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ABSTRACT: This study investigates the electronic interactions
and charge redistribution at the dopant—support interface using a
Cu/CogSeg cluster construct. Specifically, the redox cluster series
[Cu;CogSegLg]” ([1-Cuy]"; n =0, —1, —2, —3; L = Ph,PNTol", Ph
= phenyl, Tol = p-tolyl) spanning four distinct oxidation states is
synthesized and characterized using a multitude of techniques,
including multinuclear NMR, UV-vis, XANES, and X-ray
crystallography. Structural investigations indicate that the clusters
are isostructural and chiral, adopting a pseudo-D; symmetry.
Paramagnetic *'P NMR spectroscopy and solution-phase magnetic
measurements together with DFT calculations are employed to
interrogate the electronic structure and spin-state changes across
the [1-Cu;]% to 1-Cu, redox series, revealing that the copper edge
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sites retain a +1 oxidation state while the Co/Se core becomes increasingly oxidized, yielding a highly zwitterionic cluster.

B INTRODUCTION

Redox-active dopants can dramatically impact the catalytic
activity of transition metal chalcogenide materials, but a
detailed, atomic-level understanding of how the structural and
electronic interactions at the dopant/host interface modulate
reactivity remains elusive.' "~ For example, introducing Cu(II)
centers in MoS, materials stunts hydrodesulfurization and has
little impact on hydrogen evolution, whereas Co(II) or Ni(II)
improves both.”® This promoter/inhibitor effect of the
dopants (M) is still not completely understood and has been
correlated with the ability of the dopants to reduce or oxidize
the molybdenum, or to modify the strength of the M—S
bonds, the morphology of the catalyst, the reactivity of sulfur
active sites, and the substrate chemisorption energies.” > In
contrast to the structurally complex M—Mo-S materials,
transition metal chalcogenide molecular clusters can be
prepared with precise and uniform structures and composi-
tions, offering the potential to investigate specific motifs found
within heterogeneous catalysts.”"”

Our group introduced a family of transition metal
chalcogenide clusters that bear resemblance to edge-decorated
active sites of M—Mo-S catalysts'® and ternary M/MogSs
Chevrel phases,’” and that contain well-defined active sites.’
Specifically, nanoclusters M;Co¢SegL¢ (1-My; M = Cr, Fe, Co,
Zn, Me,Sn; L = Ph,PNTol~) and MCoSeg(PEt;),L, (2-M, M
= Cr—Co, Cu, Zn) contain low-coordinate edge site “dopants”
(M), which can double as active sites, anchored on a redox-
active, diamagnetic [CosSeg] cluster “support” (Figure
1).%297%% These structurally modular, catalytically active
clusters enabled us to pursue systematic structure/function
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studies to map the role of metal/support interactions and inter-
active site (allosteric) interactions in catalysis. Mapping charge
redistribution across multiple metals, particularly in response
to chemical events, remains a topic of intense investigation in
the molecular cluster community.”*™** The M/Co4Se inter-
face in our clusters is unique as it enables probing charge
redistribution between a metal dopant and the support unit
and its impact on catalysis. Prior investigations have revealed
the presence of distinct regimes of metal/support coopera-
tivity.'>>**" For instance, in a redox-independent regime, holes
are localized exclusively on the edge site during an oxidative
reaction. This is the case in CrCosSeg(PEt;),L, (2-Cr) where
Cr(1I) is significantly more reducing than the Co/Se cluster."’
In contrast, in a redox cooperative regime, the edge and
[CogSes] cluster have similar reducing powers and good orbital
overlap. The edge metal and the [Co,Se] cluster can therefore
share the burden of oxidation, as in CoCogSeg(PEt;),L, (2-
Co)."” Spontaneous charge transfer can also occur between the
edge and the support. For example, the single-edge cluster
CuCogSeg(PEt;), L, (2-Cu) is synthesized from a Cu(II)
source and a neutral CogSeg cluster, and yet 2-Cu is best
described as a Cu(I) edge installed on a mono-oxidized
[CogSeg]* unit."”
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Figure 1. Ternary nanoclusters 1-Mj; feature three edge sites (M>") anchored on a diamagnetic cluster core [Co,Ses]’. Spontaneous edge/core

electron transfer occurs when Cu?* edge sites are installed.

Here, the limits of the spontaneous charge redistribution at
the metal/support interface of a molecular cluster are tested by
increasing the number of Cu centers on the [Co,Se;] unit from
one to three. The presence of multiple edge sites in a putative
tricopper cluster could have interesting electronic consequen-
ces (Figure 1). Two scenarios are envisioned, which could
coexist via valence tautomerism.>’>* In the first, three
electron transfer events occur to produce a tricopper cluster
in which three Cu(I) edge sites are installed on the elusive
trioxidized [CogSeg]** unit.**”*> The second scenario would
illustrate a redox allostery of the edge sites,””** producing a
mixture of Cu(I)/Cu(Il) edge sites anchored on an oxidized
[CogSes]” unit (n = +1, + 2). Our findings suggest that the
former scenario is favored, and no clear evidence of valence
tautomerism is observed across a wide window of redox states.

B RESULTS AND DISCUSSION

Treatment of the hexalithiated salt Lig(py)sCosSesls (1-
Lis(py)s; py = pyridine) with copper(I) bromide dimethyl
sulfide (6.1 equiv) produces a single, paramagnetic cluster over
the course of 16 h. This compound is isolated as a dark brown
crystalline solid following a standard solvent workup (Scheme
1a). In solution, the product is symmetrical and contains no
bound solvent. NMR spectroscopy analysis reveals a single 'H
environment for the amidophosphine ligand and a broad *'P
peak at —1065 ppm (v, = 1180 Hz), indicative of
paramagnetism (Figures S8 and S9).

Scheme 1. Synthesis of [Li(thf),][1-Cu;] and [Li(thf),],[1-
Cu,]
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Single-crystal X-ray diffraction analysis identified this species
as the tricopper cluster salt [Li(thf),][1-Cu;] (thf =
tetrahydrofuran), where each of the three edge sites is
occupied by a single copper atom free of bound exogeneous
ligands. The linear N—Cu—N geometry (Figure 2b, Table S3)
is suggestive of a +1 oxidation state.'”*® Formally, the anionic
cluster [1-Cu;]~ contains three Cu(I) edge sites anchored on a
doubly oxidized [CogSes]** cluster core. Given the relatively
weak oxidizing capability of copper(I), we propose that the
starting material disproportionates in situ upon heating and
forms multiple equivalents of copper(Il), which is able to
oxidize the [Co4Se;]° cluster core twice.””*

If the 1-Lig(py)s cluster is treated instead with four
equivalents of CuBr(SMe,) and kept at room temperature
during the reaction, the cluster core is only oxidized once
during transmetalation, yielding the dianionic salt [Li-
(thf),],[1-Cus] (Scheme 1b). The independent synthesis of
[1-Cu;]*™ by the reduction of [1-Cu,]™ is discussed in a later
section. Treatment of 1-Lig(py)s with copper(II) chloride (3
equiv) does not produce a tricopper cluster, instead leading to
complex reactivity beyond the scope of this work.

The monoanionic tricopper(I) cluster [1-Cu;]” has no
observable affinity for exogenous ligands (e.g, THF, py, and
CO; SI 1.1), and in contrast to other 1-Mj; clusters, it does not
undergo hydrolysis in the presence of water (3 M in CH;CN,
24 h, room temperature). The increased stability and low
reactivity of linear Cu(I) bisamides are documented and have
been attributed to the strong o-donating ability of the
supporting ligands and the high covalency of the Cu—N
bonds.” ™" Solid-state analysis of [1-Cu;]” reveals that the
Cu—N distances (1.90(1) A avg.) are consistent with the
average bond reported in the CCDC database of 2.0(1) A¥
and those in the monometalated cluster 2-Cu of 1.893(4) A."°

Cu/[Co¢Seg] Redox Series. The electronic structure of the
cluster is probed chemically and electrochemically. Cyclic
voltammetry analysis of [1-Cu,]~ indicates three quasirever-
sible, single-electron events: two reductions and one oxidation
at —1.33, —0.72, and —0.02 V vs Fc+/0, respectively (Figures 3a
and S15). The large separation between these redox events
indicates that all the individual members of the [1-Cu;]" (n =0
to —3) series might be stable toward isolation. Indeed,
chemical one- and two-electron reductions, as well as one-
electron oxidation of [1-Cu;]™ are successfully accomplished
using reagents of appropriate redox strength (Scheme 2).**
One-electron reduction of [1-Cu,]~ with CoCp, (Cp = CH;
1 equiv) yields the [CoCp,][Li(thf),][1-Cus] salt, and two-
electron reduction with CoCp*, (Cp* = CsMes; 2 equiv)
produces [CoCp*,],[Li(thf),][1-Cu;]. The dianionic cluster
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a)1-Cus Cu _N b) [1-Cus]-
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Figure 2. Comparison of the single-crystal solid-state structures of (a) 1-Cuj;, (b) [Li(thf),][1-Cus], (c) [Ru(bpy);][1-Cus], and (d)
[CoCp*,],[Li(thf),][1-Cus], with organic ligands and cations truncated for clarity. Thermal ellipsoids are drawn at the 50% probability level.
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Figure 3. (a) Cyclic voltammograms of 1-H and [Li(thf),][1-Cu;] (0.1 M TBAPF, in THF, at scan rates of 200 and 25 mV/s, respectively,

currents are

[CoCp*,],[Li(thf),][1-Cus] acquired in THF.

normalized). (b) UV—vis—NIR absorption spectra of [1-Lig(thf)],

1-Cus, [Li(thf),][1-Cus], [Li(thf),],[1-Cus], and

Scheme 2. (a) Synthesis of the Redox Series [1-Cu;]", n =0
—2, —3 via Chemical Oxidation and Reduction of [1-Cu;]",
and (b) Proposed Oxidation State of the Co/Se Cluster
Core within the Redox Series
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[1-Cu;]*™ has also been isolated as the [Ru(bpy);][1-Cu,]

(bpy = 2,2'-bipyridine; SI 1.2 and Figure 2c) salt following
cation exchange. Cyclic voltammetry reveals that the trianionic
cluster [1-Cu;]*” is significantly more reducing than the
isoelectronic 1-Hj cluster, ostensibly due to the presence of the
anionic copper-bisamido unit edge sites (Figure 3a).*

In contrast to chemical reduction, the success of chemical
mono-oxidation of [1-Cus]” is strongly dependent on the

20390

coordinating ability of the solvent and the identity of the
counterion. While one-electron oxidation with [FeCp,][PFq]
(1.0 equiv) occurs readily in THF to produce the neutral
cluster 1-Cu;, no reaction occurs in CH,Cl, even with strong
oxidizing agents such as AgPF, [N(C¢H,Br-4),][SbCl], or
WCl,.** Meanwhile, one-electron oxidation of [TBA][1-Cu,],
obtained via cation exchange from [Li(thf),][1-Cu;] and
[TBA]CL, with [FeCp,][PF4] proceeds with or without a
coordinating ligand present (Section S1.3). We attribute this
solvent dependence to the association of the lithium cation
with the cluster. Indeed, NMR analysis indicates that the
symmetry of the [Li(thf),][1-Cus] cluster lowers dramatically
when dissolved in noncoordinating solvents (i.e., C¢D4 and
CD,Cl,), suggesting ion association. In benzene-dy, three
distinct amidophosphine ligand environments are observable
by 'H and *'P NMR spectroscopy. Two lithium signals are
detected by "Li NMR spectroscopy—one at 0.4 ppm,
attributed to a Li(thf)," ion, and another broad peak at 16.7
ppm (v, = 200 Hz), attributed to Li(thf)," ions associated
with the paramagnetic cluster core, likely at N or Se sites
(Figures S9—S12). We hypothesize that ion pairing with the
Lewis-acidic lithium cation depletes the cluster of electron
density, making it more resistant to oxidation.

[1-Cuy]" are strong absorbers and have UV—vis—NIR
spectral profiles characteristic of 1-M; and 1-Ligz(thf)4 clusters.
As illustrated in Figure 3b, all the clusters have a main feature
with A, (¢) ranging from 389 nm (36,000 M~'cm™) for
[Li(thf),][1-Cus] to 392 nm (50,000 M~'ecm™) for [Li-
(thf),][Cp,Co][1-Cus] and absorption tails that extend into
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near-IR. The absorption in the near-IR region redshifts as
electrons are removed from the system, with the lowest energy
values for 1-Cu;. However, the significance of this trend in
connection to the possible observation of intervalence charge
transfer bands is currently not well understood (Figure 3b).

With three Cu(I) edge sites and a trioxidized Co/Se core, 1-
Cu, represents the first reported example of a [CogSes]**
cluster. In agreement with this oxidation state assignment,
electron paramagnetic resonance spectroscopy of 1-Cu; at 100
K does not indicate the presence of Cu(Il) (Figure S27). 1-
Cuy is resistant to further oxidation, highlighting the difficulty
of directly oxidizing the Cu(I) sites to Cu(II) in this system. It
also suggests that the tetraoxidized form of the Co/Se core is
not synthetically accessible with standard reagents. Valence
tautomerization is not identified in 1-Cus. For instance, 1-Cu,
is thermally stable (24 h, 80 °C) and does not convert to a new
species (e.g, 1-Cu''Cu';) even in the presence of coordinating
ligands (THF, py, PMes, ‘BuCN, and CO). The reorganization
energy cost associated with this putative inner-sphere electron
transfer that would oversee a linear Cu(I) convert to a
pseudotetrahedral or square planar Cu(II) center could be
prohibitive,”” whereas there is minimal entropic cost associated
with the oxidation or reduction of the Co4Seg core. A limited
number of two-coordinate linear copper(I) amido complexes
are known, but they are not synthesized through the oxidation
of a linear copper(I) complex.™**

Isostructurality and Helical Chirality across the
Redox Series. The solid-state structures of the tricopper
cluster redox series [1-Cuy]" (n = 0, —1, —2, —3) are obtained
using single-crystal X-ray diffraction analysis (Figure 2). While
the data sets for 1-Cus, [Li(thf),][1-Cus], and [Ru(bpy);][1-
Cu;] are sufficiently high quality to enable a bond metric
comparison, the crystal structure of [CoCp*,],[Li(thf),][1-
Cu,] is fraught with extensive cation and solvent disorder,
precluding a bond metric discussion. The Cu/Co/Se clusters
retain the pseudo-D; symmetry across the redox series. The
copper(I) amidophosphine units remain relatively rigid and
nearly linear, with ZNCuN angles ranging from 168.0(3) to
175.0(3)°, and an average Cu--Se distance of 2.80 A,
indicating that no binding interaction is present (Table $3).*

A bond metric comparison informs on the distribution of
electron density between the copper edge sites and the Co/Se
core, lending support to the proposal that while copper
maintains a +1 oxidation state, [Co,Seg] is the locus of redox-
state changes, ranging from +3 in 1-Cu; to neutral in [1-
Cu,]*. Although the Co—Se, Cu---Se, and Cu—N interatomic
distances do not vary significantly with oxidation-state changes,
the Co--Co and Co—P interatomic distances are informative
(Figure 4; Table S3). A basic molecular diagram of the Co,Ses
cluster core™ predicts that as electrons are removed from it,
antibonding Co---Co orbitals are depopulated and the Co---Co
bonding character increases. Indeed, a contraction in the Co-
Co distances in the Co/Se core has been empirically associated
with oxidation.””*’ Figure 4 reflects this trend: as one, two,
and three electrons are removed from the Co/Se cluster, the
Co+Co average distances contract from 2.946(7) A in the
neutral Co,Seg core of 1-Hg to 2.85(2) A in 1-Cu; and [1-
Cu;]™. In fact, 1-Cuy and [1-Cus] ™~ feature one short Co--Co
distance of 2.683(3) and 2.682(2) A, respectively, consistent
with a weak Co—Co bonding interaction.” Density functional
theory calculations indicate Mayer bond orders of 0.44 and
0.12 for the Co/Co pairs with short and long contacts in [1-
Cu;]7, respectively.”’ The average Co—P distances in the

[CosSes]” n=0 +1 +2 +3

220} 1
= ®

P(

215+ 1

210 F 8

852.85- % (} -

280 ) : L
1-Hs [1-Cus]?- [1-Cus]- 1-Cus

Figure 4. Comparison of average bonding parameters obtained via
crystallography as a function of the cluster core oxidation state. Error
bars represent the standard error for each set of crystallographic
distances.

redox series oppose the trend of the Co--Co distances,
increasing with the oxidation of the Co/Se core from 2.129(1)
A (average) in 1-Hg to 2.162(5) Ain [1-Cuy]* t0 2.196(1) A
in 1-Cus. As electrons are removed from the CogSeg cluster,
the cobalt atoms participate in weaker back-bonding with the
phosphines.>”

The propeller-like arrangement of the copper—amidophos-
phine units on the surface of the Co/Se core results in inherent
helical chirality.”®> While all 1-M; clusters are helically chiral,
[Li(thf),][1-Cu,] is the first to form enantiomerically pure
single crystals. The presence of individual single crystals of
single-handedness is confirmed experimentally by X-ray
crystallography; [Li(thf),][1-Cu;] crystallizes in the chiral
space group P2,2,2,. This spontaneous chiral resolution by
crystallization is a relatively rare phenomenon,”* and is being
explored as a pathway to isolate chiral cluster samples at scale.

Solution Magnetism and Paramagnetic 3'P NMR
Studies To Elucidate Spin-State Changes in the Redox
Series. Solution magnetic susceptibility measurements of
[Li(thf),][1-Cu;] using Evans’ method>” produce an overall
magnetic moment of 2.1 Bohr magnetons, intermediate to the
expected spin-only magnetic moment values of 1.73 and 2.83
Bohr magnetons for the spin states of S = 1/2 and 1,
respectively. The [1-Cus]™ cluster has an even number of
electrons and therefore would nominally be expected to have
either a closed shell or a triplet ground state (S = 0 or 1).
Meanwhile, Evans’ method measurements for [Li(thf),],[1-
Cu;] and 1-Cu, result in effective magnetic moments of 1.6
Bohr magnetons, which are consistent with an S = 1/2 spin
state. Molecular orbital theory predicts that the HOMO in a
CogSeg system is triply degenerate,” and DFT calculations on
the homoleptic cluster CozSeg(PEt;)s similarly predict a
doubly degenerate HOMO level followed closely by the
HOMO-1 only 0.02 eV lower in energy.”’ Both situations
would theoretically yield a [CosSeg]** cluster core in the S = 1
state.

3P NMR spectroscopy analysis of the redox series [1-Cu;]"
(n =0, =1, =2, —3) indicates that all four compounds remain
nominally D; symmetric in coordinating solvents. While 'H
NMR chemical shifts are relatively unremarkable and span the
diamagnetic window, the 3P nuclei serve as diagnostic
reporters on the electronic state of the clusters,'® featuring
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chemical shifts that undergo dramatic changes with the redox
state. The *'P NMR chemical shifts range from 80 ppm for the
diamagnetic [1-Cu;]*” to —1160 ppm in 1-Cuy (Figure S). As
expected, the paramagnetic centers greatly reduce the
relaxation times of the *'P signals, from 162(2) ms in 1-Hg
to 1.6(1)—3.4(1) ms in [1-Cu;]", n = 0, —1, —2 (Figures
S28-S31).

Paramagnetic NMR chemical shifts (6:°%) are a result of
diamagnetic (6%*) and paramagnetic contributions (§**), as
described by eq S1.°° Since 8" depends on the total spin and
temperature, variable-temperature *'P NMR measurements
can inform on the electronic structure of the compounds
measured. Plotting the *'P NMR chemical shifts of [1-Cu;]" (n
=0, —1, —2) vs the inverse of temperature (T = 290—330 K;
Figure Sa and Table S1) confirms a linear Curie—Weiss
relationship and rules out any unexpected behavior of the
clusters such as ferromagnetism.”” The temperature-independ-
ent 3P NMR chemical shifts (6™F) can further inform on the
spin state of the clusters. These originate from temperature-
independent sources of paramagnetism such as Van Vleck or
Pauli susceptibilities,”” the former of which is proportional to
the number of unpaired spins.58 In particular, Van Vleck

20392

susceptibilities have been previously observed in oxidized
CogTeg clusters and could be relevant in the [1-Cu,]”
series.””®" Here, temperature-independent chemical shifts
were estimated by extrapolating the linear fits of the observed
3P NMR chemical shift to an infinite temperature. The 6™
values obtained for [1-Cu;]*~ and 1-Cuj are nearly equivalent,
of 190(13) and 182(27) ppm, respectively, lending support to
the equivalent spin state attribution of S = 1/2. Meanwhile,
8™ for [1-Cus,]™ is calculated to be 354(25) ppm, nearly twice
that of the other clusters, suggestive of an S = 1 spin state. The
behavior of [1-Cu,]™ was further probed by *'P VT-NMR
experiments over an extended temperature range (340—200
K). No deviations from linearity (indicative of spin crossover)
were observed in this temperature window (Figure $35).°"
X-ray Absorption Spectroscopy Probes Electronic
Changes at Se. To further understand the electronic changes
within the cluster core, 1-Hy, [1-Cu;]®7, and 1-Cu; were
analyzed via selenium K-edge X-ray absorption near-edge
structure spectroscopy (XANES; Figure Sb, Table S2). The
pre-edge feature (Se s to 4p; 12.657 keV) is similar to that
seen in transition metal selenides (12.657 keV in Cu,Mo,Se
and 12.656 keV in CdSe)®*~** and is consistent with a Se(—2)
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oxidation state. The pre-edge feature shifts by 0.3 eV between
[1-Cu;]*” and 1-Cu,, indicating a slight increase in the
oxidation state of the Se sites as the Co/Se cluster undergoes a
three-electron oxidation.”> For comparison, the one-electron
oxidation of the cationic cluster [Fe,Se,]*"/*? is associated with
a positive shift of 0.6 eV of the pre-edge feature.” In this
instance, the larger magnitude could be attributed to the
increased variation in charge per Se atom (1 e7/2 Fe, 2 Se)
compared to the CoSeg cluster (3 e7/6 Co, 8 Se). The Se
XANES data reflect the similarity between the isoelectronic 1-
Hg and [1-Cu;]*~ clusters, which feature neutral Co,Seq cores
(Figure S38).

Insights into the Electronic Structure via DFT
Calculations. The electronic structure of the [1-Cu;]" (n =
0, —1, —2, —3) redox series was modeled using density
functional theory (DFT; Section SS). The optimized geo-
metries reflect experimentally observed trends in Co—P and
Co--Co distances (Table S6). As expected, the closed-shell
cluster [1-Cu;]*~ features an electronic structure resembling
that of CogSeg(PEt;)s, with a near-triply degenerate highest
occupied molecular orbital (HOMO) and a doubly degenerate
lowest unoccupied molecular orbital (LUMO; Figure 6a)."’

The frontier electronic states are plotted as molecular orbital
diagrams (Figure 6a) and also as density of states plots that
better illustrate elemental contributions (Figure 6b).”” The
neutral and dianionic clusters both have a singly occupied
molecular orbital (SOMO) that is significantly higher in energy
than the other occupied frontier orbitals, consistent with the
observed S = 1/2 spin state, while the monoanionic cluster has
a more ambiguous electronic structure with several pseudode-
generate orbitals at the frontier. Considering both the alpha
(a) and beta () manifolds in [1-Cu,]~, the three occupied
orbitals that are highest in energy are separated by only 0.01
eV in total. Their pseudodegeneracy is possibly a consequence
of the deviations from the idealized D; geometry in the
optimized structure, which results in slight energy differences
in nominally equivalent orbitals. Jahn—Teller-type distortions
could be responsible for the partially quenched magnetic
moment of [1-Cu;]”, as observed experimentally by Evans’
method.®

The density of states plots indicates that the copper
character in the occupied frontier orbitals increases substan-
tially as electrons are removed from [1-Cu;]*~ until it becomes
exclusively copper centered in 1-Cuy (Figures 6b and S47).
This is aligned with our interpretation of the experimental
data: as 1, 2, and 3 electrons are removed from [1-Cu;]*” the
copper edge sites retain their +1 oxidation state, while the Co/
Se core becomes increasingly oxidized. Indeed, even in the
highly oxidized cluster 1-Cuys, there is little contribution from
copper to the unoccupied electronic states. Correspondingly,
the LUMO and LUMO+1 orbitals are localized on the Co/Se
core for all members of the redox series, consistent with
experimental results suggesting core-based oxidation.'’ Addi-
tionally, as the cluster increases in the oxidation state, the
selenium character of the occupied frontier states gradually
diminishes. We attribute this to the partial oxidation of Se, in
line with the Se XANES data discussed above.

B CONCLUSIONS

Atomically precise and entropically robust, the [1-Cus]" (n =0,
—1, =2, —3) clusters enable detailed mapping of the structural
and electronic interactions at the Cu/CogSeg dopant/support
interface. Experimental and DFT investigations suggest that as

electrons are removed from the [1-Cu;]*~ cluster, the copper
edge sites retain a + 1 oxidation state while the Co/Se core
becomes increasingly oxidized. The series culminates with the
formation of 1-Cuj, a highly zwitterionic species with three
Cu(I) edge sites anchored but not binding directly to the triply
oxidized [Co4Seg]** core. The reluctance of the copper(I) edge
sites to undergo oxidation and the absence of any apparent
valence tautomerism may be attributed to the large entropic
cost of entering a tetracoordinate coordination geometry
favorable to copper(Il).

B EXPERIMENTAL SECTION

General Information. All syntheses were conducted under a
dinitrogen atmosphere using a standard Schlenk line or an LC
Technology Solutions glove box equipped with a freezer set to —35
°C. All glassware was dried at 160 °C for a minimum of 12 h prior to
use. Additional experimental and computational details, materials, and
methods can be found in the Supporting Information file (PDF) and
the optimized coordinates file (xyz).

Computational Methods. All DFT calculations were performed
using Gaussian 16, Revision A.03 quantum chemistry program
package for the Linux operating system.”” The initial starting point
geometries were obtained by using the crystallographically obtained
structure of [Li(thf),][1-Cus] as a starting point and optimizing to a
minimum, followed by analytical frequency calculations (Hessian) to
confirm that no imaginary frequencies were present. Prior to
optimization, the cation was omitted from the structure, and the
methyl groups on the tolyl groups of the aminophosphine ligands
were replaced with hydrogen atoms to reduce the computation time.
The geometry optimizations were performed using unrestricted DFT
calculations (except for [1-Cuy]*~, which was restricted) at a pure
GGA functional level using Becke’s 1988 gradient-corrected exchange
functional and Perdew’s 1986 electron correlation functional
(uBPV86) and def2SVP basis set. The optimized geometry of the
[1-Cu;]™ anion was used as the starting point for the optimization of
the other clusters in the series. Using the optimized geometries,
single-point calculations were performed at uB3LYP+/cc-pVTZ that
were used for orbital energy diagrams and spin density calculations.
Doublet spin states were assumed for [1-Cu;]*>~ and 1-Cuj, while [1-
Cu;]~ was modeled as a triplet. Multiwfn was used to generate partial
density of states plots and calculate Mayer bond orders.”” This level of
theory and approach have been previously utilized to reproduce
defining experimental features of the 1-M; and 2-M clusters.'**°

Synthetic Procedures. Synthesis of [Li(thf)J[1-Cus]. Inside the
glove box, a 200 mL Schlenk flask with a Teflon-coated stir bar was
charged with 1-Lig(py) (5.500 g, 1.7 mmol) and copper(I) bromide
dimethylsulfide (2.127 g 10.3 mmol). Toluene (70 mL) and
tetrahydrofuran (25 mL) are added to the flask, resulting in a dark
brown solution upon mixing. The flask is capped with a rubber
septum and heated in an oil bath to 50 °C for 16 h. The flask is cooled
and returned to the glove box, and the solvent is removed from the
reaction mixture under reduced pressure. The dark brown residue was
dissolved in minimal tetrahydrofuran, combined with toluene (50
mL) and pentane (50 mL), and left to sit at room temperature for 12
h. The resulting crystals are isolated by vacuum filtration over a
medium-pore frit and washed with toluene (50 mL) and pentane (30
mL). The product is obtained as a black crystalline solid after the
volatiles are removed in vacuo (4.770 g, 1.58 mmol, 87%). The
compound can be handled in air and does not hydrolyze if treated
with water in acetonitrile at 25 °C (3 M) for a period of at least 12 h.
'H NMR (acetonitrile-d5, S00 MHz) &: 8.74 (s, 6H, -Ph), 8.31 (d, ] =
7.4 Hz, 12H, -Ph), 7.35 (t, ] = 7.3 Hz, 6H, -Ph), 7.04 (t, ] = 7.4 Hz,
12H, -Ph), 6.72—6.66 (d, ] = 7.4 Hz, 12H, -C¢H,-p-Me), 6.58 (d, ] =
7.8 Hz, 24 Hz, -Ph), 5.04 (d, ] = 7.3 Hz, 12H, -C¢H,-p-Me), 1.99 (s,
18H, —CH,). *'P NMR (acetonitrile-ds, 283 MHz) 6: —1065.8 (v,
= 1200 Hz, T, = 3.4 ms). *'P NMR (benzene-ds, 283 MHz) &:
—960.9 (vy, = 900 Hz), —990.8 (vy,, = 650 Hz), —1033.2 (v, =
2000 Hz). 'Li NMR (acetonitrile-d;, 194 MHz) 5: —2.45 (v, = 18
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Hz). 'Li NMR (benzene-dg, 194 MHz) 6: 16.68 (v,,, = 180 Hz), 0.38
(1, = 45 Hz). C NMR (acetonitrile-d;, 126 MHz) &: 134.42,
133.17, 131.78, 131.66, 128.56, 125.77, 124.83, 124.80, 121.25,
120.93, 20.70. p¢ (Evan's method, CD;CN, 298 K): 2.06 pg. UV—vis
(acetonitrile): 4,,,, (¢) 389 nm (36,000 M~*cm™"). Elemental analysis
(ICP-MS): experimental (calculated for
Ci30H,34C04Cu;LiNgO,PeSeg) Co 11.00 (11.11) Se 19.90 (19.66)
P 5.82 (5.78).

Synthesis of [Li(thf),J[Cp,Col[1-Cus]. Inside the glove box, a 100
mL round-bottomed flask is charged with [Li(thf),][1-Cu;] (0.622 g,
0.19 mmol) and a Teflon-coated stir bar. Tetrahydrofuran (30 mL) is
added to the flask, and the mixture is stirred until a homogeneous
solution is formed. Cobaltocene (0.038 g, 0.20 mmol) is weighed out
into a vial and dissolved in tetrahydrofuran (10 mL), and the solution
is added to the flask while stirring. Within a few minutes, a dark
brown precipitate forms. After stirring for 12 h, the precipitate is
isolated via vacuum filtration over a medium-pore frit and washed
with diethyl ether (S0 mL). After removing volatiles under reduced
pressure, the product is obtained as a black, spectroscopically pure
powder (0.360 g, 0.106 mmol, 55%). '"H NMR (acetonitrile-d;, 500
MHz) &: 8.12—8.06 (m, 18H, -Ph), 7.62 (s, 6H, -Ph), 7.18 (s, 12H,
-Ph), 6.91 (s, 12H), 6.79 (s, 12H, -Ph), 6.21 (s, 12H, -C¢H,-p-Me),
6.12 (s, 12H, -C¢H,-p-Me), 5.63 (s, Cp), 1.78 (s, 18H,-Me). *'P
NMR (acetonitrile-d;, 283 MHz) &: —522.6 (v;,, = 3600 Hz). "Li
NMR (acetonitrile-d;, 194 MHz) &: —2.47 (v, = 10 Hz). pi i (Evan's
method, CD;CN, 298 K): 1.65 up. UV—vis (acetonitrile): A, (&)
392 nm (50,000 M™' cm™'). Elemental analysis (ICP—MS):
experimental (calculated for C4;0H;44Co0,Cu;LiNsO,P¢Ses) Co
10.31 (12.12) Se 18.70 (18.57) P 5.36 (5.46).

Synthesis of [Li(CH;CN),J[Cp*,Col,[1-Cus]. Inside the glove box,
[Li(thf),][1-Cu;] (0.350 g, 0.11 mmol) is weighed out into a vial
equipped with a Teflon-coated stir bar and dissolved in acetonitrile
(10 mL). Decamethylcobaltocene (0.072 g, 0.22 mmol) is weighed
out into a separate vial and added directly to the flask, resulting in a
color change of the solution to dark red—brown. After stirring for 12
h, the solution is concentrated to half the initial volume and mixed
with diethyl ether (30 mL). The resulting precipitate is isolated by
vacuum filtration over a medium-pore frit and washed with diethyl
ether (30 mL). After removing volatiles under reduced pressure, the
product is obtained as a black powder (0.162 g, 0.042 mmol, 39%).
The product is unstable toward halogenated solvents such as
dichloromethane. '"H NMR (acetonitrile-d;, 500 MHz) &: 7.55—
7.04 (m 66H), 6.33 (s, 24H), 1.72 (s, 60H, Cp*). P NMR
(acetonitrile-ds, 283 MHz) &: 86.2 (v, = 850 Hz). UV—vis (THF):
Anae (€) 373 nm (48,000 M~'cm™). Experimental (caled for
C,70H 04C0sCuLiN4O,PSe;) Co 10.19 (12.18) Se 16.43 (16.32)
P 4.74 (4.80).

Synthesis of 1-Cus. Inside the glove box, [Li(thf),][1-Cu,] (1.500
g, 047 mmol) is weighed out into a 100 mL Schlenk flask and
dissolved in dichloromethane (35 mL). Tris(4-bromophenyl)-
ammoniumyl hexachloroantimonate (0.400 g, 0.49 mmol) is weighed
out into a vial and dissolved in tetrahydrofuran (10 mL). The solution
is then added to the reaction mixture, which is left to stir at room
temperature for 1 h. The reaction mixture is brought to constant mass
under reduced pressure, redissolved in dichloromethane, and brought
to constant mass again, to remove residual tetrahydrofuran. The
residue is redissolved in dichloromethane, and the resulting solution
filtered through a Celite plug. The volatiles are removed from the
filtrate under reduced pressure. The residue is redissolved in
tetrahydrofuran, layered with diethyl ether, and kept at room
temperature overnight. The resulting precipitate is isolated via
vacuum filtration through a medium-pore frit (0.596 g, 0.204 mmol,
44%). '"H NMR (dichloromethane-d,, 500 MHz) &: 9.23 (d, 12H,
-Ph), 9.02 (t, 6H, -Ph), 7.78 (t, 6H, -Ph), 7.18 (d, 12H, -Ph), 6.81 (d,
24H -Ph), 5.96 (d, 12H -C¢H,-p-Me), 5.35, (t, 12H, -Ph), 2.64 (s,
18H, -Me). 3'P NMR (dichloromethane-d,, 283 MHz) &: —1159.92
(v1, = 1200 Hz). ®C NMR (dichloromethane-d,, 126 MHz) &
135.30, 133.93, 133.06, 132.32, 131.98, 130.69, 129.23, 126.38,
123.14, 121.42, 112.19, 19.38. p4 (Evan's method, CD,Cl,, 298 K):
1.68 pp. UV—vis (THF): A, (¢) 390 nm (38,000 M~'cm™).

Elemental analysis (ICP—MS): experimental (calculated for
C114H,0,CocCusNgPcSes) Co 12.47 (12.11) Se 21.25 (21.65) P
6.27 (6.37).

Synthesis of [Li(thf),],[1-Cus]. Inside the glove box, a 100 mL
Schlenk flask with a Teflon-coated stir bar was charged with 1-
Lig(py)s (2.440 g, 0.75 mmol) and copper(I) bromide dimethylsulfide
(0.480 g, 2.33 mmol). Toluene (70 mL) and tetrahydrofuran (25 mL)
are added to the flask, resulting in a dark brown solution upon mixing.
After stirring the reaction mixture at 25 °C for 16 h, the resulting
slurry is filtered through a medium-pore frit, and the solids on the frit
are washed with toluene (20 mL), diethyl ether (50 mL), and pentane
(50 mL). After collecting the solids and removing residual volatiles
under vacuum, the product is obtained as a fine brown powder (1.660
g, 0.516 mmol, 64%). The spectroscopic data match that of the
product synthesized by one-electron reduction of [Li(thf),][1-Cu,]
(see S1.2). Elemental analysis (ICP—MS): experimental (calculated
for C46H;6C0sCusLi,NyOgPcSeg) Co 10.39 (10.07) Se 17.70
(18.00) P 5.05 (5.30).
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