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Abstract—The need for opponent modeling and tracking
arises in several real-world scenarios, such as professional
sports, video game design, and drug-trafficking interdiction.
In this work, we present Graph based Adversarial Modeling
with Mutal Information (GrAMMI) for modeling the behavior
of an adversarial opponent agent. GrAMMI is a novel graph
neural network (GNN) based approach that uses mutual in-
formation maximization as an auxiliary objective to predict
the current and future states of an adversarial opponent with
partial observability. To evaluate GrAMMI, we design two
large-scale, pursuit-evasion domains inspired by real-world
scenarios, where a team of heterogeneous agents is tasked with
tracking and interdicting a single adversarial agent, and the
adversarial agent must evade detection while achieving its own
objectives. With the mutual information formulation, GrAMMI
outperforms all baselines in both domains and achieves 31.68 %
higher log-likelihood on average for future adversarial state
predictions across both domains.

I. INTRODUCTION

According to the World Drug Report from the United Na-
tions Office on Drugs and Crime (UNODC), over 39 million
individuals have been impacted by illicit drugs, leading to
various disorders, including HIV infection, hepatitis-related
liver diseases, overdose, and premature death in 2022 [2].
To safeguard the health and well-being of people across
the globe, it is imperative to develop advanced drug traffic
interdiction strategies to aid law enforcement.

Drug traffic interdiction can be formulated as an opponent
modeling problem. We define opponent modeling as the
ability to use prior knowledge to predict an opponent’s
behavior, whose internal states are not fully observable. The
need for opponent modeling is not limited to drug traffic
interdiction and can arise in several real-world scenarios,
such as search-and-rescue, border patrol, professional sports,
or military surveillance, where an intelligent, evasive target
must be monitored under partial observability [16] by a team
of surveilling agents. In this work, we propose a novel deep
learning framework GrAMMI (Graph based Adversarial
Modeling with Mutal Information) for opponent modeling
in challenging, large-scale domains inspired by various real-
world scenarios.

Opponent modeling and tracking involve two key syner-
gistic components: 1) the use of prior observations to infer
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Fig. 1.
tracked by a team of heterogeneous pursuit agents (shown in green) under
partial observability. The trajectory forecast T steps in the future is shown
via multi-colored 2D Gaussians

Narco-Traffic Interdiction: An adversarial opponent (red vessel) is

a model of the opponent’s behavior and 2) leveraging this
model to observe and track the opponent actively, aiming
to gather more observations of the opponent’s behavior.
This is a highly challenging problem as we only have
access to a limited number of observations of the adversary
currently being tracked (dependent on our tracking ability),
partial information is provided upon observation of an ad-
versary (e.g., the adversary’s latent intentions are hidden
information), and an intelligent adversary will change its
behavior upon detection to minimize future detection. As
adversaries may have multiple possible destinations, latent
preferences across destinations, and adapt such preferences
upon detection, uncertainties across a large state-space must
be effectively maintained and updated during observation
and lack-of observation. The ability to maintain a multi-
hypothesis belief over the adversary is pivotal for effective
opponent models.

Traditionally, target tracking (adversarial and otherwise)
has been dominated by classical filtering methods such as
Kalman Filters [4], [14] and Particle Filters [7], [12], [20],
where a dynamic motion model of the target is assumed to be
known [21]. Such model-based filtering approaches require
the target’s perspective (i.e., access to true target states) and
tend to work well only if the dynamics model of the target
is known or can be estimated accurately. In our work, we
focus on domains that do not have access to the true states
of the opponent nor the opponent’s true motion model, and
hence we choose not to rely on model-based approaches.
Inspired by the recent success of model-free approaches
for agent modeling problems in other domains such as



visual tracking and trajectory forecasting [11], [27], we
develop a graph-based, model-free approach, GrAMMI, that
uses an auxiliary mutual information objective for tracking
multiple hypotheses of the opponent’s states under partial
observability.

While most prior works in opponent modeling have been
restricted to small grid worlds [23], we seek to perform
adversarial opponent tracking in large state spaces, 100x
the size of those considered in prior work. Hence, we create
two novel, open-source domains — Narco Traffic Interdic-
tion and Prison Escape, inspired by real-world scenarios.
Narco Traffic Interdiction is designed to address illegal drug
trafficking by sea (mainly in shipping containers), which is
estimated to be rapidly growing and accounted for over 90
percent of cocaine seized globally in 2021 [2]. Prison Escape
is designed as a complex pursuit-evasion domain inspired
by military surveillance problems, where a highly intelligent
adversary is capable of adapting its behaviors to evade the
tracking agents. Each domain is designed as a grid-world
environment with a grid size in the order of ~ 103 x 103. The
state space within each domain is large: O((m x n)*), where
m X n is the grid size, and k is the total number of agents
in the environment. In both domains, a single adversarial
opponent is pursued by a team of heterogeneous tracker
agents (i.e., agents with different capabilities, such as speed
and detection accuracy), and these agents must utilize their
heterogeneous capabilities to coordinate and best track the
adversary. Furthermore, the detection ability of the tracker
agents can degrade across the terrain, e.g., denser forest
results in lower detection ability. Despite the challenges
posed in these domains, we show that our proposed approach
GrAMMI can outperform all baselines across a variety of
evaluation metrics for both domains on varying levels of
difficulty.

Contributions: Our key contributions are two-fold.

« First, we propose GrAMMI, a deep-learning architec-
ture that predicts the present and future states of an
adversarial agent using a mutual information formula-
tion and multi-agent graph communication. Our results
demonstrate that incorporating a mutual information
maximization objective improves the estimation of an
adversary’s location by disentangling latent embed-
dings to account for multimodal hypotheses explicitly.
GrAMMI achieves 40.54% and 18.39% higher log-
likelihood on average across all baselines for the Prison
Escape scenario and Narco Traffic Interdiction domains,
respectively.

¢ Second, we introduce two new adversarial domains with
continuous action spaces, where an intelligent adversary
is pursued by a team of heterogeneous agents. We open-
source these domains at https://github.com/
CORE-Robotics—-Lab/Opponent-Modeling to
motivate further research in opponent modeling.

II. RELATED WORKS

Reasoning about the goals, beliefs, and behaviors of op-
ponents can enable agents to develop effective strategies for

succeeding in opponent modeling settings. In this work, we
propose to use neural networks to learn the representations of
opponents. Most prior works in opponent modeling assume
constant access to opponent states or observations during
both training and inference to learn predictive models of op-
ponent behavior [8], [10], [19]. Such an assumption is unreal-
istic due to the fact that the opponent is non-cooperative and
that each agent is equipped with a limited field of view. Thus,
the agents may not know the true location of the opponent at
all times. Only recent work by Papoudakis et al. forgoes this
assumption by eliminating access to opponent information
during inference [18]. However, they simply use the latent
representation from the variational autoencoder (trained with
full state information) for downstream RL tasks. Further,
prior works are limited to predicting opponent behavior over
a short horizon in small domains [8], [18]. To the best of our
knowledge, we are the first to look at opponent modeling
under partial observability and limited observability (i.e.,
with no access to opponent information for model inputs)
for complex, large-scale domains. Furthermore, we evaluate
the performance of our proposed approach in predicting the
future states of an adversarial opponent for both short and
long horizons.

Adversarial Opponent Modeling can be framed as a Par-
tially Observable Markov Game (POMG), where we utilize
limited observations from a set of tracking agents to predict
opponent behavior. This is highly similar to the problem
of imitation learning, where observations or states can be
used to infer a mapping from user states/observations to
actions. Multimodality in opponent modeling may arise from
an adversary’s latent preferences, a lack of observations
resulting in an expansion across possible locations over time,
or due to the adversary employing multimodal evasive be-
haviors. Prior work in multimodal imitation learning address
heterogeneity [9], [15], [17], [24] and suboptimality [3], [22],
[25] of expert demonstrations (state-action pairs), by typi-
cally employing deep generative models such as Generative
Adversarial Networks (GANSs) or Variational Autoencoders
(VAEs) to discover salient latent factors that can account
for multimodality. Such approaches utilize the full state
information of the agent that they are modeling. In contrast,
we aim to learn multimodal predictions for adversary states
under partial and limited observability, i.e., we only have
access to sparse, intermittent observations of the opponent.

III. BACKGROUND
A. Partially Observable Markov Game

We define the opponent modeling problem as a Par-
tially Observable Markov Game (POMG), which consists
of a set of states S, a set of private agent observations
01,04,...,0pn, a set of actions A, As,..., Ay, and a
transition function 7 : S x A; x ... Xx Ay — S for N-
agents. At each time step t, agents receive an observation
O! € O;, choose an action a} € A;, and receive a reward 7!
based on the reward function R : S x A; — R. The initial
state is drawn from an initial state distribution p. Opponent
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modeling involves two teams — tracking agents (A™) and
adversaries (A 7). In both our domains, we have a single
adversary being tracked by a team of heterogeneous agents.
Thus, our approach, GrAMMI, learns a mapping from a
history of observations of the tracker agents, Ote 4+ to the
future state of the adversary, St;' A—s where H refers to a

length of history and 7" refers to a timepoint in the future.

B. Graph Neural Networks

Graph Neural Networks (GNNs) allow deep learning
approaches to learn from data with graph structures [26].
Graphs are represented as G = (V, E), where V is the set
of nodes and E is the set of edges. For every edge ¢;; € E,
eij = (vi,v;) where v; is the start node and v; is the end
node. Graphs may contain both node and edge features where
each node v; € V has a corresponding vector of z,,, € RP.

GNN layers utilize message passing to aggregate feature
vectors from neighboring nodes in the graph. The update rule
for learning node representations in GNNs is described by
Equation (1)

g wo) M
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In Equation (1), hgl) represents the features of v; at layer
I. N; is the set of neighboring nodes for v;, d; = |N;| is
the degree of node v;, W1 is a learned weight parameter
for layer [, and o(+) is a non-linear activation function. We
utilize GNNS to model team interaction across tracker agents
in our domains.

IV. METHOD
A. Problem Formulation

In this work, we aim to generate the current and future
state distributions for a dynamic adversarial opponent, from
the observations of a team of /N heterogeneous tracker agents
{A;,i € AT}, each of which has a semantic type C; (for
instance, camera, search party, helicopter). We refer to the
team of tracker agents as the blue team (A1), and the red
team (A7) refers to the adversarial opponent being tracked.
We may use the terms blue team for tracker agents and red
team for the adversarial opponent interchangeably.

We model the predicted states of the adversarial agent as
a multimodal probability distribution over the space of the
map to account for the possibility of multiple distinct futures
for the adversary, given that we only have access to limited,
partial observations of the adversary from the blue agents.

At time ¢, each blue agent A;’s state Sf e RP consists
of its current location (z!,y!), a one-hot encoding for the
agent’s semantic type C;, and the current timestep ¢ in the
episode. Each blue agent’s observation Of € R? consists of a
flag to denote whether or not the blue agent detected the ad-
versary and the detected location of the adversary (bt, Z¢, 1),
We assume a centralized communication framework, where
all blue team agents can communicate their observations to
each other at every timestep and, thus, maintain a common

opponent detection history {d; }Na i1, where Ny is the number

of detections from the start of the episode, and d; is the
detected location of the opponent (i.e., (¢, 4%)) at time ¢ = j
by any agent in AT. Further, we assume that all detections
of the opponent are accurate, i.e., there is no discordance in
the opponent’s estimated location when multiple blue team
agents observe the opponent.

Given a history of blue team states for the previous
H timesteps, StiH:t) € RUHDXNXD = and the shared
detection h1story, {d; }] 1> our goal is to perform filter-
ing (" = 0) and prediction (I' > 0) of the adversary
Vo= SXTT) = XTT) (t+T)} € R2?. We represent
our probabilistic model as the distribution p(Y*|X*), where
Xt = ( (- H:2) {d } 1)- For the rest of the paper, we will
drop the tlme t for brev1ty.

B. Network Architecture

In this section, we describe our model for predicting the
current and future states of an adversary given a history
of observations for the blue team agents — p(Y|X). Our
approach utilizes a combination of mutual information max-
imization to parameterize the components of a Gaussian
mixture model. The architecture consists of four components,
1) encoding the past history of detections (fy), 2) encoding
the agent positions through a graph neural network (gp), 3)
mixture of Gaussians decoder (p,;) and 4) mutual information
network (ge). Below, we discuss how fg and g are used
to produce an encoded embedding, e, and how we enable
prediction of adversary location via py and go.

1) Encoding Detection History: First, the history of de-
tections {d};. ; are encoded in network fy. The history
of detections does not include agent information and we
design this network to focus solely on detections by any
agent. Agent positions are passed through network gy, which
consists of a combination of an LSTM and GNN and outputs
a joint embedding encoding all agent location history. The
LSTM network is used to encode the timeseries information
of the blue agent locations, while the GNN is utilized to
combine the embeddings from separate agents together. We
concatenate the embeddings from the detection network fy
and agent position network gy as our encoder embedding e.

We compare our models both with and without the agent
position network, gy, as agent tracks may not always be
available to the observers. For example, in the narcotics
domain, we may receive detection information from other
countries but they may not be willing to share how the
information was gathered or where the observer was located.

2) Accounting for Multimodality: Traditionally, multi-
hypothesis tracking is difficult as there is a combinatoric
growth for the search space, making it computationally
expensive to track all hypotheses [13]. To account for this,
we use an end-to-end approach learn the parameters of
a Gaussian Mixture Model to capture the multimodalities
within the tracks. The adversary can be going to a number
of locations and the model must account for this uncertainty.
Gaussian mixture models are usually parameterized such
that the network learns multiple outputs for each mixture
component of 7, ug, 0 where k € G and G is the
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Our proposed architecture GrAMMI uses graph neural networks with mutual information maximization of Gaussian components to predict the

location of an adversarial target for large-scale domains with partial observability. The data buffer consists of trajectories collected by online interaction

within our two domains.

number of Gaussians. We instead learn a network, p, that
uses a single output for each component, and the mixture
component is parameterized by a categorical variable, w to
produce a bi-variate Gaussian, ) ~ N(u, X) and a weight,
wy € W. We utilize a softmax over the output weights
W to produce the mixing coefficients 7, for the mixture.
A bi-variate Gaussian is used to capture both the x and y
dimension of the opponent’s location. We show empirically
that this formulation 1) generalizes better to account for the
uncertainty and 2) allows us to utilize a mutual information
maximization term to regularize the mixture components.
Finally, the posterior mutual information network g4 takes
as input the bi-variate Gaussian output ), e and predicts a
categorical distribution over the categorical variable used to
parameterize the decoder. We discuss how this network is
trained in the next section.

C. Loss Function

The total loss function used for training our network is the
weighted sum of log-likelihood loss for the tracking of the
adversary and the mutual information maximization term.

L = Eflog pg(Y|X)] = M (w; 2,Y). 2)

In information theory, mutual information between X and
Y, denoted as I(X;Y’), measures the amount of shared
information learned from one variable with knowledge of
the other. This can be defined in terms of the difference in
entropy between the two distributions:

[(X;Y) 2 H(X) - H(X|Y) = HY) - HY|X) ()

Mutual information maximization has been used in In-
foGAN [5] to produce latent codes that disentangle hidden
characteristics within generated images in GANSs, and in In-
foGAIL [15], where latent embeddings were used to capture
different styles of demonstrations in an imitation learning
setting.

Our novel approach utilizes mutual information maxi-
mization to regulate the components of a Gaussian mixture

model distribution. We show that this auxiliary objective
helps condition the mixture model to better account for
the uncertainty and capture the different modalities within
trajectories.

We derive an objective function to maximize mutual
information by determining a lower-bound below:

I(w;e,Y) = H(w) — H(wle,Y)
=By pw) yinf(zw) logP(wle, V)] + H(w)
= Eny(z,w) [DKL(P((U|€, y)HQ(CZJ|€, y))]+
Ewa(w) [log(q¢ (LU|€, y)] + H(w)
> By pu) llog(ge(wle, V)] + H(w) @

We parameterize P(w) as a uniform categorical distribu-
tion where each component (wy) is represented as a one-
hot categorical variable. The term E,.p(,)[log(ge(w|z,))
then reduces to ), ., p(w)log(qy (wk|e, V). This can also be
interpreted as the cross entropy loss between the predicted
wy, and true wy, used to generate ).

Other researchers have utilized variational inference mod-
els such as variational autoencoders and conditional varia-
tional autoencoders to learn a latent space of which a gen-
erative model can be used to produce multi-modal outputs.
However, we find that due to the partially observable nature
of our domain, the process of sampling the latent variable and
minimizing the log probability of the ground truth location
is insufficient for capturing the dynamics of the game. We
therefore require a method for the loss function to explicitly
reason about all latent hypotheses rather than sampling.

V. EVALUATION

In this section, we describe our contributed novel oppo-
nent modeling domains, the datasets and baselines used to
compare our proposed approach, and the metrics used in
evaluating the performance of all models.

A. Domains

We create two challenging multi-agent coordination do-
mains called Narco Traffic Interdiction and Prison Escape,



inspired by real-world scenarios, for assessing our proposed
approach. These environments are partially observable, and
several orders of magnitude larger than previous multi-
agent Predator-Prey games [23]. We utilize these two diverse
domains to show the generalizability of our approach to
different opponent modeling problems.

In both domains, a single adversarial opponent is pursued
by a team of heterogeneous tracker agents. The goal of
the adversary is to reach a hideout or goal location while
avoiding detection by the tracker agents. The adversary will
actively change its path to the goal or the goal itself to
evade the tracking agents when detected. The goal of the
tracker agents is to continuously track and predict the future
locations of the adversary. We assume centralized knowledge
across agents on the same team, i.e., all tracker agents
have knowledge of the other agents and share the adversary
detection history. Further, the ability to track the adversary
depends on the tracking agent type (e.g., an aircraft has a
larger detection radius compared to other tracker agents) and
is also terrain-dependent.

1) Narco Traffic Interdiction: This domain simulates ille-
gal maritime drug trafficking on a 7884 x 3538 grid along the
Central American Pacific Coastline. The adversary, a drug
smuggler, is pursued by a team of heterogeneous tracker
agents comprising airplanes and marine vessels. Airplanes
have a larger search radius and speed than marine vessels,
but only the vessels can capture the smuggler. Smugglers
must first reach rendezvous points before heading to the
hideouts, representing drug handoffs at sea. The locations of
hideouts and rendezvous points are unknown to the tracking
team. Episodes start after the team learns one location of the
smuggler and end when the smuggler reaches a hideout or is
captured by law enforcement (similar to other predator-prey
environments [23]). Future work may incorporate real-time
wave data [1].

2) Prison Escape: In this task, a heterogeneous team of
cameras, search parties, and helicopters (blue team) must
coordinate to track an escaped prisoner (red team). The game
is played on a 2428 x 2428 map with varying terrains where
each cell on the grid represents the (z,y) location. This
domain is motivated by scenarios in military surveillance
and border patrol, where there is a need to track and inter-
cept adversarial targets to ensure the safety of the general
population.

Unlike the Narco domain, where the tracking team has
no knowledge of hideout locations, we assume that the
blue team has knowledge of a subset of hideouts a priori
in the Prison Escape scenario. However, the hideouts are
sampled at random without replacement from a fixed set for
every rollout. We design the Prison Escape scenario to be
more challenging than the Narco domain by including more
complex evasive behaviors for the prisoner and a fog-of-
war that reduces the detection range of the tracking agents.
To analyze long horizon predictions, the tracking agents can
only track but not capture the prisoner. The episode only
terminates when either the prisoner has reached a hideout or
after maximum timesteps (1" = 72 hours = 4320 steps).

3) Agent Policies: We create heuristic policies for both
the adversarial agent and also the blue team to collect pairs
of blue team observation and adversary states (X%, V) to
test our prediction algorithms.

Adversary Policy: We create a challenging adversarial pol-
icy that attempts to avoid the blue agents and go to unknown
hideouts as discretely as possible. The adversary has two
main modes of travel 1) traveling to an unknown hideout and
2) active evasion of blue agents. In 1), if the adversary has not
detected any of the blue agents near it, it follows an A-Star
path planning algorithm to an unknown hideout. The A-Star
algorithm minimizes the cost of both the shortest distance to
the goal and also the densest forest regions to evade detection
from the blue team. In 2), the adversary has detected at least
one of the active blue agents. To avoid further detection and
tracking, the adversary plans a path to the nearest dark forest
to attempt to lose track of the blue team. If unsuccessful for
a set amount of time, the adversary plans a path to a known
hideout.

Blue Team Policy: We also create blue team policies that
attempt to track and follow the adversary. The blue team has
four main modes of tracking 1) converging at a detection
point, 2) intercepting along a velocity vector, 3) executing a
spiral search pattern, and finally 4) going towards a random
location. If there has been a single detection point thus far,
all the blue agents will travel from their current location to
the detected point. If more detection arrive during this time,
the agents will travel along the vector inferred from the last
two detections. Finally, if the blue agents did not receive any
additional detections, they perform a local search around the
last detected location to attempt to find the prisoner.

B. Datasets

We evaluate GrAMMI on two Narco Traffic Interdiction
datasets - Smuggler-Low, Smuggler-High with opponent de-
tection rates, 13.8% and 31.5%, and three Prison Escape
datasets - Prisoner-Low, Prisoner-Medium, Prisoner-High
with opponent detection rates, 12.9%, 44.0% and 63.1%
respectively. The detection rates are adapted by changing the
detection radius of the pursuit agents. For each dataset, we
collect 450 rollouts, initialized by different random seeds,
and split into train, validation, and test sets as 66.7% —
22.2% — 11.1% respectively. All metrics reported in Tables
I and II are evaluated on the held-out test set after training
each baseline for 100 epochs with 3 seeds.

C. Baselines

We compare our proposed model against various recurrent
neural network configurations with and without a mutual
information objective. We implement our method and base-
lines and report performance after training for 100 epochs
averaged over 3 random seeds. We note that we do not use
other imitation learning baselines such as InfoGAIL as the
sparsity of observations makes it difficult to learn a policy
for the adversary.

1) LSTM: We test a standard Long-Short Term Memory

module where the input is a vector holding all past
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Fig. 3. Prisoner Escape Scenario: (Left) We show a subset of trajectories
taken by the adversarial opponent to go to different hideouts. The darker
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agent detections. The output is a Gaussian mixture
model parameterized such that each component has its
own output.

2) Variational Autoencoder (VAE): We utilize a modified
VAE approach inspired by prior work in opponent
modeling [18]. We modify the approach to only in-
clude partial observations of the pursuit team as input
(comparable to our other baselines).

3) Variational Recurrent Neural Networks (VRNN): The
VRNN was first used for modeling sequential data such
as natural speech and handwriting [6]. Here, VRNN
is used as a generative baseline for comparison. The
VRNN contains a Variational Autoencoder (VAE) at
every timestep to model the dependencies between
latent random variables across subsequent timesteps.
The VRNN utilizes a conditional prior distribution z;
and approximate posterior that are both dependent on
the prior hidden state h;_1.

D. Metrics

For all the datasets, we assume access to the ground truth
(GT) locations of the adversary for evaluation.

1) Log-Likelihood (LL): The mean LL of the GT adver-
sary location under the multi-modal output distribution
generated by the model.

2) Average Displacement Error (ADE): The mean [
distance between the GT and the predicted adversary
location.

3) Confidence Threshold (CTj): The fraction of time
steps for which the model predicts that the opponent
is within a distance § from the GT location with
probability greater than some threshold (say p > 0.5).

VI. RESULTS AND DISCUSSIONS

We evaluate the performance of GrAMMI on the two
domains: Narco Traffic Interdiction and Prisoner Escape.
We benchmark our approach against several state-estimation
baselines including 1) VRNNs [6] and 2) Opponent VAEs
[18]. We also provide ablations for our model with and with-
out 1) mutual information maximization, 2) agent position

GNN encoder, and 3) structure of a categorical variable for
the Gaussian mixture model. We train 3 models with random
seeds for every condition and time horizon and average the
results. We show our results in Table I and II for the two
domains, spanning three different time horizons and five
different detection rates. We find that our models (ablations
with and without MI and GNN) outperform all baselines on
log likelihood, ADE, and confidence threshold. We denote
the way we paramaterize the mixture of Gaussians as wMM
for w Mixture Model.

A. Mutual Information Impact

We find that mutual information posterior increases the
log-likelihood and confidence threshold while lowering the
ADE, especially when predicting timesteps close to the
present. The mutual information term has a smaller effect
when predicting further into the future, likely because of
the problem’s increased difficulty. Our models outperform
Variational models because they explicitly account for mix-
ture components in the negative log-likelihood loss, limiting
the number of possible outputs the decoder can use and
reasoning over the multi-modal hypothesis space better.
Variational methods have worked well in high-density, fully
observable filtering and prediction domains, but we find in
our domains that these sparse detections do not provide
enough information to create a useful posterior distribution.

B. Ablation Study

1) Utilizing a Categorical Variable for the Mixture of
Gaussians: In this ablation, we compare the LSTM model to
our model without mutual information and the GNN (Ours
w/o GNN & MI). These two models have the same agent
history detection encoder but different parameterizations for
the Gaussian mixture model. The LSTM model utilizes
multiple outputs for each mixture component, while our
model uses a single output for multiple mixture components.
We find that even with the same loss function, our model
drastically outperforms the LSTM model. We theorize that
this formulation may lead to better performance due to the
shared parameters used within the decoder.

2) Agent Position Encoder: We analyze how the GNN
encoder affects the model (Ours vs Ours w/o GNN). We
compare results with and without agent tracks as agent tracks
may not always be available to the observers. We hypoth-
esized that encoding a history of searching agent locations
can help the models generalize, as this information informs
the models where the opponent has not been in previous
timesteps. We find that including the agent tracks produces
better results for the Smuggler-High domain on predicting all
timestep horizons, but results are mixed regarding the other
datasets where the agent encoder improves the log-likelihood
on some of the higher detection-rate datasets (Prisoner-Mod,
Prisoner-High). Because our domains have such a large
search space, the amount of information gained from paths
where no detection has occurred is small. In smaller domains,
the information gained by occupying a state and viewing
surrounding states is a much larger percentage. This may be



Prisoner-Low

Log-Likelihood ADE CTs
GNN wMM MI| 0 min 30 min 60 min |0 min 30 min 60 min |0 min 30 min 60 min
LSTM - - -] 4901 4.135 2.843| 0.069 0.090 0.136| 0910 0.844 0.728
VRNN Seq - - -] 4421 4217 3850| 0.106 0.093 0.119| 0.738 0.677 0.610
VAE Opponent - - -] 5121 3973 3.685|0.085 0.095 0.119]|0.723 0.600 0.561
Ours (w/o GNN & MI) - v -| 5784 5504 4460 0.060 0.083 0.109 | 0.958 0916 0.891
Ours (w/o GNN) - v v | 6381 5.606 4.702| 0.060 0.080 0.110| 0.960 0.925 0.902
Includes Agent Position
Ours (w/o MI) v v -| 4609 5071 4.117|0.062 0.082 0.112| 0.960 0.926 0.876
Ours v v v | 5230 4845 4789 0.061 0.081 0.107|0.957 0931 0.857
Prisoner-Medium
Log-Likelihood ADE CTs
GNN wMM MI| 0 min 30 min 60 min |0 min 30 min 60 min |0 min 30 min 60 min
LSTM - - -] 5858 4.091 2836]| 0.066 0.088 0.125]| 0918 0.830 0.618
VRNN Seq - - -] 3732 4214 3599|0.172 0.086 0.110| 0.495 0.666 0.553
VAE Opponent - - -] 5432 4372 3281|0063 008 0.117| 0.734 0.665 0.445
Ours (w/o GNN & MI) - v o o-| 7214 5.065 4.256| 0.047 0.078 0.110 | 0.973 0.939 0.883
Ours (w/o GNN) - v v | 7981 5288 4.385|0.049 0.077 0.110| 0.965 0.952 0.901
Includes Agent Position
Ours (w/o MI) v v o o-| 7.026 4970 4.109] 0.048 0.078 0.113] 0.969 0.922 0.882
Ours v v v | 8406 5270 4.059|0.049 0.073 0.113|0.972 0.943 0.898
Prisoner-High
Log-Likelihood ADE CTs
GNN wMM MI| 0 min 30 min 60 min |0 min 30 min 60 min |0 min 30 min 60 min
LSTM - - -] 6955 4110 2555|0042 0.059 0.111| 0946 0.823 0.528
VRNN Seq - - -] 5037 4345 2967|0.105 0.059 0.100| 0.714 0.731  0.538
VAE Opponent - - -] 2991 4172 2754|0200 0.054 0.123| 0.528 0.657 0.382
Ours (w/o GNN & MI) - v -| 8515 4422 3.297|0.016 0.057 0.095| 0.965 0.923 0.803
Ours (w/o GNN) - v v |10.862 4.535 3.221(0.015 0.056 0.092| 0.953 0.932 0.801
Includes Agent Position
Ours (w/o MI) v v -| 8346 4518 3.147| 0.018 0.049 0.098| 0.965 0.892 0.753
Ours v v v |11.094 4389 3.202| 0.015 0.046 0.092| 0.970 0.910 0.795
TABLE 1

PRISON ESCAPE ENVIRONMENT RESULTS FOR DIFFERENT PREDICTION HORIZONS. UNDERLINED AND BOLDED INDICATE THE BEST MODELS WITH

AND WITHOUT AGENT POSITIONS, RESPECTIVELY

the reason why the datasets with higher detection radii in
Prisoner-Mod and Prisoner-High achieve better performance
with the agent encoder.

VII. LIMITATIONS AND FUTURE WORK

Our work has several limitations: We are currently unable
to generate predictions for multiple time horizons. Addi-
tionally, more advanced agent heuristics could be used to
represent a distribution of strategies to make the filtering and
prediction tasks harder and further evaluate the efficacy of
our model. Reinforcement learning could be used to provide
new evasive behaviors covering a wider range of strate-
gies. Future work includes encoding the terrain information
regarding detection ranges to better capture the evasive
behaviors of the adversary. We can additionally account for
the error uncertainty in sensors with sensor fusion for the
adversary’s state estimation.

VIII. CONCLUSION

In conclusion, our proposed approach, GrAMMI, for ad-
versarial opponent tracking in large state spaces, utilize a
deep learning architecture that predicts the current and future
states of an adversarial agent from partial observations of its
trajectory. Our approach shows significant improvement over
variational methods and demonstrates its generalizability
through two contributed open-source domains, Narco Traffic
Interdiction and Prison Escape.
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