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Abstract— Trajectory prediction and generation are crucial
for autonomous robots in dynamic environments. While prior
research has typically focused on either prediction or genera-
tion, our approach unifies these tasks to provide a versatile
framework and achieve state-of-the-art performance. While
diffusion models excel in trajectory generation, their iterative
sampling process is computationally intensive, hindering robotic
systems’ dynamic capabilities. We introduce Trajectory Condi-
tional Flow Matching (T-CFM), a novel approach using flow
matching techniques to learn a solver time-varying vector field
for efficient, fast trajectory generation. T-CFM demonstrates
effectiveness in adversarial tracking, real-world aircraft tra-
jectory forecasting, and long-horizon planning, outperforming
state-of-the-art baselines with 35% higher predictive accuracy
and 142% improved planning performance. Crucially, T-CFM
achieves up to 100x speed-up compared to diffusion models
without sacrificing accuracy, enabling real-time decision mak-
ing in robotics. Codebase: https://github.com/CORE-Robotics-
Lab/TCFM

I. INTRODUCTION

Robots of the future will require fast and accurate trajec-
tory forecasting techniques to navigate complex, dynamic
environments and interact with other agents safely and
efficiently. Trajectory forecasting deals with the problem
of estimating an agent’s future behavior while trajectory
generation deals with planning feasible paths for an agent
to follow. These techniques are crucial for various robotics
applications, such as autonomous driving [19], multi-robot
coordination [25], and social navigation [4]. By generating
long-horizon plans and accurately predicting the future tra-
jectories of dynamic agents, robots can make better decisions
and adapt to changing conditions in real-time.

In recent years, deep learning approaches have achieved
impressive results on trajectory forecasting benchmarks
by learning complex patterns and distributions from large
datasets. Compared to traditional methods such as Kalman
Filters [14] and Particle Filters [7], learning-based methods
excel at tasks where models of an agent’s behavior are
unknown or hard to predict. In particular, generative models
such as variational autoencoders (VAEs) and generative
adversarial networks (GANs) have shown promise in mod-
eling the inherent multimodality and stochasticity in agent
behaviors. More recently, denoising diffusion probabilistic
models (DDPMs) [21] have emerged as a powerful class
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Fig. 1: Trajectory Conditional Flow Matching (T-CFM) is our
novel trajectory prediction and generation framework. The
model is capable of generating trajectories in a single step,
outperforming prior generative modeling work by learning a
time-varying vector field to sample trajectories.

of generative models, demonstrating superior performance
in sample quality and diversity across various domains.
However, a key limitation of diffusion models is their slow
sampling speed, which hinders their real-time applicability
in robotics. VAEs and GANs are fast but struggle with
multimodal sample quality compared to diffusion models.

In this paper, we introduce a novel trajectory forecasting
and generation framework that employs flow matching [15],
a method that transforms between data distributions using
a learned time-varying vector field. Our technique, named
Trajectory Conditional Flow Matching (T-CFM), maintains
the sample quality of diffusion models while generating
samples an order of magnitude faster by circumventing the
iterative sampling approach used in diffusion models.

We demonstrate the efficacy of T-CFM on three robotics
tasks, shown in Figure 3. In the adversarial tracking scenario,
autonomous pursuing agents predict the future trajectories
of an adversarial evader. We also showcase T-CFM’s perfor-
mance on a real-world aircraft trajectory prediction dataset,
which has important implications for the development of
autonomous aerial robots. Accurate trajectory prediction en-
ables these robots to avoid collisions and coordinate with
other aircrafts. Finally, we apply T-CFM to long-horizon
planning in complex 2D maze environments [9], demonstrat-
ing our model’s ability to generate long-horizon plans, which
is crucial for robot navigation.

We show that T-CFM outperforms state-of-the-art base-



lines, including diffusion models, in terms of predictive
accuracy of generated trajectories and sample quality of
generated plans. Notably, our approach can generate high-
quality trajectory samples with as few as one sampling
step, leading to significant speed-ups compared to diffusion
models, without sacrificing performance.

Contributions: Our key contributions are three-fold.

o We propose T-CFM, a novel flow matching framework
for conditional trajectory forecasting and generation
that is both accurate and efficient. To the best of our
knowledge, we are the first to apply flow matching to
trajectory prediction and trajectory planning tasks.

o We demonstrate state-of-the-art performance on three
challenging robotics tasks: adversarial tracking, air-
craft trajectory forecasting, and long-horizon planning,
achieving up to in 35% increase in prediction accuracy
and 142% in planning performance.

e T-CEM achieves significant sampling time speed-ups
compared to prior generative modeling approaches, re-
ducing sampling time by up to 100x. Our framework is
versatile and can generate high-quality trajectories using
as few as one sampling step or multi-step sampling
when needed.

II. RELATED WORKS

Traditionally, trajectory forecasting and trajectory plan-
ning have occupied very different and distinct avenues of
robotics research. However, with the advent of deep learning,
these tasks have become increasingly intertwined. In this
section, we review traditional methods for both trajectory
forecasting and generation (Section II-A). Then we describe
why learning-based approaches can address the key limita-
tions of traditional methods and introduce flow matching and
generative modeling.

A. Symbolic Methods for Trajectory Forecasting & Planning

a) Target Tracking: Target tracking is a well-studied
problem in the robotics community [2], with numerous appli-
cations, including surveillance [10], crowd monitoring [22],
and wildlife monitoring [8]. Traditional methods for target
tracking and trajectory prediction, such as Kalman Filters [5],
[14] and Particle Filters [7], [17], have been widely used in
various in applications like autonomous navigation, object
tracking in video surveillance, robotics, and radar systems.
However, their performance degrades when faced with sparse
observations, lack of accurate target behavior models, and
long prediction horizons [18]. In our work, we address these
limitations by leveraging a flow matching-based approach
that learns to model the target’s behavior from data, allowing
for accurate predictions even in sparse observation settings
and over long horizons.

b) Planning and Navigation: Traditional methods for
path planning, such as RRT* and PRM* [13], are widely
used in environments with a known representation of the
world. However, they can be computationally expensive for
large state spaces and require a priori knowledge, which
may not always be available or can change dynamically.

Learning-based approaches, such as ours, offer the promise
of generalization and the ability to provide solutions in
dynamic environments. Our approach learns to generate
feasible trajectories directly from data, eliminating the need
for explicit maps and enabling fast planning in complex,
dynamic environments.

B. Learning-Based Approaches

a) Supervised Learning Methods for Trajectory Pre-
diction: Recent works in trajectory prediction for various
domains, such as aircraft navigation (FlightBERT) [11],
social navigation [4], and autonomous driving [19], have
employed supervised learning methods. These approaches
often utilize autoregressive models and log-likelihood based
training to learn predictive models from data. Graph-based
Adversarial Modeling with Mutual Information (GrAMMI)
[27] is a recent framework that explicitly models a mul-
timodal distribution using a combination of a Gaussian
Mixture Model regularized by mutual information. While
effective in certain scenarios, these models can struggle
with capturing long-horizon multi-modal distributions, which
are common in real-world trajectory data. We leverage a
generative modeling approach rather than a discriminative
one, enabling more diverse multimodal outputs for accurate
prediction in complex real-world scenarios.

b) Generative Modeling: Generative modeling tech-
niques, which have shown great success in computer vision
tasks [21], provide a promising avenue to augment trajectory
prediction by learning to model complex, multimodal distri-
butions. Recently, diffusion-based probabilistic models [21]
have dominated many generative modeling tasks. Diffusion
models generate samples by iteratively denoising a Gaussian
distribution, allowing them to capture complex, multimodal
distributions. Diffuser [12] and Motion Planning Diffusion
[3], are diffusion based approaches for learning trajectories,
representing the state of the art in long horizon planning
and offline reinforcement learning. Constrained Agent-based
Diffusion for Enhanced Multi-Target Tracking (CADENCE)
[26], similarly extends the Diffuser framework for Adversar-
ial Tracking and modeling multi-agent behaviors. The main
drawback of diffusion models is their iterative denoising
process, which can be computationally slow, limiting their
real-time applicability.

As an efficient alternative to diffusion models, flow match-
ing techniques [15], [23] learn a generative model using
ordinary differential equations (ODESs) instead of stochastic
differential equations (SDEs). This formulation allows for
faster sampling while maintaining the ability to model com-
plex distributions. To the best of our knowledge, our work
is the first to apply flow matching techniques for learning
trajectories for prediction and planning tasks.

III. PRELIMINARIES

Trajectories play a crucial role in various robotics domains
as they represent the behavior and evolution of an agent over
time. Formally, we define a trajectory 7 as a sequence of

states s',s2 ..., 5T, where st € S represents the state of



the agent at time horizon step ¢, and S is the state space. In
some cases, trajectories may also include actions, represented
as 7 = {(st,al), (s%,a?),...,(sT,aT)}, where a' € A is
the action taken by the agent at time step ¢, and A is the
action space.

By modeling trajectories in this general form, we can
develop methods for trajectory forecasting and planning
that are applicable across different domains. In trajectory
forecasting, the goal is to predict an agent’s future trajectory
given its past states and additional context information, c.
This can be formalized as learning a conditional distribution
po (Tt T 71t ¢), where 71 represents the observed trajec-
tory up to time ¢, 7/ 757 represents the future trajectory to be
predicted, and c represents any additional context. Similarly,
in adversarial tracking, we can use the same framework
to predict an adversary’s (7) future trajectory given prior
detection or environmental information, c.

In long-horizon planning, the goal is to generate a tra-
jectory that leads an agent from an initial state to a goal
state. This can be formalized as drawing a trajectory sample
from pg(7|c), where the context information, ¢ are the
start and goal states. Rather than a trajectory optimization
problem, this formulation allows us to view the problem as
a conditional generation task, where we sample trajectories
from a learned distribution conditioned on the desired start
and goal states.

IV. METHOD

In this section, we describe our flow matching formulation
and how we model our problem. The goal primary goal is
to generate trajectories 7 given the conditioning factor c.
Trajectories are defined simply as a sequence of states or a
sequence of states and actions.

A. Flow Matching Formulation

The goal of flow matching, similar to diffusion models,
is to learn a process that can generate samples through an
iterative process that lies in the data distribution. To do this,
we model the starting random Gaussian noise distribution as
q(7p) and the trajectory data distribution as g(71). We refer
to these distributions as qg, g1 where the generative modeling
task is to transform ¢ to q;.

To learn a model that can transform ¢y to ¢;, we model
a time-varying vector field u : [0,1] x R — R and a
probability path p : [0,1] x R? — R?*. The vector field u
is defined by an ordinary differential equation (Equation 1).

dr = u(7)dt (1)

Intuitively, the vector field defines the direction and mag-
nitude to push each sample such that a sample from gqq
arrives at its corresponding location in ¢; by following the
probability path p over time.

We aim to approximate the true vector field v using a neu-
ral network represented by vy (t,7), where vg(t,7) defines
a time-dependent vector field parameterized by weights, 6.
The flow matching objective is to minimize the difference

between the predicted vector field vy (¢, 7) and the true vector
field u:(7), as expressed in Equation 2.

meinEt,'rNPt(‘r) H'U@(tv T) - ut(T)HQ 2

However, this objective is intractable as there is no closed
form representation for the true vector field u;(7). Instead,
prior work [1], [15], [23] has proposed to estimate the condi-
tional form of the vector field u;(7|z) which is conditioned
on a random variable z. In our work, we use the formulation
where ¢(z) = q(70)q(71), meaning z captures the starting
and ending points of the trajectory.

We assume a Gaussian flow between 7¢ and 7y with
standard deviation o and model the probability path p;(7|z)
and vector field u(7|z) as shown in Equations 3. Equation
3a defines the probability path as a Gaussian distribution
centered at a linear interpolation between 7y and 7 at time t.
In the top portion of Figure 2, we show a visualization of the
linear interpolation used to generate intermediate trajectories
between 7y and 7;. Equation 3b defines the target vector field
simply as the difference vector pointing from the starting
point 7y to the end point 7.

pe(T|2) =N (7’|t7'1 + (1 —t)7o, 02)
Ut(T‘Z) =T1 — To-

(3a)
(3b)

With this formulation, we now have a computable target
vector field that we can regress our neural network to.
Algorithm 1 summarizes the training steps:

1) Draw a starting trajectory 7y from the Gaussian noise
distribution ¢(7p) and a random timestep ¢ from a
uniform distribution (Lines 2 - 3).

2) Draw a ground truth end trajectory 7; and conditioning
factor ¢ from the dataset (Line 4).

3) Compute the intermediate trajectory 7 at time ¢ by
linearly interpolating between 7y and 71 (Line 5).

4) Match the vector field vy(¢, 7) predicted by the neural
network to the target vector field u:(7|z) = 7 — 7o
(Lines 6 - 8).

By repeating these steps and updating the neural network
weights to minimize the difference between the predicted and
target vector fields, the model learns to approximate the true
time-dependent vector field that transforms samples from the
starting noise distribution to the data distribution.

The neural network model used to parameterize vy (t, 7, ¢)
is a 1D Convolutional Temporal U-Net based on prior
diffusion work [12], [26]. 1D convolutions slide over the
time dimension of the input trajectory 7, capturing temporal
patterns and dependencies without being autoregressive. This
allows for efficient parallel processing of the entire trajectory.
The model also incorporates Feature-Wise Linear Modula-
tion (FILM) Layers [16] to condition the model with relevant
context information, c. For each domain, we will describe the
context vector (c) used (Section V). By using the same base
architecture as prior diffusion work, we demonstrate that our
training methodology generates better models irrespective of
model parameter count and architecture.
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Fig. 2: Overview of Trajectory Conditional Flow Matching. The flow matching formulation defines intermediate trajectories
as a linear combination between the prior noise distribution (79) and data distribution (71). The sampling procedure then
utilizes the learned flow field generated by the model to create samples.

Algorithm 1 Conditional Flow Matching Training

Require: Dataset D, computable wu(x|z) and network
Vo (tv T, C) :
while Training do
70 ~ q(7o);
t~U(0,1)
T1,¢ ~ D > Draw target trajectory and conditioning

1:

2 > Draw source trajectory
3

4:

5: T~ pi(7|2) = N (7ltry + (1 = t)70,0°%) > Eq. 3a
6

7

8

9:

> Draw timestep

u(]2) =71 — 7o > Eq. 3b
‘CCFM<9) = ||U0(t77a C) - Ut(T\Z) > Loss
> Update Model

12

: 0 =0+ aVeLorr(0)
end while

B. Sampling

Given a trained flow model wvy(t, 7, c), the sampling pro-
cedure utilizes an ODE solver to recover the solution to
Equation 1. We can denote the solution of the ODE with
¢¢(7), where ¢o(7) = 7 and ¢4(7) is the transformation of
our trajectory 7 transported along the vector field from time
0 to time ¢. In Algorithm 2, we show the sampling procedure
using the Euler method (Line 7) but any off the shelf ODE
solver can be used. In our experiments, we choose to use the
Euler sampling method as the number of sampling steps is
easily adjustable. The bottom portion of Figure 2 shows how
the sampling procedure moves from a prior noisy trajectory
Tp to a trajectory that lies within the data distribution 7.

One key difference between the trajectory generation and
planning tasks is the planning task requires constraints on the
sampled trajectory. We provide a formulation to constrain the
generated trajectory 7 to start at the current robot state and
end at the desired goal state. For each sampling step, we
set these states of the trajectory rather than interpolate from

noise (Alg 2, Line 4-5), where the horizon of the trajectory
is denoted h. In this formulation, we allow the model to infill
the trajectory to generate a cohesive plan.

Algorithm 2 Euler Sampling

Require: Samplable ¢(79) = N(0, I), trained flow network
vg(t, 7, ), number of sampling timesteps N
Optional: Start State s°, End State s”
7o ~ (7o)
fort=1,...,N do
if Planning then

Ty 8°

> Sample 7

> Set Start State
Tth/N — sh > Set Goal State
end if
Ter1)/N < Te/n + 5 vo(t, TN, ©)
end for

AN AN e

The key feature of parameterizing the probability flow and
vector field through Equation 3 is that it enables our model
to learn straight flows as compared to diffusion models. In
diffusion models, the sampling process involves gradually
denoising a Gaussian noise sample over many steps, follow-
ing a complex path in the data space. This typically requires
a large number of sampling steps to generate high-quality
samples. In contrast, our flow matching approach learns a
direct, straight path from the starting noise distribution to the
target data distribution by modeling the probability path as
a linear interpolation between the starting and ending points
(Equation 3), encouraging the model to find the most efficient
trajectory that matches the true data distribution.

Intuitively, the straight flows learned by our model can be
thought of as a shortcut from the noise distribution to the data
distribution. Instead of taking a meandering path through the
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Fig. 3: Trajectory Forecasting and Planning Domains: Our
T-CFM framework is applicable many trajectory modeling
tasks, with Adversarial Tracking, Trajectory Forecasting, and
Long-Horizon Planning domains shown here.

data space, the model learns to follow a direct route guided
by the target vector field, enabling our method to reduce the
number of intermediate steps needed to generate high-quality
trajectories. This straight path allows for faster sampling with
fewer steps.

V. EVALUATION AND DOMAINS

We test our model in three different tasks and domains: 1)
Adpversarial Tracking 2) Trajectory Forecasting, and 3) Long-
Horizon Planning. These domains test our model’s capability
of generating accurate multimodal trajectory predictions and
plans for robots to use. Visualizations for the training data
and domains are shown in Figure 3 and a summary of the
states and context vectors used are in Table 1.

Domain \ State in Trajectory (7) Context Vector (c)

Historical detection
information

Adversarial Tracking Position (X, y)

coordinates

S-minute history

Aircraft Trajectory Longitude, Latitude,
of past states

Altitude

Long-Horizon Planning | Position (x, y)

coordinates

Start and goal
states

TABLE I: Summary of State and Context Vectors for Dif-
ferent Domains

A. Adversarial Tracking

Adversarial tracking aims to predict an adversary’s fu-
ture trajectory 7 given past historical information, c. These
domains are challenging due to the adversary’s potential
multiple strategies and the observers’ often incomplete or
sparse data. We assess our flow-matching tracking models
using the Prison Escape scenarios, as introduced in previous
work [27].

The Prisoner Escape and Narco Traffic Interdiction simu-
lations share similar pursuit-evasion dynamics, with tracking

agents collaborating to locate and apprehend an adversary
attempting to reach predetermined hideouts. The agents face
the challenge of operating in large environments with sparse
detections of the opponent. Key differences between the
domains include the type of fog-of-war, agent capturing
dynamics, and destination types. We refer the reader to prior
work for more details [27].

For both scenarios, we utilize open-sourced datasets from
prior work [27]. The Prison Escape scenario consists of
three datasets (Prisoner-Low, Prisoner-Medium, Prisoner-
High) with opponent detection rates of 12.9%, 44.0%, and
63.1%, respectively. The Narco Interdiction scenario uses
two datasets with opponent detection rates of 13.8% and
31.5%, adjusted by modifying the pursuit agents’ detection
radius. We evaluate our models using Average Displacement
Error (ADE), which computes the average [o distance be-
tween each sampled trajectory and the ground truth trajectory
over all timesteps.

B. Aircraft Trajectory Forecasting

To demonstrate the capabilities of our model on real data,
we retrieved two years of data for a single Cessna aircraft
from the OpenSky database [20]. Individual trajectories
were extracted from the dataset, resulting in a total of 474
trajectories and a train/val/test split of 80/10/10% was used.
The Cessna was chosen to constrain the range of trajectories
while maintaining significant variability, allowing for testing
the multimodal performance of our algorithm. The goal is
to predict the future trajectory 7 given the 5-minute history
of past states ¢, which we use as our context vector. We
evaluate the forecasting performance using two common
metrics: mean absolute error (MAE) and root mean square
error (RMSE) for longitude, latitude, and altitude.

C. Long-Horizon Imitation Learning - Maze2D

Learning to plan for long horizons is crucial for robots
to navigate autonomously in complex domains. The perfor-
mance of our models in long-horizon planning is evaluated
using the Maze2D environments [9]. In this task, the agent
must traverse from a starting location to a goal location. The
algorithm is tested on three maps of increasing difficulty:
U-Maze, Medium, and Large. Following prior work, the
performance is reported in terms of score, which represents
the agent’s success in reaching the final goal. The score is
normalized between O and 100 based on an expert policy.

Two different evaluations are performed: single-task and
multi-task. In the single-task evaluation, the goal location
remains constant while in the multi-task setting, the goal
location is randomly selected at the beginning of each
episode. Training data consists of successful trajectories
between randomly selected start and end goals.

VI. RESULTS AND DISCUSSIONS

This section presents results and analysis for three tasks:
Adversarial Tracking, Trajectory Forecasting, and Long-
Horizon Planning. Three models were trained for each task
using different random seeds.
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Fig. 4: Comparison our model with the diffusion-based CADENCE model. Our method achieves better ADE on the entire
prediction horizon (left) while also maintaining performance when the number of sampling steps is lowered (right).

A. Adversarial Tracking

Our approach is benchmarked against several state-
estimation baselines including 1) VRNN [6], 2) GRaMMI
[27] and 3) CADENCE [26].

Prediction Horizon
‘ 0 min 30 min 60 min 90 min 120 min

z | Particle Filter | 0.120 0.148 0.161 0.171 0.183
S | VRNN 0.106  0.093 0.119 0.146 0.177
A | GrAMMI 0.060 0.080 0.110 0.154 0.163
CADENCE 0.057 0.077 0.100 0.127 0.154
T-CFM (Ours) | 0.055 0.076 0.101  0.128 0.153
g | Particle Filter | 0.099 0.129  0.141  0.152 0.163
S | VRNN 0.172  0.086 0.110 0.144 0.167
A | GrAMMI 0.049 0.077 0.110 0.146 0.167
CADENCE 0.046 0.076 0.103  0.129 0.153
T-CFM (Ours) | 0.030 0.058 0.088 0.118 0.146
<, | Particle Filter | 0.041 0.084 0.102 0.119 0.133
= | VRNN 0.105 0.059 0.100 0.117 0.145
A, | GrAMMI 0.015 0.056 0.092 0.122 0.162
CADENCE 0.017 0.054 0.078 0.099 0.118
T-CFM (Ours) | 0.018  0.044  0.067 0.089 0.110

TABLE 1II: Average Displacement Error Results for three
Prisoner Escape (P-low, P-med, P-high) Datasets. Bolded
values represent the best performing model.

1) Tracking Capabilities of Flow Matching: We report our
results on the three Prisoner Escape datasets in Table II. We
show that T-CFM outperform or matches the prior baselines
on all prediction horizons with the greatest advantages on the
Prisoner-Medium and Prisoner-High datasets, showcasing a
17% and 12% increase in predictive accuracy respectively.
We hypothesize that the flow-matching models are able to
better incorporate the dense detection history information
than the diffusion models because the flow field is deter-
ministic and does not include adding an additional noise
component. This may benefit the flow matching models to
generate more confident and correct trajectories as compared
to the diffusion models.

We also show the ADE for the entire prediction horizon on
the Prisoner-Medium dataset in Figure 4a. The VRNN and
GRaMMI models are not shown as they do not predict full
trajectories and also are not as competitive as the diffusion
baseline. We find that our flow matching model reduces
the ADE over all time horizons and has a tighter standard
deviation than the diffusion model. Furthermore, we observe
a performance dip in CADENCE between the first and
second prediction timesteps, characterized by the sudden
increase in ADE. This occurs because CADENCE employs
an inpainting formulation that sets the first timestep to the
detected location, if available. Consequently, this formulation
introduces a risk of discontinuities in the diffusion tracks.
Our results show that our flow matching model does not
encounter the same issue and can outperform the diffusion-
based model even without an explicit inpainting formulation.

2) Sampling Speed Analysis: We analyze the accuracy
of our model compared to the diffusion model by reducing
the total number of sampling steps N. In diffusion models,
sampling steps refer to denoising steps, while in our method,
they refer to Euler sampling steps. Both formulations require
a neural network function call at each sampling step, making
the number of sampling steps the primary bottleneck in
reducing overall sampling time as the underlying neural
network architecture is the same.

We find that our flow-based model can generate high
quality samples with just a single sampling step (Figure
4b). This is due to the difference between flow matching
and diffusion objectives. Flow matching enforces a straight
probability flow between the starting distribution ¢(7p) and
the ending distribution ¢(7;). Consequently, while diffusion
models may need to adjust the sample direction during
denoising, the flow matching framework learns a good initial
estimate of how to move samples from the noisy distribution,
enabling sample generation without multiple steps.



Lon MAE Lat MAE Alt MAE

0 15 30| 0 15 30 | 0 15 30
FlightBERT | 0.036 0.127 0.164 | 0.024 0.087 0.102|390.1 1060.8 1014.1
T-CFM (Ours) | 0.010 0.098 0.130 | 0.006 0.067 0.075 | 145.3 853.3 782.6

Lon RMSE Lat RMSE Alt RMSE

0 15 30| 0 15 30 | 0 15 30
FlightBERT | 0.057 0.188 0.267 | 0.035 0.122 0.161 | 509.9 1430.6 1375.1
T-CFM (Ours) | 0.014 0.160 0.234| 0.009 0.107 0.141 | 205.5 1242.6 11354

TABLE III: Aircraft Trajectory Forecasting: T-CFM achieves lower MAE and RMSE on Latitude, Longitude, and Altitude.

B. Aircraft Trajectory Forecasting

The trajectory forecasting task tests our model’s generative
capabilities on real-world data rather than simulated data.
We compare our method against FlightBERT [11], a modern
transformer-based framework built specifically for aircraft
trajectory forecasting. We modify FlightBERT’s attention
mechanism, as the original framework assumed access to air-
craft velocities. We also train with a negative log-likelihood
loss to better model the variance in our dataset.

Table III shows our model’s performance as compared to
FlightBERT. We find that our method outperforms Flight-
BERT on all metrics with an average improvement of 35.4%
over all metrics. We hypothesize two main reasons that our
method outperforms FlightBERT. First, our method is not
autoregressive generates the whole trajectory at once. This
provides an advantage as errors may not accumulate over
the prediction time horizon. FlightBERT was only tested for
shorter horizon predictions. Meanwhile, we are interested in
longer horizon predictions of up to 30 minutes compared
to the 5 minute horizon for the dataset in FlightBERT.
Second, we hypothesize that the multimodal capabilities
of our model is important for our flight trajectory dataset.
Unlike commercial flights, the behavior of the Cessna aircraft
does not travel in straight paths and consists of multiple
heading changes throughout its path. We show that T-CFM
better models these diverse trajectories than prior work.

C. Long-Horizon Planning through Imitation Learning

We compare how well our models perform against Dif-
fuser [12], the current state-of-the-art method for learning
how to plan solely from data on the Maze2D task (Table
IV). We find that with just a single sampling step, our method
significantly outperforms the diffusion models, achieving a
142% increase in score. Similar to our analysis in Adver-
sarial Tracking, the linear probability flows allows us to
immediately infer high quality samples. Additionally, we
provide a visualization of the sampling procedure with just
two sampling timesteps in Figure 5. Here we show that
Diffuser produces a plan that intersects with the wall, as
it is requires a large number of sampling steps to produce
coherent plans. Meanwhile our method plans a collision free
path. Additionally, the middle trajectory 7/, shows more
coherence and has less spread in T-CFM than Diffuser. This
supports the hypothesis that our T-CFM’s flow field is more
efficient at transforming noisy trajectories into realistic ones.

While T-CFM outperforms Diffuser in the U-Maze and
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Fig. 5: Visualization of Sampling Procedure between Dif-
fuser (top) and T-CFM (bottom) in Maze2D-Medium. In just
two sampling steps, we show that T-CFM can successfully
plan a path between the start and end unlike Diffuser.

Medium mazes with more sampling steps, Diffuser outper-
forms our model in the Large maze. T-CFM occasionally
generates good plans but sometimes produce paths that
collide with walls, lowering the overall score. Sampling a
single trajectory from noise increases the chance of gen-
erating inaccessible plans compared to Diffuser. This may
be because linear flows from flow matching struggle to
correct certain noise initializations. In contrast, the diffusion
model’s sampling procedure is less dependent on initial
noise, allowing it to reason better in the larger domain.

Environment N=1 N=256
Diffuser T-CFM Diffuser T-CFM
(Ours) (Ours)
Maze2D U-Maze 50.7+67 106.7+27 112.5+112 122.1+14
Maze2D Medium 21.7+135 112.2+15 123.3+16 123.8435

Maze2D Large 30.3+69 111.0+135 112.6+163 104.3+34
Single-Task Average 34.2 109.9 116.1 116.7
Multi2D U-Maze 69.8+160 129.8+30 1273433 129.5+09
Multi2D Medium 58.4+53 116.5+28 124.2412 126.5+41
Multi2D Large 35.8+42 1217450 1387459 127.3486
Multi-Task Average 54.7 122.7 130.1 127.8

TABLE 1V: The performance of T-CFM and Diffuser on
the long-horizon Maze2D compared when given a single
sampling timestep N = 1 and maximum sampling timesteps,
N = 256. Our model (T-CFM) is able to drastically reduce
the number of sampling steps required to generate feasible
plans whereas the Diffuser model fails at N = 1.
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Fig. 6: Compared to Diffuser, our T-CFM model does not
drop in performance as we reduce the number of sampling
steps on the Large Maze2D domain.

VII. LIMITATIONS AND FUTURE WORK

Our current approach does not explicitly consider multi-
agent interactions. Future work includes extending to social
navigation and autonomous driving scenarios, which require
reasoning about other agents. We aim to increase our flow
matching models’ expressiveness, potentially incorporating
stochastic bridge matching [24] to combine deterministic
ODE and stochastic SDE formulations. Further experiments
with T-CFM in dynamic situations will better demonstrate
its capabilities for real-world robotic tasks.

VIII. CONCLUSION

T-CFM is a novel approach for efficient trajectory fore-
casting and planning in robotics. By learning time-varying
vector fields through flow matching, T-CFM achieves state-
of-the-art performance on tasks like adversarial tracking,
aircraft trajectory prediction, and long-horizon planning. T-
CFM offers significant speed-ups compared to diffusion-
based models without compromising accuracy, paving the
way for more autonomous and responsive robots operating
in complex, dynamic environments.
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