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display intra-species variation due to prophages

Jennifer K. Heppert"', Ryan Musumba Awori?’, Mengyi Cao?, Grischa Chen?, Jemma
McLeish', Heidi Goodrich-Blair'#
1. Department of Microbiology, University of Tennessee at Knoxville, Knoxville,
Tennessee, USA.
2. Elakistos Biosciences, Nairobi, Kenya.
3. Division of Biosphere Sciences Engineering, Carnegie Institute for Science,
Pasadena, California, USA.

# corresponding author
*denotes equal contribution

Abstract
Background:

Nematodes of the genus Steinernema and their Xenorhabdus bacterial symbionts are
lethal entomopathogens that are useful in the biocontrol of insect pests, as sources of

diverse natural products, and as research models for mutualism and parasitism.

Xenorhabdus play a central role in all aspects of the Steinernema lifecycle, and a

deeper understanding of their genomes therefore has the potential to spur advances in
each of these applications.

Results:

Here, we report a comparative genomics analysis of Xenorhabdus griffiniae, including
the symbiont of Steinernema hermaphroditum nematodes, for which genetic and
genomic tools are being developed. We sequenced and assembled circularized
genomes for three Xenorhabdus strains: HGB2511, ID10 and TH1. We then determined
their relationships to other Xenorhabdus and delineated their species via phylogenomic
analyses, concluding that HGB2511 and ID10 are Xenorhabdus griffiniae while TH1 is a

novel species. These additions to the existing X. griffiniae landscape further allowed for
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the identification of two subspecies within the clade. Consistent with other
Xenorhabdus, the analysed X. griffiniae genomes each encode a wide array of
antimicrobials and virulence-related proteins. Comparative genomic analyses, including
the creation of a pangenome, revealed that a large amount of the intraspecies variation
in X. griffiniae is contained within the mobilome and attributable to prophage loci. In
addition, CRISPR arrays, secondary metabolite potential and toxin genes all varied
among strains within the X. griffiniae species.

Conclusions:

Our findings suggest that phage-related genes drive the genomic diversity in closely
related Xenorhabdus symbionts, and that these may underlie some of the traits most
associated with the lifestyle and survival of entomopathogenic nematodes and their
bacteria: virulence and competition. This study establishes a broad knowledge base for
further exploration of not only the relationships between X. griffiniae species and their
nematode hosts but also the molecular mechanisms that underlie their entomopathogenic

lifestyle.

Keywords: Xenorhabdus griffiniae, nematode-bacterium symbiosis, prophage, CRISPR

loci, pangenome, bacterial subspeciation, insect toxins, entomopathogenic bacteria

Background

Buried in soils across the world is living white gold, a rich, but as yet under-utilized
bioresource: Steinernema nematodes. These insect-killing roundworms have been found
in 51 countries to date [1-6] and are profitable commercial products for the control of

insect crop pests. In addition, they are colonized by microbes, including obligate symbiotic
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bacteria from the genus Xenorhabdus, that produce a battery of useful biomolecules [7].
To date, 35 Xenorhabdus  species have been described [7-9,
https://Ipsn.dsmz.de/genus/xenorhabdus] found in association with Steinernema
nematodes, and the two species work in tandem to infect and kill insects and exploit the

nutrient rich cadaver for the reproductive stage of their shared lifecycle.

Mechanistically, the nematode’s Xenorhabdus bacterium gut symbionts potentiate their
insect-killing trait and serve as the primary food source for the nematode. In the non-
feeding, host-seeking infective juvenile (IJ) stage of the nematode’s lifecycle,
Steinernema nematodes house their Xenorhabdus symbionts in a specialized tissue of
the anterior intestine known as the receptacle. After an |J successfully enters an insect
via natural openings such as spiracles, it defecates into the haemolymph, its
Xenorhabdus bacteria, which by their secretion of insect toxins, immunosuppression and
growth in the haemolymph, kill the insect [7]. The resultant insect cadaver is an enclosed
nutrient-rich niche that both nematode and bacterium leverage to reproduce
proliferatively. Nematode fecundity is enhanced by the consumption of Xenorhabdus [10],
and Xenorhabdus defends the niche by secreting bacteriocins, antimicrobials and
scavenger deterrents, which antagonize both microbial and invertebrate competitors [11—
13]. Before their exit from the insect cadaver and entry into the surrounding soil, nascent
IJ nematodes are specifically colonized by Xenorhabdus in the anterior intestine and

ultimately, the receptacle [14].
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Each Steinernema nematode is colonized in the receptacle by a specific Xenorhabdus
species. However, some Xenorhabdus species associate with multiple Steinernema
nematode hosts [7] suggesting a relatively fluid partnership landscape in which the
molecular determinants of host-symbiont specificity across the two genera are still being
defined. Key to this understanding is a robust comparative analysis of the phylogenetic
relatedness and genomic content of Xenorhabdus isolates. Genome assemblies that are
lowly contaminated, with high levels of completeness and greater than 50x coverage, are
sufficient for bacterial species delineation [15], comparative genomics and identification
and analyses of genes-of-interest. Indeed, insights into the Xenorhabdus-Steinernema
symbiosis, bacterial speciation, and entomopathogenicity have been gained through such
analyses of Xenorhabdus genomes. For example, comparing the degree of genetic
similarity across whole genomes using digital DNA-DNA hybridization (dDDH) has led to
the delineation of five novel Xenorhabdus species to date [8, 9, 16, 17]. Also, a
comparative analysis of Xenorhabdus bovienii CS03 and SS-2004 genomes revealed that
CS03 is more adapted to destroying microbial competitors than is SS-2004 but encodes
fewer genes associated with entomopathogenicity [18]. Pangenome analyses of X.
bovienii strains revealed intra-species content variation including of prophage origin,
suggestive of strain adaptation to specific host environments [19]. The biosynthetic gene
cluster that encodes the production of GameXpeptides was found in 72% of a sample of
29 Xenorhabdus genomes [20], which suggests that many strains use this peptide to
suppress insect immune pathways [21].

Of the >100 Steinernema nematode species described to date, only Steinernema

hermaphroditum is a self-fertilizing hermaphrodite [22, 23]. This makes S.
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hermaphroditum particularly well-suited for rigorous nematode genetic studies, including
those on the dynamics of transmission of Xenorhabdus bacteria from one generation of
their host nematode to another [24, 25]. To lay the groundwork for such studies [26], we
aimed to comprehensively analyse genomes of Xenorhabdus griffiniae, gut symbionts of
S. hermaphroditum [23, 27]. We hypothesize that insights into the X. griffiniae-S.
hermaphroditum symbiosis are attainable through detailed comparative genome analyses
of X. griffiniae strains and their close phylogenetic relatives. Here, we report our studies
in which we delineated two species of Xenorhabdus among the analysed strains,
reconstructed their phylogenetic relationships with the rest of the Xenorhabdus genus,
and analysed their pangenome and unique loci including prophages, CRISPR, and those
encoding phage tail-like structures, secondary metabolites and insect toxins, the last of

which was substantiated through insect mortality assays.

Methods

Bacterial genome sequencing
X. griffiniae HGB2511 and Xenorhabdus sp. TH1 (respective Genbank accession

numbers for 16s rDNA: MZ913116-MZ913125 and OR047834) were isolated from
infective juvenile nematodes of Steinernema hermaphroditum CS34 and Steinernema
adamsi, respectively, as previously described [16]. Briefly, Galleria mellonella larvae were
exposed to infective juvenile nematodes, died, and emergent infective juveniles were
isolated by White trapping in sterile water. These nematodes were then surface sterilized,
ground, plated on LB agar plates supplemented with pyruvate (0.1%), and incubated at

30°C. X. griffiniae 1D10 was purchased from BacDive (DSM 17911). Cultures were
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inoculated in lysogeny broth (LB) stored in the dark (dark LB:0.5% yeast extract, 1%
tryptone, 0.5% NaCl) and grown overnight under agitation at 30°C. Genomic DNA was
prepared for sequencing by phenol extraction and spooling (X. griffiniae HGB2511), using
the Qiagen DNeasy Kit per the manufacturer’s instructions with minor modification, (X.
griffiniae 1D10), or by both methods (Xenorhabdus sp. TH1). The Qiagen DNeasy Kit
protocol was modified to prevent the viscous Xenorhabdus cell lysate from clogging the
DNA-binding column by diluting the lysate with 10 mL of Qiagen QBT buffer before
running it through the DNA-binding column by gravity. Purified DNA was sequenced using
both short-read and long-read sequencing at the Millard and Muriel Jacobs Genetics and
Genomics Laboratory, at the California Institute of Technology (for X. griffiniae HGB2511
and Xenorhabdus sp. TH1) or Novogene (for X. griffiniae ID10). For the X. griffiniae 1D10
genome, short-read sequencing was performed using lllumina NovaSeq 150 base pairs
(bp) paired-end short-read sequencing with library construction consisting of genomic
DNA fragmentation, lllumina adapter ligation and PCR amplification, followed by size
selection and purification, resulting in 33 gigabases (GB), of which 842 megabases (MB)
were used for assembly. For primer-free long-read sequencing, library preparation
consisted of size selection, adapter ligation and purification using Beckman Coulter
AMPure XP beads. Sequencing was performed on an Oxford Nanopore (ONP)
PromethlON platform with base calling performed using Guppy software [28] with
standard parameters. Prior to assembly, the ONP long-reads were filtered using Filtlong
v0.2.1 resulting in 1.13 GB that was used in the assembly. Short- and long-reads were
assembled using Unicycler v0.5.0 [29], resulting in a coverage of 432X. Sequencing of

the TH1 and HGB2511 was done via a similar workflow. For each, 1.13GB and ~0.74GB
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of bases were obtained from the lllumina and ONP runs, respectively. Likewise, a similar
hybrid assembly method was also used, resulting in assemblies that were 406x and 496x
for HGB2511 and TH1, respectively. Genome characteristics were determined via the
PATRIC platform [30] (Table 1). Coverage was calculated by taking the total number of
base pairs used in the assembly and dividing that by the genome size [31]. EvalG was
used to determine the quality and completion of the assemblies [32]. GenBank
accessions for ID10, HGB2511 and TH1 genomes are CP147737.1, CP147738.1 and
CP147734.1, respectively. Names and GenBank accession numbers of other genomes

used in this study are found in Supplementary sheet S17 in Additional file 2.

Tree generated using Bayesian inference
Phylogenetic analyses were performed as described previously [33]. Briefly, select

Xenorhabdus (30) and Photorhabdus (1) species for which genomic sequences were
publicly available were analysed using MicroScope MaGe’s Gene Phyloprofile tool [34]
to identify homologous open reading frames (ORF) sets (homologs with at least 50%
identity with synteny) which were conserved across all assayed genomes. Putative
paralogs were excluded from the downstream analysis to ensure homolog relatedness,
resulting in 1235 homologous sets (one-to-one orthologs). Homolog sets were retrieved
via locus tag indexing using Python v3.8.0, and nucleotide sequences were individually
aligned using Muscle v3.8.31 [35], concatenated using Sequence Matrix v1.9 [36], and
trimmed of nucleotide gaps using TrimAL v1.4 [37]. A General Time Reversible + vy
variation substitution model was used for maximum likelihood and Bayesian analysis.
Maximum likelihood analyses were performed via RAXML v8.2.10 [38] using rapid
bootstrapping and 1,000 replicates and were visualized via Dendroscope v3.6.2 [39].

Nodes with less than 40% bootstrap support were collapsed. Bayesian analyses were
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performed via MrBayes v3.2.7a in BEAGLE [40] on the CIPRES Science Gateway
platform [41]. A total of 100,000 Markov chain Monte Carlo (MCMC) replicates were
performed. Twenty-five per cent were discarded as burn-in, and posterior probabilities
were sampled for every 500 replicates. Two runs were performed with three heated
chains and one cold chain. The final average standard deviation of split frequencies was
0.052352. Bayesian trees were visualized with FigTree v1.4.4 [42]. Posterior probabilities

are 100% except where otherwise indicated.

Digital DNA-DNA hybridisation and pangenome analyses
To determine pairwise digital DNA-DNA hybridisation (dDDH) values among 31 strains

(ID10, VH1, XN45, TH1, HGB2511, BMMCB, BG5, Kalro, 97 and 22/26 validly published
Xenorhabdus type strains), their fasta formatted genomes were uploaded to the TYGS
server [43] and analysed as previously described [16]. Genomes of six X. griffiniae strains
plus that of Xenorhabdus sp. TH1 were comparatively analysed using a pangenome
approach in Anvio 7.1 [44]. Briefly, fasta formats of the seven genomes were reformatted
to simplify the definition lines, then converted to anvio contig databases. On these, hidden
Markov models (HMMs) and genes were identified using HMMER [45] and Prodigal [46],
respectively. The functions of these genes were then predicted, based on orthology, using
the Cluster of Orthologous Genes (COG) database [47] as a reference. These annotated
contig databases were then used to construct a pangenome with the anvi-pan-genome
program under the following parameters --use NCBI-BLAST, MCL inflation 10, minbit 0.5,
--exclude-partial-gene-calls. The anvi-display-pan program was used to both display the
pangenome as a sunburst chart and subsequently create selected bins. To obtain sub-
pangenomes of only type VI secretion system-associated orthologous gene clusters

(GC), all GCs annotated with “type VI” were identified using the search functions feature
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and binned. The anvi-split program was then used to obtain a pangenome of only Type
VI secretion system-associated GCs (Supplementary Sheet S3 in Additional File 2). For
each analysis, pangenomes were represented both as sunburst charts and tabulated
gene lists. To calculate average nucleotide identities ( Supplementary Sheet S13 in
Additional file 2), the fastANI [48] program was used within an Anvio environment. The
average alignment fraction and fragments were 0.85 and 1425 respectively.

To identify the mobilome, all genes annotated with the COG category “X” were extracted
from the main pangenome and used to create a sub-pangenome of the mobilome only.
This was then used to calculate the total number of genes annotated as phage,
transposase, and plasmid-related in each genome. For each genome, these totals were
correlated with proteome size using Pearson’s adjusted (due to the small sample size) r-

square at a 0.05 alpha level.

Identification and analysis of unique genes within the accessory genome
Using the tabulated output of the Anvio pangenome analysis and Microsoft Excel, core

genes and genes unique to a given strain were identified using the number of genomes
in which the gene cluster has hits identifier, where the value equalled 7 for core genes
(19,196) and 1 for unique genes for the HGB2511 (340), ID10 (411) and TH1 (454)
strains. Because the genomes of the sub-species clade which includes X. griffiniae Kalro
are so similar, there were less than ten unique genes per strain [XN45(8), VH1(7),
xg97(4), Kalro (0)]. Thus, to gain a better understanding of what genes might be unique
within the sub-species clade, we compared the Kalro genome alone to the HGB2511,
ID10 and TH1 genomes and found 454 unique genes for further analysis. The COG
annotations assigned as part of the pangenome analysis were used to elucidate the

functional categories that might be enriched among those genes we found to be unique
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to a given species. The number of unique genes per COG category was plotted as a
percentage of the total number of unique genes with a COG designation for each strain
and the core genome using GraphPad PRISM v10.1.1. As expected, a much larger
fraction of genes with no COG designation was found in each of the unique gene

categories (approximately 50% in each case) compared to the core genome (6%).

Elucidation and analysis of prophages in X. griffiniae genomes
To identify prophages in bacterium genomes, we used VIBRANT 1.2.1 [49] under default

parameters. Each prophage sequence was then separately reannotated with Pharokka
[50] under “meta mode” and Bakta [51]. Genomad [52] was used to both taxonomically
classify prophages and assess their quality (through CheckV [53]) and completion
(Supplementary Sheet S14 in Additional File 2). Resultant gene lists of the annotated
prophages are available in (Supplementary Sheets S8-S11 in Additional File 2).

To identify similar prophages across strains, we used progressive Mauve [54] to identify
collinearity blocks between prophage sequences. Considerably similar pairs were
selected, pairwise aligned, and visualised as dot plots using Geneious 8.1.9 [55].

To determine the effect of prophages on the dDDH values among X. griffiniae strains, all
prophage sequences were deleted from their corresponding bacterium genomes in
Geneious 8.1.9. Then, dDDH analyses were rerun using both original and “phageless” X.
griffiniae bacterium genomes (Supplementary Sheet S12 in Additional File 2).

To identify strain-specific and subspecies-specific genes that are from prophages, a
pangenome approach was used. Briefly, their entire prophage sequence from a strain —
ID10, Kalro, TH1, xg97 and HGB2511— were merged into a fasta file. For example, all
prophages from the ID10 genome were merged into a single fasta file

“ID10_prophages.fasta”. These five prophage fasta files, plus those of genomes of ID10,



245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265
266
267

268

HGB2511, VH1, XN45, xg97 and Kalro, were used to create a pangenome as
aforementioned. Using the anvio-display-pan program, strain-specific or subspecies-
specific GCs that were of prophage origin were visually identified and binned. Using the
anvio-summary program, the number, annotation, and aa sequences of these strain-
specific or subspecies-specific genes of prophage origin were obtained from resultant
gene lists (Supplementary Sheet S14 in Additional File 2). This was then used to calculate
what proportion of strain-specific and subspecies-specific genes were from prophages.
To identify genomic loci encoding complete type VI secretion systems (T6SS) within
genomes, we used Secret6 [56] under default parameters. Geneious was used to create
multiple sequence alignments of T6SS-encoding loci and to calculate pairwise nucleotide
sequence identities.

To infer gene gain and loss events within the X. griffiniae clade, we used the above
described anvi’o workflow to create aa pangenome of the seven strains plus Xenorhabdus
sp. BG5; BG5S was included to specifically infer the evolution of gene content for strain
TH1, as it is the strain that just diverges prior to the emergence of TH1(Fig. 1). We then
used the tabulated version of the pangenome to manually construct a phyletic pattern
(Supplementary Sheet S6 in Additional File 2). A dDDH-based phylogenomic tree of the
eight strains only, was reconstructed via the TYGS pipeline. Both this tree and the phyletic
pattern were used as input data in COUNT [57]. The evolution of gene content was

inferred using Wagner parsimony with a gain penalty of two.

Identification and analysis of defence systems and CRISPR-Cas loci in X.
griffiniae genomes
Anti-phage or anti-plasmid defence systems present within genomes were identified using

the DefenseFinder bioinformatics search tool and results were interpreted using the
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associated knowledge base [58—60] (Table S4 in Additional File 3, Supplementary Sheet
S22 in Additional File 2). To identify CRISPR-Cas systems in X. griffiniae genomes we
used BlastN on the Magnifying Genome platform to search for CRISPR repeats with the
previously identified X. nematophila CRISPR repeats, XnCRISPR-E and XnCRISPR-G
as queries [61]. Regions with similar or identical sequences were extracted and manually
curated for repeat-spacer content. All results were then verified using CRISPRDetect [62].
The only distinction between the two approaches was for ID10, for which the manual
approach had suggested five potential repeat sites of one spacer only, whereas
CRISPRDetect did not identify any. We therefore conducted a second manual annotation
of the repeats in this genome (Additional File 3). Based on conservation with consensus
repeats called by CRISPRDetect in both upstream and downstream repeats, we
considered ID10 1ai and ID10 1bii regions to be bona fide single spacer CRISPR loci.
Cas protein-encoding genes were identified based on their annotation in the Magnifying
Genomes platform and confirmed using CasFinder-3.1.0 [63]. To identify protospacers
we searched for full-length identical sequences using each identified spacer as a BlastN
query against the X. griffiniae, TH1, and BMMCB genomes in the Magnifying Genome
platform. Protospacers were identified in both other strains and within the same genome
(self-targeting protospacers). To gain a broader view of the non-self-protospacers, we
used CRISPRTarget (http://crispr.otago.ac.nz/CRISPRTarget/crispr_analysis.html) to
search the spacer sequences found by CRISPRDetect for TH1, ID10, HGB2511, and
BMMCB genomes, against subset of the available databases (ALCAME genes, Genbank-
Phage, RefSeq-Archaea, RefSeqg-Plasmid, and RefSeq-Viral) for high confidence

sequence matches to the potential protospacers [62, 64]. All putative protospacers for a
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given spacer were listed (Table S6 in Additional File 3) and the top, annotated hit for each
is listed in Table 2.

Elucidation of biosynthetic gene clusters

To predict which secondary metabolites can be produced by X. griffiniae, a fasta format
of the ID10 genome was uploaded to the AntiSMASH [65] webserver

(https://antismash.secondarymetabolites.org) as data input. Default parameters (i.e.,

relaxed detection strictness) and the use of all extra analyses were selected. Output data
comprised detailed bioinformatic analyses of 23 biosynthetic gene clusters (BGCs) in the
ID10 genome. Each of the 23 BGCs was then manually inspected in two main ways. First,
the clusterBLAST feature was used to identify known homologous BGCs by comparing
the gene synteny and sequence similarity of an ID10 BGC to those of known BGCs found
in the MiBIG database [66]. An ID10 BGC was considered homologous to a known BGC
if it contained >80% genes in perfect synteny, with each gene having BLASTp sequence
similarity >47%, sequence coverage >40%, and Evaue <2.78E-19 with the corresponding
gene in the known BGC. Second, for ID10 non-ribosomal peptide synthetase (NRPS)
BGCs, their Stachelhaus codes [67] for adenylation domains, as well as their
epimerisation/dual condensation domains [68] were analysed to determine the amino acid
sequence of the linearised non-ribosomal peptide (NRP) the NRPS was predicted to
biosynthesize. Predicted NRPs were then compared to known NRP to identify NRPS
BGCs that encode the biosynthesis of novel derivatives/peptides. This workflow was
similarly applied for the analysis of BGCs in the HGB2511 genome. Chemical structures

of the compounds whose production was predicted to be encoded by the known ID10
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BGCs were obtained from the Natural Product Atlas [69] and edited in Chemdraw and
Inkscape [70].

Putative toxin, secretion system, Cas protein, and Restriction modification
system identification

Putative toxins predicted to impact insect or nematode virulence were identified using
multiple approaches. The first approach used the loci of previously characterized known
or suspected toxins [71]. BlastP was performed on the Magnifying Genomes platform,
and the BLAST query accession proteins are listed in the putative toxins table (Table 3),
this procedure was repeated for other novel putative toxins identified as well. The
PathoFact software package [72] was used to identify novel putative toxins in the ID10,
HGB2511, Kalro, TH1 and X. nematophila 19061 genomes with the standard settings and
chromosomal genomes downloaded from the Magnifying Genomes platform. The toxin
library outputs from PathoFact were compared and toxins potentially unique to each
genome were further examined (Supplementary sheets S2-S3 in Additional File 4). This
resulted in the identification of a potential hydrogen cyanide synthetase locus
(XTH1_v2_1430-1432) which appears to be unique to the TH1 genome among those
analysed. Further, this search revealed two zonula occludens toxin proteins
(JASDYBO01_14222 and JASDYBO01_14237 and _14239) which appear to be unique to
the Kalro genome (homologs of were also found in VH1, XN45, and xg97). To both
confirm and expand the list resulting from the combination of the above analyses, the
search term “toxin” was used on the Magnifying Genomes platform to further query the
gene annotations for the HGB2511, ID10, TH1 and Kalro genomes. This search resulted
in the identification of a protein annotated as an insecticidal toxin (XGHID_v1_0629) in

the ID10 genome and a homolog (XGHIN1_v1_3228) was subsequently found in the
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HGB2511 genome via BlastP. The products of toxin-antitoxin systems were generally not
considered in our analysis. The highest confidence and most interesting results are

summarized in the Putative Toxins Table (Table 3).

To systematically predict the types and numbers of secretion systems encoded by the X.
griffiniae genomes (HGB2511, ID10, Kalro, VH1, XN45, xg97), TXSScan application from
the Macsyfinder 2.0 [73] program was run on the Galaxy [74] platform specifying an
ordered, circular replicon, diderm bacteria and with default HMMER options. A
combination of the summary output for each genome is found in Table S1 in Additional
File 1. Alignment of MARTX regions was performed using MUSCLE in MegAlignPro (DNA

Star).

To confirm the type and numbers of Cas proteins encoded by the X. griffiniae genomes
(HGB2511, ID10, Kalro, VH1, XN45, xg97), CasFinder application from the Macsyfinder
2.0 [73] program was run on the Galaxy Pasteur platform specifying an ordered, circular
replicon, diderm bacteria and with default HMMER options. The summary table is
compiled from the software summary output and the additional sheets contain the best
solution predictions from the Cas Finder output and include the gene names and locus
tags from the different Cas systems found (Supplementary Sheet S20 in Additional File

2).

Restriction modification systems were identified by searching the BMMCB, TH1, ID10,

HGB2551 and Kalro genomes for restriction enzymes, anti-restriction proteins, and
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restriction enzyme-associated methylases-based gene annotations on the MAGE
Microscope platform. These genomes were further searched using BLAST 2.15.0+ to
compare a list of “Gold Standard” methyltransferase and endonuclease protein
sequences from the New England Biolabs’ REBASE with the protein sequences
contained within each genome [75]. An E value cut-off of <1 x 107° and 75% coverage
were used to generate a list of high confidence candidates. This candidate list was
compared with the initial list of restriction system proteins generated using MAGE, and
redundant sequences were removed. Methyltransferase homologs that were not found to
be near predicted restriction endonucleases were excluded from further analysis, though
the presence of many ‘orphan’ methyltransferases may indicate a need to protect the
bacterial chromosome from restriction modification systems [76]. Putative restriction
enzyme loci were examined to identify or confirm neighbouring methylases in the case of
Type |, Il and Il restriction enzymes, or lack thereof, in the case of the Type IV and the
HNH restriction endonucleases identified [77]. Of the putative restriction modification
genes examined, only three loci from the BMMCB genome (LDNMO1_v1_10020,
LDNMO1_v1 400040, LDNMO01_v1_1980001) were predicted to encode restriction
endonucleases from Type | or Il but were not observed to encode a proximal
methyltransferase. Because of their incomplete nature, these loci were excluded from the
final table and count of restriction systems was identified. However, each locus was near
a contig break, so a less fragmented BMMCB genome assembly may reveal these to be

complete predicted restriction endonuclease loci.

Insect larvae rearing and preparation
Eggs of Manduca sexta, the tobacco hornworm, were purchased from Carolina Biological

Supply (North Carolina, USA) and were reared to the fifth instar according to a previously
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described protocol [78]. Briefly, eggs were sterilized with 0.6 % (v/v) bleach solution on
arrival and then transferred to a four-ounce plastic container with a Gypsy moth diet (MP
Biomedicals, Ohio, USA). The eggs were then incubated at 26 °C in a humidified insect
incubator with a 16-h light: 8-h dark photoperiod. Once hatching was complete, the larvae
were transferred to a new four-ounce container for two days and then transferred to a
new two-ounce container. Feeding and cleaning were performed every two to three days
until the larvae reached the fifth instar stage. On the day of the experiment, the larvae
were examined and sorted by weight ranging from 0.67 g to 3.5 g, and the larvae were
randomly distributed across the conditions. Larvae (n=10, with n=5 for phosphate-
buffered saline (PBS) control) were placed into individual two-ounce plastic containers.
Groups of 10 larvae were carefully injected with 10 pL of various doses (10, 104, and
10-3) of bacteria between the first set of abdominal prolegs using a Hamilton syringe.
Following injections, the larvae were incubated at 26 °C in a humidified insect incubator

with a 16-h light: 8-h dark photoperiod and monitored for survival over 72 h.

Preparation of bacteria for infection of M. sexta
Bacterial strains were streaked from —80 °C freezer stocks onto dark LB agar and

cultivated at room temperature in the dark for two days. Broad streaks including multiple
colonies were used to inoculate LB medium (5 mL) and incubated on a rotating wheel at
30°C for approximately 8 h. At 8 h the optical density (OD) at 600nm was measured
(OD600), and cultures were all near an OD600 of 1.0. Cultures were normalized to an
OD600 of 1.0 by adjusting the volume of culture taken (e.g., 500 uL OD600 of 1.0). Cells
were spun down for 1 min at max speed in Eppendorf tubes and washed twice with 1 mL
of sterile PBS. After the final wash, cells were resuspended in 500 uL of PBS. The washed

cells were then diluted ten-fold, six times in sterile PBS in a 96-well plate. For each



409

410

411

412

413

414

415

416

417
418

419

420

421

422

423

424

425

426

427

428

429

430

431
432

dilution, 10 pL was inoculated onto LB agar plates (LBP) to quantify the number of colony-
forming units (CFU) in each dilution. To test for sterility, PBS was also inoculated onto
LBP. Based on a previous study [71], we estimated that 100, 1,000, and 10,000 CFU/10
ML was suitable for an observable virulence (insect mortality) and dose-response, and we
further calculated that 10-°, 104, and 1073 dilutions of OD600 of 1.0 culture would yield
approximately that number of cells per 10 pL injected. M. sexta larvae were raised,

injected as described above, and then observed over 72 h.

Results

Strains ID10 and HGB2511 belong to one of two subspecies of Xenorhabdus
griffiniae while Xenorhabdus sp. TH1 is a novel species

An X. griffiniae bacterial isolate (HGB2511) and its nematode host, a strain of
Steinernema hermaphroditum [24] are being developed as a genetically tractable model
for interrogating bacteria-host interactions [24, 25, 79]. To clarify the relationship between
HGB2511 and other related Xenorhabdus isolates, we sought to comparatively analyse
their genomes. We first sequenced the genome of three strains: HGB2511 [24], ID10, the
X. griffiniae type strain isolated from an Indonesian strain of S. hermaphroditum [27], and
TH1 isolated from Steinernema adamsi from Thailand [80]. For all three strains, we
obtained circularised genome assemblies of the bacterial chromosome that had <0.7%

contamination, >99.6% completion and >50x depth (Table 1).

Table 1. Characteristics of genomes assembled in this study. Characteristics were identified using analysis

tools on the Bacterial and Viral Bioinformatics Resource Center platform.
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Strain Total Completeness GC Total CDS tRNA rRNA Depth

length* (contamination) content (with functional genes genes
(bp) (%) assignments)
ID10 4767870 100% (0.4%) 43.91 4688 (70%) 80 22 432x
HGB2511 4594889 100% (0.2%) 43.78 4369 (72%) 81 22 4006x
THI 3770596 99.6% (0.7%) 43.48 3469 (78%) 81 22 496x

* The total length was equal to the Contig Nso (bp) since all three chromosome genome assemblies

circularised.

We leveraged these high-quality genomes to conduct a wide range of comparative
genome analyses, the first of which was taxonomic species delineation via both dDDH
and phylogenomics. These analyses both showed the same relationships among the X.
griffiniae and closely related species (Fig. 1 & Fig. S1 in Additional file 1). The type strain
designation of strain ID10 was corroborated by its lack of >70% pairwise dDDH values,
the threshold for conspecific strains [81], with any of the other type strains of Xenorhabdus
(Fig. 1A). Five additional strains were delineated as members of the X. griffiniae species,
as they each had pairwise dDDH values with strain ID10 that were above the 70%
threshold. Among the six X. griffiniae strains, two subspecies were evident due to
intragroup pairwise dDDH values that were all above the 80% threshold [82]. Strains from
Kenya, XN45, VH1, xg97, and Kalro, belonged to one subspecies while strains ID10 and
HGB2511 from Indonesia and India, respectively, belonged to another subspecies (Fig.
1A and 1B). Although Xenorhabdus sp. TH1 was the most closely related strain to X.
griffiniae HGB2511 and Xenorhabdus sp. BG5, itis an undescribed species of the genus

as it lacked pairwise dDDH values, with any of the type strains that were above 70% (Fig.
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1A). Indeed, in a pangenome of the seven strains, TH1 had the highest number of strain-
specific genes, and none of the ANI pairwise values between strain TH1 and its six closest
relatives met the 95% threshold [48] for conspecific strains (Fig. 2A, Supplementary Sheet
S13 in Additional file 2). Hence, Xenorhabdus sp. TH1 is a novel species of the
Xenorhabdus genus and not a strain of X. griffiniae as was stated in the description of its

nematode host [80].
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Fig. 1: Phylogenomic reconstruction of type strains of Xenorhabdus and other strains closely related to
Xenorhabdus griffiniae. A) This neighbour joining tree was reconstructed using genomic distances
calculated with the same formula (Genome Distance BLAST Phylogeny distance formula d5) used for
species delineation by digital DNA-DNA hybridisation (dDDH) analyses. Orange and aqua lines correlate
with dDDH boundaries for species (>70%) and subspecies (>80%), respectively. Strains of X. griffiniae
formed two subspecies, those from India-Indonesia (red) and those from Kenya (green). B) Bayesian
phylogenetic tree created using one-to-one orthologs from Xenorhabdus type strains, X. griffiniae strains,
and Photorhabdus asymbiotica as an outgroup. Posterior probabilities are equal to 1 (100%) unless
otherwise indicated at a given node. Strains of X. griffiniae formed two separate clades, those isolated from
S. hermaphroditum nematodes found in Indonesia (ID10) and India (HGB2511) (red) and those isolated
from nematodes found in Kenya (green).
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Fig. 2: Graphical representations of a pangenome of the Xenorhabdus griffiniae clade. A) Sunburst chart
of a pangenome of the seven closest known relatives of the X. griffiniae type strain coupled to a heatmap
of their average nucleotide identities (ANI). The pangenome contained 27,337 genes that were clustered
into 5,113 groups of orthologs known as gene clusters (GC). The genomes from which each of the GCs
was constituted are depicted in the sunburst chart as follows. Each concentric ring represents a genome
and each radius represents a GC. For each radius, a dark shade across a concentric ring denotes that the
GC is composed of genes from that genome. For the ANI heatmap, shades of red represent pairwise ANI
values between 95% (blush) and 100% (rose), the threshold values for conspecific strains. B) Loci encoding
type six secretions systems (T6SS) found only in X. griffiniae genomes, of those analysed here. Each
genome encoded two different T6SS, XG1-T6SS and XG2-T6SS. The core T6SS-encoding genes are
indicated (tssA-M). Other genes are in grey. Pairwise percentage nucleotide identities for shown genomic
loci that encode XG1-T6SS and XG2-T6SS ranged between 98-100% and 80-100%, respectively.

X. griffiniae species encode type six secretion systems with subspecies-specific
effectors
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The pangenome of the six X. griffiniae strains plus Xenorhabdus sp. TH1 (Fig. 2), the
most closely related known species to the X. griffiniae clade (Fig. 1), had a total of 27,337
genes. These were grouped into 5113 groups of orthologs, which we termed gene
clusters (GC). Out of these, 2347 GCs were core in that they contained orthologs from
every genome within the pangenome. On the other hand, a total of 369, 334, 282, 8, 4
and 7 GCs were unique to genomes of TH1, ID10, HGB2511, XN45, xg97 and VH1
respectively. Strain Kalro lacked unique GCs as all its GCs were present in the xg97
genome, even though their respective nematode hosts, Steinernema sp. Kalro and
Steinernema sp. 97 are likely two different undescribed species [83]. Accessory GCs,
each of which was composed of orthologs from between two and n-1 genomes, were
1739. Among these were 313 and 448 GCs, which were unique to genomes from the
India-Indonesia and Kenyan subspecies, respectively. GCs that encode traits that define
an X. griffiniae strain likely fall among the 319 GCs that were unique to X. griffiniae
genomes, of which, only 202 (63%) had known functions. Among these, T6SS function
was most enriched as it represented 12% of all X. griffiniae-specific genes (Sheet S2 in
Additional file 2). For the T6SS GCs, those specifically encoding core components tssA-
M were highly conserved as they had 95-100% combined homogeneity indexes—this is
an anvi'o pangenome metric for estimating the similarity of orthologs within a GC
calculated from sequence similarities and gap penalties derived from a multiple sequence
alignment (MSA) of amino acid sequences [44]. The higher the value the more the
positions with identical residues and no gaps within the MSA (Sheet S2 in Additional File
2). Upon deeper investigation, we found that all X. griffiniae genomes encode two

complete T6SS that we designated XG1-T6SS and XG2-T6SS (Fig. 2B). XG1-T6SS loci
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were almost identical across the six genomes, as the pairwise nucleotide percentage
identities for this locus were between 98-100% (Sheet S16 in Additional File 2). Moreover,
they were found in roughly the same chromosomal location (Fig. 3) in the four circularised
genomes (xg97, Kalro, HGB2511 and ID10). For XG2-T6SS, none of the six
corresponding genomic loci had pairwise nucleotide sequence identities that were less
than 80% (Sheet S16 in Additional File 2). However, the ID10 XG2-T6SS encoding locus
uniquely lacked tssK, tssJ and two other genes that were directly downstream of tssJ (Fig.
2). Like XG1-T6SS, the XG2-T6SS loci were also found in a similar chromosomal region
across the four circularised genomes (Fig. 3). Based on the high pairwise nucleotide
identities, we identified homologs of XG1-T6SS and XG2-T6SS-encoding loci in X.
szentirmaii US123, X. doucetiae™, X. cabanillasi™, X. hominickii ANU, X. nematophila™, X.
poinarii™ and X. bovienii SS-2004 (Sheet S16 in Additional File 2). The strain SS-2004
homologs were those identified by Chaston et al. [84] and designated T6SS-1 and T6SS-

2, respectively, by Kochanowsky et al. [85].

We further identified T6SS-associated GCs that are subspecies-specific. The Kenyan and
India-Indonesia subspecies have eight and nine subspecies-specific GCs, respectively.
The maijority of these are predicted to encode spike proteins annotated as VgrG or PAAR-
domain-containing Rhs proteins (Sheet S3 in Additional File 2). One Kenyan subspecies
GC encodes a tssF that was not part of the two complete T6SS-encoding loci. We
analysed the genes in the neighbourhood of the subspecies-specific PAAR-encoding loci
for genes that encode T6SS effector proteins and their cognate immunity proteins. We

found four such loci that are specific to the India-Indonesia subspecies
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Fig. 3: Loci of prophages and gene clusters encoding complete type six secretion systems (T6SS) and
xenorhabdicin (xnp1) in complete genomes of four Xenorhabdus griffiniae strains. Genomes of X. griffiniae

and XN45 and VH1 were not included in this analysis as they were not circularised, which often results in

a prophage locus being split over multiple contigs.

and that share similar gene content and synteny (Fig. S4 in Additional File 1). For each
of these four loci, their encoded PAAR proteins are highly similar since their amino acid
sequences had combined homogeneity indexes between 94-100% (Sheet S3 in
Additional File 2). These findings indicate that in X. griffiniae, the T6SS spike and its

cognate effector proteins may contribute to intraspecific traits. We extended these
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findings by predicting other putative secretion systems encoded across the sequenced
genomes using TXSScan (Table S1 in Additional File 1). The number of type | systems
varied across the genomes analysed, and at least one copy of flagellum, Type 4a pilus
(T4aP), Type 5a Secretion system (T5aSS), and Type 5b secretion system (T5bSS) were

identified in all the genomes analysed.

Prophages mediated the acquisition of both subspecies-specific and strain-
specific genes

We hypothesized that horizontal gene transfer was a major driver of subspeciation in X.
griffiniae, since the mobilome constituted the largest fraction of functionally annotated,
strain-specific genes (Fig. 4, sky blue=mobilome: prophages, transposons, plasmids),

and strain-specific genes result in speciation when they confer ecologically useful traits

Core Unigue genes Clusters of Orthologous Groups (COGs)
Bl Amino acid transport and metabolism
Pangenome HGB2511 ID10 Kalro TH1 [ Carbohydrate transport and metabolism
340 (56%) [l Cell cycle control, cell division, chromosome partitioning

19196 (6%)

411 (52%) 558 (56%)

454 (41%) ___ = Cell moiity

[l Cell walllmembrane/envelope biogenesis

3 Coenzyme transport and metabolism

[ Defense mechanisms

B Energy production and conversion

Bl Extracellular structures

3 Function unknown

Bl General function prediction only

B3 Inorganic ion transport and metabolism

3 Intracellular trafficking, secretion, and vesicular transport
3 Lipid transport and metabolism

0 Mobilome: prophages, transposons

Wl Nucleotide transport and metabolism

[ Posttranslational modification, protein tumover, chaperones

@ Replication, recombination and repair
[ RNA processing and modification
El Secondary metabolites biosynthesis, transport and catabolism

Bl Signal transduction mechanisms
Bl Transcription
B Translation, ribosomal structure and biogenesis

e

Fig. 4: Stacked bar charts depicting the Clusters of Orthologs Groups of proteins (COGs) of the core and

unique genes among four closely related Xenorhabdus strains. The core pangenome bar shows the COGs
of genes that are common to all genomes in the pangenome. The subsequent bars show the COGs of the
unique genes from the HGB2511, ID10, Kalro, and TH1 genomes derived from the previously described
pangenome analysis of X. griffiniae strains and Xenorhabdus sp. TH1 (Fig. 2A). The circularised Kalro

genome was used to represent the XN45, VH1 and Xg97 genomes as these four genomes are highly similar
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(>99.83% pairwise ANI values). The numbers on top of each bar are the total number of genes in each

category, followed by the percentage of those genes without COG designation in parentheses.

We first investigated this by inferring the evolution of gene content among the six strains
of X. griffiniae and Xenorhabdus sp. TH1.Strain BG5 was included in this analysis since
itis most closely related known species that diverged just before TH1 in our phylogenomic
reconstructions (Fig 1). We inferred that a net gene loss likely drove the speciation of
Xenorhabdus sp. TH1 (Fig. 5), consistent with its smaller genome size when compared

to those of X. griffiniae strains (Table 1).
227

Xenorhabdus sp. BG5

:‘:’;11 Xenorhabdus sp. TH1
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Fig. 5. Neighbour-joining phylogenomic tree depicting the evolution of gene content among strains of
Xenorhabdus griffiniae. ThreeThree species are depicted in this tree, Xenorhabdus sp. BG5,
Xenorhabdus sp. TH1 and X. griffiniae. For X. griffiniae, its India-Indonesia and Kenya subspecies are in
red and green, respectively. The emergence of both subspecies was likely associated with net gene

gains. Gene content analysis was conducted in COUNT applying Wagner parsimony.

Conversely, net gene gains possibly resulted in the formation of the two X. griffiniae
subspecies. We addressed the question of whether horizontal gene transfer (HGT) may
have mediated these gene gains by conducting a preliminary pangenome analysis of 49
Xenorhabdus strains. We found that the total number of phage-related genes accounted
for 55% of the variation in the proteome sizes among Xenorhabdus genomes. In this
analysis, the total number of phage-related genes accounted for 48.69% of the variation

in proteome sizes among the seven strains (adjusted r’=0.48691, p=0.04899983). Similar
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correlations for transposable elements (adjusted r?=0.23241, p=0.15) and plasmid-
related genes(adjusted r’= 0.1762, p=0.19) were insignificant. Based on this, we focused
on the identification of subspecies-specific and strain-specific genes that were linked with

prophages.

We first identified prophages in TH1, ID10, HGB2511, Kalro and xg97 (Fig. 3 and Fig. S2
in Additional File 1, Sheets S8-S11 and S15 in Additional File 2). Genomes of VH1 and
XN45 were excluded as they were too fragmented to yield robust results. Taxonomically,
all identified prophages in the five genomes belonged to the family Caudoviricetes (Sheet
S15 in Additional File 2). The genomes of HGB2511, ID10, Kalro, 97 and TH1, had ten,

nine, seven, seven, and three prophages, respectively.

To determine how these prophage numbers compared to those found in other strains, we
similarly identified prophages in ten other Xenorhabdus strains whose chromosomal
genomes were also assembled into one contig (Sheet S7 in Additional File 2). We found
an average of seven prophages per genome, ranging from 3 to 13, indicating that
HGB2511 and ID10 harbour higher-than-average numbers of prophages in their
genomes. Three prophage loci were similar across genomes: 1) ID10 prophage 3 and
HGB2511 prophage 3 which had 73% pairwise nucleotide percentage identities; 2) ID10
prophage 9 and HGB2511 prophage 5 with 61% pairwise nucleotide percentage identities
(Fig. S3 in Additional File 1); and 3) the locus (xnp7) [87], whose conserved and variable
regions (Fig. 6) had 95-96% and 51% average pairwise nucleotide percentage identities,
respectively. These regions were previously elucidated in strains of X. nematophila and

X. bovienii and shown to encode xenorhabdicin, an antimicrobial R-type pyocin, or tailocin
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Comparative analysis of xnp1 loci revealed that in ID10 it has been split into two loci that
were over in different parts of the genome(Fig. 3 & Fig. 6), probably due to transposition
events. The TH1 xnp7 locus included genes that encode O-antigen acetylase and
glycosyltransferases (Fig. 6) which may be involved in conferring immunity to
xenorhabdicins through modification of its likely receptor, lipopolysaccharide O antigen

[89].

To identify the specific genes contained in the identified prophage regions, we took ID10
prophages as an example (Fig. 7). Genes predicted to encode viral replication and
hypothetical proteins constituted 35 and 15 percent, respectively (Sheet S19 in Additional
File 2) whereas ‘cargo’ genes with non-virus, functional annotations constituted the
remaining half. These annotated cargo genes encoded diverse products, including toxin-
antitoxin systems that have wide-ranging effects on bacterial physiology and mobile
genetic elements within genomes [90], Importin-11, predicted to encode a nuclear
transport receptor that presumably would be delivered for modulation of animal host cell
physiology [91], and diguanylate cyclase, predicted to be part of a signal transduction

cascade mediated through the second messenger cyclic-di-GMP [92] (Fig. 7).
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Fig. 7: Graphical representation of predicted products of genes contained within prophage loci of
Xenorhabdus griffiniae 1D10. The genes could be categorized into three broad categories; annotated cargo

genes, viral replication genes and those whose products are unknown.

The identified prophages contained 45 and 38% of strain-specific genes in the HGB2511
and ID10 genomes, respectively. Likewise, 39 and 47% of India-Indonesia and Kenyan
subspecies-specific genes were from prophages (Fig. 5). Indeed, removal of prophage

regions from the four genomes elevated their pairwise dDDH values: Pairwise dDDH
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values between ID10 and strains HGB2511, Kalro, TH1 and xg97 rose by 3-3.2
percentage points when identified prophages were removed from all genomes (Sheet
S12 in Additional File 2). These findings demonstrate that, in X. griffiniae, a considerable

proportion of both subspecies and strain-specific genes were gained through prophages.
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Fig. 8: CRISPR-Cas regions of Xenorhabdus strains. A-C) Comparison of three CRISPR-Cas related
genomic regions in selected strains, anchored for synteny in the diagram using gntR (A), eda (B), or
nhaB (C). ORFs are indicated by solid block arrows (blue for cas genes, with the locus tag number of
cas3 provided) with annotated gene names indicated above, and identical colours indicating homology.
CRISPR repeat arrays (red vertical stripe block arrows) for each region (1a, 1b, 2) had variable number of
repeats (noted in parentheses). Start coordinates for each are shown underneath. Degenerate repeat
arrays are indicated by brackets. A conserved sequence [1aii; vertical red line] containing a repeat, a
spacer, and a degenerate repeat) was identified at the end of cas2, in all strains except BMMCB, which
lacks this gene (A). Another [1bi] was apparent at the end of cas3 in the eda locus of HGB2511, ID10,
and TH1 (B). D-F) The spacer sequences of each CRISPR array found at gntR (D), eda (E), or nhaB (F)
were compared for identity to each other or other loci among the analysed strains. Each box represents a

spacer, and different colours indicate different sequences. Spacers represented by black boxes and white
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lettering have 100% identity to “target” loci outside of the array, either within the same genome or within
one of the other genomes analysed here. gntR: DNA-binding transcriptional repressor; bleo/gloA:
bleomycin resistance/glyoxalase; tn: transposase; Ipp: lipoprotein; mem: membrane protein: DUF4056:
domain of unknown function 4056 gene; eda: 4-hydroxy-2-oxoglutarate aldolase; nhaB: Na(+):H(+)
antiporter NhaB; dsbB: protein thiolquinone oxidoreductase; cdiA: Deoxyribonuclease CdiA; palA/fhbA:
filamentous hemagglutinin; /uxR: LuxR family transcriptional regulator; cro/Cl: HTH cro/C1-type domain-
containing protein; symE: Type | addiction module toxin, SymE family; potA: spermidine preferential ABC
transporter ATP binding subunit; araC: AraC family transcriptional regulator; fyuA: Putative TonB-
dependent siderophore receptor; mfs: putative MFS transporter, signal transducer; cbbBC:
Molybdopterin-binding oxidoreductase; res: Type Il restriction endonuclease subunit R; mod: site-specific
DNA-methyltransferase (adenine-specific). The circularised Kalro genome was used to represent the

XN45, VH1 and Xg97 genomes as these four genomes are highly similar (>99.83% pairwise ANI values).

Comparative analysis of CRISPR-Cas, protospacer, and anti-CRISPR content

The high prevalence of prophages and prophage-mediated gene gains in X. griffiniae
genomes suggests that these bacterial symbionts relatively frequently encounter phage-
related foreign DNA. This prompted us to investigate the presence or absence of defence
systems in three X. griffiniae strains HGB2511, ID10, and Kalro (representative of the
XN45, VH1, and Xg97 genomes), as well as TH1 and BMMCB. Consistent with the
diversity of defence systems observed among bacterial genomes, including between
strains, each of the five strains analysed here encoded a unique repertoire of defence
systems relative to the others [93] (See Table S4 in Additional file 3). Each genome had
at least one type of restriction-modification system, which is described in more detail
below, as well as at least one type of toxin/antitoxin system, predicted to encode a stable
toxin and an unstable anti-toxin. All of the examined strains contained a copy of the Type
Il toxin-antitoxin system, MazEF that can elicit cell death in response to phage infection
in a process known as abortive infection [94]. Abortive infection, which can be triggered

by diverse defence pathways, kills the infected cell before phage reproduction can occur,
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thereby protecting the rest of the population [95]. All of the strains also encoded a Class
1-Subtype-I-E CRISPR-Cas immunity system [90]. Because CRISPR-Cas systems can
yield insights into strain diversity and prior history of phage exposure [96], we further
explored the content of these loci.

The genomes of each of the analysed X. griffiniae genomes and the close relative TH1
encode a syntenic locus containing a full set of Class1-Subtype-I-E cas genes encoded
adjacent to a gntR homolog (Fig. 8A; Table S5 in Additional file 3). The former closest
known relative of ID10, BMMCB, has an incomplete set of cas genes on a single contig,
with casD and cas2 lacking. However, since the BMMCB genome is fragmented, we
cannot rule out the possibility that these genes are encoded elsewhere. HGB2511, ID10,
and TH1 also have a second set of Class1-Subtype-I-E genes (but lacking cas? and cas?2)
encoded adjacent to an eda homolog (Fig. 8B). All strains except ID10 and BMMCB also
have three CRISPR arrays, comprising conserved repeats and variable targeting spacers
that are predicted to be transcribed and cleaved into non-coding, small (61 nt), targeting
CRISPR RNAs (crRNAs): array 1a, adjacent to the full set of cas genes at the gntR locus
(Fig. 8A,D), array 1b, adjacent to the eda homolog (Fig. 8B,E), and array 2, adjacent to a
dsbB gene (Fig. 8C,F). BMMCB lacks the CRISPR arrays adjacent to eda and dsbB.
Instead, BMMCB has a second CRISPR array with just two spacers in another region of
the genome (at coordinate 3720455, not shown in figure) that encodes phage-related
genes. This array falls at the edge of a contig break, so may not be an accurate reflection

of the repeats that might be present at this locus.
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Since spacer sequences are acquired in a directional manner in response to active
infection by foreign nucleic acid material (e.g., phages or plasmids), comparisons of
spacer content across related strains can be used to infer their shared life histories and
prior exposure to such threats [97, 98]. The spacer contents of CRISPR arrays 1a, 1b
and 2, is variable in number and sequence across the strains (Fig. 8D-F). Consistent with
the close relatedness of the Kenyan subspecies strains xg97, Kalro, XN45, and VH1, their
CRISPR spacer content is identical, except for the absence in XN45 of a duplicated
spacer found in array 1a of the other strains (Fig. 8D). Otherwise, there is no overlap in
spacer identity among CRISPR arrays of the different strains, indicating their divergence
prior to the acquisition of existing spacer content. Compared to the other X. griffiniae and
the close relative TH1, the CRISPR arrays in ID10 appear to have a limited number of
targeting spacers. Based on the presence of conserved repeat sequences, ID10 encodes
two (1ai and 1bii) bona fide, single repeat CRISPR loci at locations syntenic with regions
1a and 1b of the other strains. Three other loci (1aii, 1bi, and 2) appear to be remnants,
with only a single clear left repeat, a spacer, and a degenerate right repeat (Fig. 8A-C;

Additional File 3).

Table 2: Annotated spacer-protospacer content among X. griffiniae and related strains

GS:rtg(rfr?e Spla[;:er Spacer Sequence (5'-3) HGB2511

HGB2511 | 1a-14 CCAATGGTTCGAGAATTTTTATTGATACACCA 2 %

HGB2511 | 1a-18 TACTCCGATCCGACCGTCTATTCAGAAGATGG 777 /)

HGB2511 | 1a-23 | CCCAATTCAGGCATAGTAAGACCCCGATAAAC |/

HGB2511 | 1b-1 CCTTCTCGCCACTGCATATTTACTACAAAGAC

HGB2511 | 1b-3 CATCCCACTCAGAAATTCCGCGTTGGGATAAA |

HGB2511 | 1b-8 GGAATAATGCCCGTGATACGCAGCTCTTTCGGC 7777

HGB2511 | 1b-9 AGGTTATTCACATGGCAGATTGCCCGGTAGAA 77/

HGB2511 | 1b-11 AACGTTACAACCAGTGCCAGAATATCAATTGT U | ]
HGB2511 | 2-3 CTGAACAGGGGGACGGATTCAGCCGCCGTGAT /4 | |

Kalro 1b-1 ACAATCGTGCCATCACTGACCGCTGCATGTGT

Kalro 16-3 GTCAGTAGAAATTTCTTTTTAGTACCTAAAGA 88% )

TH1 1a-2 GCATTGCCGAAGACCAGATAATCCAGCACATA Y7
TH1 1a-5 CATTGATAATGTCAAAGTACTGGAACGCATTC 7,777
TH1 1a-9 GCATTGATCCGCTGGAAACCCTCGTCTTATTG 7/
THA 1a-21 | CAATGTTCCGCGTTCACGGGGATTATCCCACC 7/




TH1 1a-25 GCATGGAATCACATCCCGCTTCTCTGTTGGGA W//////////%

THA1 1a-30 GAAAACGCTTTTTGTCTCAGGATGTAATACAG

TH1 1b-19 CGACCCCTATCGCTTTTCCTGACTTACTGTCT

TH1 2-5 CCATTCAGTTTGTCCGCTATACGGTGATGCCG

TH1 2-7 AAACCAACCCAGAGTTACCATATTCGCCAGAC

TH1 2-15 TTCATGTAATTTATGTTGGTGTTCGTCCAGTT

THA1 2-26 CATAAAGGTTTGGAAAAATTCTTTAAAACAGG

TH1 2-31 GCCCTATTTAACATAATGGCTCTTAGGCGA

THA1 2-35 CGGCTATCCGATGTAATCACATATTTACCCAA

TH1 2-37 CTGGAAGAGAAAAAACGCCGGCTGGGTCTCGG

TH1 2-41 GCTGCTTGCCATCCTTGAGCAACACGAAACCG /

BMMCB | 1a-1 TTCACGCAAATCAGCCAGATCGATGTTGCCGT 77777
BMMCB 1a-3 CATCGCAAAATATCATCAAACTGTTGCGGGAT 7/

Spacer-encoding strain

phage region gene

restriction modification system
TIGR03750 conjugal family protein
DUF3277 domain-containing protein
DUF2829 domain-containing protein
gene of unknown function

filamentous hemagglutinin
ABC transporter

folD

gcvP

742  To gain insights into the types of threats encountered by X. griffiniae and related strains,

§
§
§

Protospacer
annotations

741

743  we searched for putative target sequences (known as protospacers) based on their
744  identity with CRISPR array spacer sequences. We found some spacers have 100%
745  identity to protospacers either within the same genome (self-targeting) or within one of
746  the other genomes analysed here (Table 2; Table S6 in Additional File 3). In many cases,
747  these protospacers were within phage-related, conjugation machinery, and restriction
748  modification systems, in line with the role of CRISPR systems in defending against these
749  types of mobile genetic elements [99, 100]. Consistent with their close relationship, the
750 Kenya clade demonstrated identical protospacer content in genes throughout the
751 genome, including several predicted to be targeted by CRISPR small RNAs from
752 HGB2511 (Table 2; Table S6 in Additional File 3).

753

754  Additional functional genes with protospacer sequences that could be targeted by crRNA

755  included those predicted to encode filamentous hemagglutinin (Kenya clade spacer 1b-
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1), an ABC transporter (Kenya clade spacer 1b-3), and the enzymes FolD (TH1 spacer
1a-5) and GcvP (BMMCB spacer 1a-3). Curiously, the palA/fhaB filamentous
hemagglutinin gene with self-identity to the Kenya clade spacer 1b-1 is encoded in the
dsb locus, in proximity to the Kenya clade spacer region 2 (Fig. 8C). Since spacer self-
identity would presumably result in self-intoxication, we hypothesize the genome also
encodes an anti-CRISPR immunity mechanism such as anti-CRISPR proteins known as
Acr. These proteins are difficult to predict with sequence similarity because they vary
widely [100]. We manually searched for such loci in the selected genomes using a “guilt-
by-association" approach of putative Acr by identifying small open reading frames in
proximity to the protospacer-containing gene and a helix-turn-helix (HTH) domain-
containing gene, which is predicted to be the anti-CRISPR regulator. Of the self-targeting
protospacers we detected, only the one in palA/fhaB of the Kenyan subclade had a
promising candidate based on these criteria (Fig. 8C; Additional File 3). The putative Acr
is a DUF2247 domain-containing protein (e.g., JASDYBO01_14371) which is predicted to
encode a protein of 171 aa and is encoded near an HTH cro/C1-type domain-containing
protein (e.g., JASDYBO01_14369) that may be a putative Aca transcriptional regulator

[100].

Restriction Modification Systems

In addition to CRISPR arrays, restriction-modification systems resist the introduction of
foreign DNA, including phage infection, by detecting and cleaving non-chromosomal
DNA. Restriction-modification systems can be classified based on their structure, cofactor
requirements, DNA recognition site and relative cleavage locations [101, 102]. Type |, Il,

and lll all encode both a restriction endonuclease and a methyltransferase, whereas Type
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IV endonucleases cleave modified DNA (such as 5-hydroxymethylcytosine) and variably
encode an adjoining methyltransferase [102]. There are also anti-restriction proteins
which inhibit restriction modification systems by various mechanisms. We predicted the
number and type of complete restriction-modification systems and anti-restriction proteins
in the BMMCB, TH1, HGB2511, ID10 and Kalro genomes (Table S2 in Additional File 3).
Type | and Il systems were the most prevalent across the genomes. Only the HGB2511
genome encoded a complete Type lll system, while ID10, Kalro, and TH1 genomes each
encoded Type IV restriction endonucleases. The genomes of all X. griffiniae and
Xenorhabdus sp. TH1 encoded at least one anti-restriction protein, with ID10 appearing
to encode seven anti-restriction proteins, by far the largest complement (Table S2 in

Additional File 3).

X. griffiniae encode the biosynthesis of diverse natural products

A Xenorhabdus bacterium occupies the uncanny ecological role of both a mutualist of
soil-dwelling nematodes and a parasite of diverse insects. A means it uses to juggle this
Jekyll and Hyde lifestyle is the production of potpourri of peptides, polyketides,
siderophores, aminoglycosides, and toxin proteins and complexes. Hence, Xenorhabdus
genomes often comprise loci, known generally as biosynthetic gene clusters (BGCs),
which are responsible for the biosynthesis of some of these natural products. A BGC can
include many genes, often under the control of one promoter, which collectively encode
the production pathway of a single natural product and its derivatives. Commensurate
with its genus, which ranks among those that produce the most diverse set of natural

products [103], the X. griffiniae ID10 genome contained over 21 biosynthetic gene
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clusters that were predicted to encode the production of over ten different types of natural

products (Fig. 9; Table S3 in Additional File 1).
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Fig. 9: Genomic loci of known biosynthetic gene clusters in the X. griffiniae ID10 genome and predicted
chemical structures of the natural products whose biosynthesis they encode. The paxABC, darABCDE and
xabABCD BGCs were predicted to encode the production of potentially novel derivatives of PAX peptides
(8), darobactin (5) and xenoamicin (4), respectively, that differed from known structures in amino acid
building blocks at positions highlighted in red. Safracin (1), gameXpeptide C (2), benzobactin (3),
photoxenobactin (6), type 2 bovienimide (7), rhabduscin (9), 3-isopropyl-4-oxo-2-oxetanecarboxylic acid

(10), arylpolyene (11).

Fourteen of these ID10 biosynthetic gene clusters (BGCs) are predicted to encode the
biosynthesis of either known compounds or their derivatives (Fig. 9; Table S3 in Additional
File 1). For example, the IpcS and isnAB,GT BGCs in the ID10 genome are predicted to
encode the production of group IlA  bovienimides [104] and rhabduscin [105],

respectively, both of which are insect immunity suppressors, the pxb BGC which encodes
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the production of the insecticidal photoxenobactins [20], and safA-H, ioc/leu, xvbA-J,
bcmA-G, and ape BGCs which respectively encode the production of safracin antibiotics,
3-isopropyl-4-oxo-2-oxetanecarboxylic acid (IOC), benzobactins, bicyclomycins, and aryl
polyenes [20, 106-108]. The gxpS BGC was predicted to encode the synthesis of
GameXPeptide C [109], as their predicted peptide sequence was PVal--Val-PLeu--Val-
LLeu. In contrast, each member of the X. griffiniae India-Indonesia subspecies had a
unique set of BGCs. Specifically, the HGB2511 strain lacked BGCs that encoded the
production of rhabduscin, benzobactin, bicyclomycin and actinospectacin, all of which

were present in the ID10 genome (Table S3 in Additional File 1).

Notably, the ID10 genome contained known BGCs but the predicted biosynthetic products
are previously unknown derivatives. For example, the ID10 paxABC BGC, which encodes
the biosynthesis of PAX peptides, is predicted to encode an heptapeptide backbone of
LSer-tLys-Lys-PLys-PLys-PLys-PLys, which differs from those of X. nematophila [110] and
X. khoisanae [111] by having -Ser at position one instead of Gly, since the respective
Stachelhaus code was DVWHLSLIDK and not DILQIGLIWK. The xabABCD BGC is
predicted to encode the biosynthesis novel xenoamicins that incorporate Plle in lieu of
Dval [112] at position eight of the tetradodecapeptide backbone. However, since
predictions based on Stachelhaus codes are prone to inaccuracies, only the chemical
structure elucidation of these peptides can determine whether they are indeed novel
derivatives. The synthesis of novel derivatives is also predicted for BGCs that encode the
biosynthesis of the known ribosomally-synthesized and post-translationally modified

peptide (RiPP), darobactin [113], since the ID10 darABCDE BGC was predicted to
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encode the biosynthesis a core peptide with the sequence Trp-Asn-Trp-Ser-Lys-Gly-Phe

and not Trp-Asn-Trp-Ser-Lys-Ser-Phe.

X. griffiniae encode entomotoxins and are insecticidal to Manduca sexta

An essential part of the Steinernema-Xenorhabdus entomopathogenic lifecycle, is the
ability of the host-symbiont pair to infect and kill insect hosts, and Xenorhabdus produce
virulence factors that target other microorganisms competing for the nutritious insect
cadaver [7]. To better understand the toxic potential of the X. griffiniae bacteria, we mined
the HGB2511, ID10, Kalro and TH1 genomes for toxin-domain-containing loci. Using a
list of known toxins found in other Xenorhabdus [19, 71] we identified homologs of genes
encoding the known insecticidal toxins Mcf “makes caterpillars floppy” and PirAB in each
of the strains [114-116], along with proteins homologous to the MARTX toxin family
(Table 3). Similar to X. innexi HGB1681, the MARTX proteins in HGB2511, ID10, Kalro
and TH1 each lack four of the A repeats at the N-terminus of the protein (A A3-7), leaving
nine repeats compared to the 14 found in X. nematophila 19061, X. bovienii SS-2004
(Jollieti), and Vibrio species [71, 117] (Fig. S5 in Additional File 1). It remains unclear how

these differences in repeat structure might impact MARTX protein function in X. griffiniae.

Insecticidal Tc toxins are three-part toxin complexes (TcA, TcB, and TcC type) commonly
found in entomopathogenic bacteria, including in some Xenorhabdus species [118]. Tc
toxin family proteins were notably absent from the X. griffiniae HGB2511, ID10 and Kalro
genomes and the Xenorhabdus sp. TH1 genome (Table 3). No evidence was found of

homologs of Shiga toxin (stx7a) related genes, such as those found in X. bovienii (Table
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3) [19]. Within the ID10 genome we identified a putative insecticidal toxin
(XGHID_v1_0629), a homolog of which was also found in the HGB2511 genome
(XGHIN1_v1_3228). These genes are homologs of a Photorhabdus asymbiotica gene
(PAU_03337) (Fig. 6B) that encodes Photorhabdus dNTP pyrophosphatase 1 (Pdp1), a
cytotoxic protein that not only kills immune cells by reducing their intracellular deposits of
deoxynucleotide triphosphates (ANTPs) but is also an effector protein of the extracellular
contractile injection system (eCIS) known as Photorhabdus virulence cassette (PVC)
[119]. Indeed, analysis of genes upstream pdp17 revealed that both ID10 and HGB2511
encode PVCs (Fig 6B). Although PVCs are phage tail-like particles that are structurally
similar to xenorhabdicin (Fig 6B), they differ by having within their tube, effector proteins
that are translocated into the target cell, upon tail fibre-mediated binding and subsequent
tail sheath contraction [120]. Notably, when loci that encode eCIS and T6SS were found
on the same genome, core genes often lacked from T6SS encoding loci [121], probably
explaining why tssK;, tssJ are absent from the XG2-T6SS encoding locus of ID10.The N-
terminus (50aa) of the Photorhabdus asymbiotica Pdp1 acts as a signal peptide for
secretion through the PVC [122]. Amino acid alignment of the ID10 and HGB2511 Pdp1
proteins with the Photorhabdus Pdp1 and two non-PVC secreted homologs [122]
revealed amino acids at the N-terminus of the Xenorhabdus proteins that could act as a

signal peptide for PVC secretion (Fig. S6, Additional File 1).

A de novo search for other toxin homologs using PathoFact software on our genomes of
interest revealed two strain-specific loci of particular interest [72]. The Xenorhabdus sp.

TH1 genome contains a complete hydrogen cyanide synthase locus (hcnABC) (Table 3).
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hcnABC is found in plant-associated and entomopathogenic bacteria [123] where it plays
a role in insect killing. Notably, hcnABC was recently identified in the genome of a
steinernematid-associated Pseudomonas piscis bacterium [83]. In the X. griffiniae Kalro
genome, three proteins with zonular occludens toxin (zot) domains were identified
(JASDYBO01_14222, JASDYBO01_14237, JASDYB01_14239) (Table 3). Zonula
occludens toxin (Zot) domain-containing proteins target the eukaryotic cell cytoskeleton
and compromise the structure of intercellular tight junctions, leading to a permeabilization
of epithelia [124, 125]. Homologs of the three Zot domain-containing proteins found in
Kalro were also identified in xg97, VH1 and XN45, and BLASTp revealed other Zot
domain-containing proteins in other Xenorhabdus species (including X. bovienii, X.
khoisanae, X. eapokensis, X. ehlersii and X. innexi). JASDYBO01_14222 and
JASDYBO01_14237 are each predicted to encode a transmembrane helix and to be
membrane embedded, whereas JASDYBO01_ 14239 is a considerably shorter peptide
lacking both transmembrane domains and secretory signals. These Zot domain-
containing proteins may affect the insect midgut as part of an oral route of infection [126],

or destroy insect epithelial tissues when the bacteria are released into the hemocoel.

Table 3: Putative entomotoxin-encoding genes in Xenorhabdus griffiniae and TH1 genomes

Putative toxin

gene name blast sequence 2511 ID10 Kalro TH1

mcf XNC1_2265 XGHIN1_v1 3249 | XGHID_v1_0647 JASDYBO01_13066 | XTH1 v2 2642

MARTX XNC1_1381 XGHIN1_v1 2845 | XGHID_v1_1587 JASDYBO01_ 13503 | XTH1 v2 2371

prtA XNC1_4025 XGHIN1_v1 3782 | XGHID_v1_0525 JASDYBO01 12528 | XTH1 v2 551

HIP57 (GroEL) XNC1_3605 XGHIN1_v1 3711 | XGHID_v1_1038 JASDYBO01_12581 XTH1_v2 2959
XNC1_ 3766, XGHID_v1_0927, | JASDYBO01_12687,

xaxAB XNC1 3767 none found XGHID v1 0928 JASDYBO01 12688 none found

xhlA and B, XNC1_4556, XGHIN_v1_0252, | XGHID_v1_0280, | JASDYBO01_11642, | XTH1_v2_0208,

tpsA and B XNC1_4555 XGHIN_v1_0253 XGHID _v1_0281 JASDYBO01_11641 XTH1_v2 0209

xhlA hemolysin | XNC1_3177 XGHIN1_v1_ 1428 | XGHID_v1_3009 JASDYBO01_10378 | XTH1 v2 1082
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stx1a XBl1v2 2730004 none found none found none found none found
XptA2 XNC1 2569 none found none found none found none found
XNC1_2333 + 2334,
XNC1_2560 + 2561,
XNC1_2566,
XNC1_2569,
XNC1_3020 + 3021 +
3022 +3023 + 3024,
Tc toxins (A) and XNC1_2187 none found none found none found none found
XNC1_2186,
XNC1_2335,
Tc toxins (B) XNC1 2568 none found none found none found none found
XNC1_2188,
XNC1_2336,
Tc toxins (C) XNC1_2567 none found none found none found none found
Chitinase XNC1_ 2562 none found none found none found none found
putative
chitinases XGHIN1_v1_0490 XGHIN1_v1 0490 | XGHID_v1_3568 JASDYBO01_12511 none found
putative
chitinases XGHIN1_v1_3307 XGHIN1_v1_3307 | XGHID_v1_0504 none found none found
putative
chitinases XGHIN1 v1 4103 XGHIN1 v1 4103 | none found none found none found
XNC1_1142, and
Pir toxins XNC1_1143 XGHIN1_v1_ 1121 | XGHID_v1_3432 JASDYBO01_10835 | XTH1 v2 858
TPS-Fha (txp40) | XNC1_1129 none found none found none found none found

Xenocin XNC1_1221-1223 XGHIN1_v1_1178 | XGHID_v1_3165 JASDYBO01_10762 | XTH1 v2 0927

insecticidal

toxin (as

annotated in

ID10 genome) XGHID v1 0629 XGHIN1 v1 3228 | XGHID v1 0629 none found none found
XTH1_v2_1430-

hcnABC XTH1_v2 1430-1432 | none found none found none found 1432

zonula

occludens toxin | JASDYBO01 14222 none found none found JASDYBO01_ 14222 none found

zonula

occludens toxin | JASDYB01_14237 none found none found JASDYBO01_14237 | none found

zonula

occludens toxin | JASDYBO01 14239 none found none found JASDYBO01 14239 none found
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Fig. 10: Comparative entomopathogenicity of Xenorhabdus bacteria to Manduca sexta larvae. Lines
represent survival curves for insect larvae injected with approximately 1000 cells of each strain. Values

have been corrected with Abbot's formula within the table below.

The diversity of toxin coding potential within the analysed Xenorhabdus genomes suggest
possible differences in their entomopathogenicity. To begin to interrogate this possibility,
we assessed the survival of fifth instar Manduca sexta insect larvae over a 72 h period
after injection with five Xenorhabdus strains at three concentrations. We aimed to
compare the strains at an inoculum of ~1000 cells because at that dosage our controls,
X. nematophila (19061) and X. innexi (HGB1681) were previously shown to induce near
to 100% lethality and <10% lethality, respectively [71], and indeed, these trends were
recapitulated in our study (Fig. 10). Each bacterial strain displayed a dose-dependent
survival response, with the highest inoculum resulting in the greatest mortality (Fig. S7,

Additional File 1). Insects injected with ~1000 cells of X. griffiniae ID10 displayed robust
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survival, like X. innexi, whereas greater than 50% of the animals injected with
approximately the same number of X. griffiniae HGB2511 and Xenorhabdus sp. TH1 cells
succumbed within 72 h of injection, like the level observed for X. nematophila (Fig. 10).
These results reveal that the isolates tested have different levels of virulence against

Lepidopteran insects.

Discussion

As part of their symbiotic and entomopathogenic lifecycle, all Xenorhabdus must colonize
and be transported by a nematode host, suppress insect immunity, establish a community
within and consume the cadaver, and support reproduction of the nematode to ensure
future transport [10]. Many will also compete or cooperate with other resident or transient
microbial community members and respond to variations in abiotic factors and higher-
order trophic interactions. Here we conducted a comparative genomics analysis to gain
insights into the consequences of such variable selective pressures on the evolution of
Xenorhabdus genome content. Our analysis centred around seven related Xenorhabdus
strains, chosen based on their close phylogenetic proximity to X. griffiniae. Strains of this
Xenorhabdus species are particularly relevant to the development of laboratory model
systems used to study nematode-bacteria symbiosis because they are symbionts of S.

hermaphroditum, currently the most genetically tractable steinernematid [24, 127, 25].

To allow detailed comparative genome analyses, we assembled new high-quality,
circularised genomes for three strains: X. griffiniae 1D10T, HGB2511, and TH1 (Table 1)

[27, 24, 80]. High-quality genomes were already available for four other strains previously
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identified as X. griffiniae: xg97, Kalro, XN45 and VH1 [16, 83]. HGB2511 and the Kenyan
isolates were verified as X. griffiniae species, as defined by a genome with pairwise
values for dDDH and ANI that are >70% [128] and >95% [48] thresholds, respectively,
with that of the type strain ID10 (Figure 1) [27]. Consistent with previous findings [16], our
analysis confirmed that strain BMMCB is not an X. griffiniae strain as originally designated
[129]. Instead, we found that strain BMMCB is likely conspecific with Xenorhabdus sp.
SF857 (Sheet S1 in Additional File 2), the recently described type strain of a novel species
X. bakwenae [8]. Strain TH1 is not conspecific to ID10 nor any other type strain, making
it a novel species within the Xenorhabdus genus. These conclusions were further
supported by phylogenetic reconstructions which revealed that Xenorhabdus sp. TH1
does not cluster with X. griffiniae but shares a last common ancestor with the progenitor
of the X. griffiniae clade (Fig. 1). From our findings on the evolution of gene content, we
speculate that TH1 diverged, primarily through gene losses, from the progenitor of the X.
griffiniae clade to ultimately form its species (Fig. 5), similar to the speciation observed in

Bordetella pertussis [130].

Phage-related genes are known drivers of genome variation between closely related
strains [131] and previously were implicated as drivers of the differences in gene content
among other close Xenorhabdus relatives of X. griffiniae [16]. The X. griffiniae genomes
we analysed were found to be enriched in mobilome content, with phage-related genes
specifically driving the diversification of subspecies and strains. We found that the India-
Indonesia and Kenyan subspecies arose from the net gain of genes, of which 39-47%

were from prophages (Fig. 4&5). Further, we found that the proportion of X. griffiniae
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strain-specific genes of prophage origin is 35-48%. This is especially high, considering
that for example, of 30 Bifidobacterium strains examined, the highest proportion of strain-
specific genes of prophage origin observed was only between 0.03-35.4% [132].
Moreover, X. griffiniae prophage regions reduced pairwise dDDH values among them by
three percentage points. In Salmonella enterica prophage sequences have been shown
to be highly variable and differentially conserved among strains, making them key drivers
of genome diversification and useful markers for serovar typing [133, 134], Similarly, we
conclude that in X. griffiniae prophages possibly are major drivers of subspeciation and

strain differentiation.

An essential component of the Xenorhabdus lifestyle is interaction with other organisms,
including competing microbes, the mutualistic nematode host, and the prey insect host.
Among the molecular machines that facilitate bacterial manipulation of other organisms
is the T6SS, which delivers effectors into target (non-self) cells [135]. In this study, we
found a high sequence similarity of corresponding X. griffiniae T6SS-encoding loci, but
gene content variability in loci encoding concomitant effector proteins. This indicates that
effector proteins possibly contribute to traits that vary within a species. One of these traits
is nematode host specificity, which varies within both X. griffiniae and X. bovienii species
[7]. In X. bovienii, the inactivation of vgrG in XG2-T6SS loci in strain SS-2004 resulted in
the near loss (200-fold decrease) of the bacterium's capacity to colonise its nematode
host [136]. Although we found that the presence and sequence of VgrG does not appear
to vary across X. griffiniae (or other Xenorhabdus), the genes encoding the effector

proteins transported by VgrG do vary among the X. griffiniae species. Therefore, we
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speculate that one or more X. griffiniae VgrG-associated effector proteins may determine
a strain’s capacity to naturally colonise its specific nematode host, similar to the

conclusion reached about the T6SS function in X. bovienii SS-2004 [136].

CRISPR content and spacer identities support the conclusion that the strains studied here
are diversifying due to phage pressure and reflect the taxonomic relationships we
observed. The Kenyan subclade has nearly identical CIRSPR-Cas loci, consistent with
their very close relationship. The only difference is that the XN45 CRISPR array 1a
appears to lack a repeated spacer that the others have. Considering the Kenyan subclade
as a single group, all the genomes were distinct from each other with respect to CRISPR
spacer content, indicative of their unique histories in exposure to, and successful defence
from phages and mobile genetic elements. Consistent with this, non-self-targeting
protospacers identified within the group could be found within prophage genes and
conjugation machinery in the genomes of the other strains. Our analysis identified
instances of potential self-targeting, which offered the opportunity to search for anti-
CRISPR genes, which are a key aspect of the co-evolution of phage and defence systems
and have potential utility in applications of CRISPR technologies [100]. In the Kenyan
subclade, we identified one clear candidate for such an anti-CRISPR locus comprising an
HTH-domain Aca regulatory candidate and a small DUF2247 domain-containing protein
ORF of 171 amino acids (aa), adjacent to the protospacer-containing gene palA/fhaB,
which is also in the same region as a CRISPR array. However, DUF2247 proteins are
also known as “imm38” and their presence within polymorphic toxin loci, such as

palA/fhaB, has implicated them as immunity proteins to these toxins [137]. Consistent
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with this possibility, members of the Kenyan clade are the only strains of those analysed
here that appear to have both a DUF2247 ORF and full-length palA/fhaB genes in that

locus.

The X. griffiniae and Xenorhabdus sp. TH1 genomes we compared all bear hallmarks of
the entomopathogenicity characteristic of the Xenorhabdus genus. However, when
cultures were injected into M. sexta insect larva, the ID10 strain displayed attenuated
virulence when compared with HGB2511 and TH1. The magnitude of this difference was
directly comparable to the difference in virulence observed between X. innexi and X.
nematophila species [71]. Members of the X. bovienii species group have demonstrated
a similar range of virulence phenotypes when injected in the absence of the vectoring
nematodes [138]. These differences may be due to genomic variation between the closely
related species. Notably, we identified strain specific toxin loci, such as the hcnABC locus
in TH1 and the zot domain containing toxins in the Kenyan clade that may underly
different mechanisms or levels of virulence in X. griffiniae and its closest relative (Fig. 10;
Table 3). It is also possible that the lack of virulence observed for ID10 is due to gene
expression programs which control phenotypic variation locking the isolate in a state of
attenuated virulence [139, 140]. If so, we predict that other isolates of the ID10 strain may
retain high levels of virulence, similar to what has been observed for other Xenorhabdus
species [139, 141, 142]. Alternatively, the ecological insect host range of ID10 may be
distinctive enough from other X. griffiniae that it has lost the ability to infect the
Lepidopteran insect Manduca sexta that we tested here, or the nematode may carry most

of the virulence potential between the host-symbiont pair [143].
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Conclusion

This study yielded three complete genome assemblies, which were of X. griffiniae ID10,
X. griffiniae HGB2511 and Xenorhabdus sp. TH1. Xenorhabdus sp. TH1 is a novel
bacterial species and putative type strain with the temporary designation Candidatus
Xenorhabdus lamphunensis, while X. griffiniae contained two subspecies. Both CRISPR
loci and loci encoding T6SS effector proteins divided along these X. griffiniae subspecies
lines. Intraspecific variation, including subspeciation, was largely driven by prophages. In
terms of biosynthetic potential, X. griffiniae genomes encoded the production pathways
of diverse and biotechnologically useful natural products such as antibacterials,
antiprotozoals, and insecticidal toxins. Intraspecific variation in biosynthetic potential was
observed, which we substantiated by the different levels of entomopathogenicity, among
X. griffiniae strains, to M. sexta. Ultimately, these genome assemblies and genomic
insights are foundational for continuing studies into the symbiosis between X. griffiniae
and its self-fertilizing nematode host, S. hermaphroditum.
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analysis of secretion systems, maximum likelihood phylogenies, prophages and
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type six effector protein loci identification, MARTX locus alignments, and dose
response assays for strains used in insect virulence assays

Table S1: Comparison of the number of putative secretion systems that are present
Xenorhabdus griffinae strains. Table S2. Loci encoding putative restriction modification
systems identified by homology and genome annotation searches. Table S3: Biosynthetic
gene clusters (BGCs) in the Xenorhabdus griffiniae 1D10 genome. Figure S1: Maximum
likelihood phylogenetic tree created using RAXML with one-to-one orthologs from
Xenorhabdus type strains, closely related X. griffiniae strains, and Photorhabdus
asymbiotica as an outgroup. Figure S2: Loci of prophages and xnp17 in the complete
Xenorhabdus sp. TH1 genome. Figure S3: Dotplots of prophage loci that were
considerably similar between strains. Figure S4: Schematic of subspecies-specific type
six secretion system (T6SS) effector-encoding loci in six strains of Xenorhabdus griffiniae.
Figure S5: MARTX protein multiple sequence alignments Figure S6: Pdp1 protein
multiple sequence alignment Figure S7: Percentage survival of Manduca sexta post
injection with multiple concentrations of Xenorhabdus bacteria strains tested.
Additional file 2. Excel workbook containing raw data and results of all genome
analyses.

Data tables which collectively contain raw data and values from pangenome, dDDH, ANI,
biosynthetic gene cluster, prophage analyses; defence systems; phyletic patterns;
genome accession numbers and names of strains used.

Additional file 3. Word document with additional details of the detection of
Xenorhabdus griffiniae defense systems and analysis of defense systems CRISPR

loci
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Table S4. Summary of defense systems in X. griffiniae and related strains. Table S5.
Locus tags and coordinates of CRISPR-Cas features. Table S6. CRISPR spacers,
protospacers, concomitant annotation and genome wherein they are located. Methods
and results for X. griffiniae CRISPR repeats, protospacers and self-targeting immunity.
Additional file 4. Excel workbook of putative insect toxins encoded by
Xenorhabdus strains

These sheets contain raw data of the toxin domain-containing proteins that are unique
among the X. griffiniae and Xenorhabdus sp. TH1 species. Also contained herein, is raw
data from the comparison between the combined toxin library outputs for the X. griffiniae
and Xenorhabdus sp. TH1 species with the output for X nematophila 19061. Also
provided are the raw “toxin library” summary outputs from the PathoFact software used

in the analyses.
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