of the predicted organism because of the isometric scaling of granulocyte concentrations. However, applying that same assumption of isometric scaling to granulocytes concentrations to mammals and birds would lead to incorrect estimates if the reference animal were a different mass than the animal estimated (Fig. 3). For example, on average, a 30-g mammal has a neutrophil concentration of 2.2×10^9 cells / L. Extrapolating from a 30 g mouse to a 35,000-g spotted hyena (Crocuta crocuta) under the assumption of isometry, predicts that the hyena will also have a neutrophil concentration of 2.2×10^9 cells / L. Using the allometric equation derived from the data, however, predicts that the hyena will have a 4.78×10^9 cells / L, which is 2.17fold greater than the prediction from isometry. The discrepancy would be even greater for heterophils in birds because of the steeper allometric relationship. Extrapolating from a 30-g budgerigar (*Melopsittacus undulatus*) with a heterophil concentration of 2.47×10^9 cells / L leads to a prediction of 2.47×10^9 cells / L for a 25,000-g emu (*Dromaius novaehollandiae*), but the hypermetric relationship derived from the data lead to a prediction of 10.07×10^9 cells / L, a

4.11-fold difference. This example also demonstrates that a lack of body scaling equivalency among taxonomic groups means that using the scaling equation from one group to make predictions about another group will lead to incorrect predictions.

The pointillist perspective allows the development of questions that are not obvious from studies of a single species. For example, the convergence of granulocyte concentrations at 30 g stimulates speculation about the cause of this convergence at that body mass. The antimicrobial activities of granulocytes, including the release of host- and pathogen-damaging oxidative species during degranulation, may cause immunopathology (77, 86, 87). One could speculate that large animals can withstand this damage more than small ones simply by having more cells, a form of passive tolerance (42). This idea is supported by a within-species study of green tree frogs (*Litoria caerulea*), demonstrating that large frogs are more likely to survive Batrachochytrium dendrobatidis (Bd) infections because their larger size lessens the energetic and ion-loss costs of infections (i.e., damage) simply because of allometric effects of size (88). A similar mechanism may explain the greater Bd-associated survival in larger common toads (Bufo bufo) (89).

These interspecific patterns also provide evidence for speculating how differences in disease risk and immune systems in these groups drive these differences in scaling relationships among reptiles, birds, and mammals. As the primary bactericidal and fungicidal leukocyte in mammals (90, 91), granulocytes are mandatory for life, form a crucial part of the first line of defense against pathogen invasion through direct antimicrobial activities, and help orchestrate B and T cell responses (91–93). In mammals, neutrophils kill microbes directly by three mechanisms: phagocytosis (87, 92), the release of antimicrobial molecules via degranulation (94), and the expulsion of chromatin nets during NETosis (95, 96). Differences in the architecture of the immune systems among groups provide one of many possible explanations for differences in the scaling of granulocytes among these three groups (67, 70, also see these papers for alternative hypotheses). For example, birds differ from mammals in the antibacterial molecules used in their degranulation response, so their granulocytes might be less potent than mammals (67, 97), and reptiles have other cell types that perform some of the same functions as granulocytes (70, 98). Among other differences, reptiles investigated have a greater proportion of phagocytic B1 cells than mammals and birds (70, 99–101), and they have azurophils that can

resemble monocytes or neutrophils and are lacking in birds and mammals (70, 102). These results indicate that reptiles and terrestrial endotherms have solved the problem of defending different-sized bodies from pathogens differently (70), an insight impossible to make without analyses rooted in a pointillist comparative approach. The results also inform drug development and predictions of dynamics of newly emerging diseases in communities and spillover risk to humans.

A pointillist perspective allows the testing of theory. The hypermetric scaling of granulocyte concentrations in mammals (66) and birds (67) is consistent with the Safety Factor Hypothesis, a data-driven hypothesis that posits that large organisms need greater immune defenses than small ones specifically because their largeness disproportionately increases the risk of exposure to disease-causing agents and disproportionately decreases their relative rates of cell replication necessary for many induced immune response relative to the replication rate of a small parasite, pathogen, or virus (66). Simultaneously, the costs of the failure of the immune system for a large organism—that is, the failure of the immune system to clear or contain a challenge—is disproportionately greater relative to costs for a small organisms because it takes more time to become large and to reproduce (66, 103). Therefore, large organisms should invest in safety by having disproportionately greater immune defenses, and size should shape the architecture of the immune system (66). The Safety Factory Hypothesis specifically predicts body-size mediated variation in immune defenses that is not proportional, requiring a Pointillist perspective.

Perhaps the most striking thing about the scaling of all the immune defenses measured is that few relationships are consistent with the predictions derived for metabolic rates alone. The Metabolic Rate Hypothesis (104) is derived from the Metabolic Theory of Ecology (105), and it posits that basal metabolic rate (BMR) constrains the rates of cellular processes (104). By extension, concentration-based immune defenses, including cell concentrations and antibacterial defenses, should scale with body mass with the same slope as mass-specific BMR, which is most often reported as -0.25 (106), and whole-animal cell counts should scale with whole-animal metabolic rate, often reported at 0.75 (105). Although hematopoietic stem cell pools across mammals (104) scales as expected based on metabolic rates (b = 0.75 for total cell count and whole-animal metabolic rate), most investigated immune defenses are concentration-based and scale isometrically ($b \sim 0$) or hypermetrically (b > 0) (see references in 42, 66). In addition to

hypermetric and isometric scaling of bird (67), reptile (70), and mammal (66) leucocytes described previously in this section, innate and adaptive responses to West Nile virus scale with a slope of \sim 0 (40, 107, 108), as does plasma-mediated killing of microbes in birds (109, 110). Isometric and hypermetric slopes are steeper than the slope predicted by the Metabolic Rate Hypothesis (-0.25). Even immune defenses with hypometric scaling (b < 0), as seen in the scaling of mammal lymphocytes (b = -0.04) (66), are substantially steeper than the predicted -0.25.

The scaling coefficient for metabolic rates is not always -0.25 and depends on the range of body masses examined (111–113) and the groups examined (60, 114). When the observed pattern for the scaling of metabolic rate is not -0.25, the logic of the Rate of Metabolism hypothesis leads to the prediction that the scaling of immune defenses should match the observed pattern of scaling for metabolic rates. It follows that the discrepancy between the scaling coefficient of immune defense and that for metabolic rate is even greater if the coefficient for mass-specific BMR is the often documented -0.33 (61, 115, 116) instead of -0.25. These observations, arising from a pointillist perspective, leave open the question: how are large terrestrial vertebrates maintaining concentrations of immune defenses equal to or higher than those maintained by small counterparts given the expected constraints of metabolic rates (56)? As most immune defenses studied to date are constitutive, this pattern could be explained by the commutative accumulation of cells or antimicrobial molecules in circulation over time (56, 70). That is, the cell concentrations and antibacterial activity measured may reflect the equilibrium concentration of these immune defenses, which are regulated by negative feedback cycles (56, 83, 117). Comparative data across numerous species on rates of proliferation during induced immune defenses and regulatory networks are necessary to resolve these outstanding questions.

Pointillism leads to new, testable questions not revealed using a Krogh's Perspective. A consequence of the different scaling patterns of lymphocytes and granulocytes, heterophils in birds and neutrophils in mammals, is that the species shift from lymphocyte to granulocyte dominant as body mass increases. We analyzed the scaling of species means of neutrophil to lymphocyte ratio in mammals (n=259) and heterophil to lymphocyte ratio in birds (n=116) (Data from 67). We applied the modeling approach of Ruhs and colleagues (67) using Bayesian phylogenetic mixed effects linear models to compare the scaling relationship of two groups

within a model selection framework. These models demonstrated that the intercept and scaling coefficient for birds and mammals are not appreciably different (Fig. 4), and that granulocyte to lymphocyte ratios in both groups share an intercept of -0.42 [95% credible interval: -0.78, -0.09] and a scaling coefficient of 0.14 [0.11, 0.17]. Phylogeny explained 71.4% [55.3, 83.4%] and body mass explained 14.4% (8.0, 23.4%) of the variation. Although 14.4% appears small, it represents 50% of the variation after accounting for phylogeny. The model indicates that body mass shapes the relative circulating concentrations of these leukocytes similarly in birds and mammals, and, on average, birds and mammals switch from a lymphocyte-dominated to a granulocyte-dominated strategy at 1000 g.

Within the context of switching from a lymphocyte-dominant system to a heterophil-dominant system, a pointillist perspective allows one to ask if there is a functional consequence of a shift to a granulocyte-dominant phenotype. Do species with a granulocyte-dominated phenotype have an immune system more prone to experiencing inflammatory responses and do they experience more autoimmunological pathologies? Given the central role of granulocytes in direct antimicrobial activities, priming adaptive immune responses, and diseases, and the tight regulation of neutrophil concentration in the circulating (migratory) pool (92, 93, 118), it seems unlikely that these size-based shifts do not have functional consequences for the organism.

The pointillist approach allows for choosing better models for humans. Choosing appropriate model organisms to represent humans is critical for translating findings to interventions for human health, a primary goal of many medical immunology studies. Let us use granulocyte to lymphocyte ratios as an example. Given the role neutrophils play in cancer (119), inflammation (120, 121), sepsis (122, 123), autoimmune diseases (124–126), and disease and health in general (127), nonlinear scaling of neutrophils in mammals likely has consequences for picking accurate models for understanding human diseases and patterns of cancer across species.

First, from a Krogh's Principle perspective, mice, the most typical animal model in medical immunology studies, have a lymphocyte-dominated granulocyte to lymphocyte ratio (C57BL/6L: male: 0.50; female: 0.36; calculated from 128), whereas humans have a granulocyte-dominated granulocyte to lymphocyte of 2.22 (Calculated from 129). Given this discrepancy, a Krogh's Principle perspective indicates that we might require caveats for extrapolating from mouse immune dynamics to those in humans. A comparison of a single

species with humans, however, leaves open the question of what species would serve as a better model for humans and whether humans are just outliers to patterns across species. A pointillist perspective provides a framework for answering these questions.

407

408

409

410

411 412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

As a starting point, a pointillist perspective allows us to ask if humans have the granulocyte to lymphocyte concentration expected for their body size. Humans were not included in the scaling analysis of granulocyte to lymphocyte concentrations, allowing us to use the model to predict the granulocyte to lymphocyte concentration ratio for humans. Plugging the average mass of a human (66.5 kg, 130) into the equation from the scaling model predicts a granulocyte to lymphocyte ratio of 1.80 for an average human. Thus, humans have 1.23-fold more circulating granulocytes relative to lymphocytes than expected for their size, although this value is within the 95% CI. Indeed, a human has the granulocyte to lymphocyte ratio of an average 215.8 kg mammal, an animal with a mass that is 3,785-fold greater than a human and that weighs slightly less than an average red deer (Cervus elaphus; 241 kg). That humans have a disproportionately greater granulocyte to lymphocyte ratio for their body size, is not evident without a pointillist perspective. A scaling approach suggests that species with a granulocyte to lymphocyte ratio similar to humans (e.g., black-tailed prairie dog, Cynomys ludovicianus G:L ratio = 2.57, mass = 797 g) might be a better model for immune dynamics of circulating granulocytes and lymphocytes in humans. This exercise exemplifies how a scaling framework can aid in understanding which species have disproportionately greater or lesser immune defenses for their size and in finding better matched single-species models for modeling human immune defenses.

Pointillist tests of the pace of life hypothesis and ecological influences on immune defenses

Scaling is not the only possible pointillist approach in comparative immunology. When variation in immune defenses exbibit an allometric relationship, questions arise as to what selective pressures or trade-offs may exist that create different adaptive balances in multidimensional spaces (60, 61). One example of research being developed in this framework is based on the pace of life hypothesis, which posits that species with slow-paced life histories (long-lived species with low annual reproduction) should invest in immune defenses differently than those with fast-paced life histories (short-lived species with high annual reproduction) (43, 44). It posits that slow-paced species should evolve immune defenses that are more specific and

less inflammatory and that prioritize induced rather than constitutive defenses because this strategy minimizes autoimmune costs and maximizes longevity (44). Pointillist comparative approaches are necessary to test whether broad patterns support the hypothesis. Consistent with this hypothesis, pointillist comparative studies have demonstrated that heterophil to lymphocyte ratios become less dominated by inflammatory heterophils with increasing life span in 239 species of birds (131). Similarly, natural antibodies were positively associated with incubation period (n = 70 species, 110), and bacteria-killing ability was negatively associated with mass-corrected BMR in tropical birds (n = 12 species, 109). However, a study of 6 species of *Peromyscus* mice found that immune defenses were not constrained to a single dominant axis and not determined solely by the pace of life (132).

A pointillist approach also allows for testing competing hypotheses. Data collected from dozens of species allow for the testing of the relative importance of different covariates in explaining variation in immune defenses allowing the testing of different hypotheses. For example, a measure of the adaptive immune system (MHC gene copy number) is negatively associated with a measure of the innate immune system (complement-mediated hemagglutination) across 37 species of birds, implying an evolutionary trade-off between the innate and adaptive immune system (133). Although MHC gene copy number was negatively associated with body mass as predicted by the pace of life hypothesis, the number of MHC gene copies was not associated with lifespan, breeding latitude, or extent of migration (133), suggesting that body size rather than life history and ecology might be mediating these immune defenses across evolutionary time. This idea is further supported by studies that directly compared the predictions of the pace of life hypothesis with those from scaling hypotheses. Life history (maximal longevity and maximal reproductive potential in mammals, birds, and reptiles) and ecological traits (sociality and trophic level, mammals only) did not explain interspecific variation in granulocyte and lymphocyte concentrations better than body mass alone, and their addition to models with body mass increased the explanatory power of models minimally (mammals, birds), if at all (reptiles) (66, 67, 70).

In contrast, a study of 24 species of neotropical bats demonstrated that leucocytes per visual field increased with body mass and were greatest in carnivorous bats and that bacteria-killing ability decreased with increasing roost permanence and protection (134). Pointillist

studies of mammals also demonstrate that the scaling of proportions of granulocytes circulating in bats differ from the proportions in non-volant mammals and birds, suggesting that the unique immune defenses of bats are not driven by flight alone (68). Together, these pointillist studies support the idea that bats have novel immune systems, affecting their ability to act as a reservoir for zoonotic diseases (135). They also speak to the ability to test numerous eco-evolutionary frameworks for interspecific variation in immune defenses and the need to collect data from numerous species to test those frameworks and understand the relationships among them. These cases also provide examples for how incorporating variables other than body mass into scaling models allows for disentangling the effects of body mass from other effects.

Synergy between the two comparative approaches.

"In the absence of comparative studies, an entire field may be led astray by observations that are either species specific or misinterpreted in the absence of comparative data"

 Yartsev 2017 p467

486 "...the comparative approach serves as an extremely powerful tool to assess the validity of universal principles on a case-by-case basis."

 Yartsev 2017 p468

(Juxtaposition of these quotes is from reference 136)

Krogh's Principle and the Pointillist Approach can synergistically inform each other (Fig. 5), and both are necessary to understand how the genome and environment translate into immune phenotypes and their consequences for human and animal health and disease dynamics. The pointillist perspective can shape questions that are best addressed by single-species studies conducted within the spirit of Krogh's Principle. Many of these ideas were elucidated above, but briefly:

496 brie

• Patterns identified from a pointillist perspective can be used to make predictions about species not yet studied, which can then be tested by measuring the new species as demonstrated by the analysis of the human granulocyte to lymphocyte ratio herein.

• Species with large residuals identified by the pointillist comparative approach can be investigated within a Krogh's Principle approach. For example, the species with high residuals of the scaling relationship for G:L ratio can be investigated as models for sepsis (inflammatory responses in the blood).

- Pointillist approaches can be used to ask how traits change with other potential explanatory variables after accounting for phylogeny (137–139), as demonstrated for the scaling of granulocyte to lymphocyte ratios for birds and mammals herein. After accounting for phylogeny, body mass explained ~50% of the remaining variation in the ratio of these leukocyte concentrations. Similarly, after accounting for phylogeny, Minias et al. (133) found a negative correlation between indicators of innate and adaptive immune defenses. These patterns can be further explored within a single species to understand mechanisms underpinning the pointillist patterns.
- Ecological and evolutionary hypotheses about immune defenses often arise from studies of variation within or between populations, and they can be tested with more substantial power within a pointillist framework. After accounting for one variable of interest, one can ask, what common ecological and evolutionary traits do species with large negative or positive residuals share? For example, a meta-analysis of the costs of responses to induced immunological challenges found that animals incur costs of immune activation, but small species that are relatively long-lived incur the largest costs, presumably because of how the cost-benefit structure changes with body size and life history traits of animals (140). This example demonstrates the need for a pointillist approach to reveal ecological and evolutionary patterns that are impossible to see within a single species.

Studies of a single or few species within the spirit of Krogh's Principle feedback into pointillist studies:

• Perhaps the most apparent synergy is that data collected during studies of one or a few species provide the data for extensive comparative studies. Studies of scaling of leukocyte concentrations and proportions (66–70) and those of how hemagglutination (133) and leukocyte ratios (131) evolved with life history traits exemplify this idea, as those studies compiled data from single-species studies.

- Deep and detailed knowledge obtained from studies of focal species can inform the design of pointillist studies, ensuring data are comparable across species. For example, immune assays are often calibrated for a specific species (56), as exemplified by assays to measure microbial killing ability, a measure of the capacity of serum, plasma, or whole blood to kill a microbe ex vivo, which are often calibrated so that dilution of sample kills, on average, approximately 50% of the microbe used in the challenge (141). Thus, widely different parameters are used in single-species studies. For example, approximately 50% of 20 μ l of an E. coli solution (~5,000 bacteria ml⁻¹) was killed by Dall sheep (Ovis dalli dalli) sera samples diluted 1:2 in Luria Bertani (LB) broth (142), but sera from North American elk (Cervus elaphus) could be much less concentrated,1:40 in LB, and still kill the same amount of bacteria (26). However, a comparison across species requires the implementation of dilution curves to capture the variation among species. For example, Heinrich and colleagues (143) used an 8-dilution curve to compare antimicrobial activity in samples from 10 species. Similarly, Claunch and colleagues (144) proposed a standardized 12-dilution curve to compare antimicrobial activity across species; they demonstrated that waiting longer to freeze a sample diminished antimicrobial activity in blood produced from some birds but not the tested reptile and mammal species. The application of this approach facilitated the previously discussed scaling study of antibacterial capacity against three bacterial species in >160 species of mammals (56).
- Tools developed for studying the immune system in one species can be adapted for studying the immune system in many species, allowing pointillist comparisons. In particular, understanding how genotypes translate to phenotypes through -omics approaches will help illuminate immune defenses and their associated networks (145, 146). The proliferation of annotated genomes (e.g., 147) and -omics tools provide an opportunity to collect the data necessary for pointillist comparative studies of complex immune defenses from genotype to phenotype. For example, Hawash and colleagues demonstrated that apes (n=2 species) mount stronger and less specific early transcriptional responses to both viral and bacterial stimulation than African and Asian monkeys (n=2 species), with implications for understanding the robust innate immune responses of humans to similar challenges (148).

561	Immu	nology has gained significantly from comparative approaches. To achieve the maximum	
562	potential of the promise of comparative immunology, data from both a deep exploration of		
563	selecte	ed model organisms and targeted explorations of patterns across hundreds of species will	
564	be nee	eded to provide a clearer picture of the evolution and function of our physiology.	
565			
566	Ackn	owledgements	
567	We th	ank L. Martin, J. Brinkworth, C. Briggs, J. Drew, J. Harrison, C. Ghalambor, J. Adelman,	
568	and B	. Wolf for critical conversations around these ideas. We thank two anonymous reviewers	
569	for fee	edback on an earlier version of this manuscript.	
570			
571	Gran	ts	
572	Research/Work reported in this publication was supported by SUNY System Administration		
573	under SUNY Research Seed Grant Award RFP #23-01-RSG (to CJD) and National Institute of		
574	Enviro	onmental Health Sciences 5R01ES034829 (to MES).	
575			
576	Disclosures		
577	The authors have no conflicts of interest to report.		
578			
579	Autho	or Contributions	
580	CJD c	conceived the thesis for this review, analyzed data, and prepared figures. CJD and MES	
581	interpreted the results, drafted and revised the manuscript, and approved the final version of the		
582	manus	script.	
583			
584	Refer	ences:	
585 586	1.	Cooper EL . Comparative Immunology. <i>Integrative and Comparative Biology</i> 43: 278–280, 2003. doi: 10.1093/icb/43.2.278.	
587 588	2.	Cooper EL . Advances in comparative immunology introduction. In: <i>Advances in Comparative immunology</i> . Switzerland: Springer Nature, 2018, p. xiii–xxviii.	
589 590	3.	Buchmann K . Evolution of Immunity. In: <i>Advances in Comparative Immunology</i> , edited by Cooper EL. Springer International Publishing, p. 3–22.	
591 592	4.	Danilova N . The evolution of immune mechanisms. <i>J Exp Zool</i> 306B: 496–520, 2006. doi: 10.1002/jez.b.21102.	

593 **Krogh A**. The progress of physiology. *American Journal of Physiology* 90: 243–251, 1929. doi: 594 https://doi.org/10.1152/ajplegacy.1929.90.2.243. 595 6. **Metchnikoff E.** *Immunity in infective diseases*. University Press, 1905. 596 7. Cooper EL. Transplantation immunity in annelids I. Rejection of xenografts exchanged between 597 Lumbricus terrestris and Eisenia foetida. Transplantation 6: 322–337, 1968. 598 8. Cooper EL. Chronic allograft rejection in Lumbricus terrestris. J Exp Zool 171: 69–73, 1969. doi: 599 10.1002/jez.1401710110. 600 9. The Editors of Encyclopaedia Britannica. pointillism [Online]. Encyclopaedia Britannica: 2024. 601 https://www.britannica.com/art/pointillism [12 Feb. 2024]. 602 10. Bartholomew GA. Interspecific comparison as a tool for ecological physiologists. In: New 603 directions in ecological physiology. Cambridge, UK: Cambridge University Press, 1987, p. 11–37. 604 11. Paradis E. An Introduction to the Phylogenetic Comparative Method. In: Modern Phylogenetic 605 Comparative Methods and Their Application in Evolutionary Biology, edited by Garamszegi LZ. 606 Springer Berlin Heidelberg, 2014 p. 3–18. 607 12. Billingham RE, Brent L, Medawar PB. 'Actively Acquired Tolerance' of Foreign Cells. Nature 172: 608 603-606, 1953. doi: 10.1038/172603a0. 609 13. Burnet FM. The clonal selection theory of acquired immunity. Vanderbilt University Press 610 Nashville, 1959. 611 14. Matzinger P. An Innate Sense of Danger. Annals of the New York Academy of Sciences 961: 341-612 342, 2002. doi: 10.1111/j.1749-6632.2002.tb03118.x. 613 15. Matzinger P. The Danger Model: A Renewed Sense of Self. Science 296: 301–305, 2002. doi: 614 10.1126/science.1071059. Viney ME, Riley EM, Buchanan KL. Optimal immune responses: immunocompetence revisited. 615 16. 616 Trends in Ecology & Evolution 20: 665–669, 2005. doi: 10.1016/j.tree.2005.10.003. 617 17. Sears BF, Rohr JR, Allen JE, Martin LB. The economy of inflammation: when is less more? Trends 618 in Parasitology 27: 382–387, 2011. doi: 10.1016/j.pt.2011.05.004. 619 18. Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in 620 evolutionary ecology. Trends in Ecology & Evolution 11: 317-321, 1996. doi: 10.1016/0169-621 5347(96)10039-2. 622 19. Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just what is the cost of 623 immunity? Oikos 88: 87–98, 2000. doi: 10.1034/j.1600-0706.2000.880110.x. 624 20. Downs CJ, Adelman JS, Demas GE. Mechanisms and methods in ecoimmunology: integrating 625 within-organism and between-organism processes. Integr Comp Biol 54: 340–352, 2014. doi:

626

10.1093/icb/icu082.

- Xu D-L, Zhao M-X. Leptin mediates the suppressive effect of partial fat removal on cellular and humoral immunity in striped hamsters. *Comparative Biochemistry and Physiology Part A:* Molecular & Integrative Physiology 271: 111256, 2022. doi: 10.1016/j.cbpa.2022.111256.
- Xu D-L, Hu X-K, Tian Y-F. Effect of temperature and food restriction on immune function in striped hamsters (*Cricetulus barabensis*). *J Exp Biol* 220: 2187–2195, 2017. doi: 10.1242/jeb.153601.
- Zysling DA, Garst AD, Demas GE. Photoperiod and food restriction differentially affect
 reproductive and immune responses in Siberian hamsters *Phodopus sungorus*. *Functional Ecology* 979–988, 2009. doi: 10.1111/j.1365-2435.2009.01572.x.
- 635 24. **Ujvari B, Madsen T**. Age, parasites, and condition affect humoral immune response in tropical pythons. *Behavioral Ecology* 17: 20–24, 2006. doi: 10.1093/beheco/ari091.
- Nussey DH, Watt KA, Clark A, Pilkington JG, Pemberton JM, Graham AL, McNeilly TN.
 Multivariate immune defences and fitness in the wild: complex but ecologically important
 associations among plasma antibodies, health and survival. *Proc R Soc B* 281: 20132931, 2014.
 doi: 10.1098/rspb.2013.2931.
- Downs CJ, Stewart KM, Dick BL. Investment in Constitutive Immune Function by North American
 Elk Experimentally Maintained at Two Different Population Densities. *PLoS ONE* 10: e0125586,
 2015. doi: 10.1371/journal.pone.0125586.
- Cheynel L, Lemaître J-F, Gaillard J-M, Rey B, Bourgoin G, Ferté H, Jégo M, Débias F, Pellerin M,
 Jacob L, Gilot-Fromont E. Immunosenescence patterns differ between populations but not
 between sexes in a long-lived mammal. *Sci Rep* 7: 13700, 2017. doi: 10.1038/s41598-017-13686 5.
- Sánchez CA, Becker DJ, Teitelbaum CS, Barriga P, Brown LM, Majewska AA, Hall RJ, Altizer S. On
 the relationship between body condition and parasite infection in wildlife: a review and meta analysis. *Ecol Lett* 21: 1869–1884, 2018. doi: 10.1111/ele.13160.
- Robert J, Ohta Y. Comparative and developmental study of the immune system in *Xenopus*.

 Developmental Dynamics 238: 1249–1270, 2009. doi: 10.1002/dvdy.21891.
- 653 30. **Robert J, Cohen N**. The genus Xenopus as a multispecies model for evolutionary and comparative immunobiology of the 21st century. *Developmental & Comparative Immunology* 35: 916–923, 2011. doi: 10.1016/j.dci.2011.014.
- Klein EY, Graham AL, Llinás M, Levin S. Cross-Reactive Immune Responses as Primary Drivers of Malaria Chronicity. *Infect Immun* 82: 140–151, 2014. doi: 10.1128/IAI.00958-13.
- Hilton HG, Rubinstein ND, Janki P, Ireland AT, Bernstein N, Fong NL, Wright KM, Smith M, Finkle
 D, Martin-McNulty B, Roy M, Imai DM, Jojic V, Buffenstein R. Single-cell transcriptomics of the
 naked mole-rat reveals unexpected features of mammalian immunity. *PLoS Biol* 17: e3000528,
 2019. doi: 10.1371/journal.pbio.3000528.
- Sandoval AGW, Maden M. Regeneration in the spiny mouse, Acomys, a new mammalian model. Current Opinion in Genetics & Development 64: 31–36, 2020. doi: 10.1016/j.gde.2020.05.019.

- Lin T, Buffenstein R. The Unusual Immune System of the Naked Mole-Rat. In: *The Extraordinary Biology of the Naked Mole-Rat*, edited by Buffenstein R, Park TJ, Holmes MM. Springer International Publishing, p. 315–327.
- Peter AK, Crocini C, Leinwand LA. Expanding our scientific horizons: utilization of unique model
 organisms in biological research. *The EMBO Journal* 36: 2311–2314, 2017. doi:
 10.15252/embj.201797640.
- Greenberg N, Burghardt GM, Crews D, Font E, Jones RE, Vaughan G. Reptile models for
 biomedical research. In: *Nonmammalian Models for Biomedical Research*, edited by Woodhead A.
 CRC Press Inc, Boca Raton, Florida, 1989, p. 289–308.
- 673 37. **Boyce RW**, **Dorph-Petersen K-A**, **Lyck L**, **Gundersen HJG**. Design-based Stereology: Introduction to Basic Concepts and Practical Approaches for Estimation of Cell Number. *Toxicol Pathol* 38: 1011–1025, 2010. doi: 10.1177/0192623310385140.
- 676 38. **Warr GW**, **Chapman RW**, **Smith LC**. Evolutionary immunobiology: new approaches, new paradigms. *Developmental & Comparative Immunology* 27: 257–262, 2003. doi: 10.1016/S0145-305X(02)00070-8.
- 39. Schmidt-Nielsen K. Scaling in biology: The consequences of size. *J Exp Zool* 194: 287–307, 1975.
 doi: 10.1002/jez.1401940120.
- 681 40. **Banerjee S, Perelson AS, Moses M**. Modelling the effects of phylogeny and body size on within-682 host pathogen replication and immune response. *J R Soc Interface* 14: 20170479, 2017. doi: 683 10.1098/rsif.2017.0479.
- Schoenle LA, Downs CJ, Martin LB. An introduction to ecoimmunology. In: *Advances in Comparative Immunology*, edited by Cooper EL. Springer International Publishing, p. 901–932.
- Downs CJ, Schoenle LA, Han BA, Harrison JF, Martin LB. Scaling of host competence. *Trends Parasitol* 35: 182–192, 2019. doi: 10.1016/j.pt.2018.12.002.
- 43. Ricklefs RE, Wikelski M. The physiology/life-history nexus. *Trends Ecol Evol* 17: 462–468, 2002.
 doi: 10.1016/S0169-5347(02)02578-8.
- Lee KA. Linking immune defenses and life history at the levels of the individual and the species.
 Integr Comp Biol 46: 1000–1015, 2006. doi: 10.1093/icb/icl049.
- 45. Han BA, Park AW, Jolles AE, Altizer S. Infectious disease transmission and behavioural allometry
 in wild mammals. J Anim Ecol 84: 637–646, 2015. doi: 10.1111/1365-2656.12336.
- 694 46. Peters RH. The ecological implications of body size. New York: Cambridge University Press, 1983.
- 695 47. **Calder WA III**. Size, function, and life history. Mineola, NY: Dover Publications, 1984.
- 696 48. **Schmidt-Nielsen K**. *Scaling: why is animal size so important?* Cambridge: Cambridge University Press, 1984.

- 698 49. Kuris AM, Blaustein AR, Alio JJ. Hosts as islands. Am Nat 116: 570–586, 1980.
- 699 50. **Kieft TL**, **Simmons KA**. Allometry of animal–microbe interactions and global census of animal-associated microbes. *Proc R Soc B* 282: 20150702, 2015. doi: 10.1098/rspb.2015.0702.
- Figure 701 51. **Ezenwa VO**. Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids. *Int J Parasitol* 34: 535–542, 2004. doi: 10.1016/j.ijpara.2003.11.012.
- 703 52. **Poulin R.** Evolutionary ecology of parasites. Princeton, NJ: Princeton University Press, 2007.
- 704 53. **Morand S**, **Poulin R**. Density, body mass and parasite species richness of terrestrial mammals. *Evolutionary Ecology* 12: 717–727, 1998. doi: 10.1023/A:1006537600093.
- Ishtiaq F, Bowden CGR, Jhala YV. Seasonal dynamics in mosquito abundance and temperature do not influence avian malaria prevalence in the Himalayan foothills. *Ecol Evol* 7: 8040–8057, 2017.
 doi: 10.1002/ece3.3319.
- Poulin R, George-Nascimento M. The scaling of total parasite biomass with host body mass. *Int J Parasitol* 37: 359–364, 2007. doi: 10.1016/j.ijpara.2006.11.009.
- Downs CJ, Schoenle LA, Goolsby EW, Oakey SJ, Ball R, Jiang RHY, Martin LB. Large Mammals
 Have More Powerful Antibacterial Defenses Than Expected from Their Metabolic Rates. *The American Naturalist* 201: 287–301, 2023. doi: 10.1086/722504.
- 714 57. **Glazier DS**. Scaling species interactions: implications for community ecology and biological scaling theory. *Academia Biol.* 1:1-20, 2023, doi:10.20935/AcadBiol6150.
- 58. Boots M, Best A, Miller MR, White A. The role of ecological feedbacks in the evolution of host defence: what does theory tell us? *Phil Trans R Soc B* 364: 27–36, 2009. doi: 10.1098/rstb.2008.0160.
- Kozłowski J, Konarzewski M, Czarnoleski M. Coevolution of body size and metabolic rate in vertebrates: a life-history perspective. *Biological Reviews* 95: 1393–1417, 2020. doi: 10.1111/brv.12615.
- 722 60. **Glazier DS**. Variable metabolic scaling breaks the law: from 'Newtonian' to 'Darwinian' approaches. *Proc R Soc B* 289: 20221605, 2022. doi: 10.1098/rspb.2022.1605.
- 724 61. **White CR, Marshall DJ**. How and Why Does Metabolism Scale with Body Mass? *Physiology* 38: 266–274, 2023. doi: 10.1152/physiol.00015.2023.
- 726 62. White CR, Alton LA, Bywater CL, Lombardi EJ, Marshall DJ. Metabolic scaling is the product of life-history optimization. *Science* 377: 834–839, 2022. doi: 10.1126/science.abm7649.
- 728 63. **Witting L**. On the natural selection of body mass allometries. *Acta Oecologica* 118: 103889, 2023. doi: 10.1016/j.actao.2023.103889.
- 730 64. **Benedict FG**. FACTORS AFFECTING BASAL METABOLISM. *Journal of Biological Chemistry* 20: 263–299, 1915. doi: 10.1016/S0021-9258(18)88244-8.

- 732 65. **Kleiber M**. Body size and metabolism. *Hilgardia* 6: 315–353, 1932.
- 733 66. **Downs CJ, Dochtermann NA, Ball R, Klasing KC, Martin LB**. The effects of body mass on immune cell concentrations of mammals. *Am Nat* 195: 107–114, 2020. doi: 10.1086/706235.
- 735 67. **Ruhs EC, Martin LB, Downs CJ**. The impact of body mass on immune cell concentrations in birds. 736 *Proc R Soc B* 287: 20200655, 2020. doi: 10.1098/rspb.2020.0655.
- 737 68. Ruhs EC, Becker DJ, Oakey SJ, Ogunsina O, Fenton MB, Simmons, Nancy B., Martin LB, Downs
 738 CJ. Body size affects immune cell proportions in birds and non-volant mammals, but not bats. *J*739 Exp Biol 224: jeb241109, 2021. doi: 10.1242/jeb.241109.
- 740 69. **Martin LB, Ruhs EC, Oakey S, Downs CJ**. Leukocyte allometries in birds are not affected by captivity. .
- 742 70. **Fletcher LE**, **Martin LB**, **Downs CJ**. Leukocyte Concentrations Are Isometric in Reptiles Unlike in Endotherms. *Physiological and Biochemical Zoology* 96: 405–417, 2023. doi: 10.1086/727050.
- 74. Langman RE, Cohn M. The E-T (Elephant-Tadpole) paradox necessitates the concept of a unity of B-cell function: The protecton. *Mol Immunol* 24: 675–697, 1987.
- 746 72. **Wiegel FW**, **Perelson AS**. Some Scaling Principles for the Immune System. *Immunol Cell Biol* 82: 127–131, 2004. doi: 10.1046/j.0818-9641.2004.01229.x.
- 73. Perelson AS, Bragg JG, Wiegel FW. The complexity of the immune system: scaling laws. In:
 749 Complex Systems Science in Biomedicine, edited by Deisboeck TS, Kresh JY. Springer US, 2004, p.
 750 451–459.
- 751 74. **Matés JM**, **Sánchez-Jiménez F**. Antioxidant enzymes and their implications in pathophysiologic processes. *Frontiers in Bioscience-Landmark* 4: 339–345, 1999.
- 75. **Torbergsen AC, Collins AR**. Recovery of human lymphocytes from oxidative DNA damage; the apparent enhancement of DNA repair by carotenoids is probably simply an antioxidant effect. *European Journal of Nutrition* 39: 80–85, 2000. doi: 10.1007/s003940050006.
- 76. **Matson KD, Cohen AA, Klasing KC, Ricklefs RE, Scheuerlein A**. No simple answers for ecological immunology: relationships among immune indices at the individual level break down at the species level in waterfowl. *Proc R Soc B* 273: 815–822, 2006. doi: 10.1098/rspb.2005.3376.
- 759 77. **Sorci G, Faivre B**. Inflammation and oxidative stress in vertebrate host–parasite systems. *Phil Trans R Soc B* 364: 71–83, 2009. doi: 10.1098/rstb.2008.0151.
- 78. Jimenez AG, O'Connor ES, Tobin KJ, Anderson KN, Winward JD, Fleming A, Winner C, Chinchilli E,
 Maya A, Carlson K, Downs CJ. Does cellular metabolism from primary fibroblasts and oxidative stress in blood differ between mammals and birds? The (lack-thereof) scaling of oxidative stress.
 Integr Comp Biol 59: 953–969, 2019. doi: 10.1093/icb/icz017.

- 765
 79. Downs CJ, Brown JL, Wone BWM, Donovan ER, Hayes JP. Effects of Selection for Mass 766 Independent Maximal Metabolic Rate on Food Consumption. *Physiological and Biochemical Zoology* 93: 23–36, 2020. doi: 10.1086/706206.
- 768 80. **Stahl WR**. Scaling of respiratory variables in mammals. *Journal of Applied Physiology* 22: 453–460, 1967. doi: 10.1152/jappl.1967.22.3.453.
- 770 81. **Prothero JW**. The Design of Mammals: A Scaling Approach. Cambridge University Press.
- 771 82. **Moser B, Loetscher P**. Lymphocyte traffic control by chemokines. *Nat Immunol* 2: 123–128, 2001. doi: 10.1038/84219.
- Haas P-J, van Strijp J. Their Role in Bacterial Infection and Inflammation. *Immunologic Research* 37: 161–175, 2007.
- 775 84. **Murphy KP, Travers P, Walport M**. *Janeway's immunobiology*. 7th ed. New York: Garland Science, 2007.
- Westermann J, Pabst R. Lymphocyte subsets in the blood: a diagnostic window on the lymphoid system? *Immunology Today* 11: 406–410, 1990. doi: 10.1016/0167-5699(90)90160-B.
- 779 86. **Chatterjee S**. Oxidative stress, inflammation, and disease. In: *Oxidative stress and biomaterials*. Elsevier, 2016, p. 35–58.
- 781 87. **Klebanoff SJ**. Myeloperoxidase: friend and foe. *J Leukoc Biol* 77: 598–625, 2005. doi: 10.1189/jlb.1204697.
- 783 88. **Wu NC, Cramp RL, Franklin CE**. Body size influences energetic and osmoregulatory costs in frogs infected with Batrachochytrium dendrobatidis. *Sci Rep* 8: 3739, 2018. doi: 10.1038/s41598-018-785 22002-8.
- 786 89. **Meurling S, Siljestam M, Cortazar-Chinarro M, Åhlen D, Rödin-Mörch P, Ågren E, Höglund J,**787 **Laurila A**. Body size mediates latitudinal population differences in the response to chytrid fungus infection in two amphibians.
- 90. Belaaouaj A a. Degradation of outer membrane protein a in *Escherichia coli* killing by neutrophil elastase. *Science* 289: 1185–1187, 2000. doi: 10.1126/science.289.5482.1185.
- 791 91. **Rosales C**. Neutrophil: a cell with many roles in inflammation or several cell types? *Front Physiol* 9: 113, 2018. doi: 10.3389/fphys.2018.00113.
- 793 92. **Kolaczkowska E, Kubes P**. Neutrophil recruitment and function in health and inflammation. *Nat Rev Immunol* 13: 159–175, 2013. doi: 10.1038/nri3399.
- 795 93. **Mayadas TN**, **Cullere X**, **Lowell CA**. The multifaceted functions of neutrophils. *Annu Rev Pathol Mech Dis* 9: 181–218, 2014. doi: 10.1146/annurev-pathol-020712-164023.
- 797 94. **Lacy P.** Mechanisms of Degranulation in Neutrophils. *All Asth Clin Immun* 2: 98, 2006. doi: 10.1186/1710-1492-2-3-98.

799 800	95.	Medina E . Neutrophil Extracellular Traps: A Strategic Tactic to Defeat Pathogens with Potential Consequences for the Host. <i>J Innate Immun</i> 1: 176–180, 2009. doi: 10.1159/000203699.
801 802	96.	Papayannopoulos V . Neutrophil extracellular traps in immunity and disease. <i>Nat Rev Immunol</i> 18: 134–147, 2018. doi: 10.1038/nri.2017.105.
803 804	97.	Maxwell MH , Robertson GW . The avian heterophil leucocyte: a review. <i>World's Poultry Science Journal</i> 54: 155–178, 1998. doi: 10.1079/WPS19980012.
805	98.	Rios FM, Zimmerman LM. Immunology of Reptiles. In: <i>Encyclopedia of Life Sciences</i> . Wiley, p. 1–7.
806 807 808	99.	Zimmerman LM , Clairardin SG , Paitz RT , Hicke JW , LaMagdeleine KA , Vogel LA , Bowden RM . Humoral immune responses are maintained with age in a long-lived ectotherm, the red-eared slider turtle. <i>Journal of Experimental Biology</i> 216: 633–640, 2013. doi: 10.1242/jeb.078832.
809 810 811 812 813	100.	De Carvalho MPN, Queiroz-Hazarbassanov NGT, De Oliveira Massoco C, Sant'Anna SS, Lourenço MM, Levin G, Sogayar MC, Grego KF, Catão-Dias JL. Functional characterization of neotropical snakes peripheral blood leukocytes subsets: Linking flow cytometry cell features, microscopy images and serum corticosterone levels. <i>Developmental & Comparative Immunology</i> 74: 144–153, 2017. doi: 10.1016/j.dci.2017.04.007.
814 815 816	101.	Slama SL , Painter MN , Sheedy MD , Sandmeier FC . Quantifying phagocytic lymphocytes in ectothermic vertebrates: A simplified technique for assessing immune function. <i>Methods Ecol Evol</i> 12: 548–552, 2021. doi: 10.1111/2041-210X.13533.
817 818	102.	Stacy NI , Alleman AR , Sayler KA . Diagnostic Hematology of Reptiles. <i>Clinics in Laboratory Medicine</i> 31: 87–108, 2011. doi: 10.1016/j.cll.2010.10.006.
819 820	103.	Harrison JF . Do performance—safety tradeoffs cause hypometric metabolic scaling in animals? <i>Trends Ecol Evol</i> 32: 653–664, 2017. doi: 10.1016/j.tree.2017.05.008.
821 822	104.	Dingli D , Pacheco JM . Allometric scaling of the active hematopoietic stem cell pool across mammals. <i>PLoS ONE</i> 1: e2, 2006. doi: 10.1371/journal.pone.0000002.
823 824	105.	Brown JH , Gillooly JF , Allen AP , Savage VM , West GB . Toward a metabolic theory of ecology [Online]. <i>Ecology</i> 85: 1771–1789, 2004. http://www.jstor.org/stable/3450341.
825 826 827	106.	Savage VM, Allen AP, Brown JH, Gillooly JF, Herman AB, Woodruff WH, West GB. Scaling of number, size, and metabolic rate of cells with body size in mammals. <i>Proc Natl Acad Sci USA</i> 104: 4718–4723, 2007. doi: 10.1073/pnas.0611235104.
828 829 830 831	107.	Banerjee S, Moses ME . A Hybrid Agent Based and Differential Equation Model of Body Size Effects on Pathogen Replication and Immune System Response. In: <i>Artificial Immune Systems</i> , edited by Andrews PS, Timmis J, Owens NDL, Aickelin U, Hart E, Hone A, Tyrrell AM. Springer Berlin Heidelberg, p. 14–18.
832 833 834	108.	Banerjee S, Moses M . Scale invariance of immune system response rates and times: perspectives on immune system architecture and implications for artificial immune systems. <i>Swarm Intelligence</i> 4: 301–318, 2010. doi: 10.1007/s11721-010-0048-2.

835 836 837	109.	Tieleman BI, Williams JB, Ricklefs RE, Klasing KC . Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds. <i>Proc R Soc B</i> 272: 1715–1720, 2005. doi: 10.1098/rspb.2005.3155.
838 839 840	110.	Lee KA , Wikelski M , Robinson WD , Robinson TR , Klasing KC . Constitutive Immune Defences Correlate with Life-History Variables in Tropical Birds [Online]. <i>Journal of Animal Ecology</i> 77: 356–363, 2008. http://www.jstor.org/stable/20143195.
841 842 843	111.	DeLong JP , Okie JG , Moses ME , Sibly RM , Brown JH . Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. <i>Proceedings of the National Academy of Sciences</i> 107: 12941–12945, 2010. doi: 10.1073/pnas.1007783107.
844 845	112.	Kolokotrones T, Van Savage, Deeds EJ, Fontana W. Curvature in metabolic scaling. <i>Nature</i> 464: 753–756, 2010. doi: 10.1038/nature08920.
846 847	113.	Dodds PS, Rothman DH, Weitz JS . Re-examination of the "3/4-law" of Metabolism. <i>Journal of Theoretical Biology</i> 209: 9–27, 2001. doi: 10.1006/jtbi.2000.2238.
848 849 850	114.	Downs CJ , Hayes JP , Tracy CR . Scaling metabolic rate with body mass and inverse body temperature: a test of the Arrhenius fractal supply model. <i>Funct Ecology</i> 22: 239–244, 2008. doi: 10.1111/j.1365-2435.2007.01371.x.
851 852	115.	White CR, Seymour RS. Allometric scaling of mammalian metabolism. <i>Journal of Experimental Biology</i> 208: 1611–1619, 2005. doi: 10.1242/jeb.01501.
853 854	116.	White CR, Phillips NF, Seymour RS. The scaling and temperature dependence of vertebrate metabolism. <i>Biol Lett</i> 2: 125–127, 2006. doi: 10.1098/rsbl.2005.0378.
855 856	117.	Hidalgo A, Chilvers ER, Summers C, Koenderman L . The neutrophil life cycle. <i>T Immunol</i> 40: 584–597, 2019. doi: 10.1016/j.it.2019.04.013.
857 858	118.	Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. <i>Trends in Immunology</i> 31: 318–324, 2010. doi: 10.1016/j.it.2010.05.006.
859 860	119.	Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. <i>Nature Reviews Cancer</i> 16: 431–446, 2016.
861 862	120.	Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133: 2178–2185, 2019. doi: 10.1182/blood-2018-11-844530.
863 864	121.	Soehnlein O, Steffens S, Hidalgo A, Weber C . Neutrophils as protagonists and targets in chronic inflammation. <i>Nat Rev Immunol</i> 17: 248–261, 2017. doi: 10.1038/nri.2017.10.
865 866	122.	Shen X, Cao K, Jiang J, Guan W, Du J. Neutrophil dysregulation during sepsis: an overview and update. <i>J Cellular Molecular Medi</i> 21: 1687–1697, 2017. doi: 10.1111/jcmm.13112.
867 868	123.	Alves-Filho JC, De Freitas A, Spiller F, Souto FO, Cunha FQ. THE ROLE OF NEUTROPHILS IN SEVERE SEPSIS. Shock 30: 3–9, 2008. doi: 10.1097/SHK.0b013e3181818466.

- Kaplan MJ. Role of neutrophils in systemic autoimmune diseases. Arthritis Res Ther 15: 219, 2013.
 doi: 10.1186/ar4325.
- Németh T, Mócsai A. The role of neutrophils in autoimmune diseases. *Immunology Letters* 143: 9–19, 2012. doi: 10.1016/j.imlet.2012.01.013.
- Lee KH, Kronbichler A, Park DD-Y, Park Y, Moon H, Kim H, Choi JH, Choi Y, Shim S, Lyu IS, Yun BH, Han Y, Lee D, Lee SY, Yoo BH, Lee KH, Kim TL, Kim H, Shim JS, Nam W, So H, Choi S, Lee S, Shin JI.
- Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review.
- 876 Autoimmunity Reviews 16: 1160–1173, 2017. doi: 10.1016/j.autrev.2017.09.012.
- Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. *Journal of Experimental Medicine* 210: 1283–1299, 2013. doi: 10.1084/jem.20122220.
- Fenske TS, McMahon C, Edwin D, Jarvis JC, Cheverud JM, Minn M, Mathews V, Bogue MA,
 Province MA, McLeod HL, Graubert TA. Identification of Candidate Alkylator-Induced Cancer
 Susceptibility Genes by Whole Genome Scanning in Mice. Cancer Research 66: 5029–5038, 2006.
 doi: 10.1158/0008-5472.CAN-05-3404.
- 883 129. **Statland BE, Winkel P, Harris SC, Burdsall MJ, Saunders AM**. Evaluation of Biologic Sources of Variation of Leukocyte Counts and Other Hematologic Quantities Using Very Precise Automated Analyzers. *Am J Clin Pathol* 69: 48–54, 1978. doi: 10.1093/ajcp/69.1.48.
- Valentin J. ICRP Publication 89: Basic anatomical and physiological data for use in radiological
 protection: reference values. Elsevier Health Sciences, 2003.
- 888 131. **Minias P.** Evolution of heterophil/lymphocyte ratios in response to ecological and life-history 889 traits: A comparative analysis across the avian tree of life. *J Anim Ecol* 88: 554–565, 2019. doi: 890 10.1111/1365-2656.12941.
- Martin LB, Weil ZM, Nelson RJ. IMMUNE DEFENSE AND REPRODUCTIVE PACE OF LIFE IN
 PEROMYSCUS MICE. *Ecology* 88: 2516–2528, 2007. doi: 10.1890/07-0060.1.
- 893 133. **Minias P, Peng W-XV-H, Matson KD**. Evolutionary trade-off between innate and acquired immune defences in birds. *Front Zool* 20: 32, 2023. doi: 10.1186/s12983-023-00511-1.
- Schneeberger K, Czirják GÁ, Voigt CC. Measures of the Constitutive Immune System Are Linked to
 Diet and Roosting Habits of Neotropical Bats. *PLoS ONE* 8: e54023, 2013. doi:
 10.1371/journal.pone.0054023.
- Banerjee A, Baker ML, Kulcsar K, Misra V, Plowright R, Mossman K. Novel Insights Into Immune Systems of Bats. *Front Immunol* 11: 26, 2020. doi: 10.3389/fimmu.2020.00026.
- 900 136. **Cooper E**. Comparative Immunology. *CPD* 9: 119–131, 2003. doi: 10.2174/1381612033392297.
- 901 137. Huey R. Phylogeny, history, and the comparative method. In: *New Directions in Ecological* 902 *Physiology*, edited by Feder ME, Bennett AF, Burggren WW, Huey RB. Cambridge University Press,
 903 1987, p. 76–98.

904 Harvey PH. Why and how phylogenetic relationships should be incorporated into studies. In: 905 Scaling in Biology, edited by Brown JH, West GB. Oxford: Oxford University Press, 2000, p. 253-906 265. 907 Harvey PH, Pagel MD. The Comparative Method in Evolutionary Biology. Oxford University Press. 908 Brace AJ, Lajeunesse MJ, Ardia DR, Hawley DM, Adelman JS, Buchanan KL, Fair JM, Grindstaff JL, 909 Matson KD, Martin LB. Costs of immune responses are related to host body size and lifespan. J 910 Exp Zool 327: 254–261, 2017. doi: 10.1002/jez.2084. French SS, Neuman-Lee LA. Improved ex vivo method for microbiocidal activity across vertebrate 911 912 species. *Biology Open* 1: 482–487, 2012. doi: 10.1242/bio.2012919. 913 Downs CJ, Boan BV, Lohuis TD, Stewart KM. Investigating Relationships between Reproduction, 914 Immune Defenses, and Cortisol in Dall Sheep. Front Immunol 9: 105, 2018. doi: 915 10.3389/fimmu.2018.00105. 916 Heinrich SK, Wachter B, Aschenborn OHK, Thalwitzer S, Melzheimer J, Hofer H, Czirják GÁ. 917 Feliform carnivores have a distinguished constitutive innate immune response. Biology Open 5: 918 550–555, 2016. doi: 10.1242/bio.014902. 919 Claunch NM, Downs CJ, Schoenle LA, Oakey SJ, Ely T, Romagosa C, Briggs CW. Snap-freezing in 920 the Field: Effect of Sample Holding Time on Performance of Bactericidal Assays. . 921 Chu X, Zhang B, Koeken VACM, Gupta MK, Li Y. Multi-Omics Approaches in Immunological 922 Research. Front Immunol 12: 668045, 2021. doi: 10.3389/fimmu.2021.668045. 923 Forlin R, James A, Brodin P. Making human immune systems more interpretable through systems 924 immunology. Trends in Immunology 44: 577–584, 2023. doi: 10.1016/j.it.2023.06.005. 925 Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, 926 Fungtammasan A, Kim J, Lee C, Ko BJ, Chaisson M, Gedman GL, Cantin LJ, Thibaud-Nissen F, 927 Haggerty L, Bista I, Smith M, Haase B, Mountcastle J, Winkler S, Paez S, Howard J, Vernes SC, 928 Lama TM, Grutzner F, Warren WC, Balakrishnan CN, Burt D, George JM, Biegler MT, Iorns D, 929 Digby A, Eason D, Robertson B, Edwards T, Wilkinson M, Turner G, Meyer A, Kautt AF, Franchini 930 P, Detrich HW, Svardal H, Wagner M, Naylor GJP, Pippel M, Malinsky M, Mooney M, Simbirsky 931 M, Hannigan BT, Pesout T, Houck M, Misuraca A, Kingan SB, Hall R, Kronenberg Z, Sović I, Dunn 932 C, Ning Z, Hastie A, Lee J, Selvaraj S, Green RE, Putnam NH, Gut I, Ghurye J, Garrison E, Sims Y, 933 Collins J, Pelan S, Torrance J, Tracey A, Wood J, Dagnew RE, Guan D, London SE, Clayton DF, 934 Mello CV, Friedrich SR, Lovell PV, Osipova E, Al-Ajli FO, Secomandi S, Kim H, Theofanopoulou C, 935 Hiller M, Zhou Y, Harris RS, Makova KD, Medvedev P, Hoffman J, Masterson P, Clark K, Martin F, 936 Howe K, Flicek P, Walenz BP, Kwak W, Clawson H, Diekhans M, Nassar L, Paten B, Kraus RHS,

Crawford AJ, Gilbert MTP, Zhang G, Venkatesh B, Murphy RW, Koepfli K-P, Shapiro B, Johnson

O'Brien SJ, Korlach J, Lewin HA, Howe K, Myers EW, Durbin R, Phillippy AM, Jarvis ED. Towards

complete and error-free genome assemblies of all vertebrate species. Nature 592: 737–746, 2021.

WE, Di Palma F, Marques-Bonet T, Teeling EC, Warnow T, Graves JM, Ryder OA, Haussler D,

937

938

939

940

941

doi: 10.1038/s41586-021-03451-0.

943 944 945	148.	JF, Barreiro LB. Primate innate immune responses to bacterial and viral pathogens reveals an evolutionary trade-off between strength and specificity. <i>Proc Natl Acad Sci USA</i> 118: e2015855118, 2021. doi: 10.1073/pnas.2015855118.
946 947	149.	Hadfield JD . MCMC methods for multi-response generalized linear mixed models: the MCMCglmm <i>R</i> package. <i>J Stat Soft</i> 33, 2010. doi: 10.18637/jss.v033.i02.
948 949 950	150.	de Villemereuil P, Nakagawa S . General Quantitative Genetic Methods for Comparative Biology. In: <i>Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology</i> , edited by Garamszegi LZ. Springer Berlin Heidelberg, p. 287–303.
951	151.	Letunic I. phyloT: phylogenetic tree generator. [Online]. 2015. http://phylot.biobyte.de.
952 953	152.	Housworth EA, Martins EP, Lynch M . The Phylogenetic Mixed Model. <i>The American Naturalist</i> 163: 84–96, 2004. doi: 10.1086/380570.
954 955 956	153.	Nakagawa S, Schielzeth H. A general and simple method for obtaining R^2 from generalized linear mixed-effects models. <i>Methods Ecol Evol</i> 4: 133–142, 2013. doi: 10.1111/j.2041-210x.2012.00261.x.
957		
958		
959		

Figure captions: 960 961 962 Figure 1. Every point on a pointillist style painting contributes to the emerging image when viewed from a distance, just as data on individual species contribute to an emergent 963 understanding of predictive patterns of interspecific variation of immune defenses when viewed 964 together and from a distance. (Image purchased from iStock.com/GlobalP and modified using 965 elektrobild.org) 966 967 Figure 2. Hypermetric (b>0, purple lines), isometric (b=0, black lines), and hypometric (b<0, red 968 lines) scaling patterns for **concentrations** on (A) linear and logarithmic (B) axes. Patterns of 969 allometric (hyper- and hypometric) scaling are non-linear on the original axis, meaning that 970 971 extrapolating understanding about the immune system from a single species to make predictions about another species is challenging. 972 973 Figure 3. Granulocyte concentrations in blood scale isometrically in lizards 974 $(granulocyte\ concentration = 2.29\ (body\ mass)^{0.02})$, but hypermetrically in mammals 975 $(granulocyte\ concentration = 1.51\ (body\ mass)^{0.11})$ and birds 976 $(granulocyte\ concentration = 1.24\ (body\ mass)^{0.20})$. Consequently, and because the 977 taxonomic groups share a similar intercept, 30-g individuals of each group have similar 978 granulocyte concentrations (black vertical line on the inset), but a 35,000-g mammal has a 1.8-979 fold greater concentration than a 35,000-g reptile and a 35,000-g bird has a 3.5-fold greater 980 concentration than a 35,000-g reptile. An assumption of proportional scaling for lizards would 981 982 lead to a reasonably correct prediction of the mean granulocyte concentration for any species regardless of the organism's mass used for the initial measurement or the mass of the predicted 983 organism because the concentration of granulocytes scale isometrically. However, applying that 984 same assumption of isometric scaling to granulocytes to mammals and birds would lead to 985 986 incorrect estimates if the animal used as a template is a different mass than the animal estimated (green asterisk = mammal estimate under isometry; orange asterisk = bird estimate under 987 988 isometry). Modified from (70).

989

990 Figure 4. Granulocyte to lymphocyte ratio increases disproportionately with body mass, and the relationship is indistinguishable for birds and mammals: 991 $log_{10}(granulocyte\ to\ lymphocyte\ ratio) = -0.42\ (-0.78, -0.09) + 0.14\ (0.11, 0.17) \times$ 992 $log_{10}(body\ mass)$ (A). The simplest model for the scaling of granulocyte to lymphocyte that 993 has a DIC value within 5 points of the lowest DIC value did not have a different intercept or 994 995 slope for birds and mammals (B). 996 997 Modeling was performed following Ruhs et al. (67). Briefly, Bayesian phylogenetic linear mixed-effects models were built using the mcmcGLMM procedure in Program R (149, 150). The 998 999 response variable was log₁₀-transformed granulocyte to lymphocyte ratio (data from 67). The fixed effects for each model are presented in the table (B). Phylogenetic covariance matrix for 1000 1001 this analysis was estimated using a phylogenetic tree constructed with National Center for Biotechnology Information molecular data and phyloT (151), and polytomies were resolved 1002 using the randomization process in phyloT. Model chains were run for 7.8×10⁵ iterations, a 1003 180,000-iteration burn-in, and a 600-iteration thinning interval. We estimated unadjusted 1004 phylogenetic heritability to measure how much of the total observed variation was explained by 1005 phylogeny (152) and calculated marginal R² as a measure of how much of the total variation was 1006 explained by the fixed effects (153). Relative support for each model was determined based on 1007 DIC values and model differences. 1008 1009 1010 Figure 5. Synergistic interactions between the two comparative immunology approaches with an example. (Figure created with BioRender; graph of neutrophil data was modified from (66)) 1011

1012