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Abstract. Forward simulation-based uncertainty quantification that studies the distribution of quantities of4
interest (QoI) is a crucial component for computationally robust engineering design and prediction.5
There is a large body of literature devoted to accurately assessing statistics of QoIs, and in par-6
ticular, multilevel or multifidelity approaches are known to be e↵ective, leveraging cost-accuracy7
tradeo↵s between a given ensemble of models. However, e↵ective algorithms that can estimate the8
full distribution of QoIs are still under active development. In this paper, we introduce a general9
multifidelity framework for estimating the cumulative distribution function (CDF) of a vector-valued10
QoI associated with a high-fidelity model under a budget constraint. Given a family of appropriate11
control variates obtained from lower-fidelity surrogates, our framework involves identifying the most12
cost-e↵ective model subset and then using it to build an approximate control variates estimator for13
the target CDF. We instantiate the framework by constructing a family of control variates using14
intermediate linear approximators and rigorously analyze the corresponding algorithm. Our analysis15
reveals that the resulting CDF estimator is uniformly consistent and asymptotically optimal as the16
budget tends to infinity, with only mild moment and regularity assumptions on the joint distribution17
of QoIs. The approach provides a robust multifidelity CDF estimator that is adaptive to the avail-18
able budget, does not require a priori knowledge of cross-model statistics or model hierarchy, and19
applies to multiple dimensions. We demonstrate the e�ciency and robustness of the approach us-20
ing test examples of parametric PDEs and stochastic di↵erential equations including both academic21
instances and more challenging engineering problems.22
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1. Introduction. Physical systems are often modeled with computational simulations or25

emulators, and as such, understanding the error in these constructed approximations is of26

utmost importance. One particular source of uncertainty in the output is due to the input27

uncertainty in these models, either through uncertainty in model parameters (which can be28

finite- or infinite-dimensional) or through modeled stochasticity in the system, e.g., systems29

driven with white noise processes. To make the resulting models trustworthy, it is crucial to30

quantify the resulting uncertainty in QoIs; that is, to estimate the QoI’s distribution or some31

statistical summary of it. One popular approach for achieving this is through Monte Carlo32

(MC) simulation, which is easy to implement and provides robust results but has a slow con-33
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vergence rate. A typical MC procedure requires drawing a large number of samples or running34

repeated experiments, which is expensive given the increasing complexity of computational35

simulations.36

To address this issue, methods based on multilevel [11, 12] and multifidelity modeling37

[29, 28, 30, 19, 27, 16, 18, 32, 9, 35, 33, 17, 8, 10] have been developed to estimate the statistics38

of QoIs associated with the (high-fidelity) model. The core idea behind multilevel/multifidelity39

methods lies in leveraging models of di↵erent accuracies and costs to improve computational40

e�ciency. However, a major limitation of the existing literature is that it predominantly41

focuses on the estimation of the statistical mean of the QoIs (or other scalar-valued descriptive42

statistics such as quantiles or conditional expectations), providing only partial insight into the43

uncertainty of the QoIs. A more comprehensive understanding would require assessing, for44

example, higher-order statistics of the QoI, or even the entire distribution.45

Existing methods to estimate CDFs in the multilevel and multifidelity setup have seen46

notable success [12, 23, 13, 21, 3, 36]. In [12], the authors proposed a multilevel approach47

to computing the CDFs of univariate random variables arising from stochastic di↵erential48

equations and derived an upper bound for the cost in terms of the error. The methodology in49

[12] was further developed and applied in several subsequent works [23, 21, 13, 3]. In particular,50

[23] designed an a posteriori optimization strategy to calibrate the smoothing function and51

showed its superiority over MC in oil reservoir simulations; [21] generalized the ideas in [12]52

to approximate more general parametric expectations such as characteristic functions; [13]53

applied an adaptive approach for parameter selection that yields an improved cost bound;54

[3] provides a novel computable error estimator to enhance algorithm tuning. Despite the55

substantive contributions of these approaches, nearly all of them make relatively restrictive56

assumptions regarding model hierarchy (e.g., the model cost versus accuracy tradeo↵s), and57

do not immediately extend to the general non-hierarchical multifidelity setup. For this more58

general multifidelity estimation of CDFs, the only work we are aware of is the adaptive explore-59

then-commit algorithm for distribution learning (AETC-d) [36]. However, the large-budget60

performance of AETC-d is restricted by its own set of statistical assumptions that are often61

too stringent to satisfy in practice. Moreover, the QoI in all the above references is assumed62

to be a scalar.63

An outline of the paper is as follows. The remainder of this section lists our contribu-64

tions, introduces overall notation, and summarizes the main theory and algorithmic advances.65

Sections 2 through 4 describe the necessary mathematical and statistical background for our66

method: Section 2 gives a brief overview of the control variates method; Section 3 introduces67

a multifidelity CDF estimation framework based on approximate control variates estimators.68

Section 4 provides a computational construction for the control variates through linear approx-69

imators. Section 5 develops our new meta algorithm (cvMDL) that accomplishes autonomous70

model selection together with an algorithmic correction to preserve the monotonicity of the71

resulting CDF estimators. The meta algorithm cvMDL itself does not specify how to com-72

pute the control variates: A specialization to using the linear approximations from Section 473

yields a computationally explicit algorithm that we study in detail, establishing both uniform74

consistency and budget-asymptotic optimality. Section 6 contains a detailed simulation study75

and showcases applications that use estimated CDFs to compute probabilistic risk metrics.76
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1.1. Contributions. The main goal of this article is to provide novel solutions that mit-77

igate the deficiencies described above. We develop an e�cient algorithm for estimating the78

CDF in a general non-hierarchical multifidelity approximation setting under computational79

budget constraints. The proposed method satisfies the following criteria: 1) it requires as80

input neither cross-model statistics nor model hierarchy; 2) it can provide distributional esti-81

mates for vector-valued QoIs, and 3) it is empirically robust and enjoys theoretical guarantees.82

Although our approach uses a similar meta algorithm as in [35, 36] (all borrowing ideas from83

the explore-then-commit algorithm in bandit learning [22]), it contains a substantial num-84

ber of new ingredients that extend applicability and improve robustness. In more technical85

language, our contributions are twofold:86

• We propose a control variates-based exploration-exploitation strategy for multifidelity87

CDF estimation under a budget constraint. The exploration step leverages statistical88

estimation to select a subset of low-fidelity models for the control variates construction,89

followed by the exploitation step that utilizes the learned information to build an90

approximate control variates estimator for the target CDF. This procedure is initialized91

with no a priori oracle information1 about model relationships, in contrast to several92

methods that require such information as input. In addition, our estimator for the93

CDF applies to both scalar-valued and vector-valued QoI, which di↵erentiates it from94

existing methods that apply only to scalar-valued QoI.95

• Through examination of the average weighted-L2 loss that balances errors in explo-96

ration and exploitation, we design a new meta algorithm, the control variates multifi-97

delity distribution learning algorithm (“cvMDL”, summarized in Figure 1 and detailed98

in Algorithm 5.2), that accomplishes model (subset) selection and CDF estimation.99

Using control variates constructed from linear approximators, we establish both uni-100

form consistency and asymptotic optimality of the estimator produced by cvMDL as101

the budget approaches infinity (Theorem 5.7). Our analysis illustrates that the pro-102

posed procedure significantly ameliorates the restrictive model assumptions in [36].103

A verbatim usage of our approaches produces a CDF estimator that enjoys the previously-104

mentioned theoretical guarantees but is not necessarily monotonic and hence may not be itself105

a distribution function. To mitigate this artifact, we utilize an empirical algorithmic correction106

that restores the monotonicity of the estimated CDFs and additionally makes its manipulation107

more computationally convenient (e.g. for extraction of quantiles and conditional expecta-108

tions); see Algorithm 5.1. We observe that in some cases this empirical correction further109

reduces errors.110

1.2. Notation. For n 2 N, let {1 : n} := {1, . . . , n}. We use bold upper-case and lower-111

case letters to denote matrices and vectors, respectively. The Euclidean (`2) norm on a vector112

v is denoted kvk2. For a matrix A, A> is the transpose and A† is the pseudoinverse; A†113

coincides with the regular inverse A�1 when A is invertible. The ith column of A is denoted114

by A(i). The Frobenius norm of A is denoted by kAkF = (
P

i
kA(i)k2

2
)1/2. We use ⌦ to115

denote the tensor product operator. For a set T ✓ Rd, we denote its interior as T �, and116

1In this article, oracle information refers to model statistics that we treat as exact. These statistics may
be exactly computed, but more often are approximations identified through simulations with a large enough
computational expense so that the approximations are treated as ground truth.
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1T (x) := 1{x2T } as the indicator function on T . For two vectors x = (x(1)
, . . . ,x(d))> and117

y = (y(1)
, . . . ,y(d))>, we use _ and ^ to denote the componentwise max and min operators,118

respectively, i.e.,119

x _ y :=
⇣
max{x(1)

,y(1)}, . . . ,max{x(d)
,y(d)}

⌘>
120

x ^ y :=
⇣
min{x(1)

,y(1)}, . . . ,min{x(d)
,y(d)}

⌘>
.121

122

Moreover, we say x  y if x(i)  y(i) for all i 2 {1 : d}. We consider the QoIs from123

computational models as random variables that jointly lie in some common probability space124

(⌦,F ,P). For a random vector X 2 Rd, we let FX(x) = P(X(1)  x(1)
, . . . , X

(d)  x(d))125

denote its CDF. For two sequences of random variables {am(!)} and {bm(!)} where ! 2 ⌦ is126

a probabilistic event, we write am(!) . bm(!) if almost surely (a.s.), am(!)  ⌘(!)bm(!) for127

all m 2 N, where the constant ⌘(!) is independent of m. For convenience, we let128

Y = (Y (1)
, . . . , Y

(d))> 2 Rd
Xi = (X(1)

i
, . . . , X

(di)

i
)> 2 Rdi i 2 {1 : n}129130

denote the high-fidelity and the ith low-fidelity QoIs, respectively. Here d, di 2 N are the131

corresponding dimensions of Y and Xi. There are n low-fidelity models in total. We use132

E[·],Var[·]/Cov[·], and Corr[·] to denote the expectation, variance/covariance, and correlation133

operators respectively. We use ?? to represent probabilistic independence.134

1.3. Model assumptions. We assume the sampling costs for Y and X1, . . . , Xn, denoted135

by positive numbers c0 and c1, . . . , cn, are deterministic and known. For S ✓ {1 : n}, let136

cS =
P

i2S ci, corresponding to the cost of sampling all (low-fidelity) models from subset137

S. We let B > 0 be the total budget (deterministic and known) that is available to expend138

on sampling the models. Moreover, for S ✓ {1 : n}, we let XS = (X>
i
)>
i2S 2 RdS , where139

dS =
P

i2S di, and XS+ = (1, X>
S )>, where the latter is used when considering a linear model140

approximation with the intercept/bias term.141

The central goal in the rest of the article is to develop a multifidelity estimator for FY (x)142

through drawing samples of (Y,X{1:n}) and ofXS for some adaptively-determined S ✓ {1 : n},143

subject to the sampling cost not exceeding the total budget constraint B > 0. No other high-144

level assumptions are made. In other words, we assume only that Y is a known high-fidelity145

model; we do not assume any ordering/hierarchy in the models X{1:n}, and we do not assume146

known statistics (e.g., correlations) between any models. While such generality is su�cient for147

algorithmic purposes, our theoretical guarantees require additional technical assumptions that148

are articulated in Subsection 5.4. These technical assumptions are mild regularity conditions,149

related to finite moments of random variables and CDF functional regularity.150

The notation we have introduced is enough to present the overall cvMDL algorithm in the151

next section. The actual computations that make the algorithm practical, however, require152

more technical details which are provided in Section 2 through Section 5.153

1.4. Summary of the algorithm. The proposed cvMDL meta algorithm is shown in Fig-154

ure 1. In summary, we first gather m full joint samples of (Y,X{1:n}) through an exploration155

phase that identifies (i) how models are related, (ii) which model subset S optimally balances156
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cost versus accuracy, and (iii) whether more samples m are needed to certify a robust explo-157

ration or whether the choice of S is statistically robust enough to proceed with exploitation.158

Exploration is followed by the exploitation phase, where we exhaust the remaining computa-159

tional budget to sample the optimal model subset XS . Exploitation corresponds to exercise160

of a particular approximate control variates estimator for FY . A more detailed description is161

as follows:162

Exploration phase163

– Mininum exploration: This step ensures that the number of exploration samples m is set164

large enough so that non-degenerate empirical statistics can be computed.165

– Analyze low-fidelity models: We are interested in estimating the minimal loss associated166

with an estimated CDF that utilizes the model subset S. For such a goal, this step identi-167

fies for each model subset S both an estimated number of optimal exploration samples bm⇤
S168

along with the corresponding loss function minimum bL(m _ bm⇤
S ;m). The value bL(z;m)169

is an estimator with the currently-available m exploration samples and measures the es-170

timated loss if we eventually use z exploration samples. When evaluating the minimum171

loss, we require the input z  m _ bm⇤
S since if m > bm⇤

S then the number of exploration172

samples should be m, and not bm⇤
S (we cannot take fewer exploration samples than already173

committed and we assume bL(z;m) is convex and has a unique minimizer). The definitions174

of bL, bm⇤
S , and

bS⇤ are given in (5.6) and (5.7).175

– Select optimal model : The estimated optimal model subset bS⇤ is computed by choosing176

the subset S with minimal loss from the previous step.177

– Continue exploration: If the current number of exploration samples m is smaller than178

the estimated optimal number of samples bm⇤
bS⇤ required for the optimal subset bS⇤, then we179

continue exploration, with the precise number of additional exploration samples determined180

by the function Q(·, ·) that is defined in (5.12). If m � bm⇤
bS⇤ , then exploration terminates181

and we move to the exploitation phase.182

Exploitation phase183

– Expend budget : After exploration terminates and an “optimal” model subset bS⇤ has been184

identified, we expend the remaining computational budget on sampling X bS⇤ .185

– Estimate CDF : Using the collected samples, we construct the CDF estimator eF bS⇤ for FY ,186

which is defined in (5.10).187

The precise details of how the loss function is computed and the CDF estimator is constructed188

is the topic of Section 5, with Sections 2 to 4 serving to make requisite mathematical and189

statistical definitions.190

A more detailed version of the algorithm is given in Algorithm 5.2, which lists more explicit191

computational steps that must be taken. The coming sections are devoted to the theoretical192

construction of quantities in Figure 1; in particular Sections 2 and 3 provide a construction193

of a loss function that is the integral part of exploration decision-making.194

2. Background: control variates. We first introduce the control variates method, which195

is a standard approach for variance reduction in MC simulation. For a random variable X196

with bounded variance �
2

X
> 0, the size-m MC estimator for E[X] based on i.i.d. data197

X`, bx =
P

`2{1:m}X`/m, is unbiased and has variance �
2

X
/m. Given a random vector Z =198

This manuscript is for review purposes only.



6 R. HAN AND B. KRAMER AND D. LEE AND A. NARAYAN AND Y. XU

Initialization

Inputs: models Y , X{1:n}
model costs c0, c{1:n}
available budget B
di = dimXi

Minimum exploration

m 2 +
P

i2{1:n} di
Collect m samples of all models

B  B �m(c0 +
P

n

i=1
ci)

Analyze models. For each S ⇢ {1 : n}:
Assemble loss bLS(·;m)

Compute loss minimizer, bm⇤
S = argminq bLS(q;m)

Compute minimal loss L(S,m) := bLS(m _ bm⇤
S ;m)

Select optimal model

bS⇤ = argminS L(S,m)

Continue exploration

�m Q(m, bm⇤
bS⇤)�m

Collect �m samples of all models
B  B ��m(c0 +

P
n

i=1
ci)

m m+�m

Expend budget

�m B/(
P

i2 bS⇤ ci)
Collect �m samples of X bS⇤

Estimate CDF

Construct eF bS⇤

Terminate

Output: CDF estimator eF bS⇤ for Y

Exploration phase

Exploitation phase

bm⇤
bS⇤ > m (Insu�cient exploration)

bm⇤
bS⇤  m (Su�cient exploration)

Figure 1: Flowchart illustration of the cvMDL algorithm. More details of the steps are
discussed in Subsection 1.4. The full algorithm is presented in Algorithm 5.2.

(Z(1)
, . . . , Z

(d))> 2 Rd that lives in the same probability space as X, one may use joint i.i.d199

samples of (X,Z), i.e., (X`, Z
>
`
) = (X`, Z

(1)

`
, . . . , Z

(d)

`
) for ` 2 {1 : m}, to construct a control200

variates estimator bxcv for E[X]:201

bxcv =
1

m

X

`2{1:m}

X` �
1

m

X

`2{1:m}

(Z>
`
� � E[Z]>�),202

203

where � 2 Rd is some appropriately chosen vector and E[Z] is assumed known. The estimator204

bxcv is also unbiased and has variance205

�
2

cv = Var[bxcv] =
Var[X � Z

>
�]

m
.206

207

This variance is minimized when � is the least-squares coe�cient for centered linear regression,208

i.e., for regressing (X � E[X]) on (Z � E[Z]),209

� = Cov[Z]�1Cov[Z,X] =) �
2
⇤ = min

�2Rd
�
2
cv =

(1� ⇢
2)�2

X

m
, ⇢ = Corr(X,Z

>Cov[Z]�1Cov[Z,X]).

(2.1)

210
211

When |⇢| ⇡ 1, the variance reduction is significant, in which case Z
>
� accounts for most of212

Var[X].213

When E[Z] is unknown, one may consider the following approximate control variates es-214

timator that uses an independent size-N MC estimator in place of E[Z] using samples eZj :215

bxacv =
1

m

X

`2{1:m}

X` �
1

m

X

`2{1:m}

0

@Z
>
`
� � 1

N

X

j2{1:N}

eZ>
j �

1

A (`, j) 2 {1 : m}⇥ {1 : N},

(2.2)

216

217

where we assume Z` ?? eZj . Then this has variance218

�
2

? = �
2

⇤ +
Var[Z>

�]

N
=

(1� ⇢
2)�2

X

m
+

⇢
2
�
2

X

N
.(2.3)219

220
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Construction of such approximate control variates estimators has been recently studied in the221

multifidelity estimation of first-order statistics [16, 35]. The terms Cov[Z]�1 and Cov[Z,X]222

may be estimated empirically at the cost of incurring higher-order trajectory-wise statistical223

errors in m [14, 26].224

3. Variance reduction for CDF estimation. Control variates can be more generally ap-225

plied to CDF estimation of nonlinear functions of random variables [15, 20]. For example, in226

risk management applications [15], the authors considered using the delta-gamma approxima-227

tion2 (i.e. the second-order Taylor expansion) of a loss function L at a given position x along228

random market move direction ⌘ as control variates to compute its quantiles. More precisely,229

one uses a quadratic function of ⌘ to approximate the loss at x:230

�(L(x+ ⌘)� L(x)) =: `(x) ⇡ b̀(x) := �rL(x)>⌘ � 1

2
⌘>r2

L(x)⌘.231
232

Fixing a scalar C, 1{b̀(x)C} can be used as a control variate for 1{`(x)C} to compute the233

latter’s expectation, which in particular provides a way to compute CDFs. More advanced234

approximation techniques have been introduced in [20] to construct other control variates in235

the value-at-risk computation.236

We apply a similar idea in the proposed multifidelity setup here. In our setup, a specific237

functional form may be computationally di�cult to produce, and Taylor-like approximations238

can be inaccurate outside local regions. Our alternative strategy is to employ a global emulator239

for Y based on linear combinations of X{1:n}, which can be e↵ective when the correlation240

between these quantities is high. For example, this situation is often true when modeling241

parametric PDEs. In the rest of the section, we introduce a general multifidelity approach to242

estimate FY (x) subject to a budget constraint.243

3.1. Control variates for multifidelity CDF estimation. In developing the proposed244

method, we frequently resort to the simple observation that245

FY (x) = E[1{Yx}], x 2 Rd
.246247

If we fix S ✓ {1 : n}, the control variate based on XS that minimizes variance (and hence is248

optimal) is E[1{Yx}|XS ] [31]. This quantity requires the orthogonal projection of Y onto the249

sigma-field generated byXS , which is computationally intractable without special assumptions250

(e.g. joint normality). In order to approximate E[1{Yx}|XS ], we use h(XS ;x) to denote a251

general XS-measurable function that serves as the control variates for 1{Yx}. We make a252

particular choice for h in Section 4.253

Analogous to (2.2), we construct an approximate control variates estimator for FY (x),254

where the m and N in (2.2) are related by the budget constraint (the cost of sampling255

Y and XS). Since di↵erent subsets S are considered simultaneously, we take a uniform256

exploration policy that first collects m i.i.d joint exploration samples of the full model for257

variance reduction and then commits the remainder of the budget to collect NS samples of258

2Here we refer to the “full” delta-gamma approximation. The more commonly used delta-gamma approxi-
mation in practice does not consider the second-order cross terms.
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a selected model subset S of low-fidelity models to compute the control variates mean. The259

exploration samples and exploitation samples under a uniform exploration policy are denoted:260

Exploration samples: {(X>
epr,`,1, . . . , X

>
epr,`,n, Y

>
epr,`)

>}`2{1:m} ⇢ Rd+
P

n

i=1 di(3.1)261

Exploitation samples: {Xept,j,S}j2{1:NS},(3.2)262263

where the subscripts “epr” and “ept” specify the stage where a sample is used. The parameters264

m and NS are related by the budget constraint:265

NS =
B � ceprm

cS
cepr =

nX

i=0

ci, cS =
X

i2S
ci,(3.3)266

267

where we ignore integer rounding e↵ects to simplify the discussion. The control variates268

estimator for FY (x) based on h(XS ;x) is269

bFS(x) =
1

m

X

`2{1:m}

1{Yepr,`x} �
1

m

X

`2{1:m}

↵(x)

0

@h(Xepr,`,S ;x)�
1

NS

X

j2{1:NS}

h(Xept,j,S ;x)

1

A ,

(3.4)

270

271

where ↵(x) is the optimal scaling coe�cient as in (2.1):272

↵(x) = Cov[h(XS ;x)]
�1Cov[1{Yx}, h(XS ;x)].(3.5)273274

Note ↵(x) is undefined if Cov[h(XS ;x)] = 0. In this case, the value of the estimator bFS(x)275

does not depend on ↵(x), and we set ↵(x) to 0 for convenience. The quantity bFS(x) is an276

unbiased estimator for FY (x) with variance277

Var[ bFS(x)] =
(1� ⇢

2

S(x))FY (x)(1� FY (x))

m
+

⇢
2

S(x)FY (x)(1� FY (x))

NS
,278

279

where280

⇢S(x) = Corr[1{Yx}, h(XS ;x)].(3.6)281282

3.2. A control variates loss function. To measure the overall accuracy of bFS(x), we283

introduce the loss LS defined by the average !(x)-weighted L
2-norm square of bFS(x)�FY (x):284

LS := E
Z

Rd

!(x)| bFS(x)� FY (x)|2dx
�
,(3.7)285

286

where !(x) : Rd ! R�0 is a weight function. The !(x)-weighted L
2-norm square is related287

to other more widely used metrics on distributions, e.g., it reduces to the Cramér–von Mises288

distance when !(x)dx = dFY (x). To estimate LS , note that by Tonelli’s theorem, we have,289

LS =

Z

Rd

!(x)Var[ bFS(x)]dx =
k1(S)
m

+
k2(S)

B � ceprm
,(3.8)290

291
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where292

k1(S) =
Z

Rd

!(x)(1� ⇢
2

S(x))FY (x)(1� FY (x))dx293

k2(S) = cS

Z

Rd

!(x)⇢2S(x)FY (x)(1� FY (x))dx.(3.9)294
295

Since k1(S) and k2(S) are nonnegative, a su�cient and necessary condition for k1(S) and296

k2(S) being well-defined (i.e. finite) is297

k1(S) + c
�1

S k2(S) =
Z

Rd

!(x)FY (x)(1� FY (x))dx <1,(3.10)298
299

but this need not hold for arbitrary choice of !. For instance, when !(x) ⌘ 1, (3.10) is true300

when d = 1 if E[|Y |1+�] < 1 for some � > 0. However, when d � 2, (3.10) is generally not301

true when the support for the distribution of Y is unbounded since F
�1

Y
([", 1� "]) may have302

infinite Lebesgue measure in Rd for some " > 0. For such scenarios, requiring that !(x) is303

integrable ensures (3.10), i.e.,304
Z

Rd

!(x)FY (x)(1� FY (x))dx <

Z

Rd

!(x)dx <1.305
306

Some typical choices for integrable !(x) include !(x) = 1T where T ⇢ Rd is a bounded307

domain of interest or !(x) with reasonably fast decaying tails as kxk2 !1. In the following308

discussion, we assume (3.10) holds (and later codify this as Assumption 5.5). We make309

di↵erent choices for ! in our numerical results of Section 6.310

3.3. Exploration-exploitation trade-o↵. Equation (3.8) is similar to the exploration-311

exploitation loss trade-o↵ that was originally formulated in [35], where k1 and k2 measure312

the errors committed by the exploration and the exploitation, respectively. Note that LS is a313

strictly convex function for a valid exploration rate m, i.e., for 0 < m < B/cepr, and achieves314

its unique minimum at m⇤
S with corresponding minimum loss L⇤

S :315

m
⇤
S =

B

cepr +
q

ceprk2(S)
k1(S)

, L
⇤
S := min

0<m<
B

cepr

LS(m) =
(
p
ceprk1(S) +

p
k2(S))2

B
=:

�S
B

.(3.11)316

317

An optimal subset S is the one that minimizes the m-optimized loss value,318

S⇤ = arg min
S✓{1:n}

�S .(3.12)319
320

A uniform exploration policy is called optimal if it collects m⇤
S⇤ joint samples for exploration321

and uses model S⇤ for exploitation. This is, in e↵ect, a model selection procedure, as an322

optimal exploration policy selects the model subset that yields the smallest error via optimally323

balancing the trade-o↵ between exploration and exploitation. In the following discussion, we324

assume S⇤ is unique.325

As a benchmark to the procedure above (with oracle information), one can consider an326

empirical (ECDF) procedure that devotes the full budget to sampling the high-fidelity model327

Y , ignoring the lower-fidelity models. The following result relates the error between these two328

approaches.329
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10 R. HAN AND B. KRAMER AND D. LEE AND A. NARAYAN AND Y. XU

Lemma 3.1. With L
⇤
S⇤ = �S⇤/B the minimum error achieved by a uniform exploration330

policy as described above, and cepr
R
Rd !(x)FY (x)(1�FY (x))dx/B the expected error achieved331

by an ECDF estimator for FY , then332

cepr
R
Rd !(x)FY (x)(1� FY (x))dx/B

�S⇤/B
� 1

2
⇣

cS
cepr

+ EZ [(1� ⇢
2

S⇤(Z))]
⌘ � 1

4
333

334

where Z is a random variable with (unnormalized) density !(z)FY (z)(1� FY (z)).335

Proof. We have336

cepr

R
Rd !(x)FY (x)(1� FY (x))dx/B

�S⇤/B
=

cepr

R
Rd !(x)FY (x)(1� FY (x))dx

⇣p
ceprk1(S⇤) +

p
k2(S⇤)

⌘2337

�
cepr

R
Rd !(x)FY (x)(1� FY (x))dx

2 (ceprk1(S⇤) + k2(S⇤))
338

� 1

2
⇣

cS
cepr

+ Ex[(1� ⇢
2

S⇤(x))]
⌘ � 1

4
,339

340

where the expectation Ex[·] is taken with respect to341

x ⇠ !(x)FY (x)(1� FY (x))dxR
Rd !(z)FY (z)(1� FY (z))dz

,342
343

and the last inequality follows by noting cS  cepr and 0  Ex[(1� ⇢
2

S⇤(x))]  1.344

Hence, the relative e�ciency of a uniform exploration policy compared to the ECDF estimator345

is unconditionally bounded below by 1/4, and hence the uniform exploration policy can at346

worst realize a loss value of 4 times a naive ECDF procedure. On the other hand, the relative347

e�ciency is � 1 if both cS/cepr and Ex[(1 � ⇢
2

S⇤(x))] are small. This happens, for instance,348

if XS⇤ has a much smaller sampling cost than Y and h(XS ;x) are “good” control variates349

for 1{Yx} uniformly for all x 2 Rd, both of which are realistic occurrences in multifidelity350

applications.351

4. Choosing control variates from linear approximations. We propose a procedure for se-352

lecting the control variate h, which boils down to constructing approximations of E[1{Yx}|XS ]353

that both retain high correlation with Y and are budget-friendly. While one may generate354

special forms for approximations in particular cases, our goal is a simple and generic choice355

that is useful for many practical applications.356

Recall that XS+ = (1, X>
i
)>
i2S 2 RdS+1. For i 2 {1 : d}, let �(i)

S+ be the optimal linear357

projection coe�cients for estimating the ith component of Y using XS+ :358

�(i)

S+ = (E[XS+X
>
S+ ])�1Cov[XS+ , Y

(i)] 2 RdS+1
, BS+ = [�(1)

S+ , · · · ,�
(d)

S+ ] 2 R(dS+1)⇥d
,(4.1)359360

The least squares approximation of Y using linear combinations of XS and 1 is given by361

HS(XS) := (X>
S+BS+)> =

2

64
X

>
S+�

(1)

S+

...

X
>
S+�

(d)

S+

3

75 2 Rd
.362

363
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When all quantities are scalars, i.e., d = d1 = · · · = dn = 1, one can directly manipulate HS364

to estimate the statistics of Y [35, 36]. Such an approach is easy to implement and enjoys365

certain robustness for first-order statistics, but is more prone to model misspecification e↵ects366

(e.g. expressibility of the linear model, noise assumption, etc.) when the whole distribution367

of Y is to be learned due to the limitation of linear approximation [36].368

To address the issue, we take an additional nonlinear step beyond HS . In particular, we369

consider the following family of control variates that slice the estimator HS :370

h(XS ;x) = 1{HSx}.(4.2)371372

Intuitively, we may expect 1{Yx} and h(XS ;x) to be correlated if E[kY � HSk22] is small.373

However, this may not be true for x approaching the tails of Y . For instance, assuming d = 1374

and a standard joint Gaussian random vector (X,Y ) with correlation ⇢,375

lim
x!�1

Corr(1{Yx},1{Xx}) = lim
x!0

CX,Y (x, x)

x
=

⇢
1, |⇢| = 1,
0, |⇢| < 1

376
377

where CX,Y (x, y) = P
�
��1(X)  x,��1(Y )  y

�
is the Gaussian copula and ��1 is the quan-378

tile of a standard normal distribution; see [24]. Hence, 1{Xx} is not a good control variate379

for 1{Yx} when |x| ! 1 unless |⇢| = 1, i.e., only if X / Y . Nevertheless, our experiments380

in Section 6 show that in practice h(XS ;x) provides a reasonable control variates choice for381

many scenarios in multifidelity simulations, and thus suggests that situations described above382

are less common for the applications of our interest. We discuss computational aspects of383

using (4.2) as control variates in Section 5.1.384

Choosing h as in (4.2), the coe�cient ↵(x) in (3.5) can be explicitly computed as385

↵(x) =

(
FY _HS (x)�FY (x)FHS (x)

FHS (x)(1�FHS (x))
x 2 supp(FHS (x))

�

0 otherwise
.(4.3)386

387

One useful technical result is that ↵(x) is bounded.388

Lemma 4.1. Let ↵(x) be given as in (4.3). Then, |↵(x)|  1.389

Proof. It su�ces to check that for x 2 supp(FHS (x))
�, ↵(x)  1 and �↵(x)  1 hold390

simutaneously:391

FY _HS (x)� FY (x)FHS (x)

FHS (x)(1� FHS (x))
 FY (x) ^ FHS (x)� FY (x)FHS (x)

FHS (x)(1� FHS (x))
392

=
FY (x)

FHS (x)
^ 1� FY (x)

1� FHS (x)
 1,393

394

and395

FY (x)FHS (x)� FY _HS (x)

FHS (x)(1� FHS (x))
 FY (x)FHS (x)� FY (x) + 1� FHS (x)

FHS (x)(1� FHS (x))
^ FY (x)FHS (x)

FHS (x)(1� FHS (x))
396

 1� FY (x)

FHS (x)
^ FY (x)

1� FHS (x)
 1.397

398
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12 R. HAN AND B. KRAMER AND D. LEE AND A. NARAYAN AND Y. XU

5. Algorithms. We revisit the cvMDL algorithm in Figure 1: the loss function LS in399

(3.8) is the desired loss function to optimize over but requires oracle statistics (i.e. k1(S)400

and k2(S)). Thus, we replace it with an approximation bLS that we describe in this section.401

Additionally, the computations in the “Analyze Models” step are now more transparent: The402

oracle computations are given by (3.12) and (3.11). In a practical algorithmic setting, we403

replace these with consistent approximate computations, which is the topic of this section.404

When using approximate quantities to compute LS , the explicit exploration-exploitation405

loss decomposition in (3.8) may no longer be true. Nevertheless, if the quantities we estimate406

are su�ciently accurate, then such a decomposition is expected to be approximately valid.407

Thus, in devising practical algorithms, we use the oracle loss form (3.8) (with estimated408

coe�cients) instead of (3.7) as the criteria for model selection. We present in the numerical409

section some empirical evidence that such a replacement has little impact on model selection.410

Since the proposed estimators change when new exploration samples are collected, the411

dependence on this number of exploration samples must be made explicit. For S ✓ {1 : n}, we412

let bLS(·; t) denote the estimated loss function LS after having collected t exploration samples.413

We then let bm⇤
S be the corresponding estimator for the optimal exploration sample size m

⇤
S .414

Summarizing this: the intuition behind the cvMDL algorithm is that we use currently collected415

exploration data (t samples) to find the estimated optimal model ( bS⇤) and the corresponding416

exploration rate (bm⇤
bS⇤). Based on the value of bm⇤

bS⇤ relative to t, we decide whether to continue417

to explore or to switch to exploitation.418

5.1. Estimators for oracle quantities. In this section, we discuss how to estimate LS , m⇤
S ,419

and ↵(x) from exploration data when instantiating cvMDL using the linear approximators as420

introduced in Section 4. The control variates h(XS ;x) = 1{HS(XS)x} belong to a parametric421

family characterized by �(i)

S+ , i 2 {1 : d} from (4.1), which can be estimated from exploration422

data.423

Recall from (3.1) that the `th exploration sample of all low-fidelity models in S is denoted424

by Xepr,`,S . Similarly, we define Xepr,`,S+ := (1, X>
epr,`,S)

>. To estimate �(i)

S+ , we use the425

least-squares estimator:426

b�(i)

S+ = Z†
SY

(i) ZS =

2

64

X
>
epr,1,S+

...
X

>
epr,m,S+

3

75 2 Rm⇥(dS+1) Y (i) =

2

664

Y
(i)

epr,1

...

Y
(i)

epr,m

3

775 2 Rm
,(5.1)427

428

where (X>
epr,`,1

, . . . , Y
>
epr,`

)>
`2{1:m} are joint exploration samples, and the design matrix ZS is429

assumed to have full column rank3.430

For x 2 Rd, h(XS ;x) can be estimated as431

bh(XS ;x) = 1{ bHS(XS)x}
bHS(XS) := bB>

S+XS+ =:

2

64
X

>
S+
b�(1)

S+

...

X
>
S+
b�(d)

S+

3

75 ,(5.2)432

433

3This motivates the minimal exploration size condition in Algorithm 1, which is a neccesary condition for
full rank here.
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For ease of notation, we write bHS(XS) and bhS(XS ;x) as bHS and bhS when XS+ is generic434

and not necessarily related to the exploration and exploitation data. We introduce some435

additional notation for quantities involving both estimated coe�cients and empirical CDFs436

using exploration data:437

bFY (x) =
1

m

X

`2{1:m}

1{Yepr,`x}438

bF bHS
(x) =

1

m

X

`2{1:m}

bh(Xepr,`,S ;x) =
1

m

X

`2{1:m}

1{ bHS(Xepr,`,S)x}439

bF
Y _ bHS

(x) =
1

m

X

`2{1:m}

1{Yepr,`_ bHS(Xepr,`,S)x}.440

441

To compute the loss function approximation, we build approximations to k1 and k2 in442

(3.9), which requires us to compute ⇢
2

S in (3.6). For this purpose, observe that443

(1� ⇢
2

S(x))FY (x)(1� FY (x)) = E[(1{Yx} � FY (x))� ↵(x)(1{HSx} � FHS (x))]
2
,444445

where ↵(x) is defined in (4.3). The quantity in the expectation is the mean squared regression446

residual between two centered Bernoulli random variables 1{Yx} and 1{HSx}. Thus, a447

natural estimator for (1� ⇢
2

S(x))FY (x)(1�FY (x)) is to compute an empirical mean-squared448

di↵erence between 1{Yx} and a regressor with covariates 1{ bHSx}, which requires data for449

Y . Since we have (uncentered) data for Y on the exploration samples Yepr,j for j 2 {1 : m},450

we can evaluate a regressor for Y with covariates bHS together with the intercept term on the451

exploration data sites. This results in the following estimator K1 for (1 � ⇢
2

S(x))FY (x)(1 �452

FY (x))453

K1(x) =
1

m

X

`2{1:m}

(1{Yepr,`x} � r`(x))
2

2

64
r1(x)

...
rm(x)

3

75 = WSW
†
S

2

64
1{Yepr,1x}

...
1{Yepr,mx}

3

75 ,(5.3)454

455

where456

WS =

2

64
1 bhS(Xepr,1,S ;x)
...

...

1 bhS(Xepr,m,S ;x)

3

75 .457

458

This allows us to estimate ⇢
2

S(x)FY (x)(1� FY (x)) as459

K2(x) = bFY (x)(1� bFY (x))�K1(x).(5.4)460461

Consequently, we can estimate k1(S) and k2(S) as462

bk1(S) =
Z

Rd

!(x)K1(x)dx bk2(S) = cS

Z

Rd

!(x)K2(x)dx.(5.5)463
464
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14 R. HAN AND B. KRAMER AND D. LEE AND A. NARAYAN AND Y. XU

The above estimators for k1(S) and k2(S) are positive and coincide with empirical estimators465

for these quantities whenever defined (see Appendix A.2.3), which is a crucial realization466

for our consistency results later. Plugging the above estimates into (3.8) and (3.11) yields467

estimates for LS and m
⇤
S :468

bLS(z;m) =
bk1(S)
z

+
bk2(S)

B � ceprz
bm⇤
S =

B

cepr +

r
ceprbk2(S)
bk1(S)

.(5.6)469

470

Note that bLS(z;m) has a parameter m indicating the number of exploration samples used to471

compute bk1(S) and bk2(S), and a variable z denoting the exploration rate where to evaluate472
bLS . We define bS⇤ as the optimal model selected by this estimator,473

bS⇤ = argmin
S✓{1:n}

bLS(bm⇤
S ;m),(5.7)474

475

which parallels the oracle choice (3.12). We have described all quantities needed to complete476

the exploration phase of Figure 1. What remains is to describe how the CDF estimator eF bS⇤477

in the exploitation phase of Figure 1 is generated.478

Our exploitation goal is to generate an estimator for (3.4), and so we need to estimate479

↵(x):480

b↵(x) =
bF
Y _ bHS

(x)� bFY (x) bF bHS
(x)

bF bHS
(x)(1� bF bHS

(x))
x 2 supp( bF bHS

(x))�,(5.8)481

482

and b↵(x) = 0 zero otherwise. By a similar reasoning as in Lemma 4.1, one has483

|b↵(x)|  1.(5.9)484485

Finally, the exploitation estimator eFS(x) for FY (x) based on estimated parameters, utilizes486

NS exploitation samples (i.e., exhausts the remaining budget B) and is given by,487

eFS(x) := bFY (x)�
1

m

X

`2{1:m}

0

@b↵(x)bhS(Xepr,`,S ;x)�
1

NS

X

j2{1:NS}

b↵(x)bhS(Xept,`,S ;x)

1

A ,

(5.10)

488

489

where S = bS⇤ is the selected model based on bk1(S) and bk2(S). By inspection, we observe490

that eFS(x) is a piecewise a�ne correction of bFY , where the correction is based on the control491

variates bhS .492

Remark 5.1. The estimator b↵(x) is undefined and manually set to zero for x outside the493

support of bF bHS
, as in that case the denominator vanishes. Alternatively, one can define b↵(x)494

for x outside the support of bF bHS
as b↵(x0) for some x0

inside the support of bF bHS
that can495

be accurately estimated yet remains close to x. To illustrate, consider d = 1. Assuming496
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↵(x) is a continuous function of x in supp(FHS ) and supp( bF bHS
(x)) = [xmin, xmax] for some497

xmin < xmax, for x 2 supp( bF bHS
(x))c, we may estimate ↵(x) outside [xmin, xmax] as498

b↵(x) =

8
><

>:

bF
Y _ bHS

(x(⌧))� bFY (x(⌧))⌧

⌧(1�⌧)
x  xmin

bF
Y _ bHS

(x(1�⌧))� bFY (x(1�⌧))(1�⌧)

⌧(1�⌧)
x � xmax,

(5.11)499

500

where x(⌧) and x(1� ⌧) are the ⌧ and 1� ⌧ quantiles of bF bHS
for some small ⌧ 2 (0, 1):501

x(⌧) = bF�1

bHS
(⌧) x(1� ⌧) = bF�1

bHS
(1� ⌧).502

503

This allows us to get nontrivial estimates of FY outside [xmin, xmax], i.e. in the tail regime.504

When d � 2, one may generalize the ideas above by projecting the points in the tail regime to505

some bounded set in Rd
that contains most of the measure in the domain.506

5.2. Monotonicity of the exploitation CDF estimator. By construction, eFS(x) is a piece-507

wise constant function on some d-dimensional rectangular partition of Rd, but is not necessarily508

a monotone nondecreasing function in each direction due to the fluctuations of estimators used509

in the construction. To address this issue, we introduce a dimension-wise recursive-sorting510

post-processing procedure on values in the range of eFS to recover the desired monotonicity and511

ensure that we compute an actual distribution function. To represent eFS(x) as a d-dimensional512

tensor, we introduce the index set I = ⌦i2{1:d}(zi,1, . . . , zi,Mi
), �1 = zi,1  · · ·  zi,Mi

= +1,513

where zi,j is the jth order statistic of the projected partition points associated with eFS(x),514

and Mi is the total number of such projected points. Using this notation, we express eFS(x)515

as a tensor T , where516

eFS(x) = Tz1,s1 ,··· ,zd,sd x 2
Y

i2{1:d}

[zi,si , zi,si+1).517

518

The desired monotonicity in each dimension can be recovered by an alternating dimension-wise519

sorting of entries in T until convergence. The details are given in Algorithm 5.1.520

An example when d = 2 is given below:521

2

4
0.7 0.4 0
0.3 0.5 0.2
1 0.8 0.6

3

5 sort rows�����!

2

4
0 0.4 0.7
0.2 0.3 0.5
0.6 0.8 1

3

5 sort columns��������!

2

4
0 0.3 0.5
0.2 0.4 0.7
0.6 0.8 1

3

5522

2

4
0.7 0.4 0
0.3 0.5 0.2
1 0.8 0.6

3

5 sort columns��������!

2

4
0.3 0.4 0
0.7 0.5 0.2
1 0.8 0.6

3

5 sort rows�����!

2

4
0 0.3 0.4
0.2 0.5 0.7
0.6 0.8 1

3

5523

524

As shown above, sorting ends up in some stationary point with desired monotonicity after a525

finite number of steps (see Theorem 5.2), but di↵erent orders of sorting may lead to di↵erent526

sorted CDF representations when d � 2. However, in our case, eFS(x) is itself a perturbation527

of the CDF of Y , so the sorting procedure is often beneficial for stabilizing the algorithm. A528

more detailed empirical study on this is given in Section 6. The sorting procedure described529

converges (i.e., achieves monotonicity in the values of T ) in a finite number of iterations.530
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Algorithm 5.1 Alternating sorting.

Input: a tensor T that represents the estimated CDF eFS(x)
Output: a sorted tensor sorted(T ) with desired monotonicity

1: Initialize sorted(T ) as a all-zeros tensor with the same size as T
2: while sorted(T ) 6= T do

3: sorted(T ) T
4: for i 2 {1 : d} do

5: for z := (z1,s1 , . . . , zi�1,si�1 , zi+1,si+1 , . . . , zd,sd) 2 ⌦j2{1:d}\{i}(zj,1, . . . , zj,Mi
) do

6: T [z, :] sort(T [z, :]), where T [z, :] := (Tz1,s1 ,...,zi,j ,...,zd,sd
)j2{1:Mi}

7: end for

8: end for

9: end while

10: Return sorted(T )

Theorem 5.2. Assume that all the entries in T are distinct. The alternating sorting al-531

gorithm described in Algorithm 5.1 converges to a stationary point with desired monotonicity532

within a finite number of iterations.533

Proof. See Appendix A.1.534

5.3. Exploration sampling. We next describe the precise action taken when we decide to535

continue exploring. In particular, we need to define the function Q(m, bm bS⇤) in Figure 1. When536

the current number m of exploration samples is smaller than the estimated optimal number537

of samples bm⇤
bS⇤ , the function Q determines how to increase m. A natural choice for Q is538

Q(m, bm⇤
bS⇤) = m+1, i.e., simply increase by a single additional exploration sample. In practice,539

we observe that this behavior can be overly conservative and time-consuming when B is large.540

As an alternative, one could use a more aggressive strategy, say Q(m, bm⇤
bS⇤) =

1

2

⇣
m+ bm⇤

bS⇤

⌘
,541

which more quickly closes the gap between m and bm bS⇤ . However, there are situations when542

this is too aggressive. For example, if m is small (such as at initialization) then estimated543

quantities can be poor approximations, and in some cases bm bS⇤ is significantly overestimated,544

and thus increasing m to 1

2

⇣
m+ bm⇤

bS⇤

⌘
can actually result in substantially overshooting the545

oracle value of m⇤
S⇤ . The probability of such an event is often positive and does not vanish as546

B increases.547

As a compromise between these conservative and aggressive behaviors, we choose the548

following form:549

Q(m, bm⇤
bS⇤) =

8
<

:
2m, 1  m <

bm⇤
bS⇤
2

1

2

⇣
m+ bm⇤

bS⇤

⌘
,

bm⇤
bS⇤
2
 m < bm⇤

bS⇤

.(5.12)550

551

Since bm⇤
bS⇤ is proportional to B, the above choice ensures that there is a su�cient amount of552

time for the algorithm to take exponential exploration whose growth manner is independent553

of the value of bm⇤
bS⇤ , which ensures both e�ciency and accuracy of the algorithm. We note554

that neither the exponential rate two nor taking the average between m and bm⇤
bS⇤ in (5.12) is555
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special, and can respectively be replaced with other rates greater than one and nonuniform556

averaging operations subject to appropriate modifications. Both the theoretical conclusions557

and numerical simulations in the subsequent sections assume that Q has the form above, but558

other reasonable choices for Q do not change the theoretical conclusions.559

We have completed all technical descriptions of Figure 1. A more fleshed-out pseudocode560

version is given in Algorithm 5.2 that provides more details for every step. Next, we establish561

that the proposed algorithm enjoys optimality guarantees relative to model selection and562

budget allocation strategies produced by an oracle.563

Algorithm 5.2 The detailed cvMDL algorithm.
Input: B: total budget, model costs c0, c1, . . . , cn
Output: an estimator for FY (x)

1: Initialize exploration = TRUE
2: Initialize m =

P
i2{1:n} di + 2

3: Generate m exploration samples of (Y,X{1:n})
4: while exploration = TRUE do

5: for S ✓ {1 : n} do

6: Compute regression coe�cients b�(i)

S+ , i 2 {1 : d} from (5.1)

7: Construct bHS(XS) and bh(XS ;x) from (5.2)
8: Compute regression coe�cients rj(x), j 2 {1 : m} from (5.3)
9: Construct K1 and K2 from (5.3) and (5.4), respectively

10: Evaluate bk1(S) and bk2(S) using (5.5) and a quadrature rule on Rd

11: Compute bm⇤
S and bLS( · ;m) from (5.6)

12: Compute the minimal expected loss bLS(m _ bm⇤
S ;m) from (5.6)

13: end for

14: Choose bS⇤ = argminS✓{1:n} bLS(m _ bm⇤
S ;m);

15: if m < bm⇤
bS⇤ then

16: Generate Q(m, bm⇤
bS⇤)�m additional samples of (Y,X{1:n}), where Q is given in (5.12)

17: Increase m: m Q(m, bm⇤
bS⇤)

18: else

19: exploration = FALSE
20: end if

21: end while

22: Generate N bS⇤ samples of X bS⇤ , with NS given in (3.3)

23: Construct b↵(x) for S  bS⇤ using (5.8)
24: Generate bS⇤ exploitation estimator eF bS⇤ using (5.10).

5.4. Model consistency and optimality. We now provide theoretical guarantees for Al-564

gorithm 5.2 (corresponding to the flowchart in Figure 1). In summary, we show that as the565

budget B tends to infinity, the model subset bS⇤ chosen along with the number of exploration566

samples m taken in Algorithm 5.2, both converge to the oracle optimal model S⇤ and the567
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optimal number of exploration samples m⇤
S⇤ , respectively.568

We need some technical assumptions in order to proceed with our results. Since we569

estimate quadratic moments, we require quadratic moments to exist. We also require that570

there are no pairs of low-fidelity QoIs that are perfectly correlated. These are codified in the571

following two assumptions.572

Assumption 5.3. The models X{1:n} and Y have bounded second moments:573

E[kX{1:n}k22 + EkY k22] <1.(5.13)574575

Assumption 5.4. The uncentered second moment matrix E[X{1:n}+X
>
{1:n}+] is invertible,576

where X{1:n}+ = (1, X>
{1:n})

>
.577

Assumption 5.3 is the minimal moment condition on QoIs that we require to make or-578

acle quantities well-defined. Random variables that violate Assumption 5.4 exhibit perfect579

multicollinearity and in practice are relatively rare. Assumption 5.4 being violated does not580

cause any conceptual breakdown of our procedure; the only consequence is that all the linear581

regression procedures su↵er from a lack of identifiability of optimal covariates. While there582

are numerous standard procedures to remedy multicollinearity, such as covariate removal or583

regularization, violation of this assumption did not surface in our experiments, so we do not584

utilize any of these remedies.585

The model selection procedure requires estimating the average !-weighted L
2 norm. This586

requires us to make certain assumptions about !.587

Assumption 5.5. The weight !(x) is chosen so that either of the following conditions is588

true:589

(a) k!kL1(Rd) <1 (e.g. !(x) ⌘ 1) and d = 1; or590

(b) k!kL1(Rd) <1.591

The final more technical assumption we require involves some regularity on distribution592

functions. In particular, we show pointwise convergence in x of the estimator b↵(x) to the593

oracle parameter ↵(x), and to accomplish this we require bounds on the local variations of594

FHS and FHS_Y constructed in the model selection procedure. More technically, a su�cient595

assumption is a bounded local variations condition involving CDFs of certain d-dimensional596

sketches of X{1:n} and Y .597

Assumption 5.6. Define598

V (A) := (X>
S+A)> 2 Rd A := [A(1)

, · · · ,A(d)] 2 RdS⇥d
,599600

and recall the optimal coe�cient matrix BS+ in (4.1). We assume the CDFs of V (A) and601

V (A) _ Y , denoted by FV (A) and FV (A)_Y , are globally Lipschitz near BS+ for all S. In602

particular, we assume that there exists " > 0 such that603

max
S✓{1:n}

sup
A:kA�BS+kF"

�
kFV (A)kLip + kFV (A)_Y kLip

 
= C <1,604

605

where k · kLip is the Lipschitz constant defined as606

kfkLip = sup
x 6=x0

|f(x)� f(x0)|
kx� x0k2

f : Rd ! R.607

608
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This final assumption is less transparent than our previous ones. An unnecessarily stronger suf-609

ficient condition to ensure that Assumption 5.6 holds is to assume that both Y and all unit lin-610

ear combinations of X{1:n} have uniformly bounded densities, and that every high-fidelity co-611

variate Y (i) is correlated with every low-fidelity covariateX(r)

j
, i.e., mini,j,r |Corr(Y (i)

, X
(r)

j
)| >612

0. Alternatively, one could assume that the same bounded density condition, and the rather613

reasonable condition that the oracle regression coe�cients BS+ select at least one non-614

deterministic covariate for every S.615

We can now present our main results regarding applying the cvMDL algorithm with616

h(XS ;x) constructed using linear approximations, with the corresponding loss function pa-617

rameters estimated from (5.5) and (5.6). In particular, we have that the adaptive exploration618

ratem(B) asymptotically matches the optimal (oracle) exploration ratem⇤
S⇤ defined in Section619

3.3, and the selected model S(B) converges to the optimal (oracle) model S⇤ as B !1:620

Theorem 5.7 (Uniform consistency and asymptotic optimality of cvMDL in Algorithm 5.2).621

Let h(XS ;x) be defined in (4.2), i.e., we use the linear approximation estimators from622

Section 4, and assume the model parameters are estimated via (5.5) and (5.6). Then consider623

Algorithm 5.2 with an input budget B, and let624

• m(B) = bm bS⇤ be the number of exploration samples chosen by Algorithm 5.2,625

• S(B) = bS⇤
be the model selected for exploitation,626

• eF (x;B) = eF bS⇤(x) be the CDF estimator for FY .627

Under Assumptions 5.3, 5.4, 5.5, and 5.6, then with probability one,628

lim
B!1

m(B)

m
⇤
S⇤

= 1,(5.14a)629

lim
B!1

S(B) = S⇤
,(5.14b)630

lim
B!1

sup
x2Rd

| eF (x;B)� FY (x)| = 0,(5.14c)631

632

where S⇤
and m

⇤
S⇤ are the unique optimal (oracle) model choice and exploration sample size633

defined in Section 3.3.634

The proof is given in Appendix A.4. The result (5.14c) should not come as a surprise since635

uniform consistency is generally true for empirical CDF estimators. Therefore, while (5.14a)636

and (5.14b) show that cvMDL in Algorithm 5.2 exhibits optimality (relative to an oracle) for637

the choice of exploration samples and sample allocation across models, (5.14c) is not evidence638

that the multifidelity estimator eF (x;B) is superior to the empirical CDF estimator that uses639

only the high-fidelity samples, although it confirms that eF (x;B) behaves as expected. The640

major di↵erence that distinguishes eF (x;B) from a standard empirical CDF estimator is a641

constant term resulting from the mean !-weighted L
2 convergence rate; see the discussion642

near the end of Subsection 3.3.643

The statements in Theorem 5.7 and [36, Theorem 5.2] are similar, but in the former,644

the requisite assumptions are much weaker and the guarantees are stronger. In fact, for645

[36, Theorem 5.2] to hold, one must assume that E[Y |XS ] is a linear function of XS and646

(Y � E[Y |XS ]) ?? XS for all S ✓ {1 : n}. However, none of these assumptions is needed in647

Theorem 5.7. Additionally, Theorem 5.7 ensures convergence for a multivariate distribution648
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function instead of the univariate convergence statements in [36, Theorem 5.2].649

5.5. A brief view into proving Theorem 5.7. While we leave the technical parts of proving650

Theorem 5.7 to Appendix A.4, we can summarize the crucial intermediate results that allow651

the proof to succeed. The major results we need revolve around the consistency of various652

estimators as m and/or NS approach infinity. The following two sets of results leverage the653

assumptions to conclude the consistency of intermediate computations in the algorithm.654

The first collection of results shows that the finite-sample estimators for quantities com-655

puted in the exploration phase are consistent as the number of exploration samples m tends656

to infinity.657

Lemma 5.8 (Asymptotic consistency of exploration estimators). We have the following tech-658

nical estimates and consistency results for all S ✓ {1 : n}:659

(i) Under Assumptions 5.3 and 5.6, then with probability one,660

sup
kA�BS+kF<"

sup
x2Rd

|FV (A)(x)� FV (BS+ )(x)| . kA�BS+k2/3
F

. "
2/3(5.15a)661

sup
kA�BS+kF<"

sup
x2Rd

|FV (A)_Y (x)� FV (BS+ )_Y (x)| . kA�BS+k2/3
F

. "
2/3

.(5.15b)662

663

(ii) Under Assumptions 5.3 and 5.4, then with probability one,664

lim
m!1

bBS+ = BS+ .665
666

(iii) Under Assumptions 5.3, 5.4, and 5.6, then with probability one,667

lim
m!1

sup
x2Rd

| bF bHS
(x)� FHS (x)| = 0 lim

m!1
sup
x2Rd

| bF
Y _ bHS

(x)� FY _HS (x)| = 0.668

669

(iv) Under Assumptions 5.3, 5.4, and 5.6, then almost surely as m!1 we have that,670

K1(x)! (1� ⇢
2

S(x))FY (x)(1� FY (x)) K2(x)! ⇢
2

S(x)FY (x)(1� FY (x))671672

for all x 2 Rd
.673

(v) Under Assumptions 5.3, 5.4, 5.5, and 5.6, then with probability one, limm!1 bk1(S) =674

k1(S) and limm!1 bk2(S) = k2(S).675

(vi) Under Assumptions 5.3, 5.4, and 5.6, for x 2 (supp(FHS ))
�
, b↵(x) is a consistent es-676

timator of ↵(x) almost surely, i.e., limm!1 b↵(x) = ↵(x) for every x 2 (supp(FHS ))
�
.677

The proof is given in Appendix A.2.678

Remark 5.9. Note that b↵(x) may not be consistent outside (supp(FHS ))
�
, where the value679

of ↵(x) is set to be zero in the definition for convenience; see (4.3). However, this has no680

impact on the accuracy of the exploitation estimator as 1{HSx} is constant in this region.681

Our second intermediate result shows that the exploitation estimator for the CDF of Y is682

consistent asymptotically in both the exploration sample count m and the exploitation sample683

count NS .684
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Lemma 5.10 (Uniform asymptotic consistency of the exploitation CDF estimator). Under685

Assumptions 5.3, 5.4, and 5.6, then with probability one, supx2Rd | eFS(x) � FY (x)| ! 0 as686

m,NS !1.687

See Appendix A.3 for the proof. The proof of our main result, Theorem 5.7, is in Appendix A.4,688

which leverages the results in Lemma 5.8 and Lemma 5.10. One additional high-level step689

needed to prove Theorem 5.7 is to show that cvMDL in Algorithm 5.2 for asymptotically690

large budget B results in both m and NS going to infinity. This is the first part of the proof691

presented in Appendix A.4.692

6. Numerical simulations. In this section, we compare cvMDL and its variants with other693

algorithms on three forward uncertainty quantification scenarios. In Section 6.1, we examine a694

scalar-valued parametric linear elasticity PDE problem, followed by a vector-valued stochastic695

di↵erential equation problem concerning the extrema of a geometric Brownian motion over696

a finite interval in Section 6.2. Lastly, in Section 6.3 we evaluate the cvMDL method on a697

a scalar-valued practical engineering problem of brittle fracture in a fiber-reinforced matrix.698

We label algorithms under consideration as follows:699

(ECDF) The empirical CDF estimator for FY using the high-fidelity samples only;700

(AETC-d) The AETC-d algorithm from [36];701

(cvMDL) The cvMDL algorithm in Algorithm 5.2;702

(cvMDL-sorted) cvMDL with the exploitation CDF monotonicity fix using Algorithm 5.1;703

(cvMDL*) cvMDL that estimates b↵(x) in the tail using (5.11) with ⌧ = 0.05 when704

d = 1;705

(cvMDL*-sorted) cvMDL* with the CDF monotonicity fix using Algorithm 5.1.706

For the weight function in the cvMDL algorithm and its variants, we choose !(x) ⌘ 1 for all707

x 2 R when Y is scalar-valued, but in a case-dependent manner when Y is vector-valued. Since708

the estimators produced by the cvMDL-type and AETC-d algorithms are random (depending709

on the exploration data), for every budget value B, we repeat the experiment 100 times and710

report both the average of the mean !-weighted L
2 error and the corresponding 5%-95%711

quantiles to measure the uncertainty.712

6.1. Linear elasticity. We consider a suite of models with varying fidelities associated713

with a parametric elliptic equation, where lower-fidelity models are identified through mesh714

coarsening. The setup is taken from [35, Section 7.1]. The elliptic PDE governs displacement715

in linear elasticity over a square spatial domain D = [0, 1]2, with x = (x1, x2)>; see Figure 2.716

The parametric version of this problem equation seeks the displacement field u = (u, v)> that717

satisfies the PDE718

�r · ((p,x) �(x)) = F (x), 8(p,x) 2 P ⇥D719720

where p is a random input vector that parameterizes the scalar . Moreover, � is the Cauchy721

stress tensor, given as722

�(x) =


�1(x) �12(x)
�12(x) �2(x)

�
,

2

4
�1(x)
�2(x)
�12(x)

3

5 =
1

1� ⌫2

2

64

@u(x)

@x1
+ @v(x)

@x2
@v(x)

@x2
+ ⌫

@u(x)

@x1
1�⌫

2
(@u(x)

@x1
+ @v(x)

@x2
)

3

75723

724
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where we set the Poisson ratio to ⌫ = 0.3. Here, (p,x) is a scalar modeled with a Karhunen-725

Loève expansion with four modes, given by726

(p,x) = 1 + 0.5
4X

i=1

p
�i�i(x)pi,727

728

where (�i,�i) are ordered eigenpairs of the exponential covariance kernel K on D, i.e.,729

K(x,y) = exp(�kx� yk1/⌘),730731

where k · k1 is the `
1-norm on vectors, and we choose ⌘ = 0.7. Hence, p 2 R4 is a random732

input vector with independent components uniformly distributed on [�1, 1].733

The displacement u is used to compute a scalar QoI, the structural compliance or energy734

norm of the solution, which is the measure of elastic energy absorbed in the structure as a735

result of loading:736

E(u;p) :=

Z

D

(u(x) · F (x)) dx.737
738

We solve the above system for each fixed p via the finite element method with standard739

bilinear square isotropic finite elements on a rectangular mesh [2].740

F

1

Model S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
�S 123.8 149.3 203.9 304.8 25.2 48.6 93.7 62.2
m

⇤
S when B = 107 1998 2231 2337 2390 1253 1657 1909 2054

Model S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1,2,3,4}
�S 107.6 129.7 11.8 11.7 14.3 11.9 11.5

m
⇤
S when B = 107 2175 2292 669 734 976 1540 638

Figure 2: Linear elasticity. Left: Geometry and boundary conditions for the linear elastic structure.
Right: Oracle scaled loss �S (3.11) and optimal exploration sample count m⇤

S (3.11) for di↵erent choices
of subsets of low-fidelity model indices S. The optimal model subset S is typed in boldface. Oracle
statistics are computed with 50,000 samples.

In this example, we form a multifidelity hierarchy through mesh coarsening via the mesh741

parameter h. The compliance E is our scalar-valued QoI for every model, i.e., d = di = 1742

for i = 1, . . . , 4. A mesh parameter of h = 2�7 corresponds to the high-fidelity model Y , and743

h = 2�4
, 2�3

, 2�2
, 2�1 correspond to lower-fidelity models X1, . . . , X4, respectively.744

The cost for each model is the computational time, which we take to be inversely propor-745

tional to the mesh size squared, i.e., h2. This corresponds to using a linear solver of optimal746

linear complexity. We normalize cost so that the model with the lowest fidelity has unit747

cost, i.e., (c0, c1, c2, c3, c4) = (4096, 64, 16, 4, 1). The correlations between the QoIs of Y and748

X1, X2, X3, X4 are 0.976, 0.940, 0.841, �0.146, respectively. The total budget B is taken on749

the interval [105, 107].750
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Figure 3: Linear elasticity. (a). Mean !(x)-weighted L
2 error between FY and the estimated

CDFs given by ECDF, AETC-d, cvMDL, and its variants, with the 5%-95% quantiles (for
ease of visualization, we only plot the quantiles for AETC-d and cvMDL*-sorted) to measure
the uncertainty. (b). Frequency of di↵erent models selected by cvMDL. (c). Scatter plot of
the estimated ↵(x) and ⇢(x) when S = {1, 2, 3, 4} using 50,000 i.i.d. samples in the 1%-99%-
quantile regime of Y . Gaussian kernel smoothing is applied to both data Gaussian kernel with
bandwidth bd = 0.0358 chosen using 5-fold cross-validation.

6.1.1. Results for estimating the CDF. Figure 3 shows the simulation results given751

by di↵erent multifidelity estimators as well as more refined statistics of the cvMDL-related752

algorithms. In Figure 3(a), we see that AETC-d has the smallest error for smaller budgets753

but its asymptotic convergence is constrained by the model misspecification e↵ects (associated754

with theoretical assumptions on the applicability of AETC-d), i.e., the error curve starts to755

plateau when B exceeds 106. Although this can be mitigated by including additional nonlinear756

(e.g. polynomial) terms as additional covariates, trustworthy practical guidance is still lacking757

for this approach. On the other hand, both cvMDL and its variants demonstrate superior758

performance over ECDF, with cvMDL*-sorted achieving a result competitive to AETC-d759

without the plateau e↵ect.760

In Figure 3(b), we note that as the budget increases, the model bS⇤ selected by cvMDL761

converges to {1, 2, 3, 4}, which is the same as the optimal model computed under oracle sta-762

tistics in Figure 2 (right). We note that the suboptimal model S = {2, 3, 4} is selected often763

by cvMDL, but not other models whose �S is close to that of {1, 2, 3, 4}. We believe this764

occurrence is due to the aggressive exploration steps taken by cvMDL, in particular when765

we double exploration samples causing suboptimal models S with large values of m⇤
S (e.g.,766

S = {2, 3, 4}) become the preferred model.767

The significant error reduction achieved by cvMDL is indicated by near-unity values of768

⇢S(x) = Corr[1{Yx}, h(XS ;x)] where S = {1, 2, 3, 4}, shown in Figure 3(c). For cvMDL769

variants, either estimating ↵(x) in the tail regime through (5.8) (cvMDL*) or sorting CDF770

values to ensure monotonicity (cvMDL/cvMDL*-sorted) can help further reduce the errors.771

The former is particularly helpful in the small-budget regime where exploration data are not772
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su�cient to estimate the full support of the QoI.773

The weight function !(x) in this scenario is constant on R thus the estimates produced774

by cvMDL-type estimators are expected to capture the global structure of FY (e.g. bulk and775

tails). To inspect this, we fix B = 107 and plot the estimated CDFs in the tail and bulk776

regimes separately. The CDFs of the pointwise errors (at 1000 discretization points) in the777

three regimes are shown in Figure 4. It can be seen that cvMDL*-sorted has the smallest778

errors in all three regimes.779
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Figure 4: Linear elasticity. One realization of the distribution of pointwise CDF errors com-
puted by cvMDL*-sorted, AETC-d, and ECDF for budget B = 107. We plot CDFs of errors
in three di↵erent regimes: (a) the lower tail of Y defined by the 0� 0.05 quantile region, (b)
the bulk defined by the 0.05�0.95 quantile region, (c) the upper tail defined by the 0.95�1.00
quantile region.

6.1.2. Risk metrics. We now compare some risk metrics of the estimated CDFs. For780

example, one frequently used metric is the conditional value-at-risk (CVaR), also called the781

expected shortfall, which is defined as the conditional expectation of Y in a tail regime (here,782

Y being large):783

CVaRa(Y ) := E[Y |FY (Y ) � a] =
1

1� a

Z
1

a

F
�1

Y
(x)dx 0 < a < 1,784

785

where a is the quantile level. Assuming FY is known, CVaR can be numerically computed using786

linear interpolation of F�1

Y
. Fixing B = 107 as before, we use the estimated CDFs by ECDF,787

AETC-d, and cvMDL*-sorted to compute the CVaR of Y for a = 0.95 and 0.99, respectively.788

The experiment is repeated 50 times, and the corresponding statistics are summarized using789

boxplots in Figure 5 (a)-(b). For both choices of a, cvMDL*-sorted outperforms the other790

methods by a noticeable margin. It is worth noting that although AETC-d and cvMDL*-791

sorted have similar errors under the tested budget globally (Figure 3 (a)), the model mis-792

specification e↵ects result in the former estimates being biased upward. The cvMDL*-sorted793

estimates, on the other hand, remain unbiased.794
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Figure 5: Linear elasticity. (a): Boxplots of the CVaR0.95(Y ) computed using the estimated
CDFs given by ECDF, AETC-d, and cvMDL*-sorted when B = 107 with 50 experiments.
(b): Same but for CVaR0.99(Y ). (c): Inspection of how well the estimated loss bLS mimics the
oracle loss curve as a function of m. The discrete data are fitted using a function f(m; a, b) of
the form a

m
+ b

B�ceprm
, with fitted values for a and b given by 2.64⇥10�4 and 5.57, respectively.

6.1.3. Oracle versus estimated loss. We investigate the model selection criteria used in795

cvMDL. Note for each S ✓ {1 : n}, there is a discrepancy between the exact loss function796

versus the estimator bLS constructed with empirical data. We inspect if this approximation is797

reasonable. To numerically determine if the exploration-exploitation trade-o↵ is optimal, we798

fix B = 107 and S = {1, 2, 3, 4}. For a given value of m, we first take m exploration samples to799

estimate the control variates parameters and then use them to build an estimator eFS for FY800

as in (5.10). We then compute the (exact) mean weighted L
2 loss associated with this value801

of m. We repeat the experiment 10 times and compute the average loss value. We compile802

results of the above for m in the range from 200 to 1800. The results are reported in Figure 5803

(c). It can be seen that the optimal exploration rate under oracle loss LS , 638 (see Figure 2,804

right), almost matches the empirically identified optimal exploration rate, which is 736. The805

small gap can be attributed to the underestimation of exploration error committed due to the806

finite-sample estimation of parameters.807

6.2. Extrema of Geometric Brownian Motion. Geometric Brownian motion is a continuous-808

time stochastic process that is widely used in financial modeling. In a simple setting, a geo-809

metric Brownian motion St is a random process with a constant initial state s0 > 0 whose810

evolution is described using the stochastic di↵erential equation811

dSt = µStdt+ �StdWt t � 0, S0 = s0,812813

where both µ and � > 0 are constants, and Wt is a standard Brownian motion process. A814

unique explicit solution for St exists and can be written as815

St = s0 exp

✓✓
µ� �

2

2

◆
t+ �Wt

◆
.816

817
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Set µ = 0.05,� = 0.2, s0 = 1. We are interested in estimating the joint distribution of the818

extreme values of St over the time interval [0, 1]:819

(Smin, Smax)
> 2 R2

Smin := min
0t1

St, Smax := max
0t1

St.820
821

We thus choose as the QoI the random vector (Smin, Smax)>. We evaluate these quantities by822

discretizing the stochastic di↵erential equation in time using the Euler–Maryuama scheme with823

time step �t and computing the discrete extrema. The computational complexity (cost) of the824

corresponding procedure is proportional to the number of grid points used for discretization.825

We construct a multifidelity model for this problem based on time discretization. In par-826

ticular, we consider four di↵erent time scales �t 2 {2�4
, 2�6

, 2�8
, 2�14}, with the high-fidelity827

model Y corresponding to �t = 2�14 and X1, X2, X3 corresponding to �t = 2�8
, 2�6

, 2�4,828

respectively. This results in (normalized) model costs (c0, c1, c2, c3) = (1024, 16, 4, 1). The829

total budget B takes values in [104, 106]. To generate joint samples, the randomness of Wt is830

simulated from the same realization used in the high-fidelity model. The oracle CDF of the831

high-fidelity model is computed using MC with 105 samples. The oracle correlations between832

the QoIs of the high- and low-fidelity models in Table 1.833

Table 1: Geometric Brownian motion. Oracle correlations between the high-fidelity and low-
fidelity model QoIs computed using 50,000 samples.

Model QoIs Smin(2�8) Smax(2�8) Smin(2�6) Smax(2�6) Smin(2�4) Smax(2�4)
Smin(2�14) 0.999 0.682 0.997 0.682 0.984 0.680
Smax(2�14) 0.681 0.999 0.681 0.998 0.674 0.988

In this example, all model QoIs are two-dimensional random vectors so AETC-d cannot834

be directly applied. For cvMDL and its variants, setting !(x) ⌘ 1 violates Assumption 5.5.835

Instead, since Smin  s0 = 1  Smax, we choose !(x) = 1T (x) as an indicator function on a836

two-dimensional bounded region T ⇢ R2 where the most likely outcomes reside. For instance,837

here we take T = [0.5, 1]⇥[1, 3]. The statistics of the estimation errors and the selected models838

by cvMDL are reported in Figure 6(a),(b). Panel (c) shows that the correlation coe�cient839

⇢S(x), is close to unity over the entire domain, suggesting that our chosen control variate840

(3.6) is a good choice.841

Figure 6 shows that cvMDL is consistent on the region T , and the corresponding estimation842

error is on average much lower than that of ECDF. As the budget goes to infinity, the model843

selected by cvMDL converges to the single low-fidelity model {1}, which coincides with the844

optimal model computed using oracle statistics. With additional sorting to stabilize the845

algorithm, cvMDL-sorted slightly further reduces the errors of cvMDL, which is consistent846

with the observations in the 1d case. In the pre-asymptotic regime when the budget is small,847

the models selected by cvMDL have relatively large fluctuations, but these stabilize for larger848

budgets. More results from this experiment are presented in Appendix B.1.849

6.3. Brittle fracture behavior of a fiber-reinforced matrix. We investigate a two-dimensional850

fiber-reinforced matrix, a subject commonly explored in the field of fracture mechanics. Our851

QoI is the maximum load that induces brittle fracture within the matrix region adjacent to the852
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Figure 6: Geometric Brownian motion. (a): Mean !(x)-weighted L
2 error between FY and

the estimated CDFs given by ECDF, cvMDL, and cvMDL-sorted, with the 5%-50%-95%
quantiles to measure the uncertainty. (b): Frequency of di↵erent models selected by cvMDL;
cf. optimal model losses in Figure 11. (c) Estimated ⇢S(x) from (3.6) when S = {1} using
50,000 i.i.d. samples for x 2 T .

fiber. To obtain the QoI, we solve a quasi-static, two-dimensional finite element problem. Fig-

Random
Property Mean COVi (%)a

Lower Upper Probability
variable boundary boundary distribution

p1  (GPa) 55 5 45 60 Truncated normal
p2 ⌫ 0.25 5 0.20 0.30 Truncated normal
p3 Gc (GPa) 1 10 0 1 Lognormal
p4 LH(cm) 1 � 0.9 1.1 Uniform
p5 LV (cm) 1 � 0.9 1.1 Uniform
p6 R (cm) 0.5 � 0.4 0.6 Uniform
p7 aH (cm) 0 � �0.05 0.05 Uniform
p8 aV (cm) 0 � �0.05 0.05 Uniform

a. Coe�cient of variation COVi = 100⇥ �i/E[pi] for i = 1, . . . , 8.

Figure 7: Fiber-reinforced matrix. Left: Geometry, loading, and boundary condition. We
consider the domain D = [�1.5LH , 1.5LH ] ⇥ [�1.5LV , 1.5LV ] 2 R2 including a circular hole
of radius R at (aH , aV ) in the e1 and e2 directions of the center lines. Right: Properties of
the eight random inputs in the fiber-reinforced matrix. Here,  is the Young’s modulus and
⌫ is the Poisson ratio, see Appendix B.2 for details.

853
ure 7 (left) shows a square plate of length 3LH in the e1 direction and 3LV in the direction with854

a circular inclusion of radius R. In the domain D = [�1.5LH , 1.5LH ]⇥ [�1.5LV , 1.5LV ] 2 R2,855

the loading is given by an applied normal displacement vn = v̄ · e2 on the boundary �N .856

The other boundaries, denoted �D, are free, corresponding to zero displacement on �D. The857
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Figure 8: Fiber-reinforced matrix. The fine finite-element mesh in (a) is used to generate the
high-fidelity QoI Y , while the coarse meshes in (b)–(e) are used to generate the low-fidelity
QoIs X1, X2, X3, X4, respectively.

closure of the domain is D̄ ⌘ D [ �, with � = �D [ �N . The unknowns are the displacement858

field u = (u, v)| 2 R2 and the scalar damage variable �d 2 R in the domain D̄ of the elastic859

body. This setup models the traction experiment of a fiber-reinforced matrix [1, 6], with the860

corresponding boundary value problem as described in [25]. The PDE formulation is: find861

u(x) and �d(x) for x = (x1, x2)| 2 D̄, such that862

[(1� �d(x))
2 + q]r · �(x) = 0,(6.1)863

�Gc`0r2
�d(x) +


Gc

`0
+ 2H(x)

�
�d(x) = 2H(x),(6.2)864

865

with corresponding boundary conditions on �N and �D. The full model details, including866

definitions for `0, �, q, and H are shown in Appendix B.2. We consider eight input random867

variables, p1, . . . p8, which are stemming from material properties and geometries, see Figure 7868

(right).869

6.3.1. High-fidelity and low-fidelity models. The model (6.1) and (6.2) for brittle frac-870

ture analysis is solved using an iterative solver, wherein we solve for the scalar damage variable871

(�d) using the displacement fields (u). Subsequently, the updated damage variable is used872

to solve for the displacement field, and the process is repeated until the di↵erence between873
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the current and previous iterates becomes less than the user-defined tolerance � ⌧ 1. We set874

� = 5⇥10�3 for the high-fidelity model, and � = 5⇥10�2
, 0.2, 0.4 for the lower-fidelity mod-875

els. Figure 8 shows a fine mesh and several coarse meshes used for the high and low-fidelity876

models, respectively. The details of the high and low-fidelity models, including CPU times to877

implement finite element analysis, are reported in Table 2, which also reports (normalized)878

model costs. The oracle correlations between the QoI (Y ) of the high-fidelity model and its879

low-fidelity QoIs X1, X2, X3, X4 are 0.96, 0.93, 0.87, and 0.74, respectively.

Table 2: Fiber-reinforced matrix. Comparison of the high-fidelity and four di↵erent low-
fidelity finite element models to compute the QoI.

Model type Tolerance (�) DOFs CPU time (s)a Normalized costb

High-fidelity, Y 5⇥ 10�3 53,766 250.51 108.9
Low-fidelity 1, X1 5⇥ 10�2 13,416 20.95 9.1
Low-fidelity 2, X2 0.2 975 2.97 1.3
Low-fidelity 3, X3 0.2 324 2.50 1.1
Low-fidelity 4, X4 0.4 195 2.30 1

a. The CPU time is averaged over 5 trials.

b. The cost is normalized so that sampling X4 has unit cost.

(a) Load-displacement curve (b) Damage variable contour

Figure 9: Fiber-reinforced matrix. Finite element analysis results: (a) The ultimate tensile
load in the load-displacement curve is recorded as the QoI. (b) the damage variable con-
tour shows the degree of damage (0 < �d  1) that occurred in regimes ‘A’–‘D’ of the
load-displacement curve, indicating that brittle fracture occurred at the top of circular hole
advances in the regime ‘A’ to ‘B’ before a complete fracture occurs in regime ‘D’.

880
We measure the maximum tensile load as a QoI from the load-displacement curve. Fig-881

ure 9a presents the relationship between the resulting load and the imposed displacement on882

the top of the fiber-reinforced matrix. As the applied displacement v̄ at the top increases from883
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0 cm to 7.5⇥10�2 cm, the resulting load exhibits an almost linear increase until the structure884

begins to sustain damage. Upon reaching a peak load, the rate of change of the resulting load885

over displacement significantly decreases. This behavior is observed from regimes ‘A’ to ‘B’886

in Figure 9a. The regimes occur due to the partial fracturing of the matrix, as indicated by a887

damage variable of value �d = 1 in Figure 9b. There is another substantial drop in load from888

regimes ‘C’ to ‘D’, presenting complete fracture throughout the entire domain of the matrix.889

The maximum tensile load at ‘A’ is represented as a scalar; thus, for the high-fidelity QoI we890

have d = 1, while for the low-fidelity QoIs we have d1 = d2 = d3 = d4 = 1.891

Table 3: Fiber-reinforced matrix. Comparison of the accuracy of cvMDL*-sorted and ECDF
in estimating CDF, mean, standard deviation, and CVaR at � = 0.99 for the QoI (the ultimate
tensile load). We present the mean error of these estimates relative to oracle estimates obtained
from 5500 i.i.d. high-fidelity samples (B = 577,170) over 100 trials.

Method CDF (error)a Mean (-)b Standard deviation (-)b CVaR0.99 (-)b

Budget B = 20,000
cvMDL*-sorted 2.192⇥ 10�4 1.559⇥ 10�3 2.291⇥ 10�2 6.698⇥ 10�3

ECDF 3.916⇥ 10�4 2.991⇥ 10�3 3.837⇥ 10�2 9.435⇥ 10�3

Budget B = 35,000
cvMDL*-sorted 1.194⇥ 10�4 1.168⇥ 10�3 1.575⇥ 10�2 5.531⇥ 10�3

ECDF 2.269⇥ 10�4 2.311⇥ 10�3 2.955⇥ 10�2 7.577⇥ 10�3

Budget B = 50,000
cvMDL*-sorted 8.441⇥ 10�5 8.957⇥ 10�4 1.340⇥ 10�2 4.846⇥ 10�3

ECDF 1.627⇥ 10�4 1.983⇥ 10�3 2.670⇥ 10�2 7.102⇥ 10�3

a. We determine the mean !(x)-weighted L
2
error between FY and the estimated CDFs given by cvMDL*-sorted

and ECDF. The mean !(x)-weighted L
2
errors are averaged over independent 100 trials.

b. We use the mean relative error of the estimates in the comparison of the oracle estimates over independent 100

trials.

6.3.2. Results for CDF, mean, standard deviation, and CVaR estimation. The high-892

fidelity simulations are costly enough here that we must approximate the oracle solution with893

limited samples: 6000 high-fidelity simulations are generated, and we randomly select 5500894

to estimate a quantity. We generate an ensemble of 100 such instances and use the average895

as the oracle. For the multi-fidelity procedure, 6000 joint high- and low-fidelity samples are896

used as the pool from which model samples are drawn. We investigate three budget values897

as reported in Table 3. Over the corresponding 100 trials, cvMDL*-sorted predominantly898

selects the model subset S = {2, 4} (selected 95, 96, and 98 times for the 3 budget values,899

respectively) and less frequently selects the model subset S = {4} (selected 5, 4, and 2 times,900

respectively) from the model set {1, 2, 3, 4}. This process yields averaged optimal exploration901

sample numbers m⇤
S = 140, 245, and 350 for each respective budget B.902

In Table 3, cvMDL*-sorted surpasses ECDF in terms of mean errors for CDF, mean,903

standard deviation, and CVaR at a = 0.99 for the QoI. The second column of Table 3 reports904

the mean-weighted L
2 error for FY over Y 2 [1.5⇥ 106, 3⇥ 106] (N). The last four columns of905
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that table show that the proposed cvMDL approach yields nearly twice the accuracy compared906

to the ECDF method, and this increased accuracy extends to the estimated statistics and risk907

metric.
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Figure 10: Fiber-reinforced matrix. (a): Boxplots of the mean of QoI, computed by ECDF
and cvMDL*-sorted when B = 50,000 with 100 experiments. (b): Same boxplots for the
standard deviation of QoI. (c): Same boxplots for CVaR (a=0.99).

908

Figures 10a–10c present the results of the statistical mean, standard deviation, and CVaR909

at a = 0.99 via boxplots. The cvMDL*-sorted method achieves higher accuracy than the910

ECDF by a significant margin when compared to the oracle results. The box plots demonstrate911

that the statistical estimates by the cvMDL*-sorted method exhibit a lower spread than those912

of the ECDF, showing that cvMDL*-sorted estimates have smaller variance for this example.913

7. Conclusions. We developed a versatile framework for e�ciently estimating the CDFs914

of QoI subject to a budget constraint. To implement this framework, we constructed a set915

of binary control variables based on linear surrogates and used them in an adaptive meta916

algorithm (cvMDL) that estimates the CDFs. We established both uniform consistency and917

trade-o↵ optimality for the corresponding algorithm as the budget tends to infinity.918

Although the proposed framework is built upon an existing bandit-learning paradigm,919

our treatment of exploration and exploitation distinguishes itself from the previous works.920

In particular, the new approach employed in our framework leads to innovative estimators921

that dramatically relaxes the reliance on underlying model assumptions. Furthermore, the922

approach allows for the treatment of di↵erent types of QoIs, both vector- and scalar-valued.923

To the best of our knowledge, our framework provides the first robust multifidelity CDF924

estimator under a budget constraint that can deal with both heterogeneous model sets and925

multi-valued QoIs at the same time, meanwhile requiring no a priori cross-model statistics.926

Appendix A. Proofs of the main results.927

A.1. Proof of Theorem 5.2. Sort the entries of T in increasing order: z(1) < · · · < z
(M),928

where M is the product of each dimension Mi of T : M = M1 · · ·Md. At the beginning929

of the algorithm, the index of z(1) is strictly decreasing in each direction. As a result, z(1)930
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arrives at the entry of T with index (1, . . . , 1) after a finite number of iterations, and after931

that, it remains unchanged in the subsequent iteration. In fact, for every s < M , assuming932

z
(1)

, . . . , z
(s) have reached their final positions after which no change occurs, the index of z(s+1)933

is decreasing in each direction if the algorithm has not converged yet. The result follows by934

noting that M is finite, and a stationary point must possess the desired monotonicity.935

A.2. Proof of Lemma 5.8. This section contains the proofs of statements (i) through936

(vi) in Lemma 5.8. The proof of statement (ii), the asymptotic consistency of bBS+ , is a direct937

result of the strong law of large numbers, so we omit this proof.938

A.2.1. Proof of Statement (i). We only prove (5.15b) as the proof for (5.15a) is similar.939

Denote by ei the ith unit vector in Rd, i.e., e(j)
d

= �ij , j 2 {1 : d}, where � is the Kronecker940

notation, and e :=
P

i2{1:d} ei is the all-ones vector in Rd. For fixed x 2 Rd, without loss of941

generality, we assume FV (A)_Y (x)  FV (BS+ )_Y (x), as the other case is similar by reversing942

FV (A)_Y (x) and FV (BS+ )_Y (x). Meanwhile,943

V (BS+) _ Y  x) V (A) _ Y  x+�x) V (A) _ Y � k�xk1e  x,944945

where946

�x =
X

i2{1:d}

|X>
S+(A(i) �B(i)

S+)|ei.947

948

Hence, under Assumptions 5.3 and 5.6, for t > 0,949

|FV (A)_Y (x)� FV (BS+ )_Y (x)| = FV (BS+ )_Y (x)� FV (A)_Y (x)950

 FV (A)_Y�k�xk1e(x)� FV (A)_Y (x)951

 FV (A)_Y�te(x)� FV (A)_Y (x) + P (k�xk1 � t)952

= FV (A)_Y (x+ te)� FV (A)_Y (x) + P (k�xk1 � t)953

. C

p
dt+

X

i2{1:d}

P
⇣
kX>

S+(A(i) �B(i)

S+)k2 � t

⌘
954

(5.13)

. C

p
dt+

1

t2

X

i2{1:d}

kA(i) �B(i)

S+k22,955

956

where the penultimate inequality follows from the Lipschitz condition on FV (A)_Y and a union957

bound, and the last inequality follows from Markov’s inequality. Taking t = kA �BS+k2/3
F

958

yields the desired result.959

A.2.2. Proof of Statement (iii). We only prove the first statement; the second can be960

proved similarly. Recall that961

bF bHS
(x) = G( bBS+ ;x) G(A;x) :=

1

m

X

`2{1:m}

1{(X>
epr,`,S+A)>x} A 2 R(dS+1)⇥d

,962

963
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where Xepr,`,S+ denotes the `th exploration sample of XS with intercept. It follows from the964

direct computation that965

sup
x2Rd

| bF bHS
(x)� FHS (x)|966

 sup
x2Rd

����G( bBS+ ;x)� P((X>
S+
bBS+)>  x)

����+ sup
x2Rd

����P((X
>
S+
bBS+)>  x)� P((X>

S+BS+)>  x)

����967

 sup
A2R(dS+1)⇥d

sup
x2Rd

����G(A;x)� P((X>
S+A)>  x)

����+ sup
x2Rd

����P((X
>
S+
bBS+)>  x)� P((X>

S+BS+)>  x)

����968

= sup
A2R(dS+1)⇥d

����G(A;0)� E[G(A;0)]

����
| {z }

⇤m,1

+ sup
x2Rd

����P((X
>
S+
bBS+)>  x)� P((X>

S+BS+)>  x)

����
| {z }

⇤m,2

969

970

where XS+ a general notation that is independent of bBS+ and 0 is the all-zeros vector. Note971

that ⇤m,1 has no supremum over x since one is able to alter the intercept coe�cients in A to972

yield di↵erent values of x 2 Rd without changing the coe�cients of XS . In what follows, we973

show that both ⇤m,1 and ⇤m,2 converge to 0 a.s.974

To bound ⇤m,1, we appeal to the empirical process theory. For any A 2 R(dS+1)⇥d,975

the indicator function 1{(X>
`,S+A)>0}  1. According to Massart concentration inequality [7,976

Theorem 14.2], we have for any t > 0 such that977

P(⇤m,1 > E[⇤m,1] + t)  exp
�
�mt

2
/8
�
.978

Taking t = 4
p

logm/m,979

(A.1) P
 
⇤m,1 > E[⇤m,1] + 4

r
logm

m

!
 m

�2
.980

Since
P1

m=1
m

�2
<1, by the Borel-Cantelli lemma, we conclude that981

⇤m,1  E[⇤m,1] + 4

r
logm

m
(A.2)982

983

for all su�ciently large m a.s. To bound E[⇤m,1], note that the supremum in E[⇤m,1] is taken984

over all indicator functions defined on d intersections of hyperplanes in RdS (the constant985

dimension is only a shift), which has a finite Vapnik–Chervonenkis (VC) dimension of order986

dSd log d [4]. According to [34, Theorem 8.3.23], there exists a universal constant C 0 such that987

E[⇤m,1]  C
0p

dSd log d/m. This combined with (A.2) shows that ⇤m,1 ! 0 a.s.988

To bound ⇤m,2, note that by Statement (ii) in Lemma 5.8, a.s., for all su�ciently large989

m, k bBS+ �BS+kF < " where " is the same as in Assumption 5.6. Since XS+ is independent990

of bBS+ , conditioning on k bBS+ � BS+kF < " and applying Statement (i) of Lemma 5.8,991

⇤m,2 . k bBS+ �BS+k2/3
F

. Now taking m!1 shows ⇤m,2 ! 0 a.s.992
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A.2.3. Proof of Statement (iv). Note K1(x) + K2(x) = bFY (x)(1 � bFY (x)), which is a993

consistent estimator for FY (x)(1� FY (x)) for all x 2 Rd a.s. as a result of the strong law of994

large numbers. Therefore, it su�ces to prove the consistency for K2(x) only.995

Note K2(x) in (5.3) can be rewritten as996

K2(x) = b⇢2S(x) bFY (x)(1� bFY (x)) =

8
<

:

( bF
Y _ bHS

(x)� bFY (x) bF bHS
(x))

2

bF bHS
(x)(1� bF bHS

(x))
x 2 (supp( bF bHS

))�

0 otherwise
(A.3)997

998

where999

b⇢2S(x) =

8
<

:

( bF
Y _ bHS

(x)� bFY (x) bF bHS
(x))

2

bF bHS
(x)(1� bF bHS

(x)) bFY (x)(1� bFY (x))
x 2 (supp( bFY ))� \ (supp( bF bHS

))�

0 otherwise
1000

1001

is the empirical estimator for ⇢2S(x). On the other hand,1002

⇢
2

S(x)FY (x)(1� FY (x)) =

8
<

:

(FY _HS (x)�FY (x)FHS (x))
2

FHS (x)(1�FHS (x))
x 2 (supp(FHS ))

�

0 otherwise
(A.4)1003

1004

Comparing (A.3) and (A.4), the desired result follows from statement (iii) in Lemma 5.8.1005

A.2.4. Proof of statement (v). We prove the consistency of bk2(S); the consistency1006

of bk1(S) can be proved similarly. By statement (iv) in Lemma 5.8, K2(x) converges to1007

⇢
2

S(x)FY (x)(1� FY (x)) for all x 2 Rd as m!1 a.s.1008

We first prove the first case where d = 1 and k!kL1(R) = C < 1, and we change the1009

notation x to the lowercase x. Under the moment condition in Assumption 5.3, according to1010

[5, Theorem 2.13],1011

W1

⇣
FY ,

bFY

⌘
=

Z

R
| bFY (x)� FY (x)|dx! 0 m!1,1012

1013

where W1 is the Wasserstein-1 metric. Fix an arbitrary trajectory in the sample space such1014

that K2(x) ! ⇢
2

S(x)FY (x)(1 � FY (x)) and
R
R | bFY (x) � FY (x)|dx ! 0. In the following, we1015

treat K2(x) as a deterministic sequence.1016

To show the consistency of bk2(S), it remains to justify the change of order of taking limit1017

and integration:1018

lim
m!1

bk2(S) = lim
m!1

cS

Z

R
!(x)K2(x)dx = cS

Z

R
lim

m!1
!(x)K2(x)dx1019

= cS

Z

R
!(x)⇢2S(x)FY (x)(1� FY (x))dx = k2(S),1020

1021

for which we appeal to the Vitali convergence theorem. To apply the Vitali convergence1022

theorem, we need to verify that the sequence !(x)K2(x) is uniformly integrable and has1023
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absolutely continuous integrals. To this end, recall the representation K2(x) in (A.3). Since1024

the square of the empirical correlation estimator is bounded by 1, a.s.,1025

!(x)K2(x)  !(x) bFY (x)(1� bFY (x)) 
C

4
< C.1026

1027

The absolutely continuous integrals part follows immediately from the uniform boundedness.1028

For uniform integrability, we first observe1029
Z

R
|!(x)FY (x)(1� FY (x))� !(x) bFY (x)(1� bFY (x))|dx 

Z

R
!(x)| bFY (x)� FY (x)|dx1030

 C

Z

R
| bFY (x)� FY (x)|dx! 0.1031

1032

Thus,1033
Z

|x|>M

!(x)K2(x)dx 
Z

|x|>M

!(x) bFY (x)(1� bFY (x))dx1034


Z

|x|>M

!(x)FY (x)(1� FY (x))dx+ C

Z

|x|>M

| bFY (x)� FY (x)|dx1035

.
Z

|x|>M

C

x2
dx+ C

Z

R
| bFY (x)� FY (x)|dx,1036

1037

where the last step follows from Assumption 5.3 and Chebyshev’s inequality. For every " > 0,1038

we can choose m and M su�ciently large so the right-hand side is less than ". The uniform1039

integrability follows by enlarging M to accommodate the first m terms.1040

The proof for (b) is similar. It su�ces to verify the change of order for the sequence1041

!(x)K2(x). Since !(x)K2(x)  !(x) and the latter is integrable and independent of m, the1042

dominated convergence does the rest.1043

A.2.5. Proof of statement (vi). For x 2 (supp(FHS ))
�, it is easy to show via a con-1044

tradiction argument that x 2 supp( bF bHS
) for all su�ciently large m a.s. By statement (iii)1045

in Lemma 5.8, bF
Y _ bHS

and bF bHS
are consistent estimators. Meanwhile, bFY (x) is a consistent1046

estimator for FY (x) due to the strong law of large numbers. Therefore, we obtain1047

b↵(x) =
bF
Y _ bHS

(x)� bFY (x) bF bHS
(x)

bF bHS
(x)(1� bF bHS

(x))
! ↵(x) =

FY _HS (x)� FY (x)FHS (x)

FHS (x)(1� FHS (x))
1048

as m!1 almost surely.1049

A.3. Proof of Lemma 5.10. Recall in (5.10) that1050

eFS(x) = bFY (x)�
1

m

X

`2{1:m}

0

@b↵(x)bhS(Xepr,`,S ;x)�
1

NS

X

j2{1:NS}

b↵(x)bhS(Xept,`,S ;x)

1

A1051

= bFY (x)� b↵(x) bF bHS
(x) + b↵(x)

0

@ 1

NS

X

j2{1:NS}

1{(X>
ept,j,S+

bBS+ )>x}

1

A .1052

1053
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Thus,1054

sup
x2Rd

| eFS(x)� FY (x)|  sup
x2Rd

| bFY (x)� FY (x)| + sup
x2Rd

|b↵(x)( bF bHS
(x)� FHS (x))|1055

+ sup
x2Rd

������
b↵(x)

0

@ 1

NS

X

j2{1:NS}

1{(X>
ept,j,S+

bBS+ )>x} � FHS (x)

1

A

������
1056

(5.9)

 sup
x2Rd

| bFY (x)� FY (x)|
| {z }

(i)

+ sup
x2Rd

| bF bHS
(x)� FHS (x)|

| {z }
(ii)

1057

+ sup
x2Rd

������

0

@ 1

NS

X

j2{1:NS}

1{(X>
ept,j,S+

bBS+ )>x} � FHS (x)

1

A

������
| {z }

(iii)

.1058

1059

Note (i) converges to 0 as m ! 1 due to the multivariate Glivenko-Cantelli theorem. (ii)1060

converges to 0 as m ! 1 due to statement (iii) in Lemma 5.8. A similar argument as in1061

the proof of statement (iii) of Lemma 5.8 can be used to prove that (iii) converges to 0 as1062

NS !1, which is not repeated here.1063

A.4. Proof of Theorem 5.7. To reduce notational confusion with m, we use t to denote1064

the number of exploration samples. The exploration rate m grows nonlinearly with respect1065

to an index that counts the iterations of the exploration loop in Algorithm 5.2. We let q1066

denote the loop iteration index, and tq the corresponding exploration rate, i.e., t1 = n + 2.1067

Let q(B) be the total number of exploration iteration steps in Algorithm 5.2, which is random.1068

It follows from the definition that tq(B) = m(B) and1069

n+ 1  tq  tq+1  2tq 1  q < q(B).(A.5)10701071

We first show thatm(B) diverges as B !1 a.s. According to statement (v) in Lemma 5.8,1072
bk1(S) ! k1(S),bk2(S) ! k2(S) for S ✓ {1 : n} a.s. As a result, for almost every realization1073

! 2 ⌦, where ⌦ denotes the product space of exploration samples, there exists an 0 <1074

L(!), L0(!) <1,1075

sup
t>n+1

max
S✓{1:n}

bk1(S;!) < L(!) <1 inf
t>n+1

min
S✓{1:n}

bk2(S;!) > L
0(!) > 01076

1077

The exploration stopping criterion of cvMDL in Algorithm 5.2 requires that1078

m(B;!) � bm⇤
S(B;!)

� B

cepr +
q

ceprL(!)

L0(!)

!1 B !1.1079

1080

Thus,1081

lim
B!1

m(B;!) =1.(A.6)1082
1083
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We now work with a fixed realization ! along which m(B;!) ! 1 as B ! 1, and1084
bk1(S),bk2(S) converge to the true parameters as t ! 1. We prove that both (5.14a) and1085

(5.14b) hold for such an !. Fix � < 1/2 su�ciently small. Since S⇤ is assumed unique, a1086

continuity argument implies that there exists a su�ciently large T (�;!), such that for all1087

t � T (�;!),1088

max
(1��)m⇤

S⇤m(1+�)m⇤
S⇤

bLS⇤(m; t) < min
S✓{1:n},S 6=S⇤

bL⇤
S(t).(A.7)1089

1� �  bm⇤
S(t;!)

m
⇤
S

 1 + � 8S ✓ {1 : n},(A.8)1090
1091

where bLS⇤(·; t) is the estimated loss function for S⇤ using t exploration samples, and bL⇤
S(t) is1092

the estimated L
⇤
S in (3.11) using t exploration samples.1093

Since m
⇤
S scales linearly in B and m(B;!) diverges as B !1, there exists a su�ciently1094

large B(�;!) such that for B > B(�;!),1095

min
S✓{1:n}

m
⇤
S > 4T (�;!)(A.9)1096

tq(B) = m(B;!) > 4T (�;!).(A.10)10971098

Consider q0 < q(B) that satisfies tq0�1 < T (�;!)  tq0 . Such a q
0 always exists due to (A.10),1099

and satisfies1100

tq0
(A.5)

 2tq0�1 < 2T (�;!)
(A.9)

 1

2
min

S✓{1:n}
m

⇤
S

(A.8),�<1/2

 bm⇤
S(tq0 ;!).1101

1102

This inequality tells us that in the q
0-th loop iteration, for all S ✓ {1 : n}, the corresponding1103

estimated optimal exploration rate is larger than the current exploration rate. In this case,1104

bLS(tq0 _ bm⇤
S(tq0 ;!); tq0) = bLS(bm⇤

S(tq0 ;!); tq0) = bL⇤
S(tq0) 8S ✓ {1 : n}.11051106

This, along with (A.7) and (A.8), tells us that S⇤ is the estimated optimal model in the current1107

step, and more exploration is needed.1108

To see what tq0+1 should be, we consider two separate cases. If 2tq0  bm⇤
S⇤(tq0 ;!), then1109

T (�;!) < tq0+1 = 2tq0  bm⇤
S⇤(tq0 ;!)  (1 + �)m⇤

S⇤ ,11101111

which implies1112

(1� �)m⇤
S⇤

(A.8)

 tq0+1 _ bm⇤
S⇤(tq0+1;!)  (1 + �)m⇤

S⇤ .(A.11)11131114

If tq0  bm⇤
S⇤(tq0 ;!) < 2tq0 , then1115

tq0+1 =

⇠
tq0 + bm⇤

S⇤(tq0 ;!)

2

⇡
 bm⇤

S⇤(tq0 ;!)
(A.8)

 (1 + �)m⇤
S⇤ ,1116

1117

which also implies (A.11). But (A.11) combined with (A.7) and (A.8) implies that S⇤ is again1118

the estimated optimal model in the (q0 + 1)-th loop iteration. Applying the above argument1119
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inductively proves S(B) = S⇤, i.e. (5.14b). Note (A.11) holds true until the algorithm1120

terminates, which combined with the termination criteria tq(B) � bm⇤
S⇤(tq(B);!) � (1� �)m⇤

S⇤1121

implies1122

1� �  m(B;!)

m
⇤
S⇤

=
tq(B)

m
⇤
S⇤
 1 + �.1123

1124

(5.14a) now follows by noting that � can be set arbitrarily small.1125

Finally, let eF 0(x;B) be chosen as in (5.10) with S = S⇤, m = m
⇤
S⇤ and NS = (B �1126

ceprm
⇤
S⇤)/cS⇤ . Note both m,NS are deterministic and diverge as B ! 1. By the triangle1127

inequality,1128

sup
x2Rd

| eF (x;B)� FY (x)|  sup
x2Rd

| eF (x;B)� eF 0(x;B)| + sup
x2Rd

| eF 0(x;B)� FY (x)|.1129

1130

As B ! 1, the first term on the right-hand side converges to 0 due to (5.14a) and (5.14b)1131

in Theorem 5.7, and the second term on the right-hand side converges to 0 due to Theorem1132

5.10. This proves (5.14c).1133

Appendix B. Additional numerical results.1134

B.1. Additional results for geometric Brownian motion in Subsection 6.2. We present1135

two figures that provide experimental results to supplement those presented in Subsection 6.2.1136

A plot of the oracle CDF is visualized in Figure 11 (left, middle). The oracle model loss and1137

exploration sample count are in Figure 11 (right). Figure 12 shows an instance of a heatmap of1138

the absolute estimation errors of ECDF, cvMDL, and cvMDL-sorted when B = 106, providing1139

supporting evidence that cvMDL is more accurate than ECDF on T .1140

Smin

0.6
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0.8
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Sm
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3.0

CDF

0.0
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0.6

0.8

1.0

(a)

0.6 0.8 1.0

1.5

2.0

2.5

3.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Model S �S m
⇤
S

{1} 11.3 613

{2} 13.7 23.2
{3} 23.2 902

{1, 2} 12.2 596
{1, 3} 11.6 606
{2, 3} 14.2 790

{1, 2, 3} 12.4 581

(c)

Figure 11: Geometric Brownian motion. (a)-(b): Oracle CDF of (Smin, Smax) in the high-
fidelity model computed using 105 Monte Carlo samples. (c): Oracle scaled loss �S (3.11) and
the optimal exploration sample count m⇤

S (3.11) for budget B = 106, computed using 50,000
samples.
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Figure 12: Geometric Brownian motion. An instance of absolute pointwise estimation errors
of (a) ECDF, (b) cvMDL, and (c) cvMDL-sorted for budget B = 106.

B.2. Additional results for brittle fracture in Subsection 6.3. We present additional1141

experimental details that supplement those presented in Subsection 6.3.1142

Recall the boundary value problem in (6.1) and (6.2). The boundary conditions on �N1143

and �D are1144

[(1� �d(x))
2 + q]r · �(x) = vn, x on �N ,1145

u(x) = 0, x on �D,1146

r�d(x) · n = 0, x on �N ,11471148

where q ⌧ 1, �(x) =
@ (✏(x))

@✏(x)
is the Cauchy stress tensor, and  (✏(x)) =

1

2
�(tr(✏(x)))2 +1149

µtr(✏(x)2) is the elastic energy density with µ and � the Lamé constants, i.e.,1150

� =
⌫

(1 + ⌫)(1� 2⌫)
, µ =



2(1 + ⌫)
1151

with Young’s modulus  and Poisson’s ratio ⌫, and ✏(x) =
1

2
[ru(x) +ru(x)|] is the small1152

strain tensor. In (6.2) the history variable H(x) is defined as:1153

H(x) =

(
 (✏(x)),  (✏(x)) < Hi(x)

Hi(x), otherwise
, i = 1, 2, . . . , n,1154

where Hi(x) is the strain energy computed at ith step of the discretized load, which corre-1155

sponds to the iterative solver stage v̄i · e2, with v̄i 2 [0, v̄].1156
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