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ABSTRACT

As robots and digital assistants are deployed in the real world, these
agents must be able to communicate their decision-making criteria
to build trust, improve human-robot teaming, and enable collab-
oration. While the field of explainable artificial intelligence (xAI)
has made great strides to enable such communication, these ad-
vances often assume that one xAl approach is ideally suited to each
problem (e.g., decision trees to explain how to triage patients in
an emergency or feature-importance maps to explain radiology re-
ports). This fails to recognize that users have diverse experiences or
preferences for interaction modalities. In this work, we present two
user-studies set in a simulated autonomous vehicle (AV) domain.
We investigate (1) population-level preferences for XAl and (2) per-
sonalization strategies for providing robot explanations. We find
significant differences between xAl modes (language explanations,
feature-importance maps, and decision trees) in both preference
(p < 0.01) and performance (p < 0.05). We also observe that a par-
ticipant’s preferences do not always align with their performance,
motivating our development of an adaptive personalization strategy
to balance the two. We show that this strategy yields significant
performance gains (p < 0.05), and we conclude with a discussion of
our findings and implications for xAI in human-robot interactions.

CCS CONCEPTS

+ Human-centered computing — Human computer interac-
tion (HCI); - Computing methodologies — Artificial intelli-
gence.
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Explainability, Personalization, User Studies

1 INTRODUCTION

As robots and digital assistants are deployed to the real world,
these agents must be able to communicate their decision-making
criteria to build trust, improve human-robot teaming, and enable
collaboration [8, 76]. Researchers have identified explainability
as a necessary component of high-quality human-robot interac-
tions in many domains [26, 85]. While several approaches for ex-
plainability are under active investigation (e.g., natural language
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explanations [24], decision-tree extraction [95], counterfactual pre-
sentation [52], saliency-based explanations [83, 102], etc.), existing
studies on human-use of explanations is almost entirely confined
to treating explanation as a “one-size-fits-all” problem [68, 72, 81].
However, explanations have different functional roles with respect
to deployment context [4, 34], suggesting that personalization and
contextualization of explanations is an important and understud-
ied avenue to bring explainability to the real world. If individual
preferences and expertise affect the success of an explanation [104],
a natural next step is to identify which xAI modalities should be
shown to an individual user for any given decision.

Within the field of xAl, simply measuring the accuracy or fi-
delity of an explanation (with respect to the underlying agent or
algorithm) is not enough to know that an explanation was useful. If
explanations do not carefully consider a user’s expertise or expecta-
tions, the simple act of showing an explanation can cause the user
to blindly trust an agent’s advice, leading to adverse effects on per-
formance and trust [81, 97]. This counter-intuitive result presents
a key problem: explanations encourage inappropriate compliance.
If users see explanations and defer to robots without critically ex-
amining the robot suggestion, then researchers must develop a
deeper understanding of the relationship between explanations and
compliance while also improving an xAl agent’s ability to expose
faulty decision-making to human users [28]. By improving our
understanding of such relationships and by better calibrating to
end-users, we can produce xAl systems that are not only easier and
more enjoyable to use, but also improve outcomes and efficiency of
human users [31, 87].

Ultimately, xAl research seeks to help humans understand when
to rely on vs. override their Al assistants, using explanations to
determine if decisions are sound and trustworthy [42]. Such a dy-
namic exists when humans collaborate with fallible AT assistants—
a scenario that we recreate in this work. Our work aims to under-
stand the diverse preferences of untrained humans with potentially-
faulty assistants that use xAI to support human decision making.
We present a set of studies in which participants interact with a
virtual AV to navigate through an unknown city with the assistance
of a digital agent, replicating a common problem of navigating in
a new place. Crucially, this assistive agent is not always correct,
and incorrect advice is signalled with the inclusion of red-herring
features (e.g., if the agent refers to “weather” in its explanation,
the suggestion is wrong). Our work therefore simulates the use
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of xAI for explanatory debugging [19, 22] with concept-based ex-
planations [21], also called the “glitch detector task” [41, 43]. We
investigate how xAl may improve people’s mental models for Al
[2, 10], and how personalized xAl will affect people’s ability to ac-
curately identify when their assistant is correct or incorrect (i.e., if
the agent adapts to the user, will the user make fewer mistakes?).
Our contributions include:

(1) We design two studies in which participants interact with
xAI modalities randomly or using personalization.

(2) We empirically study participants’ preferences for certain
types of explanations, as well as their performance with
such explanations, finding that language explanations are
significantly preferred (p < 0.05) and lead to fewer mistakes
(p < 0.05) relative to other modalities.

(3) We develop a novel adaptive personalization approach to dy-

namically balance a participant’s preference- and performance-

based needs depending on their progress in a task.

(4) We find that adapting to a participant’s preferences while
also maximizing their performance leads to fewer mis-
takes relative to naive, randomly-chosen explanations or a
preference-maximization approach (p < 0.05), and leads to

significantly greater perceptions of preference-accommodation

relative to an agent that does not personalize (p < 0.05).

Unlike prior work on personalizing xAl, which only considers
user-preferences [17, 55, 58, 63], our work is the first to directly
account for the user’s task-performance when personalizing xAl
Our work takes a crucial first step towards understanding how
future work should consider personalization in xAl as well as why
such personalization matters.

2 RELATED WORK

In this work, we investigate the effects of personalizing xAI mecha-
nisms to users, focusing on three primary modalities for explana-
tion: language generation and counterfactuals [51, 52, 88], feature-
importance maps [35, 83], and decision-tree explanations [85, 95].
We investigate the domain of AVs to study personalized XAl a
domain of increasing interest to the HRI community [1, 32, 62, 71].
Personalization — With the proliferation of digital assistants
and machine learning in consumer products, the problem of person-
alization has become more pressing. While conventional machine
learning applies a single model to all data, the real-world contains
many problems where the same sample may have different labels
depending on the user (e.g., people wanting to customize a social
robot’s greeting, behavior, or appearance [33, 57, 82]). This prob-
lem setup requires personalization of the shared model, such that
individual users can receive personally-tailored responses from
the learned model [16, 61], ideally without needing to retrain the
entire model from scratch. There have been several approaches for
personalization with such shared models, including personal model
heads for each user [3, 16, 25, 53, 61, 64, 80, 86] or meta-learned
models that can rapidly adapt to users [15, 23, 30, 36, 37, 50, 66].
Personal Embeddings — In this work, we build on personaliza-
tion via personal embeddings [45, 77, 89, 90, 96, 98, 103], in which
a unique embedding is assigned to each user and appended to the
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input data or hidden representations of the network, thereby allow-
ing the model to adapt its decision-making by conditioning on this
unique per-person embedding.

Adaptive Personalization — While personalizing to different
human users in this work, our system must balance between two
objectives— user-preference and task-performance. We refer to this
balancing act as “adaptivity”. Prior work [5, 6, 84] also develops
“adaptive” approaches to personalization, though prior definitions
only consider task-performance in a single domain. In contrast, our
approach is generally applicable to any explanatory debugging sce-
nario with concept-based explanations, and dynamically balances
between task-performance and human preferences.

Explainability - While personalization helps to bring machine
learning to wider audiences and a greater diversity of problems,
the inherent unpredictability of models remains an obstacle to
wider deployment of learned solutions. There are legal [106] and
practical criteria for machine learning models to be used in many
contexts [26, 27]. XAl is a subfield of machine learning research
seeking to help justify a model’s decision-making using a variety
of approaches. The field has contributed many techniques, such as
developing neural network models that can be readily interpreted
[107], pursuing natural language generation for explanations [14,
29, 72, 109], presenting feature-importance maps for input samples
[13, 35, 48, 83, 101, 102, 109], presenting relevant training data
[11, 12, 54, 94], and other techniques [42, 44, 67].

While research has begun to investigate the effects of explana-
tions on user’s ability to understand and forecast network behavior
[2, 39, 42, 47, 68, 73, 81, 95, 97, 99, 105] or the social implications
of working with robots that explain their behavior [9, 20, 56, 100],
there is considerably less work on understanding how such dy-
namics would unfold if a human were afforded the ability to in-
fluence the xAI agent more directly, such as through controlling
what types of explanations are provided. Prior work has studied
the effects of explanations on compliance with inaccurate sugges-
tions [81, 97]; however, it is possible that such explanations were
simply ill-suited to the study participants and that personalization
would help mitigate this problem. Prior work has also shown that
user-characteristics and dispositional factors can significantly im-
pact a user’s interaction with an explainable agent [69, 70, 92, 93],
and that aligning explanations with a user’s expertise can lead to
higher perceived utility [79]. In this work, we address these over-
sights in prior work and enable active personalization based on
user feedback, studying compliance with personalized xAL

3 STUDY SETUP

In our work, we present two separate studies using the same envi-
ronment and driving agent. The first is a population study with
a within-subjects design targeted at identifying population-wide
trends, and serving as a data capture for our personalization model.
The second is a personalization study with a mixed design to test
the effects of different personalization strategies on how well they
align with participant’s preferences and how effectively they maxi-
mize task performance. We also present the design of an adaptive
personalization agent that seeks to jointly satisfy both objectives.
In this section, we provide background for the shared environment,
driving agent, metrics, and research questions in the two studies,
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Figure 1: Here we show an example interaction with a language explanation and a correct suggestion. Taking a wrong turn (e.g.,
going straight) will lead directly into a roadblock, forcing participants return to this intersection and repeat the interaction.

before detailing study procedures, metrics, and results in Sections
4 & 5. All studies in this work took 60-75 minutes, and participants
were compensated $20 for their time. All studies were approved by
an Institutional Review Board (IRB).

3.1 Environment

The domain we employed for our experiments was a simulated
driving domain. The participant interacts with an AV, reflecting a
robot-deployment that is becoming increasingly common in the real
world. Furthermore, autonomous driving is an accessible and easily-
understandable domain for a non-expert end-user, and is a highly
pertinent area of study for human-robot communication and xAI
[59, 60]. In our study, the human is responsible for all navigational
direction, but the robot handles all actual control of the vehicle. This
task was setup through the AirSim driving simulator [91] and built
in the Unreal Engine. Our domain features a simulated city with a
seven-by-seven grid layout, effectively putting the participants into
a small maze that they will navigate for the duration of each task.
Participants direct an AV through the maze to the goal location in
the city, working with assistance from a self-driving agent and a
small mini-map.

Each intersection in the domain presents an opportunity to select
a direction to progress through the environment, giving the partic-
ipant all available navigation options (e.g. “turn left,” “turn right,”
or “continue straight”) alongside a directional suggestion from the
self-driving agent and an explanation justifying the suggestion. Par-
ticipants consider the suggestions and explanations to help them
decide how to navigate through the city. After making a decision,
participants are also asked to provide binary positive/negative feed-
back on whether or not they would like to see more explanations
with the modality that they received. We provide an example of
one such interaction in Figure 1.

The city contains several roadblocks, thereby creating a single
optimal path to the goal, with any deviation resulting in either a
U-turn (as the car drives down a road with a roadblock and must

turn around) or a significantly slower path. For each task, the par-
ticipant has a new starting and goal location, and roadblocks are
moved around the map. This relocation prevents participants from
memorizing routes through the city, and encourages reliance on
navigational assistance from the self-driving agent.

3.2 Al Driving Agent and Explanations

At each intersection in the domain, a digital agent suggests a di-
rection and also presents an explanation for its suggestion to the
participant. Explanations are either a sentence in natural language,
a feature-importance map, or a decision-tree (Figure 2). All expla-
nations were manually generated before the study, rather than
autonomously generated via an existing machine learning method
[52, 83, 95], to control for existing explainability research and to
more closely examine the modalities themselves. To identify the
optimal direction, the agent uses a breadth-first search planner over
the grid to find the shortest path to the goal.

Approximately 30% of the time, the agent will suggest the op-
posite of the optimal direction, alongside a flawed explanation at-
tempting to rationalize the incorrect suggestion. Participants are
trained to identify these incorrect explanations before beginning
the study. The threshold for performance was chosen following
prior work on agent reliability in user studies [78, 108, 110]. Further
details on how incorrect suggestions are provided and signalled are
given in the supplementary material.

3.3 Metrics

Shared Metrics — In both studies, we employ the following metrics:
« Inappropriate Compliance - The proportion of incorrect advice
accepted by participants. The better a participant understands a
particular xAI method, the lower this metric should be.
Mistakes - The number of mistakes made by the participant, as
an additional gauge of the participant’s ability to interpret an
explanation modality.
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Figure 2: We compare three xAI modalities in this work: feature-importance maps, (top left) in which highlighted regions
indicate possible directions and relevant elements of the image, such as green indicating the suggested direction, language
explanations (bottom left) that are a sentence justifying one direction over another, and decision trees (right) in which the
highlighted path leads to the suggested direction. Red blocks mean “false” and blue blocks mean “true”.

« Binary Feedback Ratings - Participants’ answers to a "yes/no"
question about whether the participant would like to work with
a specific xAI modality again, which is asked to the participant
after every intersection. We record the total number of positive
and negative responses for each xAI modality across the study.

Population Study Metrics — In the population study, we also

measure:

« Preference Rankings - Rankings from a 5-item ranking survey
between the explanation modalities. These values will be high if
participants felt that the condition did a better job of accommo-
dating their personal preferences.

« Consecutive mistakes - Back-to-back mistakes as a result of reject-
ing correct suggestions or accepting incorrect suggestions.

«+ Consideration Time - The amount of time a participant considers
an explanation prior to making a decision.

In the population study, participants work with a fixed xAI modal-

ity for an entire task. Therefore, through measuring consecutive

mistakes, we are able to infer a participants’ reaction to making a

mistake, i.e. does the specific xAI modality enable them to better

reflect on what they missed in the previous iteration, or will they
make repeat mistakes? Similarly, consideration time tells us if one
modality is slower or faster than others.

Personalization Study Metrics — Finally, the personalization

study also measures:

« Steps Above Optimal - The number of steps to complete a task,
relative to the optimal solution.

« Preference Annotations - Free form text responses to how well
the different agents accommodated participant preferences. Free
form text allowed participants to describe the various successes
and failures of different personalization strategies without being
confined to a predefined ranking survey.

We do not measure consideration time or consecutive mistakes in

this study, as such metrics target the xAl modalities themselves

rather than the personalization strategies we seek to compare and

because the xAI modality can change between interactions (i.e.,
modalities are not fixed, as in the population study). We also change
the approach to measuring preference, giving us more insight into
why participants preferred one option over another by requiring
participants to describe their preferences [82].

3.4 Research Questions

Our work aims to understand both (1) population-wide trends on
preference and performance for diverse xAl modalities, and (2) the
effects of different personalization strategies on human-robot team-
ing with xAl As our study uses a novel domain, we first sought to
verify whether there was a specific modality that led to the high-
est average preference or performance. Furthermore, recent work
has highlighted a nuanced relationship between preference and
performance, often in relation to external factors, such as exper-
tise [76, 104]. To gain insight into these relationships, our popu-
lation study is designed with the following research questions in
mind:
+ RQ1.1 - Preferences: Will one xAI modality be significantly
more preferred than others?
+ RQ1.2 - Performance: Will one xAI modality lead to signifi-
cantly better performance than others?
» RQ1.3 - Alignment: Will participants prefer to use the modality
that maximizes their performance?

The personalization study seeks to examine the degree to which
balanced personalization affects participants’ performance on a
task and on their perceptions of the agent’s accommodation of their
preferences (i.e., does balanced personalization make people feel
like the agent is listening to them while also helping them perform
better?). The primary research questions are then:

+ RQ 2.1 - Preferences Will balanced personalization be signifi-
cantly more preferred than other personalization strategies?
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+ RQ 2.2 - Performance Will balanced personalization lead to
significantly fewer mistakes than other personalization strate-
gies?

+ RQ 2.3 - Comparison to known-best Will balanced personal-
ization match or exceed task-performance and preference metrics
when compared to the a-priori known best xAl modality for the
study task (i.e., language explanations).

4 POPULATION STUDY

The population study enables us to study overall trends for pref-
erence and task-performance with our chosen xAI modalities and
domain. This study helps to determine which mode, if any, is supe-
rior for this task and enables us to clearly analyze the relationship
between performance and task-preference for each xAl modality.

4.1 Study Conditions

The population study is a within-subjects design to study the effects
of XAl modalities. Therefore, the conditions in this study are the
xAl modalities themselves (Section 3.2), including (1) Language, (2)
Feature Maps, and (3) Decision Tree explanations. Each of these
conditions were chosen to reflect popular avenues of explainability
within human-robot or human-AV interactions [29, 46, 75, 76].

4.2 Procedure

Upon arrival to the onsite location, participants complete consent
forms and are briefed on their task. Participants are introduced to
each of the xAl mechanisms employed in the study, the interface for
directing the car, and a mini-map that will assist them for each task.
They then complete the Negative Attitudes towards Robots Scale
(NARS) [74], “Big-Five” personality [18], and demographic data
surveys, used as controls in our statistical analyses. Participants
then begin on eleven navigation tasks (Section 3.1).

Participants complete two practice tasks to become acquainted
with the simulator, controls, and explanations. Pilot studies revealed
that very little practice was required for the task, so two tasks was
sufficient. In this practice phase, explanations are randomly sampled
from any of the three mechanisms used in our study (Section 3.2),
giving the participant equal practice with each modality.

After completing the practice phase, participants begin the main
body of the study, which consists of nine navigation tasks. Each
task uses a single xAI modality from start to finish, which helps
to mitigate consecutive mistakes that may stem from swapping
between xAI modalities. The agent rotates between modalities as
tasks are completed, and the ordering of xAI modalities is included
as a control in our statistical analyses. Participants conclude the
study with a survey asking them to rank the three xAI modalities
according to their preferences.

4.3 Results

The population study involved 30 participants (Mean age = 23.8,
SD = 3.25; 70% Male).

RQ 1.1 - Comparing the sum across five Likert-items as the
preference rank, an ANOVA for xAl modality rankings showed a
significant difference across baselines (F(2,84) = 35.1,p < 0.001).
A Tukey-HSD revealed that language explanations ranked signifi-
cantly higher than both feature-importance maps (p < 0.001) and

decision trees (p < 0.001), and feature-importance maps ranked
significantly higher than decision trees (p < 0.001) (Figure 3).

RQ 1.2 - Data for inappropriate compliance did not pass a
Shapiro-Wilk test for normality, and we therefore applied a Fried-
man’s test, which was significant (y?(2) = 12.23, p = 0.002), with
a post-hoc revealing that language explanations lead to signifi-
cantly fewer instances of inappropriate compliance than feature-
importance maps (p = 0.002) (Figure 3).

Data for consideration time were not normally distributed. We
therefore applied a Friedman’s test, which was significant (y?(2) =
24.47,p < 0.001). A post-hoc revealed that both language and
feature-importance explanations are significantly faster than decision-
tree explanations (p < 0.001).

Finally, an ANOVA across explanation modalities for consecutive
mistakes was significant (F(2,74) = 8.0309, p < 0.001), and a post-
hoc revealed that participants make significantly more consecutive
mistakes with feature-importance maps (p < 0.001) and language
explanations (p = 0.001) than with decision trees.

RQ 1.3 - After grouping participants by their preferred modality,
we do not find any significantly different trends for performance
(i.e., participants that favor feature-importance maps do not perform
best with feature-importance maps).

4.3.1 Takeaways. A review of the results for the population study
reveals that language explanations are both significantly preferred
relative to feature-importance and decision-tree explanations, and
result in higher task-performance than feature-importance expla-
nations. We do find, in line with contemporary work [104], that
decision trees result in significantly fewer consecutive mistakes,
suggesting that it is easier for participants to reflect on why the
previous decision was incorrect and to immediately update their
mental model of the agent. However, across most metrics, language
explanations are superior to both other modalities considered in this
work. We therefore consider language explanations to be the “gold
standard” for this task (i.e., an agent that presents only language
explanations will be significantly preferred and yield significantly
higher task-performance for most of the population).

5 PERSONALIZATION STUDY

The population study helped identify a “gold-standard” explanation
for our domain, and revealed significant population-wide trends
with regards to preference and performance. However, knowledge
of the best xAI modality is not readily available for most domains,
and there may be adverse effects of universally applying population-
wide trends on an individual level [111]. Our personalization study
therefore studies the effects of different personalization strategies
on preference- and task-performance-maximization, including a
novel adaptive personalization approach that balances between a
participant’s preferences and task-performance needs!.

!'The xAI modalities are adjusted slightly between the population and personalization
studies, following feedback from some population-study participants that the explana-
tions were too simplistic and easy to memorize. Each modality was therefore made
slightly more complicated, and an additional 12 pilot participants verified that the new
explanations fairly reflected the results of the population study, while increasing in
complexity. Details and examples are available in the supplementary material.
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Figure 3: Visualized results from the population user study between decision trees, feature-importance maps, and language
explanations. (a) Feature maps lead to significantly increased inappropriate compliance. (b) Both feature maps and language
explanations lead to more consecutive mistakes (quantities are normalized by total number of mistakes). (c) Language is
significantly preferred over decision trees and feature maps. (d) Decision trees are slower to parse (measured in seconds).

5.1 Adaptive Personalization Approach

The population study revealed that preference and performance do
not necessarily align. This observation inspired the development of
an adaptive personalization technique that can balance between a
participant’s preferences or performance-needs depending on the
situation. To accomplish this personalization, our agent must model
preferences or performance for each participant.

As discussed in Section 3.3, the agent tracks how often partici-
pants make mistakes (i.e., do not follow the optimal path), as well
as the participant’s feedback, for each xAI modality. Using these
two metrics, the agent creates a preference distribution and a task-
performance distribution for the participant. These distributions are
largely driven by negative interactions with the agent (i.e., negative
feedback or mistaken turns). The decision to focus on negative feed-
back owes to pilot studies, which revealed that negative interactions
are rarer and more meaningful than positive interactions.

5.1.1  Producing Sampling Distributions. First, the agent counts all
interactions for each modality and stores the resulting values in
a vector, X (e.g., counting the total number of language, feature-
map, and decision-tree interactions). The agent then separates this
out into two additional quantities— the total number of negative
interactions, ¥_ and the total number of positive interactions x1
The basis of the sampling distribution is then computed as x_ * X
In other words, the total number of negative interactions for each
modality, smoothed by the ratio of total-to-positive interactions.
This normalized quantity will be high for modalities where interac-
tions are more often negative, and low for xAI modalities that have
far more positive than negative interactions.

The agent tallies the number of modalities with at least one neg-
ative interaction, which normalizes the above quantity, smoothing
the distribution if negative interactions occur in all modalities. Fi-
nally, this value is negated so that modalities with higher negative
values will be sampled less frequently. The distribution over all xAI
modalities is computed according to Equation 1.

) S
V= 1
¥ qifz_; > 0)

The resulting distribution, g, is then normalized using a softmax
function to produce a probability distribution. When ¥ is the vector
of task-performance interactions (i.e., correct and incorrect turns),
we obtain a distribution for task-performance, JT. If X is instead
a vector of feedback interactions, we obtain a distribution of the
participant’s preferences, (Zp. Sampling from (ip will maximize the
likelihood of selecting an explanation that aligns with satisfying a
participant’s preferences, while sampling from JT will maximize the
likelihood of selecting an explanation that helps the participant to
identify the optimal action. However, there is no notion of balancing
between these two, potentially-competing, objectives.

5.1.2  Balancing Between Multiple Objectives. To achieve the bal-
ance between participant preference and task-performance, we
must find a way to balance between dp and dr depending on the
participant’s progress in the task. To this end, we define a new
distribution, d 5, that balances between d p and dT, using a trade-
off parameter A. The trade-off parameter should emphasize d p if
the participant is going to be correct (i.e., adhere to participant
preferences if there is little risk of a mistake), and emphasize JT if
there is a high risk of the participant being incorrect (i.e., ignore
preferences and maximize task-performance if a mistake is likely).
dp is therefore constructed according to Equation 2.

dg = Axdp+(1-N)*dr )

To obtain this trade-off parameter, A, the agent requires an esti-
mate of whether the participant is likely to make a mistake. To this
end, the agent employs a neural network to predict which direc-
tion the participant will choose at each intersection. This network
consumes state information from the environment (e.g., position,
orientation, goal position, and nearest roadblock position), and is
trained over data collected from pilot studies and the population
study (Section 4). However, because participants often take different
paths, this network must personalize to each participant. The net-
work therefore maintains a unique embedding for each participant,
following prior personalization research [77, 90, 96]. Similarly, the
network maintains a unique embedding for each navigation task,
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allowing for contextual adaptation in addition to individualized per-
sonalization, as in [98]. These embeddings are both passed into the
network alongside state information. During deployment the main
body of the network is frozen, and only the personal and contextual
embeddings are updated as participants act in the domain.

At each intersection, this model predicts which direction the
participant is going to choose, producing a probability distribution
over the three possible directions, 3. If the agent predicts that the
participant is going to go in the optimal direction, then the trade-off
parameter, A, is set to argmax () (i.e., set to the logit value for the
optimal direction). Otherwise, A is set to 1 — argmax(%).

5.2 Study Conditions

The personalization study compares five xAl-selection strategies:

» Balanced personalization - explanations are drawn from d B,
as described in Section 5.1. R

« Preference maximization — explanations are drawn from dp,
only conditioning on participant preferences.

« Task-performance maximization — explanations are drawn
from JT, only conditioning on participant task-performance.

« Random explanations — explanations are randomly selected
from the three available modalities.

« Language-only explanations — all explanations use the lan-
guage condition, known a-priori to yield the best performance
and match most people’s preferences (Section 4.3.1).

5.3 Procedure

Following a pilot study, the personalization study is designed as
a set of within-subjects experiments. In this study, participants
work with two personalization strategies (Section 5.2). Each experi-
ment compares balanced-personalization to one other approach for
choosing explanations. This design helps to control for variance
across participants, which we observed to be high. The ordering of
these two strategies is counter-balanced across all participants.

The personalization study begins by following the same proce-
dures as in the population study (Section 4.2). After being briefed
on the task and the xAl modalities, participants complete a sin-
gle training task and then begin two calibration tasks. All three
tasks (one training and two calibration) randomly cycle through
all available xAI modalities, giving participants exposure to the
various explanations they will receive. Over the two calibration
tasks, the agent begins to gather feedback and observations on
the participants behavior to create (;p and JT. The agent also uses
these tasks to learn personal and contextual embeddings for the
personalization network (Section 5.1.2).

After calibration tasks, the participants complete three naviga-
tion tasks with the first selection strategy, and then stop to complete
a set of surveys on trust [49], perceptions of social competence [7],
perceived workload [38], and explainability [97]. Participants then
provide free-form text on how well they thought that the agent con-
formed to their preferences. After this set of questions, participants
resume the navigation tasks, completing an additional three tasks
with the second selection strategy. Finally, participants complete
the same set of questionnaires a second time.
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Figure 4: Comparisons relative to balanced-personalization.
(Left) Percent of participant preferences for personalization
modes, showing significant preference for balanced person-
alization over no personalization. (Right) Rates of inappro-
priate compliance, showing that balanced-personalization
leads to significantly lower inappropriate compliance than
preference-maximization or no personalization.

5.4 Results

The personalization study involved 60 participants (Mean age=24.87,
SD=6.75; 53% Male). While a subset of significant results are pre-
sented here, all statistical test details and pairwise condition com-
parisons are presented in full supplementary material.

ROQ 2.1 — Comparing balanced personalization to random ex-
planations, a wilcoxon signed rank test for preference rankings
showed a significant difference across conditions (W = 4,p =
0.04). Additionally, comparing binary feedback ratings for pref-
erence maximization and balanced-personalization, a Friedman’s
test revealed significantly higher feedback ratings for preference-
maximization (y?(1) = 5.444, p = 0.02). Interestingly, we find that,
while preference-maximization leads to significantly higher posi-
tive binary feedback during the study, it appears to result in lower
retrospective preference ratings after the study (Figure 4).

We do not find statistically significant differences between either
feedback data or text-responses for the task-performance agent vs.
the balanced-personalization agent. We therefore find evidence to
answer RQ 2.1- balanced personalization is significantly preferred
over random explanations.

RQ 2.2 — Comparing balanced-personalization to random expla-
nations, a wilcoxon signed rank test reveals significantly higher
inappropriate compliance using random explanations (W = 25,p =
0.03). We also observed significantly higher inappropriate compli-
ance in the preference-maximization agent compared to balanced-
personalization (W = 21,p = 0.02) (Figure 4). Similarly, partici-
pants took significantly more steps above optimal performance
with a preference-maximization agent compared to a balanced-
personalization agent (W = 31, p = 0.04). We therefore answer RQ
2.2- balanced personalization yields significantly higher perfor-
mance relative to preference-maximization or random explanations.

RQ 2.3 - We find no statistically significant differences between
the balanced-personalization agent and language-only agent along
the performance or preference metrics. We therefore find that bal-
anced personalization is not worse along task-performance and



preference metrics when compared to the a-priori known best xAI
modality for our domain.

5.4.1 Takeaways. Reviewing the results of the personalization
study, we find that balanced personalization is significantly su-
perior to no personalization (i.e., random explanations) along the
axes of both preference and task-performance. Similarly, balanced
personalization leads to significantly fewer mistakes than prefer-
ence maximization. We find no significant differences between
task-performance maximization, suggesting that task-performance
is of paramount importance for participants in our study [110].
In other words, our study found that receiving explanations the
participants did not prefer to use (e.g., seeing mostly decision trees
even when asking to stop receiving them) did not register as the
agent not conforming to participant preferences, so long as the
participant was perceived to be making progress on the task. This
trend could potentially be due to “experienced accuracy”, wherein a
participant’s experience or perception of an agent’s accuracy affects
their interactions with the system [65, 112].

Finally, we find no statistically significant differences between
language-only explanations (known to be best before the study)
and a balanced-personalization agent. This finding implies that
balanced personalization will not under-perform the best xAI mode
for a new domain, while avoiding the need to run a population
study. Deploying balanced personalization can significantly reduce
the overhead for deploying xAI to new domains while also ensuring
that participants receive xAl modalities that match their needs (e.g.,
feature-importance maps for participants that cannot use language).

6 DISCUSSION AND LIMITATIONS

In the population study, we find significant differences between
the three xAI modalities, decision trees, language, and feature-
importance maps, examined in this work when considering partici-
pant preference and task-performance. Despite these trends, we find
an interesting counterexample, in which decision-tree explanations
are significantly better for identifying mistaken decision-making
processes for consecutive errors (Section 4.3). This result echoes
prior work [104], finding that language explanations were signif-
icantly preferred by untrained participants, but that participants
were better at modeling agent behavior when using decision trees.

In the personalization study, we confirm that balanced person-
alization yields significant performance improvements relative to
preference maximization or no personalization. Furthermore, while
participants provide significantly more negative responses to a
balanced-personalization agent, they retrospectively perceived the
balanced-personalization to do a better job conforming to their pref-
erences. Similarly, we find that a task-performance maximization
agent receives very positive retrospective perceptions of person-
alization (40% over balanced-personalization, shown in Figure 4),
despite never considering Jp when making decisions. Together,
these findings suggest that participants in the personalization study
prized task performance over preference-accommodation. Until a
satisfactory level of performance is met, accommodating prefer-
ences may not be perceived as important or useful, as participants
seem to fixate on optimally completing the task rather than on
engaging with an agent that listens to their feedback. This finding
echoes prior work on the effects of performance on trust [110],

Andrew Silva, Pradyumna Tambwekar, Mariah Schrum, and Matthew Gombolay

and underscores the importance of personalizing xAI for task per-
formance. Applying a balanced personalization approach, as in-
troduced in this work, we can achieve the benefits of maximizing
task-performance at crucial junctions (e.g., if the user is likely to
make a mistake or if their mental model appears to be incorrect)
while also accommodating user preferences.

While our work was conducted on a simulated task, our findings
generalize more broadly to any domain in which a human might
need to work with concept-based explanations [22], such as feature-
maps, decision trees, or counterfactual explanations. Using such
explanations, a mistake is often identified by the inclusion of an er-
rant feature, as in this research. We show that humans have diverse
preferences and experiences when working with such explana-
tions, and that adaptive personalization can enhance human-robot
interactions that rely on xAI for decision-verification [40].

Limitations — These studies were conducted primarily with
university students on a driving simulator, rather than on an au-
tonomous vehicle with a broader population. Additionally, we ob-
serve some results with large effect sizes but no statistical signifi-
cance (Figure 4), which may be due the sample size in our studies.

Personalization agents in this work also assumed access to ground
truth information in the domain (e.g., optimal turns) or explicit
preference feedback, which may be challenging to obtain the real-
world. While such ground-truth directions could come from exter-
nal sources (GPS navigation) and feedback data could come from
observations of humans [5], these external data sources are not
used in our work. Finally, personalization in this work was confined
to selecting xAI modalities that match a participant’s preferences,
but did not extend to adapting the explanations themselves.

7 CONCLUSION

To be useful in the real world, digital agents and robots must be able
to personalize to a diverse population of users, even without prior
knowledge of the best way to interact or the most popular interac-
tion modality for a given task. In this work, we have studied the dif-
ferences between three popular explainability techniques: language
explanations, feature-importance maps, and decision trees, in the
context of a simulated AV study. We have presented an approach to
personalization that balances subjective human-preference with ob-
jective task-performance. A separate user study confirmed that such
a balanced personalization approach yields significantly improved
task-performance relative to a preference maximization agent, and
is not worse than an agent that uses explanations which are known
a-priori to maximize preference scores and task-performance in
the population. Our study is the first to personalize explanations to
task-performance, and we show that personalization must consider
task-performance to be successful. We discuss the implications of
our results, including the need for high-performance agents before
considering preference maximization, and the need to carefully
balance adherence to preferences with task-performance.
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8 ADDITIONAL DOMAIN DETAILS

Before and after each study, participants complete several surveys
including: demographics, negative attitudes towards robots [74],
mini-IPIP personality survey [18], and experience with driving,
robots, and decision trees. Following the completion of a portion of
the studies in this work, participants complete a robot trust survey
[49], the NASA-TLX survey of perceived workload [38], a survey
on perceptions of anthropomorphism and social competence of the
digital agent [7], and a survey on the perceived explainability of a
digital agent [97].

9 OVERALL STUDY FLOW

We provide an overview figure for our study flow in Figure 5. In
our population study, participants first complete consent forms
and are briefed on the task. They then fill out pre-surveys and
demographic information, before training on the simulator for two
tasks. After the training phase, participants being the main body of
the study, rotating through each of the available conditions for a
total of 3 tasks with each xAI modality (e.g., language, then feature-
importance, then decision-trees, then repeat the cycle two more
times). After their final task, participants provide their preference
rankings for each of the xAI modalities, and are finally debriefed
on their experience.

In the personalization study, participants also begin with consent
forms, briefing, pre-survey, and demographic surveys. Participants
then complete one training task and two calibration tasks, in which
the driving agent rotates through each xAI modality for every inter-
section. After the second (and final) calibration task, participants are
randomly assigned to either the adaptive personalization strategy
or to a baseline condition. Participants complete three tasks with
this strategy, then fill out a preference survey. After the preference
survey, participants resume the study with the other personaliza-
tion strategy (either adaptive or baseline). After completing three
more tasks, participants redo the preference survey for the second
personalization strategy, and are then debriefed.

10 PROVIDING INCORRECT SUGGESTIONS
AND EXPLANATIONS

In both studies, incorrect suggestions were provided as the exact
opposite of the correct direction, and participants were warned of
this information at the beginning of the study. We opted to make
incorrect suggestions point in the opposite direction (as opposed to
a random incorrect direction) so that participants could, in theory,
always take the optimal route (e.g., if the agent is incorrect and
says “go left”, the participant knows that going “right” is optimal).

Because there are often three available directions, choosing an
“opposite” is possible for only two out of three options (i.e., left and
right). When the correct direction is simply “straight”, we reduce the
number of options by arbitrarily disabling one direction. In other
words, the agent randomly masks out “right” or “left”, thereby only
presenting two options to the participant. The incorrect suggestion
is whichever direction was not masked (“left” or “right”), and the
correct direction is to go in the only other option available (i.e.,
“straight”). Participants are told how to handle this situation during

the briefing (Appendix 18).
In practice, we found that many participants did pick up on these

rules, and did not struggle to know how to handle an explanation
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that they perceived to be incorrect (though they did not always
understand when or why explanations were incorrect). Commonly,
participants struggled when they knew a suggestion was incorrect,
but they wanted to accept the suggestion because the direction itself
seemed to be correct from their viewpoint. For example, consider
the situation where the goal is immediately to the participant’s left,
but a construction site lay between the participant and the goal. A
participant that wants to get to the goal as quickly as possible will
want to turn left. If the digital assistant incorrectly suggests “left”
and provides an invalid explanation, the participant may recognize
that they should not go left, but they may turn left anyway, sim-
ply because they already expected they should go that way (and
often, they hoped that “this time it will be right,”). Similarly, if the
agent correctly suggested an alternate direction, participants may
recognize that they should comply (i.e., take a less direct path, such
as going “right” in the above example), but still end up going the
wrong way, simply because they hope that their more direct path
will work.

11 INCORRECT EXPLANATIONS

Incorrect explanations were signalled by the inclusion of “red-
herring” features, as told to participants (Section 18). These included:
the weather, the radio, the sky, traffic, rush hour, or the president’s
motorcade. Participants are explicitly told most of these (they are
not explicitly told about the president’s motorcade, though they do
see it in the training and calibration tasks, so they are able to learn
that rule before beginning the main task). They are also explicitly
told that any explanation considering “external factors” (i.e., not
pertaining to the road or to construction sites and car crashes) is
an incorrect explanation. An example of an incorrect decision tree
explanation is given in Figure 7.
Examples of incorrect explanations in our work included:
« “I think we should turn left because the president’s motorcade is
in town”
« “I think we should continue straight because it didn’t rain last
night”
« “I'think we should turn right because clear skies could impair our
cameras.”

12 CORRECT EXPLANATIONS

Correct explanations were signalled by failing to include “red-

herring” features. In particular, if the explanation pertained only to

the “shortest path” or “optimal route”, then it was correct. Addition-

ally, if the explanation contained only information about the goal

or obstacles on the path to the goal (e.g., construction sites or car

crashes), then it was correct. For feature-importance maps, which

did not necessarily contain any of this information, explanations

were correct as long as they did not highlight the sky. An example

of a correct decision tree explanation is given in Figure 8.
Examples of correct explanations in our work included:

« “Ithink we should turn left because there is a construction project
in our path if we turn right”

« “I think we should continue straight because it is the shortest
path to the goal”

« “I think we should turn right because we will hit a pile-up if we
continue straight.”
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Population Study Personalization Study
Training With the Navigate with Debriefing and Calibration Compare Debriefing and
Simulator all Explanations Preference Ranking Learn and Deploy Task Personalization Exit Surveys
Language Personalization Model X Adaptive
Feature Map ﬁ Baseline

Decision Tree

Observe performance
and preferences

Which type of

personalization is best? Gather feedback

Figure 5: We conduct two user studies, beginning with a population study (left) in which all participants work with three xAI
modalities, revealing significant differences across the population. We then use this data to build an adaptive personalization
model that is deployed in a set of personalization studies to compare various personalization approaches.

(b)

| think we should Turn Left because there is a construction project in our path if we continue straight

Select one-= Accept Advice (Turn Left)

Continue Straight

Figure 6: Our custom self-driving domain created using Unreal and the AirSim [91] simulator. At each intersection, each
participant is shown a mini-map of the city (a), in order to assist them in their decision making. The mini-map provides the
location and heading of the car, as well as the location of the goal. Participants select a direction from a pop-up to direct the car.

In this example, the pop-up includes a language explanation.

13 EXPLANATION CHANGES BETWEEN
STUDIES

After the conclusion of the population study, we opted to change
the content of some of the explanation modalities. This is because a
few participants mentioned that they found it easier to memorize all
correct explanations, rather than learning the rule to identify incor-
rect explanations (particularly for the language modality). However,
the goal of our work is to study when xAI enables users to iden-
tify errant decision-making from a digital assistant, not to study
how easy it is to memorize all possible correct explanations (which
would be impractical in a real-world setting).

To make the explanations more complex, we added several lan-
guage templates and rephrases, thereby greatly increasing the num-
ber of possible language explanations (from 6 up to 47). We also
added one new decision node and 2 new leaf nodes to the deci-
sion tree. For reference, the original decision tree is presented in
Figure 9, and the updated tree is presented in Figure 10. Finally,
for feature-importance explanations, we modulated the brightness
(i.e. importance) of buildings and trees in the image. Rather than
being set to a static color, the color and brightness was changed
to be randomly sampled, with a low set of values defined for cor-
rect explanations (Figure 15), and a high set of values defined for
incorrect explanations (Figure 18). We conducted a pilot study with
12 additional participants using these new explanations, which
showed that there were no significantly different trends from the
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or can't go straight?

‘ Obstacle in route ahead W[ Go Straight ‘ Obstacle in route to the l

left or can't go left?

Turn Left Turn right

Go Straight

President driving
through?

Can go right?
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Go Straight

Rained last
night?

Go Straight

Turn Right

Figure 7: A decision tree explanation that the participant should ignore. Note that the highlighted path (i.e., the decision

suggestion) includes a red-herring feature (rush-hour traffic).

Obstacle in route to the
left or can't go left?

| Obstacle in route ahead ]

or can't go straight?

Can go right?

Go Straight

President driving
through?

[ Gostraight | [ TumlLet |

Obstacle in route to the
right or can't turn right?

Obstacle in route ahead
or can't go straight?

Go Straight

Obstacle in route to
the left or can't go
left?

Morning rush
hour?
Rained last
night?

Turn Right

Go Straight

Figure 8: A decision tree explanation that the participant should adhere to. Note that the highlighted path (i.e., the decision
suggestion) considers only relevant details (path to the goal and obstacles) and ignores red-herring features.

population study. Upon examining the results and debriefing partic-
ipants, we found that no participant was able to memorize correct
explanations after these changes.

14 TASK ORDERINGS

In the population study, participants were required to complete nine
navigation tasks, three with each explanation modality. Participants
rotated between explanation modalities, such that every third task



Towards Balancing Preference and Performance through Adaptive Personalized Explainability

False

False !!

Obstacle in route to the
right or can’t tum right?

Obstacle in route ahead
or can’t go straight?

False ! !

Turn right

Obstacle in route ahead
or can’t go straight?

- Obstacle in route ahead Go Straight
or can't go straight?

((costraignt | [ Tumrignt ]

Obstacle in route to the
left or can't go left?

Turn right

Go Straight Obstacle in route to the
left or can't go left?

-
‘ Morning rush
hour?

Tumn Left

Turn Left |

Afternoon rush
hour?

Turn Right Go Straight ]

Figure 9: Decision tree explanation from the population study.
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Figure 10: Decision tree explanation from the personalization study, with one decision node and 2 leaf nodes added.

was completed with the same explanation modality. We enumerated
all six possible orderings of explanation modes (e.g., (1) decision-
tree, (2) feature-importance, (3) language, or (1) feature-importance,
(2) language, (3) decision tree, etc.) and distributed participants
evenly across all orderings, such that each ordering received five
participants.

In the personalization study, we included a total of six “test” tasks
(i.e., not training or calibration). All participants went through the
same six test tasks. We constructed a Latin square to order tasks
for participants, running the studies with balanced orderings. We
also balance the ordering of which explanation selection strategy is
shown first or second, resulting in a study with 12 participants for
each comparison. An additional 12 participants (for a total of 24)
are recruited for the task-performance maximization vs. balanced
personalization study (i.e., JT Vs. c? B), following the results of a
power-analysis.

14.1 Statistical Test Details

We performed a repeated-measures multivariate analysis to com-
pute the effects of different conditions (explanation modality in the
population study, personalization approach in the personalization
study) on various metrics (explanation preference ranking, inap-
propriate compliance, etc.). Across various tests, the condition is
modeled as a fixed-effect covariate, participant ID is a random effect
covariate. We use the AIC metric to determine which additional co-
variates should be included for each test, considering task ordering,
condition ordering, and different resposnes from a demographic
data pre-survey (e.g., race, gender, age, robotics experience, etc.).
We then apply an analysis of variance (ANOVA) to identify signifi-
cance across baselines, and further employ a Tukey-HSD post-hoc
test to measure pairwise significance. For our linear regression
model, we tested for the normality of residuals and homoscedastic-
ity assumptions. If the data do not pass normality assumptions, we
apply a non-parametric Friedman’s test with a Nemenyi’s All-Pairs
Comparisons post-hoc. If the data do not pass homoscedasticity
assumptions, we proceed with a wilcoxon signed rank test. Finally



for binary data and count data, we apply a wilcoxon signed rank
test.

15 ADDITIONAL RESULTS

We present full pairwise comparisons between conditions in this
section, showing the results when controlled for variance across
participants in different conditions.

16 POPULATION STUDY STATISTICAL
ANALYSES

An ANOVA for explanation modality rankings yielded a significant
difference across baselines (F(2,84) = 35.1,p < 0.001). Data for
inappropriate compliance did not pass a Shapiro-Wilk test for nor-
mality, and we therefore applied a Friedman’s test, which was signif-
icant (y?(2) = 12.23, p = 0.002). Data for correct-non-compliance
was also not normally distributed, and so we again applied a Fried-
man’s test, which was significant (y?(2) = 12.23,p = 0.002). An
ANOVA across explanation modalities for consecutive mistakes was
significant (F(2,74) = 8.0309, p < 0.001). Finally, data for consider-
ation time were not normally distributed, and we therefore applied
a Friedman’s test, which was significant (y?(2) = 24.47, p < 0.001).

17 PERSONALIZATION STUDY STATISTICAL
ANALYSES

17.0.1  Balanced personalization vs. language-only explanations. A
wilcoxon signed rank test for preference rankings did not yield a
significant difference across conditions (W = 14, p = 0.825). A Fried-
man’s test over feedback data was not significant (y?(1) = 1.6,p =
0.206). A wilcoxon signed rank test for inappropriate compliance
was not significant (W = 8, p = 0.8688), nor did a wilcoxon signed
rank test for steps above optimal (W = 37, p = 0.3769). Finally, an
ANOVA across personalization approaches for consideration time
was not significant (F(1,11) = 4.6718, p = 0.054).

17.0.2  Balanced personalization vs. task-performance-based person-
alization. A wilcoxon signed rank test for preference rankings did
not yield a significant difference across conditions (W = 35,p =
0.9585). A Friedman’s test over feedback data was not significant
(x?(1) = 2.5789, p = 0.108). A wilcoxon signed rank test for inap-
propriate compliance was not significant (W = 99, p = 0.1463), as
did a wilcoxon signed rank test for steps above optimal (W = 97,p =
0.314). Finally, an ANOVA across personalization approaches for
consideration time was not significant (F(1, 23) = 0.066, p = 0.799).

17.0.3  Balanced personalization vs. preference-based personaliza-
tion. A wilcoxon signed rank test for preference rankings did not
yield a significant difference across conditions (W = 3, p = 0.117).
We applied a Friedman’s test for feedback data, which revealed
a significant difference (y?(1) = 5.444,p = 0.0196). A wilcoxon
signed rank test for inappropriate compliance found significance
(W =21, p =0.01776), as did a wilcoxon signed rank test for steps
above optimal (W = 31, p = 0.03818). Finally, an ANOVA across per-
sonalization approaches for consideration time was not significant
(F(1,11) = 0.1634, p = 0.694).

17.0.4  Balanced personalization vs. random explanations. A wilcoxon
signed rank test for preference rankings did yield a significant dif-
ference across conditions (W = 4, p = 0.0363). A Friedman’s test
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over feedback data was not significant (y%(1) = 0.3173, p = 0.317).
A wilcoxon signed rank test for inappropriate compliance found
significance (W = 25,p = 0.03275), though a wilcoxon signed
rank test for steps above optimal did not find significance (V =
20.5, p = 0.1531). Finally, data for consideration time did not pass
normality assumptions, and a Friedman’s test was not significant
(¥2(1) = 0.33, p = 0.564).

17.0.5 Participant Recruitment. We recognize that our results oc-
casionally include large effects that are not statistically significant,
and that such results may become statistically significant with a
larger sample population. Our study featured over 100 participants
(including pilots), but a power analysis of our preference-ranking
results revealed that we would need over 60 participants for a sig-
nificant effect in the preference-based personalization vs. balanced-
personalization comparison. Extrapolating to the rest of our work,
we would have required over 240 participants for the study. We
leave such a thorough investigation to future work.

18 PARTICIPANT BRIEFING

Thank you for participating in our study! Before we get started I
need you first to fill out this consent and data release form, please
take your time to review it and let me know if you have any ques-
tions.

<Participant completes consent form>

Thank you! So today you are going to be helping to guide a
self-driving car through a simulated city. The car will handle all
of the actual control, and you will be responsible for commanding
the car where to go at each intersection in the city. You will be
given navigational assistance from the self-driving car in the form
of on-screen prompts, so the car will tell you which way to go
in order to get to the goal as fast as possible. The simulator will
pause while the agent thinks about which way to go, and it takes
about 4-5 seconds at each intersection for the agent to produce a
suggestion. The agent will also present you with short explanations
for why it’s giving you a directional suggestion. You can decide
at each intersection whether you want to go with what the agent
suggests. The car may occasionally not allow you to travel in a
direction that seems open. This happens if the car has not yet fully
mapped a given turn.

These explanations can come in three different forms, either
written descriptions, decision trees the car uses, or feature impor-
tance maps. And for reference, here is an example of what each of
those looks like:

<Participant is shown example written description reading: “You
should bring lunch to work today because the restaurants in your area
will be closed for a holiday.”>

In the written descriptions, you’ll see a sentence explaining why
one choice is better than another.

<Participant is shown an example feature importance map, shown
in Figure 15.>

With the feature importance map, you’ll see a highlighted image
with relevant elements of the image highlighted in different colors,
such as the outlines of trees and buildings next to the road. The
green blob highlights the direction of the best path, whereas the
other red blobs highlight the other possible directions that were
not chosen due to obstacles or car crashes.
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Figure 11: Visualized percent of inappropriate compliance across all condition-comparisons in the personalization study.
Balanced personalization helps participants identify errant decision suggestions significant more than preference maximization
or no personalization at all.
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Figure 12: Visualized preference comparison scores across all conditions in the personalization study. Balanced personalization
is significantly more preferred than no personalization at all.
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Figure 13: Visualized binary preference feedback across all condition-comparisons in the personalization study. Preference
maximization results in significantly more “Yes” responses than balanced-personalization.

<Participant is shown an example decision tree, depicted in Figure You will also have access to a mini-map at each intersection,
16.> which will look like this. The arrow indicates your current position
In the decision tree, you’ll see a flowchart with true/false checks and heading, and the blue circle is your destination.
that lead to a decision, where a “true” check is labeled as true and Before we begin, could you please fill out the following pre-study
highlighted in blue, and a “false” check is labeled with false and survey for me, and please stop when the survey asks you not to
highlighted in red. advance further:

<Participant is shown an example mini-map, given in Figure 17.>
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Figure 14: Visualized steps above optimal across all condition-comparisons in the personalization study. Balanced personaliza-
tion helps participants reach the goal in significantly fewer steps than preference maximization.

Figure 15: Feature importance map example shown to participants during the instructions phase of the study.

<Participant takes pre-study surveys>

Great, thank you! So now we will begin the actual study! As
you are helping the car to navigate through the city, you will go
through 9 navigation tasks. The first will be a training task for you
to become acclimated to working with the car and the self-driving
agent, then we’ll do 2 calibration tasks for the agent to learn to
accommodate your behaviors. After that, you’ll navigate with one
agent for 3 tasks, then we’ll stop to do a couple of surveys. Finally,

youw'll resume the task with a new agent for 3 final tasks, and we’ll
conclude with a final set of surveys. For each task, the car will reset

to a new location in the city, and the goal location will move.

There are a few important things to bear in mind:

First, the city is littered with construction projects and car crashes
that can block certain routes, and these car crashes and construction
projects can move around when the car resets.

Second, the agent is not perfect and will sometimes make mis-
takes. The agent is good at estimating obstacles on your shortest
path to the goal. However, when it focuses on external factors such
as the time of day, the sky, rush hour traffic, the weather, etc., that
means the agent is malfunctioning. If this happens, the agent is
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Figure 16: Decision Tree example shown to participants during the instructions phase of the study.

Figure 17: Mini-map example shown to participants during the instructions phase of the study.

giving you the wrong direction! In such cases, you should do the
opposite of what the agent says, to the extent possible. Even when
the explanation is wrong the map is correct. Note that this can hap-
pen regardless of the explanation, whether it is language, decision
tree or feature map. Remember, if it is looking at external criteria
such as time of day, rush hour traffic, the sky, the music on the
radio, or the weather, it is wrong.

Here are examples of when each is wrong.

<Participant is shown language incorrect language explanation
reading: “You should turn left because the radio is set to NPR.”>

So we see here the language refers to the radio, which is an
external factor so the correct decision is to turn right.

<Participant is shown an incorrect feature importance map, shown
in Figure 18.>

Here we see the feature importance map is looking at the sky,
again that is an external factor so you would not follow the agent’s
suggestion here.

<Participant is shown an incorrect decision tree, shown in Figure
19.>
And here we see that the decision tree is considering the weather,

which again is an external factor, so you would go right instead of
left. Of note, just because this node is incorrect, doesn’t mean the

entire tree is wrong, so if you were to see an explanation using the
other half of this tree, for example, you could trust that suggestion.
But you would not trust it if the decision used an external feature.

Third, you will be timed during the main body of the task, and
we’d like for you to complete each task as quickly as possible. But,
the timer will be paused while you make up your mind at each
intersection, so you aren’t penalized for taking time to make up
your mind on which way you want to go. When you make a choice,
please be mindful that you cannot undo it! Once you click “OK”,
the car will start to drive on, so be sure you choose the direction
you want to go.

Finally, you have a maximum of 20 total interactions per task.
So if you cannot reach the goal within 20 intersections, the task
will end and immediately progress to the next one.
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Figure 18: Incorrect feature importance map example shown to participants during the instructions phase of the study.
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Figure 19: Incorrect decision tree example shown to participants during the instructions phase of the study.



	Abstract
	1 Introduction
	2 Related work
	3 Study Setup
	3.1 Environment
	3.2 AI Driving Agent and Explanations
	3.3 Metrics
	3.4 Research Questions

	4 Population Study
	4.1 Study Conditions
	4.2 Procedure
	4.3 Results

	5 Personalization Study
	5.1 Adaptive Personalization Approach
	5.2 Study Conditions
	5.3 Procedure
	5.4 Results

	6 Discussion and limitations
	7 Conclusion
	References
	8 Additional Domain Details
	9 Overall Study Flow
	10 Providing Incorrect Suggestions and Explanations
	11 Incorrect Explanations
	12 Correct Explanations
	13 Explanation Changes Between Studies
	14 Task Orderings
	14.1 Statistical Test Details

	15 Additional Results
	16 Population Study Statistical Analyses
	17 Personalization Study Statistical Analyses
	18 Participant Briefing

