

1 **An approximate control variates approach to multifidelity distribution estimation***

2 Ruijian Han[†], Boris Kramer[‡], Dongjin Lee[§], Akil Narayan[¶], and Yiming Xu^{||}

3

4 **Abstract.** Forward simulation-based uncertainty quantification that studies the distribution of quantities of
5 interest (QoI) is a crucial component for computationally robust engineering design and prediction.
6 There is a large body of literature devoted to accurately assessing statistics of QoIs, and in par-
7 ticular, multilevel or multifidelity approaches are known to be effective, leveraging cost-accuracy
8 tradeoffs between a given ensemble of models. However, effective algorithms that can estimate the
9 full distribution of QoIs are still under active development. In this paper, we introduce a general
10 multifidelity framework for estimating the cumulative distribution function (CDF) of a vector-valued
11 QoI associated with a high-fidelity model under a budget constraint. Given a family of appropriate
12 control variates obtained from lower-fidelity surrogates, our framework involves identifying the most
13 cost-effective model subset and then using it to build an approximate control variates estimator for
14 the target CDF. We instantiate the framework by constructing a family of control variates using
15 intermediate linear approximators and rigorously analyze the corresponding algorithm. Our analysis
16 reveals that the resulting CDF estimator is uniformly consistent and asymptotically optimal as the
17 budget tends to infinity, with only mild moment and regularity assumptions on the joint distribution
18 of QoIs. The approach provides a robust multifidelity CDF estimator that is adaptive to the avail-
19 able budget, does not require *a priori* knowledge of cross-model statistics or model hierarchy, and
20 applies to multiple dimensions. We demonstrate the efficiency and robustness of the approach us-
21 ing test examples of parametric PDEs and stochastic differential equations including both academic
22 instances and more challenging engineering problems.

23 **Key words.** control variates, distribution estimation, model selection, multifidelity, robustness

24 **AMS subject classifications.** 62J05, 62G30, 62F12, 62-08

25 **1. Introduction.** Physical systems are often modeled with computational simulations or
26 emulators, and as such, understanding the error in these constructed approximations is of
27 utmost importance. One particular source of uncertainty in the output is due to the input
28 uncertainty in these models, either through uncertainty in model parameters (which can be
29 finite- or infinite-dimensional) or through modeled stochasticity in the system, e.g., systems
30 driven with white noise processes. To make the resulting models trustworthy, it is crucial to
31 quantify the resulting uncertainty in QoIs; that is, to estimate the QoI's distribution or some
32 statistical summary of it. One popular approach for achieving this is through Monte Carlo
33 (MC) simulation, which is easy to implement and provides robust results but has a slow con-

*Submitted to the editors on May 16, 2024.

Funding: RH is partially supported by the Hong Kong Research Grants Council (grant no. 14301821) and Start-up Fund for New Recruits, The Hong Kong Polytechnic University. AN is partially supported by NSF DMS-1848508 and AFOSR FA9550-20-1-0338. BK and DL are supported by the Ministry of Trade, Industry and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D program (grant no. P0019804, Digital twin based intelligent unmanned facility inspection solutions).

[†]Department of Applied Mathematics, The Hong Kong Polytechnic University

[‡]Department of Mechanical and Aerospace Engineering, University of California San Diego

[§]Department of Automotive Engineering, Hanyang University

[¶]Scientific Computing and Imaging Institute, and Department of Mathematics, University of Utah

^{||}Department of Statistics and Actuarial Science, University of Waterloo (yiming2358@gmail.com).

vergence rate. A typical MC procedure requires drawing a large number of samples or running repeated experiments, which is expensive given the increasing complexity of computational simulations.

To address this issue, methods based on multilevel [11, 12] and multifidelity modeling [29, 28, 30, 19, 27, 16, 18, 32, 9, 35, 33, 17, 8, 10] have been developed to estimate the statistics of QoIs associated with the (high-fidelity) model. The core idea behind multilevel/multifidelity methods lies in leveraging models of different accuracies and costs to improve computational efficiency. However, a major limitation of the existing literature is that it predominantly focuses on the estimation of the statistical mean of the QoIs (or other scalar-valued descriptive statistics such as quantiles or conditional expectations), providing only partial insight into the uncertainty of the QoIs. A more comprehensive understanding would require assessing, for example, higher-order statistics of the QoI, or even the entire distribution.

Existing methods to estimate CDFs in the multilevel and multifidelity setup have seen notable success [12, 23, 13, 21, 3, 36]. In [12], the authors proposed a multilevel approach to computing the CDFs of univariate random variables arising from stochastic differential equations and derived an upper bound for the cost in terms of the error. The methodology in [12] was further developed and applied in several subsequent works [23, 21, 13, 3]. In particular, [23] designed an *a posteriori* optimization strategy to calibrate the smoothing function and showed its superiority over MC in oil reservoir simulations; [21] generalized the ideas in [12] to approximate more general parametric expectations such as characteristic functions; [13] applied an adaptive approach for parameter selection that yields an improved cost bound; [3] provides a novel computable error estimator to enhance algorithm tuning. Despite the substantive contributions of these approaches, nearly all of them make relatively restrictive assumptions regarding model hierarchy (e.g., the model cost versus accuracy tradeoffs), and do not immediately extend to the general non-hierarchical multifidelity setup. For this more general multifidelity estimation of CDFs, the only work we are aware of is the adaptive explore-then-commit algorithm for distribution learning (AETC-d) [36]. However, the large-budget performance of AETC-d is restricted by its own set of statistical assumptions that are often too stringent to satisfy in practice. Moreover, the QoI in all the above references is assumed to be a scalar.

An outline of the paper is as follows. The remainder of this section lists our contributions, introduces overall notation, and summarizes the main theory and algorithmic advances. Sections 2 through 4 describe the necessary mathematical and statistical background for our method: Section 2 gives a brief overview of the control variates method; Section 3 introduces a multifidelity CDF estimation framework based on approximate control variates estimators. Section 4 provides a computational construction for the control variates through linear approximators. Section 5 develops our new meta algorithm (cvMDL) that accomplishes autonomous model selection together with an algorithmic correction to preserve the monotonicity of the resulting CDF estimators. The meta algorithm cvMDL itself does not specify how to compute the control variates: A specialization to using the linear approximations from Section 4 yields a computationally explicit algorithm that we study in detail, establishing both uniform consistency and budget-asymptotic optimality. Section 6 contains a detailed simulation study and showcases applications that use estimated CDFs to compute probabilistic risk metrics.

77 **1.1. Contributions.** The main goal of this article is to provide novel solutions that mitigate the deficiencies described above. We develop an efficient algorithm for estimating the
 78 CDF in a general non-hierarchical multifidelity approximation setting under computational
 79 budget constraints. The proposed method satisfies the following criteria: 1) it requires as
 80 input neither cross-model statistics nor model hierarchy; 2) it can provide distributional esti-
 81 mates for vector-valued QoIs, and 3) it is empirically robust and enjoys theoretical guarantees.
 82 Although our approach uses a similar meta algorithm as in [35, 36] (all borrowing ideas from
 83 the explore-then-commit algorithm in bandit learning [22]), it contains a substantial num-
 84 ber of new ingredients that extend applicability and improve robustness. In more technical
 85 language, our contributions are twofold:

- 86 • We propose a control variates-based exploration-exploitation strategy for multifidelity
 87 CDF estimation under a budget constraint. The *exploration* step leverages statistical
 88 estimation to select a subset of low-fidelity models for the control variates construction,
 89 followed by the *exploitation* step that utilizes the learned information to build an
 90 approximate control variates estimator for the target CDF. This procedure is initialized
 91 with no *a priori* oracle information¹ about model relationships, in contrast to several
 92 methods that require such information as input. In addition, our estimator for the
 93 CDF applies to both scalar-valued and vector-valued QoI, which differentiates it from
 94 existing methods that apply only to scalar-valued QoI.
- 95 • Through examination of the average weighted- L^2 loss that balances errors in explo-
 96 ration and exploitation, we design a new meta algorithm, the control variates multi-
 97 fidelity distribution learning algorithm (“cvMDL”, summarized in [Figure 1](#) and detailed
 98 in [Algorithm 5.2](#)), that accomplishes model (subset) selection and CDF estimation.
 99 Using control variates constructed from linear approximators, we establish both uni-
 100 form consistency and asymptotic optimality of the estimator produced by cvMDL as
 101 the budget approaches infinity ([Theorem 5.7](#)). Our analysis illustrates that the pro-
 102 posed procedure significantly ameliorates the restrictive model assumptions in [36].

103 A verbatim usage of our approaches produces a CDF estimator that enjoys the previously-
 104 mentioned theoretical guarantees but is not necessarily monotonic and hence may not be itself
 105 a distribution function. To mitigate this artifact, we utilize an empirical algorithmic correction
 106 that restores the monotonicity of the estimated CDFs and additionally makes its manipulation
 107 more computationally convenient (e.g. for extraction of quantiles and conditional expecta-
 108 tions); see [Algorithm 5.1](#). We observe that in some cases this empirical correction further
 109 reduces errors.

110 **1.2. Notation.** For $n \in \mathbb{N}$, let $\{1 : n\} := \{1, \dots, n\}$. We use bold upper-case and lower-
 111 case letters to denote matrices and vectors, respectively. The Euclidean (ℓ^2) norm on a vector
 112 \mathbf{v} is denoted $\|\mathbf{v}\|_2$. For a matrix \mathbf{A} , \mathbf{A}^\top is the transpose and \mathbf{A}^\dagger is the pseudoinverse; \mathbf{A}^\dagger
 113 coincides with the regular inverse \mathbf{A}^{-1} when \mathbf{A} is invertible. The i th column of \mathbf{A} is denoted
 114 by $\mathbf{A}^{(i)}$. The Frobenius norm of \mathbf{A} is denoted by $\|\mathbf{A}\|_F = (\sum_i \|\mathbf{A}^{(i)}\|_2^2)^{1/2}$. We use \otimes to
 115 denote the tensor product operator. For a set $\mathcal{T} \subseteq \mathbb{R}^d$, we denote its interior as \mathcal{T}° , and

¹In this article, oracle information refers to model statistics that we treat as exact. These statistics may be exactly computed, but more often are approximations identified through simulations with a large enough computational expense so that the approximations are treated as ground truth.

117 $\mathbf{1}_{\mathcal{T}}(\mathbf{x}) := \mathbf{1}_{\{\mathbf{x} \in \mathcal{T}\}}$ as the indicator function on \mathcal{T} . For two vectors $\mathbf{x} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(d)})^\top$ and
 118 $\mathbf{y} = (\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(d)})^\top$, we use \vee and \wedge to denote the componentwise *max* and *min* operators,
 119 respectively, i.e.,

$$120 \quad \mathbf{x} \vee \mathbf{y} := \left(\max\{\mathbf{x}^{(1)}, \mathbf{y}^{(1)}\}, \dots, \max\{\mathbf{x}^{(d)}, \mathbf{y}^{(d)}\} \right)^\top$$

$$121 \quad \mathbf{x} \wedge \mathbf{y} := \left(\min\{\mathbf{x}^{(1)}, \mathbf{y}^{(1)}\}, \dots, \min\{\mathbf{x}^{(d)}, \mathbf{y}^{(d)}\} \right)^\top.$$

123 Moreover, we say $\mathbf{x} \leq \mathbf{y}$ if $\mathbf{x}^{(i)} \leq \mathbf{y}^{(i)}$ for all $i \in \{1 : d\}$. We consider the QoIs from
 124 computational models as random variables that jointly lie in some common probability space
 125 $(\Omega, \mathcal{F}, \mathbb{P})$. For a random vector $X \in \mathbb{R}^d$, we let $F_X(\mathbf{x}) = \mathbb{P}(X^{(1)} \leq \mathbf{x}^{(1)}, \dots, X^{(d)} \leq \mathbf{x}^{(d)})$
 126 denote its CDF. For two sequences of random variables $\{a_m(\omega)\}$ and $\{b_m(\omega)\}$ where $\omega \in \Omega$ is
 127 a probabilistic event, we write $a_m(\omega) \lesssim b_m(\omega)$ if almost surely (a.s.), $a_m(\omega) \leq \eta(\omega)b_m(\omega)$ for
 128 all $m \in \mathbb{N}$, where the constant $\eta(\omega)$ is independent of m . For convenience, we let

$$129 \quad Y = (Y^{(1)}, \dots, Y^{(d)})^\top \in \mathbb{R}^d \quad X_i = (X_i^{(1)}, \dots, X_i^{(d_i)})^\top \in \mathbb{R}^{d_i} \quad i \in \{1 : n\}$$

131 denote the high-fidelity and the i th low-fidelity QoIs, respectively. Here $d, d_i \in \mathbb{N}$ are the
 132 corresponding dimensions of Y and X_i . There are n low-fidelity models in total. We use
 133 $\mathbb{E}[\cdot]$, $\text{Var}[\cdot]$ /Cov $[\cdot]$, and Corr $[\cdot]$ to denote the expectation, variance/covariance, and correlation
 134 operators respectively. We use $\perp\!\!\!\perp$ to represent probabilistic independence.

135 **1.3. Model assumptions.** We assume the sampling costs for Y and X_1, \dots, X_n , denoted
 136 by positive numbers c_0 and c_1, \dots, c_n , are deterministic and known. For $\mathcal{S} \subseteq \{1 : n\}$, let
 137 $c_{\mathcal{S}} = \sum_{i \in \mathcal{S}} c_i$, corresponding to the cost of sampling all (low-fidelity) models from subset
 138 \mathcal{S} . We let $B > 0$ be the total budget (deterministic and known) that is available to expend
 139 on sampling the models. Moreover, for $\mathcal{S} \subseteq \{1 : n\}$, we let $X_{\mathcal{S}} = (X_i^\top)_{i \in \mathcal{S}}^\top \in \mathbb{R}^{d_{\mathcal{S}}}$, where
 140 $d_{\mathcal{S}} = \sum_{i \in \mathcal{S}} d_i$, and $X_{\mathcal{S}^+} = (1, X_{\mathcal{S}}^\top)^\top$, where the latter is used when considering a linear model
 141 approximation with the intercept/bias term.

142 The central goal in the rest of the article is to develop a multifidelity estimator for $F_Y(\mathbf{x})$
 143 through drawing samples of $(Y, X_{\{1:n\}})$ and of $X_{\mathcal{S}}$ for some adaptively-determined $\mathcal{S} \subseteq \{1 : n\}$,
 144 subject to the sampling cost not exceeding the total budget constraint $B > 0$. No other high-
 145 level assumptions are made. In other words, we assume only that Y is a known high-fidelity
 146 model; we do not assume any ordering/hierarchy in the models $X_{\{1:n\}}$, and we do not assume
 147 known statistics (e.g., correlations) between any models. While such generality is sufficient for
 148 algorithmic purposes, our theoretical guarantees require additional technical assumptions that
 149 are articulated in [Subsection 5.4](#). These technical assumptions are mild regularity conditions,
 150 related to finite moments of random variables and CDF functional regularity.

151 The notation we have introduced is enough to present the overall cvMDL algorithm in the
 152 next section. The actual computations that make the algorithm practical, however, require
 153 more technical details which are provided in [Section 2](#) through [Section 5](#).

154 **1.4. Summary of the algorithm.** The proposed cvMDL meta algorithm is shown in [Figure 1](#). In summary, we first gather m full joint samples of $(Y, X_{\{1:n\}})$ through an *exploration*
 155 *phase* that identifies (i) how models are related, (ii) which model subset \mathcal{S} optimally balances

157 cost versus accuracy, and (iii) whether more samples m are needed to certify a robust explo-
 158 ration or whether the choice of \mathcal{S} is statistically robust enough to proceed with exploitation.
 159 Exploration is followed by the *exploitation phase*, where we exhaust the remaining computa-
 160 tional budget to sample the optimal model subset $X_{\mathcal{S}}$. Exploitation corresponds to exercise
 161 of a particular approximate control variates estimator for F_Y . A more detailed description is
 162 as follows:

163 **Exploration phase**

- 164 – *Minimum exploration*: This step ensures that the number of exploration samples m is set
 165 large enough so that non-degenerate empirical statistics can be computed.
- 166 – *Analyze low-fidelity models*: We are interested in estimating the minimal loss associated
 167 with an estimated CDF that utilizes the model subset \mathcal{S} . For such a goal, this step identi-
 168 fies for each model subset \mathcal{S} both an estimated number of optimal exploration samples $\hat{m}_{\mathcal{S}}^*$
 169 along with the corresponding loss function minimum $\hat{L}(m \vee \hat{m}_{\mathcal{S}}^*; m)$. The value $\hat{L}(z; m)$
 170 is an estimator with the currently-available m exploration samples and measures the es-
 171 timated loss if we eventually use z exploration samples. When evaluating the minimum
 172 loss, we require the input $z \leftarrow m \vee \hat{m}_{\mathcal{S}}^*$ since if $m > \hat{m}_{\mathcal{S}}^*$ then the number of exploration
 173 samples should be m , and not $\hat{m}_{\mathcal{S}}^*$ (we cannot take fewer exploration samples than already
 174 committed and we assume $\hat{L}(z; m)$ is convex and has a unique minimizer). The definitions
 175 of \hat{L} , $\hat{m}_{\mathcal{S}}^*$, and $\hat{\mathcal{S}}^*$ are given in (5.6) and (5.7).
- 176 – *Select optimal model*: The estimated optimal model subset $\hat{\mathcal{S}}^*$ is computed by choosing
 177 the subset \mathcal{S} with minimal loss from the previous step.
- 178 – *Continue exploration*: If the current number of exploration samples m is smaller than
 179 the estimated optimal number of samples $\hat{m}_{\hat{\mathcal{S}}^*}^*$ required for the optimal subset $\hat{\mathcal{S}}^*$, then we
 180 continue exploration, with the precise number of additional exploration samples determined
 181 by the function $Q(\cdot, \cdot)$ that is defined in (5.12). If $m \geq \hat{m}_{\hat{\mathcal{S}}^*}^*$, then exploration terminates
 182 and we move to the exploitation phase.

183 **Exploitation phase**

- 184 – *Expend budget*: After exploration terminates and an “optimal” model subset $\hat{\mathcal{S}}^*$ has been
 185 identified, we expend the remaining computational budget on sampling $X_{\hat{\mathcal{S}}^*}$.
- 186 – *Estimate CDF*: Using the collected samples, we construct the CDF estimator $\tilde{F}_{\hat{\mathcal{S}}^*}$ for F_Y ,
 187 which is defined in (5.10).

188 The precise details of how the loss function is computed and the CDF estimator is constructed
 189 is the topic of [Section 5](#), with [Sections 2](#) to [4](#) serving to make requisite mathematical and
 190 statistical definitions.

191 A more detailed version of the algorithm is given in [Algorithm 5.2](#), which lists more explicit
 192 computational steps that must be taken. The coming sections are devoted to the theoretical
 193 construction of quantities in [Figure 1](#); in particular [Sections 2](#) and [3](#) provide a construction
 194 of a loss function that is the integral part of exploration decision-making.

195 **2. Background: control variates.** We first introduce the control variates method, which
 196 is a standard approach for variance reduction in MC simulation. For a random variable X
 197 with bounded variance $\sigma_X^2 > 0$, the size- m MC estimator for $\mathbb{E}[X]$ based on i.i.d. data
 198 X_ℓ , $\hat{x} = \sum_{\ell \in \{1:m\}} X_\ell / m$, is unbiased and has variance σ_X^2 / m . Given a random vector $Z =$

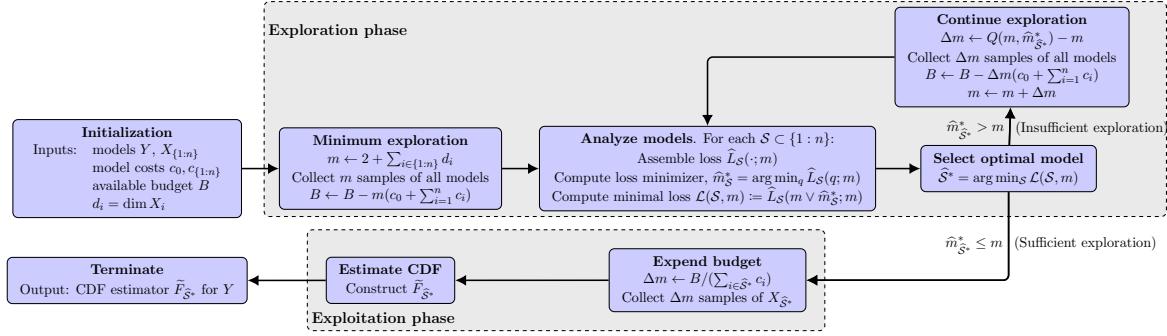


Figure 1: Flowchart illustration of the cvMDL algorithm. More details of the steps are discussed in [Subsection 1.4](#). The full algorithm is presented in [Algorithm 5.2](#).

199 $(Z^{(1)}, \dots, Z^{(d)})^\top \in \mathbb{R}^d$ that lives in the same probability space as X , one may use joint i.i.d
 200 samples of (X, Z) , i.e., $(X_\ell, Z_\ell^\top) = (X_\ell, Z_\ell^{(1)}, \dots, Z_\ell^{(d)})$ for $\ell \in \{1 : m\}$, to construct a control
 201 variates estimator \hat{x}_{cv} for $\mathbb{E}[X]$:

202
$$\hat{x}_{\text{cv}} = \frac{1}{m} \sum_{\ell \in \{1:m\}} X_\ell - \frac{1}{m} \sum_{\ell \in \{1:m\}} (Z_\ell^\top \beta - \mathbb{E}[Z]^\top \beta),$$

 203

204 where $\beta \in \mathbb{R}^d$ is some appropriately chosen vector and $\mathbb{E}[Z]$ is assumed known. The estimator
 205 \hat{x}_{cv} is also unbiased and has variance

206
$$\sigma_{\text{cv}}^2 = \text{Var}[\hat{x}_{\text{cv}}] = \frac{\text{Var}[X - Z^\top \beta]}{m}.$$

 207

208 This variance is minimized when β is the least-squares coefficient for centered linear regression,
 209 i.e., for regressing $(X - \mathbb{E}[X])$ on $(Z - \mathbb{E}[Z])$,

(2.1)

210
$$\beta = \text{Cov}[Z]^{-1} \text{Cov}[Z, X] \implies \sigma_*^2 = \min_{\beta \in \mathbb{R}^d} \sigma_{\text{cv}}^2 = \frac{(1 - \rho^2)\sigma_X^2}{m}, \quad \rho = \text{Corr}(X, Z^\top \text{Cov}[Z]^{-1} \text{Cov}[Z, X]).$$

 211

212 When $|\rho| \approx 1$, the variance reduction is significant, in which case $Z^\top \beta$ accounts for most of
 213 $\text{Var}[X]$.

214 When $\mathbb{E}[Z]$ is unknown, one may consider the following *approximate control variates* es-
 215 timator that uses an independent size- N MC estimator in place of $\mathbb{E}[Z]$ using samples \tilde{Z}_j :

(2.2)

216
$$\hat{x}_{\text{acv}} = \frac{1}{m} \sum_{\ell \in \{1:m\}} X_\ell - \frac{1}{m} \sum_{\ell \in \{1:m\}} \left(Z_\ell^\top \beta - \frac{1}{N} \sum_{j \in \{1:N\}} \tilde{Z}_j^\top \beta \right) \quad (\ell, j) \in \{1 : m\} \times \{1 : N\},$$

 217

218 where we assume $Z_\ell \perp\!\!\!\perp \tilde{Z}_j$. Then this has variance

219 (2.3)
$$\sigma_*^2 = \sigma_{\text{cv}}^2 + \frac{\text{Var}[Z^\top \beta]}{N} = \frac{(1 - \rho^2)\sigma_X^2}{m} + \frac{\rho^2\sigma_X^2}{N}.$$

 220

221 Construction of such approximate control variates estimators has been recently studied in the
 222 multifidelity estimation of first-order statistics [16, 35]. The terms $\text{Cov}[Z]^{-1}$ and $\text{Cov}[Z, X]$
 223 may be estimated empirically at the cost of incurring higher-order trajectory-wise statistical
 224 errors in m [14, 26].

225 **3. Variance reduction for CDF estimation.** Control variates can be more generally ap-
 226 plied to CDF estimation of nonlinear functions of random variables [15, 20]. For example, in
 227 risk management applications [15], the authors considered using the *delta-gamma* approxima-
 228 tion² (i.e. the second-order Taylor expansion) of a loss function L at a given position \mathbf{x} along
 229 random market move direction $\boldsymbol{\eta}$ as control variates to compute its quantiles. More precisely,
 230 one uses a quadratic function of $\boldsymbol{\eta}$ to approximate the loss at \mathbf{x} :

$$231 \quad -(L(\mathbf{x} + \boldsymbol{\eta}) - L(\mathbf{x})) =: \ell(\mathbf{x}) \approx \hat{\ell}(\mathbf{x}) := -\nabla L(\mathbf{x})^\top \boldsymbol{\eta} - \frac{1}{2} \boldsymbol{\eta}^\top \nabla^2 L(\mathbf{x}) \boldsymbol{\eta}. \\ 232$$

233 Fixing a scalar C , $\mathbf{1}_{\{\hat{\ell}(\mathbf{x}) \leq C\}}$ can be used as a control variate for $\mathbf{1}_{\{\ell(\mathbf{x}) \leq C\}}$ to compute the
 234 latter's expectation, which in particular provides a way to compute CDFs. More advanced
 235 approximation techniques have been introduced in [20] to construct other control variates in
 236 the value-at-risk computation.

237 We apply a similar idea in the proposed multifidelity setup here. In our setup, a specific
 238 functional form may be computationally difficult to produce, and Taylor-like approximations
 239 can be inaccurate outside local regions. Our alternative strategy is to employ a global emulator
 240 for Y based on linear combinations of $X_{\{1:n\}}$, which can be effective when the correlation
 241 between these quantities is high. For example, this situation is often true when modeling
 242 parametric PDEs. In the rest of the section, we introduce a general multifidelity approach to
 243 estimate $F_Y(\mathbf{x})$ subject to a budget constraint.

244 **3.1. Control variates for multifidelity CDF estimation.** In developing the proposed
 245 method, we frequently resort to the simple observation that

$$246 \quad F_Y(\mathbf{x}) = \mathbb{E}[\mathbf{1}_{\{Y \leq \mathbf{x}\}}], \quad \mathbf{x} \in \mathbb{R}^d.$$

247 If we fix $\mathcal{S} \subseteq \{1 : n\}$, the control variate based on $X_{\mathcal{S}}$ that minimizes variance (and hence is
 248 optimal) is $\mathbb{E}[\mathbf{1}_{\{Y \leq \mathbf{x}\}} | X_{\mathcal{S}}]$ [31]. This quantity requires the orthogonal projection of Y onto the
 249 sigma-field generated by $X_{\mathcal{S}}$, which is computationally intractable without special assumptions
 250 (e.g. joint normality). In order to approximate $\mathbb{E}[\mathbf{1}_{\{Y \leq \mathbf{x}\}} | X_{\mathcal{S}}]$, we use $h(X_{\mathcal{S}}; \mathbf{x})$ to denote a
 251 general $X_{\mathcal{S}}$ -measurable function that serves as the control variates for $\mathbf{1}_{\{Y \leq \mathbf{x}\}}$. We make a
 252 particular choice for h in Section 4.

253 Analogous to (2.2), we construct an approximate control variates estimator for $F_Y(\mathbf{x})$,
 254 where the m and N in (2.2) are related by the budget constraint (the cost of sampling
 255 Y and $X_{\mathcal{S}}$). Since different subsets \mathcal{S} are considered simultaneously, we take a *uniform*
 256 *exploration policy* that first collects m i.i.d joint exploration samples of the *full* model for
 257 variance reduction and then commits the remainder of the budget to collect $N_{\mathcal{S}}$ samples of

²Here we refer to the “full” delta-gamma approximation. The more commonly used delta-gamma approximation in practice does not consider the second-order cross terms.

259 a selected model subset \mathcal{S} of low-fidelity models to compute the control variates mean. The
 260 exploration samples and exploitation samples under a uniform exploration policy are denoted:

261 (3.1) Exploration samples: $\{(X_{\text{epr},\ell,1}^\top, \dots, X_{\text{epr},\ell,n}^\top, Y_{\text{epr},\ell}^\top)^\top\}_{\ell \in \{1:m\}} \subset \mathbb{R}^{d + \sum_{i=1}^n d_i}$

262 (3.2) Exploitation samples: $\{X_{\text{ept},j,\mathcal{S}}\}_{j \in \{1:N_{\mathcal{S}}\}}$,

264 where the subscripts “epr” and “ept” specify the stage where a sample is used. The parameters
 265 m and $N_{\mathcal{S}}$ are related by the budget constraint:

266 (3.3)
$$N_{\mathcal{S}} = \frac{B - c_{\text{epr}}m}{c_{\mathcal{S}}} \quad c_{\text{epr}} = \sum_{i=0}^n c_i, \quad c_{\mathcal{S}} = \sum_{i \in \mathcal{S}} c_i,$$

 267

268 where we ignore integer rounding effects to simplify the discussion. The control variates
 269 estimator for $F_Y(\mathbf{x})$ based on $h(X_{\mathcal{S}}; \mathbf{x})$ is

270 (3.4)
$$\widehat{F}_{\mathcal{S}}(\mathbf{x}) = \frac{1}{m} \sum_{\ell \in \{1:m\}} \mathbf{1}_{\{Y_{\text{epr},\ell} \leq \mathbf{x}\}} - \frac{1}{m} \sum_{\ell \in \{1:m\}} \alpha(\mathbf{x}) \left(h(X_{\text{epr},\ell,\mathcal{S}}; \mathbf{x}) - \frac{1}{N_{\mathcal{S}}} \sum_{j \in \{1:N_{\mathcal{S}}\}} h(X_{\text{ept},j,\mathcal{S}}; \mathbf{x}) \right),$$

 271

272 where $\alpha(\mathbf{x})$ is the optimal scaling coefficient as in (2.1):

273 (3.5)
$$\alpha(\mathbf{x}) = \text{Cov}[h(X_{\mathcal{S}}; \mathbf{x})]^{-1} \text{Cov}[\mathbf{1}_{\{Y \leq \mathbf{x}\}}, h(X_{\mathcal{S}}; \mathbf{x})].$$

275 Note $\alpha(\mathbf{x})$ is undefined if $\text{Cov}[h(X_{\mathcal{S}}; \mathbf{x})] = 0$. In this case, the value of the estimator $\widehat{F}_{\mathcal{S}}(\mathbf{x})$
 276 does not depend on $\alpha(\mathbf{x})$, and we set $\alpha(\mathbf{x})$ to 0 for convenience. The quantity $\widehat{F}_{\mathcal{S}}(\mathbf{x})$ is an
 277 unbiased estimator for $F_Y(\mathbf{x})$ with variance

278
$$\text{Var}[\widehat{F}_{\mathcal{S}}(\mathbf{x})] = \frac{(1 - \rho_{\mathcal{S}}^2(\mathbf{x}))F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))}{m} + \frac{\rho_{\mathcal{S}}^2(\mathbf{x})F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))}{N_{\mathcal{S}}},$$

 279

280 where

281 (3.6)
$$\rho_{\mathcal{S}}(\mathbf{x}) = \text{Corr}[\mathbf{1}_{\{Y \leq \mathbf{x}\}}, h(X_{\mathcal{S}}; \mathbf{x})].$$

283 **3.2. A control variates loss function.** To measure the overall accuracy of $\widehat{F}_{\mathcal{S}}(\mathbf{x})$, we
 284 introduce the loss $L_{\mathcal{S}}$ defined by the average $\omega(\mathbf{x})$ -weighted L^2 -norm square of $\widehat{F}_{\mathcal{S}}(\mathbf{x}) - F_Y(\mathbf{x})$:

285 (3.7)
$$L_{\mathcal{S}} := \mathbb{E} \left[\int_{\mathbb{R}^d} \omega(\mathbf{x}) |\widehat{F}_{\mathcal{S}}(\mathbf{x}) - F_Y(\mathbf{x})|^2 d\mathbf{x} \right],$$

 286

287 where $\omega(\mathbf{x}) : \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ is a weight function. The $\omega(\mathbf{x})$ -weighted L^2 -norm square is related
 288 to other more widely used metrics on distributions, e.g., it reduces to the Cramér–von Mises
 289 distance when $\omega(\mathbf{x})d\mathbf{x} = dF_Y(\mathbf{x})$. To estimate $L_{\mathcal{S}}$, note that by Tonelli’s theorem, we have,

290 (3.8)
$$L_{\mathcal{S}} = \int_{\mathbb{R}^d} \omega(\mathbf{x}) \text{Var}[\widehat{F}_{\mathcal{S}}(\mathbf{x})] d\mathbf{x} = \frac{k_1(\mathcal{S})}{m} + \frac{k_2(\mathcal{S})}{B - c_{\text{epr}}m},$$

 291

292 where

293
$$k_1(\mathcal{S}) = \int_{\mathbb{R}^d} \omega(\mathbf{x})(1 - \rho_{\mathcal{S}}^2(\mathbf{x}))F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))d\mathbf{x}$$

294 (3.9)
$$k_2(\mathcal{S}) = c_{\mathcal{S}} \int_{\mathbb{R}^d} \omega(\mathbf{x})\rho_{\mathcal{S}}^2(\mathbf{x})F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))d\mathbf{x}.$$

295

296 Since $k_1(\mathcal{S})$ and $k_2(\mathcal{S})$ are nonnegative, a sufficient and necessary condition for $k_1(\mathcal{S})$ and
297 $k_2(\mathcal{S})$ being well-defined (i.e. finite) is

298 (3.10)
$$k_1(\mathcal{S}) + c_{\mathcal{S}}^{-1}k_2(\mathcal{S}) = \int_{\mathbb{R}^d} \omega(\mathbf{x})F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))d\mathbf{x} < \infty,$$

299

300 but this need not hold for arbitrary choice of ω . For instance, when $\omega(\mathbf{x}) \equiv 1$, (3.10) is true
301 when $d = 1$ if $\mathbb{E}[|Y|^{1+\delta}] < \infty$ for some $\delta > 0$. However, when $d \geq 2$, (3.10) is generally not
302 true when the support for the distribution of Y is unbounded since $F_Y^{-1}([\varepsilon, 1 - \varepsilon])$ may have
303 infinite Lebesgue measure in \mathbb{R}^d for some $\varepsilon > 0$. For such scenarios, requiring that $\omega(\mathbf{x})$ is
304 integrable ensures (3.10), i.e.,

305
$$\int_{\mathbb{R}^d} \omega(\mathbf{x})F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))d\mathbf{x} < \int_{\mathbb{R}^d} \omega(\mathbf{x})d\mathbf{x} < \infty.$$

306

307 Some typical choices for integrable $\omega(\mathbf{x})$ include $\omega(\mathbf{x}) = \mathbf{1}_{\mathcal{T}}$ where $\mathcal{T} \subset \mathbb{R}^d$ is a bounded
308 domain of interest or $\omega(\mathbf{x})$ with reasonably fast decaying tails as $\|\mathbf{x}\|_2 \rightarrow \infty$. In the following
309 discussion, we assume (3.10) holds (and later codify this as [Assumption 5.5](#)). We make
310 different choices for ω in our numerical results of [Section 6](#).

311 **3.3. Exploration-exploitation trade-off.** Equation (3.8) is similar to the exploration-
312 exploitation loss trade-off that was originally formulated in [35], where k_1 and k_2 measure
313 the errors committed by the exploration and the exploitation, respectively. Note that $L_{\mathcal{S}}$ is a
314 strictly convex function for a valid exploration rate m , i.e., for $0 < m < B/c_{\text{epr}}$, and achieves
315 its unique minimum at $m_{\mathcal{S}}^*$ with corresponding minimum loss $L_{\mathcal{S}}^*$:

316 (3.11)
$$m_{\mathcal{S}}^* = \frac{B}{c_{\text{epr}} + \sqrt{\frac{c_{\text{epr}}k_2(\mathcal{S})}{k_1(\mathcal{S})}}}, \quad L_{\mathcal{S}}^* := \min_{0 < m < \frac{B}{c_{\text{epr}}}} L_{\mathcal{S}}(m) = \frac{(\sqrt{c_{\text{epr}}k_1(\mathcal{S})} + \sqrt{k_2(\mathcal{S})})^2}{B} =: \frac{\gamma_{\mathcal{S}}}{B}.$$

317

318 An optimal subset \mathcal{S} is the one that minimizes the m -optimized loss value,

319 (3.12)
$$\mathcal{S}^* = \arg \min_{\mathcal{S} \subseteq \{1:n\}} \gamma_{\mathcal{S}}.$$

320

321 A uniform exploration policy is called *optimal* if it collects $m_{\mathcal{S}^*}^*$ joint samples for exploration
322 and uses model \mathcal{S}^* for exploitation. This is, in effect, a model selection procedure, as an
323 optimal exploration policy selects the model subset that yields the smallest error via optimally
324 balancing the trade-off between exploration and exploitation. In the following discussion, we
325 assume \mathcal{S}^* is unique.

326 As a benchmark to the procedure above (with oracle information), one can consider an
327 empirical (ECDF) procedure that devotes the full budget to sampling the high-fidelity model
328 Y , ignoring the lower-fidelity models. The following result relates the error between these two
329 approaches.

330 **Lemma 3.1.** *With $L_{\mathcal{S}^*}^* = \gamma_{\mathcal{S}^*}/B$ the minimum error achieved by a uniform exploration*
 331 *policy as described above, and $c_{\text{epr}} \int_{\mathbb{R}^d} \omega(\mathbf{x}) F_Y(\mathbf{x})(1 - F_Y(\mathbf{x})) d\mathbf{x}/B$ the expected error achieved*
 332 *by an ECDF estimator for F_Y , then*

$$333 \quad \frac{c_{\text{epr}} \int_{\mathbb{R}^d} \omega(\mathbf{x}) F_Y(\mathbf{x})(1 - F_Y(\mathbf{x})) d\mathbf{x}/B}{\gamma_{\mathcal{S}^*}/B} \geq \frac{1}{2 \left(\frac{c_{\mathcal{S}}}{c_{\text{epr}}} + \mathbb{E}_Z[(1 - \rho_{\mathcal{S}^*}^2(Z))] \right)} \geq \frac{1}{4}$$

335 where Z is a random variable with (unnormalized) density $\omega(\mathbf{z}) F_Y(\mathbf{z})(1 - F_Y(\mathbf{z}))$.

336 *Proof.* We have

$$337 \quad \frac{c_{\text{epr}} \int_{\mathbb{R}^d} \omega(\mathbf{x}) F_Y(\mathbf{x})(1 - F_Y(\mathbf{x})) d\mathbf{x}/B}{\gamma_{\mathcal{S}^*}/B} = \frac{c_{\text{epr}} \int_{\mathbb{R}^d} \omega(\mathbf{x}) F_Y(\mathbf{x})(1 - F_Y(\mathbf{x})) d\mathbf{x}}{\left(\sqrt{c_{\text{epr}} k_1(\mathcal{S}^*)} + \sqrt{k_2(\mathcal{S}^*)} \right)^2}$$

$$338 \quad \geq \frac{c_{\text{epr}} \int_{\mathbb{R}^d} \omega(\mathbf{x}) F_Y(\mathbf{x})(1 - F_Y(\mathbf{x})) d\mathbf{x}}{2(c_{\text{epr}} k_1(\mathcal{S}^*) + k_2(\mathcal{S}^*))}$$

$$339 \quad \geq \frac{1}{2 \left(\frac{c_{\mathcal{S}}}{c_{\text{epr}}} + \mathbb{E}_{\mathbf{x}}[(1 - \rho_{\mathcal{S}^*}^2(\mathbf{x}))] \right)} \geq \frac{1}{4},$$

341 where the expectation $\mathbb{E}_{\mathbf{x}}[\cdot]$ is taken with respect to

$$342 \quad \mathbf{x} \sim \frac{\omega(\mathbf{x}) F_Y(\mathbf{x})(1 - F_Y(\mathbf{x})) d\mathbf{x}}{\int_{\mathbb{R}^d} \omega(\mathbf{z}) F_Y(\mathbf{z})(1 - F_Y(\mathbf{z})) d\mathbf{z}},$$

344 and the last inequality follows by noting $c_{\mathcal{S}} \leq c_{\text{epr}}$ and $0 \leq \mathbb{E}_{\mathbf{x}}[(1 - \rho_{\mathcal{S}^*}^2(\mathbf{x}))] \leq 1$. ■

345 Hence, the relative efficiency of a uniform exploration policy compared to the ECDF estimator
 346 is unconditionally bounded below by 1/4, and hence the uniform exploration policy can at
 347 worst realize a loss value of 4 times a naive ECDF procedure. On the other hand, the relative
 348 efficiency is $\gg 1$ if both $c_{\mathcal{S}}/c_{\text{epr}}$ and $\mathbb{E}_{\mathbf{x}}[(1 - \rho_{\mathcal{S}^*}^2(\mathbf{x}))]$ are small. This happens, for instance,
 349 if $X_{\mathcal{S}^*}$ has a much smaller sampling cost than Y and $h(X_{\mathcal{S}^*}; \mathbf{x})$ are “good” control variates
 350 for $\mathbf{1}_{\{Y \leq \mathbf{x}\}}$ uniformly for all $\mathbf{x} \in \mathbb{R}^d$, both of which are realistic occurrences in multifidelity
 351 applications.

352 **4. Choosing control variates from linear approximations.** We propose a procedure for se-
 353 lecting the control variate h , which boils down to constructing approximations of $\mathbb{E}[\mathbf{1}_{\{Y \leq \mathbf{x}\}} | X_{\mathcal{S}}]$
 354 that both retain high correlation with Y and are budget-friendly. While one may generate
 355 special forms for approximations in particular cases, our goal is a simple and generic choice
 356 that is useful for many practical applications.

357 Recall that $X_{\mathcal{S}^+} = (1, X_i^\top)_{i \in \mathcal{S}}^\top \in \mathbb{R}^{ds+1}$. For $i \in \{1 : d\}$, let $\beta_{\mathcal{S}^+}^{(i)}$ be the optimal linear
 358 projection coefficients for estimating the i th component of Y using $X_{\mathcal{S}^+}$:

$$359 \quad (4.1) \quad \beta_{\mathcal{S}^+}^{(i)} = (\mathbb{E}[X_{\mathcal{S}^+} X_{\mathcal{S}^+}^\top])^{-1} \text{Cov}[X_{\mathcal{S}^+}, Y^{(i)}] \in \mathbb{R}^{ds+1}, \quad \mathbf{B}_{\mathcal{S}^+} = [\beta_{\mathcal{S}^+}^{(1)}, \dots, \beta_{\mathcal{S}^+}^{(d)}] \in \mathbb{R}^{(ds+1) \times d},$$

361 The least squares approximation of Y using linear combinations of $X_{\mathcal{S}}$ and 1 is given by

$$362 \quad H_{\mathcal{S}}(X_{\mathcal{S}}) := (X_{\mathcal{S}^+}^\top \mathbf{B}_{\mathcal{S}^+})^\top = \begin{bmatrix} X_{\mathcal{S}^+}^\top \beta_{\mathcal{S}^+}^{(1)} \\ \vdots \\ X_{\mathcal{S}^+}^\top \beta_{\mathcal{S}^+}^{(d)} \end{bmatrix} \in \mathbb{R}^d.$$

364 When all quantities are scalars, i.e., $d = d_1 = \dots = d_n = 1$, one can directly manipulate H_S
 365 to estimate the statistics of Y [35, 36]. Such an approach is easy to implement and enjoys
 366 certain robustness for first-order statistics, but is more prone to model misspecification effects
 367 (e.g. expressibility of the linear model, noise assumption, etc.) when the whole distribution
 368 of Y is to be learned due to the limitation of linear approximation [36].

369 To address the issue, we take an additional nonlinear step beyond H_S . In particular, we
 370 consider the following family of control variates that slice the estimator H_S :

371 (4.2)
$$h(X_S; \mathbf{x}) = \mathbf{1}_{\{H_S \leq \mathbf{x}\}}.$$

373 Intuitively, we may expect $\mathbf{1}_{\{Y \leq \mathbf{x}\}}$ and $h(X_S; \mathbf{x})$ to be correlated if $\mathbb{E}[\|Y - H_S\|_2^2]$ is small.
 374 However, this may not be true for \mathbf{x} approaching the tails of Y . For instance, assuming $d = 1$
 375 and a standard joint Gaussian random vector (X, Y) with correlation ρ ,

376
$$\lim_{x \rightarrow -\infty} \text{Corr}(\mathbf{1}_{\{Y \leq x\}}, \mathbf{1}_{\{X \leq x\}}) = \lim_{x \rightarrow 0} \frac{C_{X,Y}(x, x)}{x} = \begin{cases} 1, & |\rho| = 1, \\ 0, & |\rho| < 1 \end{cases}$$

378 where $C_{X,Y}(x, y) = \mathbb{P}(\Phi^{-1}(X) \leq x, \Phi^{-1}(Y) \leq y)$ is the Gaussian copula and Φ^{-1} is the quantile of a standard normal distribution; see [24]. Hence, $\mathbf{1}_{\{X \leq x\}}$ is not a good control variate
 379 for $\mathbf{1}_{\{Y \leq x\}}$ when $|x| \rightarrow \infty$ unless $|\rho| = 1$, i.e., only if $X \propto Y$. Nevertheless, our experiments
 380 in Section 6 show that in practice $h(X_S; \mathbf{x})$ provides a reasonable control variates choice for
 381 many scenarios in multifidelity simulations, and thus suggests that situations described above
 382 are less common for the applications of our interest. We discuss computational aspects of
 383 using (4.2) as control variates in Section 5.1.

385 Choosing h as in (4.2), the coefficient $\alpha(\mathbf{x})$ in (3.5) can be explicitly computed as

386 (4.3)
$$\alpha(\mathbf{x}) = \begin{cases} \frac{F_{Y \vee H_S}(\mathbf{x}) - F_Y(\mathbf{x})F_{H_S}(\mathbf{x})}{F_{H_S}(\mathbf{x})(1 - F_{H_S}(\mathbf{x}))} & \mathbf{x} \in \text{supp}(F_{H_S}(\mathbf{x}))^\circ \\ 0 & \text{otherwise} \end{cases}.$$

388 One useful technical result is that $\alpha(\mathbf{x})$ is bounded.

389 **Lemma 4.1.** *Let $\alpha(\mathbf{x})$ be given as in (4.3). Then, $|\alpha(\mathbf{x})| \leq 1$.*

390 **Proof.** It suffices to check that for $\mathbf{x} \in \text{supp}(F_{H_S}(\mathbf{x}))^\circ$, $\alpha(\mathbf{x}) \leq 1$ and $-\alpha(\mathbf{x}) \leq 1$ hold
 391 simultaneously:

392
$$\begin{aligned} \frac{F_{Y \vee H_S}(\mathbf{x}) - F_Y(\mathbf{x})F_{H_S}(\mathbf{x})}{F_{H_S}(\mathbf{x})(1 - F_{H_S}(\mathbf{x}))} &\leq \frac{F_Y(\mathbf{x}) \wedge F_{H_S}(\mathbf{x}) - F_Y(\mathbf{x})F_{H_S}(\mathbf{x})}{F_{H_S}(\mathbf{x})(1 - F_{H_S}(\mathbf{x}))} \\ 393 &= \frac{F_Y(\mathbf{x})}{F_{H_S}(\mathbf{x})} \wedge \frac{1 - F_Y(\mathbf{x})}{1 - F_{H_S}(\mathbf{x})} \leq 1, \end{aligned}$$

395 and

396
$$\begin{aligned} \frac{F_Y(\mathbf{x})F_{H_S}(\mathbf{x}) - F_{Y \vee H_S}(\mathbf{x})}{F_{H_S}(\mathbf{x})(1 - F_{H_S}(\mathbf{x}))} &\leq \frac{F_Y(\mathbf{x})F_{H_S}(\mathbf{x}) - F_Y(\mathbf{x}) + 1 - F_{H_S}(\mathbf{x})}{F_{H_S}(\mathbf{x})(1 - F_{H_S}(\mathbf{x}))} \wedge \frac{F_Y(\mathbf{x})F_{H_S}(\mathbf{x})}{F_{H_S}(\mathbf{x})(1 - F_{H_S}(\mathbf{x}))} \\ 397 &\leq \frac{1 - F_Y(\mathbf{x})}{F_{H_S}(\mathbf{x})} \wedge \frac{F_Y(\mathbf{x})}{1 - F_{H_S}(\mathbf{x})} \leq 1. \end{aligned}$$
 ■

399 **5. Algorithms.** We revisit the cvMDL algorithm in Figure 1: the loss function $L_{\mathcal{S}}$ in
400 (3.8) is the desired loss function to optimize over but requires oracle statistics (i.e. $k_1(\mathcal{S})$
401 and $k_2(\mathcal{S})$). Thus, we replace it with an approximation $\hat{L}_{\mathcal{S}}$ that we describe in this section.
402 Additionally, the computations in the ‘‘Analyze Models’’ step are now more transparent: The
403 oracle computations are given by (3.12) and (3.11). In a practical algorithmic setting, we
404 replace these with consistent approximate computations, which is the topic of this section.

405 When using approximate quantities to compute $L_{\mathcal{S}}$, the explicit exploration-exploitation
406 loss decomposition in (3.8) may no longer be true. Nevertheless, if the quantities we estimate
407 are sufficiently accurate, then such a decomposition is expected to be approximately valid.
408 Thus, in devising practical algorithms, we use the oracle loss form (3.8) (with estimated
409 coefficients) instead of (3.7) as the criteria for model selection. We present in the numerical
410 section some empirical evidence that such a replacement has little impact on model selection.

411 Since the proposed estimators change when new exploration samples are collected, the
412 dependence on this number of exploration samples must be made explicit. For $\mathcal{S} \subseteq \{1 : n\}$, we
413 let $\hat{L}_{\mathcal{S}}(\cdot; t)$ denote the estimated loss function $L_{\mathcal{S}}$ after having collected t exploration samples.
414 We then let $\hat{m}_{\mathcal{S}}^*$ be the corresponding estimator for the optimal exploration sample size $m_{\mathcal{S}}^*$.
415 Summarizing this: the intuition behind the cvMDL algorithm is that we use currently collected
416 exploration data (t samples) to find the estimated optimal model ($\hat{\mathcal{S}}^*$) and the corresponding
417 exploration rate ($\hat{m}_{\hat{\mathcal{S}}^*}^*$). Based on the value of $\hat{m}_{\hat{\mathcal{S}}^*}^*$ relative to t , we decide whether to continue
418 to explore or to switch to exploitation.

419 **5.1. Estimators for oracle quantities.** In this section, we discuss how to estimate $L_{\mathcal{S}}$, $m_{\mathcal{S}}^*$,
420 and $\alpha(\mathbf{x})$ from exploration data when instantiating cvMDL using the linear approximators as
421 introduced in Section 4. The control variates $h(X_{\mathcal{S}}; \mathbf{x}) = \mathbf{1}_{\{H_{\mathcal{S}}(X_{\mathcal{S}}) \leq \mathbf{x}\}}$ belong to a parametric
422 family characterized by $\beta_{\mathcal{S}^+}^{(i)}$, $i \in \{1 : d\}$ from (4.1), which can be estimated from exploration
423 data.

424 Recall from (3.1) that the ℓ th exploration sample of all low-fidelity models in \mathcal{S} is denoted
425 by $X_{\text{epr}, \ell, \mathcal{S}}$. Similarly, we define $X_{\text{epr}, \ell, \mathcal{S}^+} := (1, X_{\text{epr}, \ell, \mathcal{S}}^\top)^\top$. To estimate $\beta_{\mathcal{S}^+}^{(i)}$, we use the
426 least-squares estimator:

$$427 \quad (5.1) \quad \hat{\beta}_{\mathcal{S}^+}^{(i)} = \mathbf{Z}_{\mathcal{S}}^\dagger \mathbf{Y}^{(i)} \quad \mathbf{Z}_{\mathcal{S}} = \begin{bmatrix} X_{\text{epr}, 1, \mathcal{S}^+}^\top \\ \vdots \\ X_{\text{epr}, m, \mathcal{S}^+}^\top \end{bmatrix} \in \mathbb{R}^{m \times (d_{\mathcal{S}}+1)} \quad \mathbf{Y}^{(i)} = \begin{bmatrix} Y_{\text{epr}, 1}^{(i)} \\ \vdots \\ Y_{\text{epr}, m}^{(i)} \end{bmatrix} \in \mathbb{R}^m,$$

429 where $(X_{\text{epr}, \ell, 1}^\top, \dots, X_{\text{epr}, \ell, m}^\top)_{\ell \in \{1 : m\}}^\top$ are joint exploration samples, and the design matrix $\mathbf{Z}_{\mathcal{S}}$ is
430 assumed to have full column rank³.

431 For $\mathbf{x} \in \mathbb{R}^d$, $h(X_{\mathcal{S}}; \mathbf{x})$ can be estimated as

$$432 \quad (5.2) \quad \hat{h}(X_{\mathcal{S}}; \mathbf{x}) = \mathbf{1}_{\{\hat{H}_{\mathcal{S}}(X_{\mathcal{S}}) \leq \mathbf{x}\}} \quad \hat{H}_{\mathcal{S}}(X_{\mathcal{S}}) := \hat{\mathbf{B}}_{\mathcal{S}^+}^\top X_{\mathcal{S}^+} =: \begin{bmatrix} X_{\mathcal{S}^+}^\top \hat{\beta}_{\mathcal{S}^+}^{(1)} \\ \vdots \\ X_{\mathcal{S}^+}^\top \hat{\beta}_{\mathcal{S}^+}^{(d)} \end{bmatrix},$$

433 ³This motivates the minimal exploration size condition in Algorithm 1, which is a necessary condition for
full rank here.

434 For ease of notation, we write $\widehat{H}_{\mathcal{S}}(X_{\mathcal{S}})$ and $\widehat{h}_{\mathcal{S}}(X_{\mathcal{S}}; \mathbf{x})$ as $\widehat{H}_{\mathcal{S}}$ and $\widehat{h}_{\mathcal{S}}$ when $X_{\mathcal{S}^+}$ is generic
 435 and not necessarily related to the exploration and exploitation data. We introduce some
 436 additional notation for quantities involving both estimated coefficients and empirical CDFs
 437 using exploration data:

438
$$\widehat{F}_Y(\mathbf{x}) = \frac{1}{m} \sum_{\ell \in \{1:m\}} \mathbf{1}_{\{Y_{\text{epr},\ell} \leq \mathbf{x}\}}$$

439
$$\widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x}) = \frac{1}{m} \sum_{\ell \in \{1:m\}} \widehat{h}(X_{\text{epr},\ell,\mathcal{S}}; \mathbf{x}) = \frac{1}{m} \sum_{\ell \in \{1:m\}} \mathbf{1}_{\{\widehat{H}_{\mathcal{S}}(X_{\text{epr},\ell,\mathcal{S}}) \leq \mathbf{x}\}}$$

440
$$\widehat{F}_{Y \vee \widehat{H}_{\mathcal{S}}}(\mathbf{x}) = \frac{1}{m} \sum_{\ell \in \{1:m\}} \mathbf{1}_{\{Y_{\text{epr},\ell} \vee \widehat{H}_{\mathcal{S}}(X_{\text{epr},\ell,\mathcal{S}}) \leq \mathbf{x}\}}.$$

442 To compute the loss function approximation, we build approximations to k_1 and k_2 in
 443 (3.9), which requires us to compute $\rho_{\mathcal{S}}^2$ in (3.6). For this purpose, observe that

444
$$(1 - \rho_{\mathcal{S}}^2(\mathbf{x}))F_Y(\mathbf{x})(1 - F_Y(\mathbf{x})) = \mathbb{E}[(\mathbf{1}_{\{Y \leq \mathbf{x}\}} - F_Y(\mathbf{x})) - \alpha(\mathbf{x})(\mathbf{1}_{\{H_{\mathcal{S}} \leq \mathbf{x}\}} - F_{H_{\mathcal{S}}}(\mathbf{x}))]^2,$$

446 where $\alpha(\mathbf{x})$ is defined in (4.3). The quantity in the expectation is the mean squared regression
 447 residual between two centered Bernoulli random variables $\mathbf{1}_{\{Y \leq \mathbf{x}\}}$ and $\mathbf{1}_{\{H_{\mathcal{S}} \leq \mathbf{x}\}}$. Thus, a
 448 natural estimator for $(1 - \rho_{\mathcal{S}}^2(\mathbf{x}))F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))$ is to compute an empirical mean-squared
 449 difference between $\mathbf{1}_{\{Y \leq \mathbf{x}\}}$ and a regressor with covariates $\mathbf{1}_{\{\widehat{H}_{\mathcal{S}} \leq \mathbf{x}\}}$, which requires data for
 450 Y . Since we have (uncentered) data for Y on the exploration samples $Y_{\text{epr},j}$ for $j \in \{1 : m\}$,
 451 we can evaluate a regressor for Y with covariates $\widehat{H}_{\mathcal{S}}$ together with the intercept term on the
 452 exploration data sites. This results in the following estimator \mathcal{K}_1 for $(1 - \rho_{\mathcal{S}}^2(\mathbf{x}))F_Y(\mathbf{x})(1 -$
 453 $F_Y(\mathbf{x}))$

454 (5.3)
$$\mathcal{K}_1(\mathbf{x}) = \frac{1}{m} \sum_{\ell \in \{1:m\}} (\mathbf{1}_{\{Y_{\text{epr},\ell} \leq \mathbf{x}\}} - r_{\ell}(\mathbf{x}))^2 \quad \begin{bmatrix} r_1(\mathbf{x}) \\ \vdots \\ r_m(\mathbf{x}) \end{bmatrix} = \mathbf{W}_{\mathcal{S}} \mathbf{W}_{\mathcal{S}}^{\dagger} \begin{bmatrix} \mathbf{1}_{\{Y_{\text{epr},1} \leq \mathbf{x}\}} \\ \vdots \\ \mathbf{1}_{\{Y_{\text{epr},m} \leq \mathbf{x}\}} \end{bmatrix},$$

455 where

456
$$\mathbf{W}_{\mathcal{S}} = \begin{bmatrix} 1 & \widehat{h}_{\mathcal{S}}(X_{\text{epr},1,\mathcal{S}}; \mathbf{x}) \\ \vdots & \vdots \\ 1 & \widehat{h}_{\mathcal{S}}(X_{\text{epr},m,\mathcal{S}}; \mathbf{x}) \end{bmatrix}.$$

457 This allows us to estimate $\rho_{\mathcal{S}}^2(\mathbf{x})F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))$ as

458 (5.4)
$$\mathcal{K}_2(\mathbf{x}) = \widehat{F}_Y(\mathbf{x})(1 - \widehat{F}_Y(\mathbf{x})) - \mathcal{K}_1(\mathbf{x}).$$

459 Consequently, we can estimate $k_1(\mathcal{S})$ and $k_2(\mathcal{S})$ as

460 (5.5)
$$\widehat{k}_1(\mathcal{S}) = \int_{\mathbb{R}^d} \omega(\mathbf{x}) \mathcal{K}_1(\mathbf{x}) d\mathbf{x} \quad \widehat{k}_2(\mathcal{S}) = c_{\mathcal{S}} \int_{\mathbb{R}^d} \omega(\mathbf{x}) \mathcal{K}_2(\mathbf{x}) d\mathbf{x}.$$

465 The above estimators for $k_1(\mathcal{S})$ and $k_2(\mathcal{S})$ are positive and coincide with empirical estimators
 466 for these quantities whenever defined (see [Appendix A.2.3](#)), which is a crucial realization
 467 for our consistency results later. Plugging the above estimates into [\(3.8\)](#) and [\(3.11\)](#) yields
 468 estimates for $L_{\mathcal{S}}$ and $m_{\mathcal{S}}^*$:

$$469 \quad (5.6) \quad \widehat{L}_{\mathcal{S}}(z; m) = \frac{\widehat{k}_1(\mathcal{S})}{z} + \frac{\widehat{k}_2(\mathcal{S})}{B - c_{\text{epr}}z} \quad \widehat{m}_{\mathcal{S}}^* = \frac{B}{c_{\text{epr}} + \sqrt{\frac{c_{\text{epr}}\widehat{k}_2(\mathcal{S})}{\widehat{k}_1(\mathcal{S})}}}.$$

470

471 Note that $\widehat{L}_{\mathcal{S}}(z; m)$ has a parameter m indicating the number of exploration samples used to
 472 compute $\widehat{k}_1(\mathcal{S})$ and $\widehat{k}_2(\mathcal{S})$, and a variable z denoting the exploration rate where to evaluate
 473 $\widehat{L}_{\mathcal{S}}$. We define $\widehat{\mathcal{S}}^*$ as the optimal model selected by this estimator,

$$474 \quad (5.7) \quad \widehat{\mathcal{S}}^* = \arg \min_{\mathcal{S} \subseteq \{1:n\}} \widehat{L}_{\mathcal{S}}(\widehat{m}_{\mathcal{S}}^*; m),$$

475

476 which parallels the oracle choice [\(3.12\)](#). We have described all quantities needed to complete
 477 the exploration phase of [Figure 1](#). What remains is to describe how the CDF estimator $\widetilde{F}_{\widehat{\mathcal{S}}^*}$
 478 in the exploitation phase of [Figure 1](#) is generated.

479 Our exploitation goal is to generate an estimator for [\(3.4\)](#), and so we need to estimate
 480 $\alpha(\mathbf{x})$:

$$481 \quad (5.8) \quad \widehat{\alpha}(\mathbf{x}) = \frac{\widehat{F}_{Y \vee \widehat{H}_{\mathcal{S}}}(\mathbf{x}) - \widehat{F}_Y(\mathbf{x})\widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x})}{\widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x})(1 - \widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x}))} \quad \mathbf{x} \in \text{supp}(\widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x}))^\circ,$$

482

483 and $\widehat{\alpha}(\mathbf{x}) = 0$ zero otherwise. By a similar reasoning as in [Lemma 4.1](#), one has

$$484 \quad (5.9) \quad |\widehat{\alpha}(\mathbf{x})| \leq 1.$$

486 Finally, the *exploitation* estimator $\widetilde{F}_{\mathcal{S}}(\mathbf{x})$ for $F_Y(\mathbf{x})$ based on estimated parameters, utilizes
 487 $N_{\mathcal{S}}$ exploitation samples (i.e., exhausts the remaining budget B) and is given by,

$$488 \quad (5.10) \quad \widetilde{F}_{\mathcal{S}}(\mathbf{x}) := \widehat{F}_Y(\mathbf{x}) - \frac{1}{m} \sum_{\ell \in \{1:m\}} \left(\widehat{\alpha}(\mathbf{x})\widehat{h}_{\mathcal{S}}(X_{\text{epr}, \ell, \mathcal{S}}; \mathbf{x}) - \frac{1}{N_{\mathcal{S}}} \sum_{j \in \{1:N_{\mathcal{S}}\}} \widehat{\alpha}(\mathbf{x})\widehat{h}_{\mathcal{S}}(X_{\text{ept}, \ell, \mathcal{S}}; \mathbf{x}) \right),$$

489

490 where $\mathcal{S} = \widehat{\mathcal{S}}^*$ is the selected model based on $\widehat{k}_1(\mathcal{S})$ and $\widehat{k}_2(\mathcal{S})$. By inspection, we observe
 491 that $\widetilde{F}_{\mathcal{S}}(\mathbf{x})$ is a piecewise affine correction of \widehat{F}_Y , where the correction is based on the control
 492 variates $\widehat{h}_{\mathcal{S}}$.

493 **Remark 5.1.** *The estimator $\widehat{\alpha}(\mathbf{x})$ is undefined and manually set to zero for \mathbf{x} outside the
 494 support of $\widehat{F}_{\widehat{H}_{\mathcal{S}}}$, as in that case the denominator vanishes. Alternatively, one can define $\widehat{\alpha}(\mathbf{x})$
 495 for \mathbf{x} outside the support of $\widehat{F}_{\widehat{H}_{\mathcal{S}}}$ as $\widehat{\alpha}(\mathbf{x}')$ for some \mathbf{x}' inside the support of $\widehat{F}_{\widehat{H}_{\mathcal{S}}}$ that can
 496 be accurately estimated yet remains close to \mathbf{x} . To illustrate, consider $d = 1$. Assuming*

497 $\alpha(x)$ is a continuous function of x in $\text{supp}(F_{H_S})$ and $\text{supp}(\widehat{F}_{\widehat{H}_S}(x)) = [x_{\min}, x_{\max}]$ for some
 498 $x_{\min} < x_{\max}$, for $x \in \text{supp}(\widehat{F}_{\widehat{H}_S}(x))^c$, we may estimate $\alpha(x)$ outside $[x_{\min}, x_{\max}]$ as

499 (5.11)
$$\widehat{\alpha}(x) = \begin{cases} \frac{\widehat{F}_{Y \vee \widehat{H}_S}(x(\tau)) - \widehat{F}_Y(x(\tau))\tau}{\tau(1-\tau)} & x \leq x_{\min} \\ \frac{\widehat{F}_{Y \vee \widehat{H}_S}(x(1-\tau)) - \widehat{F}_Y(x(1-\tau))(1-\tau)}{\tau(1-\tau)} & x \geq x_{\max}, \end{cases}$$

500

501 where $x(\tau)$ and $x(1 - \tau)$ are the τ and $1 - \tau$ quantiles of $\widehat{F}_{\widehat{H}_S}$ for some small $\tau \in (0, 1)$:

502
$$x(\tau) = \widehat{F}_{\widehat{H}_S}^{-1}(\tau) \quad x(1 - \tau) = \widehat{F}_{\widehat{H}_S}^{-1}(1 - \tau).$$

503

504 This allows us to get nontrivial estimates of F_Y outside $[x_{\min}, x_{\max}]$, i.e. in the tail regime.
 505 When $d \geq 2$, one may generalize the ideas above by projecting the points in the tail regime to
 506 some bounded set in \mathbb{R}^d that contains most of the measure in the domain.

507 **5.2. Monotonicity of the exploitation CDF estimator.** By construction, $\tilde{F}_S(\mathbf{x})$ is a piece-
 508 wise constant function on some d -dimensional rectangular partition of \mathbb{R}^d , but is not necessarily
 509 a monotone nondecreasing function in each direction due to the fluctuations of estimators used
 510 in the construction. To address this issue, we introduce a dimension-wise recursive-sorting
 511 post-processing procedure on values in the range of \tilde{F}_S to recover the desired monotonicity and
 512 ensure that we compute an actual distribution function. To represent $\tilde{F}_S(\mathbf{x})$ as a d -dimensional
 513 tensor, we introduce the index set $\mathbf{I} = \otimes_{i \in \{1:d\}} (z_{i,1}, \dots, z_{i,M_i})$, $-\infty = z_{i,1} \leq \dots \leq z_{i,M_i} = +\infty$,
 514 where $z_{i,j}$ is the j th order statistic of the projected partition points associated with $\tilde{F}_S(\mathbf{x})$,
 515 and M_i is the total number of such projected points. Using this notation, we express $\tilde{F}_S(\mathbf{x})$
 516 as a tensor \mathbf{T} , where

517
$$\tilde{F}_S(\mathbf{x}) = \mathbf{T}_{z_{1,s_1}, \dots, z_{d,s_d}} \quad \mathbf{x} \in \prod_{i \in \{1:d\}} [z_{i,s_i}, z_{i,s_i+1}).$$

518

519 The desired monotonicity in each dimension can be recovered by an alternating dimension-wise
 520 sorting of entries in \mathbf{T} until convergence. The details are given in [Algorithm 5.1](#).

521 An example when $d = 2$ is given below:

522
$$\begin{bmatrix} 0.7 & 0.4 & 0 \\ 0.3 & 0.5 & 0.2 \\ 1 & 0.8 & 0.6 \end{bmatrix} \xrightarrow{\text{sort rows}} \begin{bmatrix} 0 & 0.4 & 0.7 \\ 0.2 & 0.3 & 0.5 \\ 0.6 & 0.8 & 1 \end{bmatrix} \xrightarrow{\text{sort columns}} \begin{bmatrix} 0 & 0.3 & 0.5 \\ 0.2 & 0.4 & 0.7 \\ 0.6 & 0.8 & 1 \end{bmatrix}$$

523
$$\begin{bmatrix} 0.7 & 0.4 & 0 \\ 0.3 & 0.5 & 0.2 \\ 1 & 0.8 & 0.6 \end{bmatrix} \xrightarrow{\text{sort columns}} \begin{bmatrix} 0.3 & 0.4 & 0 \\ 0.7 & 0.5 & 0.2 \\ 1 & 0.8 & 0.6 \end{bmatrix} \xrightarrow{\text{sort rows}} \begin{bmatrix} 0 & 0.3 & 0.4 \\ 0.2 & 0.5 & 0.7 \\ 0.6 & 0.8 & 1 \end{bmatrix}$$

524

525 As shown above, sorting ends up in some stationary point with desired monotonicity after a
 526 finite number of steps (see [Theorem 5.2](#)), but different orders of sorting may lead to different
 527 sorted CDF representations when $d \geq 2$. However, in our case, $\tilde{F}_S(\mathbf{x})$ is itself a perturbation
 528 of the CDF of Y , so the sorting procedure is often beneficial for stabilizing the algorithm. A
 529 more detailed empirical study on this is given in [Section 6](#). The sorting procedure described
 530 converges (i.e., achieves monotonicity in the values of \mathbf{T}) in a finite number of iterations.

Algorithm 5.1 Alternating sorting.

Input: a tensor \mathbf{T} that represents the estimated CDF $\tilde{F}_S(\mathbf{x})$
Output: a sorted tensor sorted(\mathbf{T}) with desired monotonicity

- 1: Initialize sorted(\mathbf{T}) as a all-zeros tensor with the same size as \mathbf{T}
- 2: **while** sorted(\mathbf{T}) $\neq \mathbf{T}$ **do**
- 3: sorted(\mathbf{T}) $\leftarrow \mathbf{T}$
- 4: **for** $i \in \{1 : d\}$ **do**
- 5: **for** $\mathbf{z} := (z_{1,s_1}, \dots, z_{i-1,s_{i-1}}, z_{i+1,s_{i+1}}, \dots, z_{d,s_d}) \in \otimes_{j \in \{1:d\} \setminus \{i\}} (z_{j,1}, \dots, z_{j,M_i})$ **do**
- 6: $\mathbf{T}[\mathbf{z}, :] \leftarrow \text{sort}(\mathbf{T}[\mathbf{z}, :])$, where $\mathbf{T}[\mathbf{z}, :] := (\mathbf{T}_{z_{1,s_1}, \dots, z_{i,j}, \dots, z_{d,s_d}})_{j \in \{1:M_i\}}$
- 7: **end for**
- 8: **end for**
- 9: **end while**
- 10: Return sorted(\mathbf{T})

531 **Theorem 5.2.** Assume that all the entries in \mathbf{T} are distinct. The alternating sorting al-
 532 gorithm described in [Algorithm 5.1](#) converges to a stationary point with desired monotonicity
 533 within a finite number of iterations.

534 *Proof.* See [Appendix A.1](#). ■

535 **5.3. Exploration sampling.** We next describe the precise action taken when we decide to
 536 continue exploring. In particular, we need to define the function $Q(m, \hat{m}_{\hat{\mathcal{S}}^*})$ in [Figure 1](#). When
 537 the current number m of exploration samples is smaller than the estimated optimal number
 538 of samples $\hat{m}_{\hat{\mathcal{S}}^*}^*$, the function Q determines how to increase m . A natural choice for Q is
 539 $Q(m, \hat{m}_{\hat{\mathcal{S}}^*}^*) = m+1$, i.e., simply increase by a single additional exploration sample. In practice,
 540 we observe that this behavior can be overly conservative and time-consuming when B is large.
 541 As an alternative, one could use a more aggressive strategy, say $Q(m, \hat{m}_{\hat{\mathcal{S}}^*}^*) = \frac{1}{2}(m + \hat{m}_{\hat{\mathcal{S}}^*}^*)$,
 542 which more quickly closes the gap between m and $\hat{m}_{\hat{\mathcal{S}}^*}^*$. However, there are situations when
 543 this is too aggressive. For example, if m is small (such as at initialization) then estimated
 544 quantities can be poor approximations, and in some cases $\hat{m}_{\hat{\mathcal{S}}^*}^*$ is significantly overestimated,
 545 and thus increasing m to $\frac{1}{2}(m + \hat{m}_{\hat{\mathcal{S}}^*}^*)$ can actually result in substantially overshooting the
 546 oracle value of $m_{\mathcal{S}^*}^*$. The probability of such an event is often positive and does not vanish as
 547 B increases.

548 As a compromise between these conservative and aggressive behaviors, we choose the
 549 following form:

550 (5.12)
$$Q(m, \hat{m}_{\hat{\mathcal{S}}^*}^*) = \begin{cases} 2m, & 1 \leq m < \frac{\hat{m}_{\hat{\mathcal{S}}^*}^*}{2} \\ \frac{1}{2}(m + \hat{m}_{\hat{\mathcal{S}}^*}^*), & \frac{\hat{m}_{\hat{\mathcal{S}}^*}^*}{2} \leq m < \hat{m}_{\hat{\mathcal{S}}^*}^* \end{cases}.$$

552 Since $\hat{m}_{\hat{\mathcal{S}}^*}^*$ is proportional to B , the above choice ensures that there is a sufficient amount of
 553 time for the algorithm to take exponential exploration whose growth manner is independent
 554 of the value of $\hat{m}_{\hat{\mathcal{S}}^*}^*$, which ensures both efficiency and accuracy of the algorithm. We note
 555 that neither the exponential rate two nor taking the average between m and $\hat{m}_{\hat{\mathcal{S}}^*}^*$ in (5.12) is

556 special, and can respectively be replaced with other rates greater than one and nonuniform
 557 averaging operations subject to appropriate modifications. Both the theoretical conclusions
 558 and numerical simulations in the subsequent sections assume that Q has the form above, but
 559 other reasonable choices for Q do not change the theoretical conclusions.

560 We have completed all technical descriptions of [Figure 1](#). A more fleshed-out pseudocode
 561 version is given in [Algorithm 5.2](#) that provides more details for every step. Next, we establish
 562 that the proposed algorithm enjoys optimality guarantees relative to model selection and
 563 budget allocation strategies produced by an oracle.

Algorithm 5.2 The detailed cvMDL algorithm.

Input: B : total budget, model costs c_0, c_1, \dots, c_n

Output: an estimator for $F_Y(\mathbf{x})$

```

1: Initialize exploration = TRUE
2: Initialize  $m = \sum_{i \in \{1:n\}} d_i + 2$ 
3: Generate  $m$  exploration samples of  $(Y, X_{\{1:n\}})$ 
4: while exploration = TRUE do
5:   for  $\mathcal{S} \subseteq \{1 : n\}$  do
6:     Compute regression coefficients  $\hat{\beta}_{\mathcal{S}^+}^{(i)}$ ,  $i \in \{1 : d\}$  from \(5.1\)
7:     Construct  $\hat{H}_{\mathcal{S}}(X_{\mathcal{S}})$  and  $\hat{h}(X_{\mathcal{S}}; \mathbf{x})$  from \(5.2\)
8:     Compute regression coefficients  $r_j(\mathbf{x})$ ,  $j \in \{1 : m\}$  from \(5.3\)
9:     Construct  $\mathcal{K}_1$  and  $\mathcal{K}_2$  from \(5.3\) and \(5.4\), respectively
10:    Evaluate  $\hat{k}_1(\mathcal{S})$  and  $\hat{k}_2(\mathcal{S})$  using \(5.5\) and a quadrature rule on  $\mathbb{R}^d$ 
11:    Compute  $\hat{m}_{\mathcal{S}}^*$  and  $\hat{L}_{\mathcal{S}}(\cdot; m)$  from \(5.6\)
12:    Compute the minimal expected loss  $\hat{L}_{\mathcal{S}}(m \vee \hat{m}_{\mathcal{S}}^*; m)$  from \(5.6\)
13:  end for
14:  Choose  $\hat{\mathcal{S}}^* = \arg \min_{\mathcal{S} \subseteq \{1:n\}} \hat{L}_{\mathcal{S}}(m \vee \hat{m}_{\mathcal{S}}^*; m)$ ;
15:  if  $m < \hat{m}_{\hat{\mathcal{S}}^*}^*$  then
16:    Generate  $Q(m, \hat{m}_{\hat{\mathcal{S}}^*}^*) - m$  additional samples of  $(Y, X_{\{1:n\}})$ , where  $Q$  is given in \(5.12\)
17:    Increase  $m$ :  $m \leftarrow Q(m, \hat{m}_{\hat{\mathcal{S}}^*}^*)$ 
18:  else
19:    exploration = FALSE
20:  end if
21: end while
22: Generate  $N_{\hat{\mathcal{S}}^*}$  samples of  $X_{\hat{\mathcal{S}}^*}$ , with  $N_{\mathcal{S}}$  given in \(3.3\)
23: Construct  $\hat{\alpha}(\mathbf{x})$  for  $\mathcal{S} \leftarrow \hat{\mathcal{S}}^*$  using \(5.8\)
24: Generate  $\hat{\mathcal{S}}^*$  exploitation estimator  $\tilde{F}_{\hat{\mathcal{S}}^*}$  using \(5.10\).
  
```

564 **5.4. Model consistency and optimality.** We now provide theoretical guarantees for [Al-](#)
 565 [gorithm 5.2](#) (corresponding to the flowchart in [Figure 1](#)). In summary, we show that as the
 566 budget B tends to infinity, the model subset $\hat{\mathcal{S}}^*$ chosen along with the number of exploration
 567 samples m taken in [Algorithm 5.2](#), both converge to the oracle optimal model \mathcal{S}^* and the

568 optimal number of exploration samples $m_{\mathcal{S}^*}^*$, respectively.

569 We need some technical assumptions in order to proceed with our results. Since we
570 estimate quadratic moments, we require quadratic moments to exist. We also require that
571 there are no pairs of low-fidelity QoIs that are perfectly correlated. These are codified in the
572 following two assumptions.

573 **Assumption 5.3.** *The models $X_{\{1:n\}}$ and Y have bounded second moments:*

574 (5.13)
$$\mathbb{E}[\|X_{\{1:n\}}\|_2^2 + \mathbb{E}\|Y\|_2^2] < \infty.$$

576 **Assumption 5.4.** *The uncentered second moment matrix $\mathbb{E}[X_{\{1:n\}} + X_{\{1:n\}}^\top]$ is invertible,*
577 *where $X_{\{1:n\}} = (1, X_{\{1:n\}}^\top)^\top$.*

578 **Assumption 5.3** is the minimal moment condition on QoIs that we require to make oracle
579 quantities well-defined. Random variables that violate **Assumption 5.4** exhibit perfect
580 multicollinearity and in practice are relatively rare. **Assumption 5.4** being violated does not
581 cause any conceptual breakdown of our procedure; the only consequence is that all the linear
582 regression procedures suffer from a lack of identifiability of optimal covariates. While there
583 are numerous standard procedures to remedy multicollinearity, such as covariate removal or
584 regularization, violation of this assumption did not surface in our experiments, so we do not
585 utilize any of these remedies.

586 The model selection procedure requires estimating the average ω -weighted L^2 norm. This
587 requires us to make certain assumptions about ω .

588 **Assumption 5.5.** *The weight $\omega(\mathbf{x})$ is chosen so that either of the following conditions is
589 true:*

590 (a) $\|\omega\|_{L^\infty(\mathbb{R}^d)} < \infty$ (e.g. $\omega(\mathbf{x}) \equiv 1$) and $d = 1$; or
591 (b) $\|\omega\|_{L^1(\mathbb{R}^d)} < \infty$.

592 The final more technical assumption we require involves some regularity on distribution
593 functions. In particular, we show pointwise convergence in \mathbf{x} of the estimator $\hat{\alpha}(\mathbf{x})$ to the
594 oracle parameter $\alpha(\mathbf{x})$, and to accomplish this we require bounds on the local variations of
595 F_{H_S} and $F_{H_S \vee Y}$ constructed in the model selection procedure. More technically, a sufficient
596 assumption is a bounded local variations condition involving CDFs of certain d -dimensional
597 sketches of $X_{\{1:n\}}$ and Y .

598 **Assumption 5.6.** *Define*

599
$$V(\mathbf{A}) := (X_{\mathcal{S}^+}^\top \mathbf{A})^\top \in \mathbb{R}^d \quad \mathbf{A} := [\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(d)}] \in \mathbb{R}^{d_S \times d},$$

600 *and recall the optimal coefficient matrix $\mathbf{B}_{\mathcal{S}^+}$ in (4.1). We assume the CDFs of $V(\mathbf{A})$ and
601 $V(\mathbf{A}) \vee Y$, denoted by $F_{V(\mathbf{A})}$ and $F_{V(\mathbf{A}) \vee Y}$, are globally Lipschitz near $\mathbf{B}_{\mathcal{S}^+}$ for all \mathcal{S} . In
602 particular, we assume that there exists $\varepsilon > 0$ such that*

604
$$\max_{\mathcal{S} \subseteq \{1:n\}} \sup_{\mathbf{A}: \|\mathbf{A} - \mathbf{B}_{\mathcal{S}^+}\|_F \leq \varepsilon} \{\|F_{V(\mathbf{A})}\|_{Lip} + \|F_{V(\mathbf{A}) \vee Y}\|_{Lip}\} = C < \infty,$$

605

606 *where $\|\cdot\|_{Lip}$ is the Lipschitz constant defined as*

607
$$\|f\|_{Lip} = \sup_{\mathbf{x} \neq \mathbf{x}'} \frac{|f(\mathbf{x}) - f(\mathbf{x}')|}{\|\mathbf{x} - \mathbf{x}'\|_2} \quad f: \mathbb{R}^d \rightarrow \mathbb{R}.$$

608

609 This final assumption is less transparent than our previous ones. An unnecessarily stronger suf-
 610 ficient condition to ensure that [Assumption 5.6](#) holds is to assume that both Y and all unit lin-
 611 ear combinations of $X_{\{1:n\}}$ have uniformly bounded densities, and that every high-fidelity co-
 612 variate $Y^{(i)}$ is correlated with every low-fidelity covariate $X_j^{(r)}$, i.e., $\min_{i,j,r} |\text{Corr}(Y^{(i)}, X_j^{(r)})| >$
 613 0. Alternatively, one could assume that the same bounded density condition, and the rather
 614 reasonable condition that the oracle regression coefficients $\mathbf{B}_{\mathcal{S}^+}$ select at *least* one non-
 615 deterministic covariate for every \mathcal{S} .

616 We can now present our main results regarding applying the cvMDL algorithm with
 617 $h(X_{\mathcal{S}}; \mathbf{x})$ constructed using linear approximations, with the corresponding loss function pa-
 618 rameters estimated from [\(5.5\)](#) and [\(5.6\)](#). In particular, we have that the adaptive exploration
 619 rate $m(B)$ asymptotically matches the optimal (oracle) exploration rate $m_{\mathcal{S}^*}^*$ defined in Section
 620 [3.3](#), and the selected model $\mathcal{S}(B)$ converges to the optimal (oracle) model \mathcal{S}^* as $B \rightarrow \infty$:

621 **Theorem 5.7 (Uniform consistency and asymptotic optimality of cvMDL in [Algorithm 5.2](#)).**
 622 *Let $h(X_{\mathcal{S}}; \mathbf{x})$ be defined in [\(4.2\)](#), i.e., we use the linear approximation estimators from
 623 [Section 4](#), and assume the model parameters are estimated via [\(5.5\)](#) and [\(5.6\)](#). Then consider
 624 [Algorithm 5.2](#) with an input budget B , and let*

- 625 • $m(B) = \hat{m}_{\hat{\mathcal{S}}^*}$ be the number of exploration samples chosen by [Algorithm 5.2](#),
- 626 • $\mathcal{S}(B) = \hat{\mathcal{S}}^*$ be the model selected for exploitation,
- 627 • $\tilde{F}(\mathbf{x}; B) = \tilde{F}_{\hat{\mathcal{S}}^*}(\mathbf{x})$ be the CDF estimator for F_Y .

628 Under [Assumptions 5.3](#), [5.4](#), [5.5](#), and [5.6](#), then with probability one,

629 (5.14a)
$$\lim_{B \rightarrow \infty} \frac{m(B)}{m_{\mathcal{S}^*}^*} = 1,$$

630 (5.14b)
$$\lim_{B \rightarrow \infty} \mathcal{S}(B) = \mathcal{S}^*,$$

631 (5.14c)
$$\lim_{B \rightarrow \infty} \sup_{\mathbf{x} \in \mathbb{R}^d} |\tilde{F}(\mathbf{x}; B) - F_Y(\mathbf{x})| = 0,$$

633 where \mathcal{S}^* and $m_{\mathcal{S}^*}^*$ are the unique optimal (oracle) model choice and exploration sample size
 634 defined in [Section 3.3](#).

635 The proof is given in [Appendix A.4](#). The result [\(5.14c\)](#) should not come as a surprise since
 636 uniform consistency is generally true for empirical CDF estimators. Therefore, while [\(5.14a\)](#)
 637 and [\(5.14b\)](#) show that cvMDL in [Algorithm 5.2](#) exhibits optimality (relative to an oracle) for
 638 the choice of exploration samples and sample allocation across models, [\(5.14c\)](#) is not evidence
 639 that the multifidelity estimator $\tilde{F}(\mathbf{x}; B)$ is superior to the empirical CDF estimator that uses
 640 only the high-fidelity samples, although it confirms that $\tilde{F}(\mathbf{x}; B)$ behaves as expected. The
 641 major difference that distinguishes $\tilde{F}(\mathbf{x}; B)$ from a standard empirical CDF estimator is a
 642 constant term resulting from the mean ω -weighted L^2 convergence rate; see the discussion
 643 near the end of [Subsection 3.3](#).

644 The statements in [Theorem 5.7](#) and [\[36, Theorem 5.2\]](#) are similar, but in the former,
 645 the requisite assumptions are *much* weaker and the guarantees are stronger. In fact, for
 646 [\[36, Theorem 5.2\]](#) to hold, one must assume that $\mathbb{E}[Y|X_{\mathcal{S}}]$ is a linear function of $X_{\mathcal{S}}$ and
 647 $(Y - \mathbb{E}[Y|X_{\mathcal{S}}]) \perp\!\!\!\perp X_{\mathcal{S}}$ for all $\mathcal{S} \subseteq \{1 : n\}$. However, none of these assumptions is needed in
 648 [Theorem 5.7](#). Additionally, [Theorem 5.7](#) ensures convergence for a *multivariate* distribution

649 function instead of the univariate convergence statements in [36, Theorem 5.2].

650 **5.5. A brief view into proving Theorem 5.7.** While we leave the technical parts of proving
 651 Theorem 5.7 to Appendix A.4, we can summarize the crucial intermediate results that allow
 652 the proof to succeed. The major results we need revolve around the consistency of various
 653 estimators as m and/or N_S approach infinity. The following two sets of results leverage the
 654 assumptions to conclude the consistency of intermediate computations in the algorithm.

655 The first collection of results shows that the finite-sample estimators for quantities com-
 656 puted in the exploration phase are consistent as the number of exploration samples m tends
 657 to infinity.

658 **Lemma 5.8 (Asymptotic consistency of exploration estimators).** *We have the following tech-
 659 nical estimates and consistency results for all $\mathcal{S} \subseteq \{1 : n\}$:*

660 (i) *Under Assumptions 5.3 and 5.6, then with probability one,*

$$661 \quad (5.15a) \quad \sup_{\|\mathbf{A} - \mathbf{B}_{\mathcal{S}^+}\|_F < \varepsilon} \sup_{\mathbf{x} \in \mathbb{R}^d} |F_{V(\mathbf{A})}(\mathbf{x}) - F_{V(\mathbf{B}_{\mathcal{S}^+})}(\mathbf{x})| \lesssim \|\mathbf{A} - \mathbf{B}_{\mathcal{S}^+}\|_F^{2/3} \lesssim \varepsilon^{2/3}$$

$$662 \quad (5.15b) \quad \sup_{\|\mathbf{A} - \mathbf{B}_{\mathcal{S}^+}\|_F < \varepsilon} \sup_{\mathbf{x} \in \mathbb{R}^d} |F_{V(\mathbf{A}) \vee Y}(\mathbf{x}) - F_{V(\mathbf{B}_{\mathcal{S}^+}) \vee Y}(\mathbf{x})| \lesssim \|\mathbf{A} - \mathbf{B}_{\mathcal{S}^+}\|_F^{2/3} \lesssim \varepsilon^{2/3}.$$

664 (ii) *Under Assumptions 5.3 and 5.4, then with probability one,*

$$665 \quad \lim_{m \rightarrow \infty} \widehat{\mathbf{B}}_{\mathcal{S}^+} = \mathbf{B}_{\mathcal{S}^+}.$$

667 (iii) *Under Assumptions 5.3, 5.4, and 5.6, then with probability one,*

$$668 \quad \lim_{m \rightarrow \infty} \sup_{\mathbf{x} \in \mathbb{R}^d} |\widehat{F}_{\widehat{H}_S}(\mathbf{x}) - F_{H_S}(\mathbf{x})| = 0 \quad \lim_{m \rightarrow \infty} \sup_{\mathbf{x} \in \mathbb{R}^d} |\widehat{F}_{Y \vee \widehat{H}_S}(\mathbf{x}) - F_{Y \vee H_S}(\mathbf{x})| = 0.$$

670 (iv) *Under Assumptions 5.3, 5.4, and 5.6, then almost surely as $m \rightarrow \infty$ we have that,*

$$671 \quad \mathcal{K}_1(\mathbf{x}) \rightarrow (1 - \rho_S^2(\mathbf{x}))F_Y(\mathbf{x})(1 - F_Y(\mathbf{x})) \quad \mathcal{K}_2(\mathbf{x}) \rightarrow \rho_S^2(\mathbf{x})F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))$$

673 *for all $\mathbf{x} \in \mathbb{R}^d$.*

674 (v) *Under Assumptions 5.3, 5.4, 5.5, and 5.6, then with probability one, $\lim_{m \rightarrow \infty} \widehat{k}_1(\mathcal{S}) =$
 675 $k_1(\mathcal{S})$ and $\lim_{m \rightarrow \infty} \widehat{k}_2(\mathcal{S}) = k_2(\mathcal{S})$.*

676 (vi) *Under Assumptions 5.3, 5.4, and 5.6, for $\mathbf{x} \in (\text{supp}(F_{H_S}))^\circ$, $\widehat{\alpha}(\mathbf{x})$ is a consistent es-
 677 timator of $\alpha(\mathbf{x})$ almost surely, i.e., $\lim_{m \rightarrow \infty} \widehat{\alpha}(\mathbf{x}) = \alpha(\mathbf{x})$ for every $\mathbf{x} \in (\text{supp}(F_{H_S}))^\circ$.*

678 The proof is given in Appendix A.2.

679 **Remark 5.9.** Note that $\widehat{\alpha}(\mathbf{x})$ may not be consistent outside $(\text{supp}(F_{H_S}))^\circ$, where the value
 680 of $\alpha(\mathbf{x})$ is set to be zero in the definition for convenience; see (4.3). However, this has no
 681 impact on the accuracy of the exploitation estimator as $\mathbf{1}_{\{H_S \leq \mathbf{x}\}}$ is constant in this region.

682 Our second intermediate result shows that the exploitation estimator for the CDF of Y is
 683 consistent asymptotically in both the exploration sample count m and the exploitation sample
 684 count N_S .

685 **Lemma 5.10 (Uniform asymptotic consistency of the exploitation CDF estimator).** Under
 686 *Assumptions 5.3, 5.4, and 5.6*, then with probability one, $\sup_{\mathbf{x} \in \mathbb{R}^d} |\tilde{F}_S(\mathbf{x}) - F_Y(\mathbf{x})| \rightarrow 0$ as
 687 $m, N_S \rightarrow \infty$.

688 See [Appendix A.3](#) for the proof. The proof of our main result, [Theorem 5.7](#), is in [Appendix A.4](#),
 689 which leverages the results in [Lemma 5.8](#) and [Lemma 5.10](#). One additional high-level step
 690 needed to prove [Theorem 5.7](#) is to show that cvMDL in [Algorithm 5.2](#) for asymptotically
 691 large budget B results in both m and N_S going to infinity. This is the first part of the proof
 692 presented in [Appendix A.4](#).

693 **6. Numerical simulations.** In this section, we compare cvMDL and its variants with other
 694 algorithms on three forward uncertainty quantification scenarios. In Section 6.1, we examine a
 695 scalar-valued parametric linear elasticity PDE problem, followed by a vector-valued stochastic
 696 differential equation problem concerning the extrema of a geometric Brownian motion over
 697 a finite interval in Section 6.2. Lastly, in Section 6.3 we evaluate the cvMDL method on a
 698 scalar-valued practical engineering problem of brittle fracture in a fiber-reinforced matrix.
 699 We label algorithms under consideration as follows:

- 700 (ECDF) The empirical CDF estimator for F_Y using the high-fidelity samples only;
- 701 (AETC-d) The AETC-d algorithm from [\[36\]](#);
- 702 (cvMDL) The cvMDL algorithm in [Algorithm 5.2](#);
- 703 (cvMDL-sorted) cvMDL with the exploitation CDF monotonicity fix using [Algorithm 5.1](#);
- 704 (cvMDL*) cvMDL that estimates $\hat{\alpha}(\mathbf{x})$ in the tail using [\(5.11\)](#) with $\tau = 0.05$ when
 705 $d = 1$;
- 706 (cvMDL*-sorted) cvMDL* with the CDF monotonicity fix using [Algorithm 5.1](#).

707 For the weight function in the cvMDL algorithm and its variants, we choose $\omega(x) \equiv 1$ for all
 708 $x \in \mathbb{R}$ when Y is scalar-valued, but in a case-dependent manner when Y is vector-valued. Since
 709 the estimators produced by the cvMDL-type and AETC-d algorithms are random (depending
 710 on the exploration data), for every budget value B , we repeat the experiment 100 times and
 711 report both the average of the mean ω -weighted L^2 error and the corresponding 5%-95%
 712 quantiles to measure the uncertainty.

713 **6.1. Linear elasticity.** We consider a suite of models with varying fidelities associated
 714 with a parametric elliptic equation, where lower-fidelity models are identified through mesh
 715 coarsening. The setup is taken from [\[35, Section 7.1\]](#). The elliptic PDE governs displacement
 716 in linear elasticity over a square spatial domain $\mathcal{D} = [0, 1]^2$, with $\mathbf{x} = (x_1, x_2)^\top$; see [Figure 2](#).
 717 The parametric version of this problem equation seeks the displacement field $\mathbf{u} = (u, v)^\top$ that
 718 satisfies the PDE

$$720 -\nabla \cdot (\kappa(\mathbf{p}, \mathbf{x}) \boldsymbol{\sigma}(\mathbf{x})) = \mathbf{F}(\mathbf{x}), \quad \forall(\mathbf{p}, \mathbf{x}) \in \mathcal{P} \times \mathcal{D}$$

721 where \mathbf{p} is a random input vector that parameterizes the scalar κ . Moreover, $\boldsymbol{\sigma}$ is the Cauchy
 722 stress tensor, given as

$$723 \boldsymbol{\sigma}(\mathbf{x}) = \begin{bmatrix} \sigma_1(\mathbf{x}) & \sigma_{12}(\mathbf{x}) \\ \sigma_{12}(\mathbf{x}) & \sigma_2(\mathbf{x}) \end{bmatrix}, \quad \begin{bmatrix} \sigma_1(\mathbf{x}) \\ \sigma_2(\mathbf{x}) \\ \sigma_{12}(\mathbf{x}) \end{bmatrix} = \frac{1}{1 - \nu^2} \begin{bmatrix} \frac{\partial u(\mathbf{x})}{\partial x_1} + \frac{\partial v(\mathbf{x})}{\partial x_2} \\ \frac{\partial v(\mathbf{x})}{\partial x_2} + \nu \frac{\partial u(\mathbf{x})}{\partial x_1} \\ \frac{1 - \nu}{2} \left(\frac{\partial u(\mathbf{x})}{\partial x_1} + \frac{\partial v(\mathbf{x})}{\partial x_2} \right) \end{bmatrix}$$

725 where we set the Poisson ratio to $\nu = 0.3$. Here, $\kappa(\mathbf{p}, \mathbf{x})$ is a scalar modeled with a Karhunen-
 726 Loève expansion with four modes, given by

727

$$\kappa(\mathbf{p}, \mathbf{x}) = 1 + 0.5 \sum_{i=1}^4 \sqrt{\lambda_i} \phi_i(\mathbf{x}) p_i,$$

728

729 where (λ_i, ϕ_i) are ordered eigenpairs of the exponential covariance kernel K on \mathcal{D} , i.e.,

730

$$K(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} - \mathbf{y}\|_1/\eta),$$

731

732 where $\|\cdot\|_1$ is the ℓ^1 -norm on vectors, and we choose $\eta = 0.7$. Hence, $\mathbf{p} \in \mathbb{R}^4$ is a random
 733 input vector with independent components uniformly distributed on $[-1, 1]$.

734 The displacement \mathbf{u} is used to compute a scalar QoI, the structural *compliance* or energy
 735 norm of the solution, which is the measure of elastic energy absorbed in the structure as a
 736 result of loading:

737

$$E(\mathbf{u}; \mathbf{p}) := \int_D (\mathbf{u}(\mathbf{x}) \cdot \mathbf{F}(\mathbf{x})) \, d\mathbf{x}.$$

738

739 We solve the above system for each fixed \mathbf{p} via the finite element method with standard
 740 bilinear square isotropic finite elements on a rectangular mesh [2].

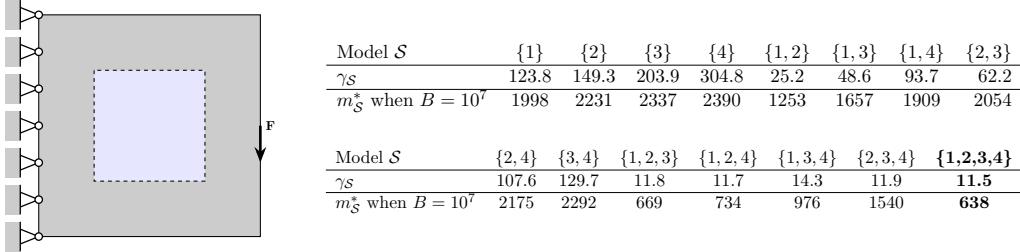


Figure 2: Linear elasticity. Left: Geometry and boundary conditions for the linear elastic structure. Right: Oracle scaled loss $\gamma_{\mathcal{S}}$ (3.11) and optimal exploration sample count $m_{\mathcal{S}}^*$ (3.11) for different choices of subsets of low-fidelity model indices \mathcal{S} . The optimal model subset \mathcal{S} is typed in boldface. Oracle statistics are computed with 50,000 samples.

741 In this example, we form a multifidelity hierarchy through mesh coarsening via the mesh
 742 parameter h . The compliance E is our scalar-valued QoI for every model, i.e., $d = d_i = 1$
 743 for $i = 1, \dots, 4$. A mesh parameter of $h = 2^{-7}$ corresponds to the high-fidelity model Y , and
 744 $h = 2^{-4}, 2^{-3}, 2^{-2}, 2^{-1}$ correspond to lower-fidelity models X_1, \dots, X_4 , respectively.

745 The cost for each model is the computational time, which we take to be inversely proportional
 746 to the mesh size squared, i.e., h^2 . This corresponds to using a linear solver of optimal
 747 linear complexity. We normalize cost so that the model with the lowest fidelity has unit
 748 cost, i.e., $(c_0, c_1, c_2, c_3, c_4) = (4096, 64, 16, 4, 1)$. The correlations between the QoIs of Y and
 749 X_1, X_2, X_3, X_4 are 0.976, 0.940, 0.841, -0.146, respectively. The total budget B is taken on
 750 the interval $[10^5, 10^7]$.

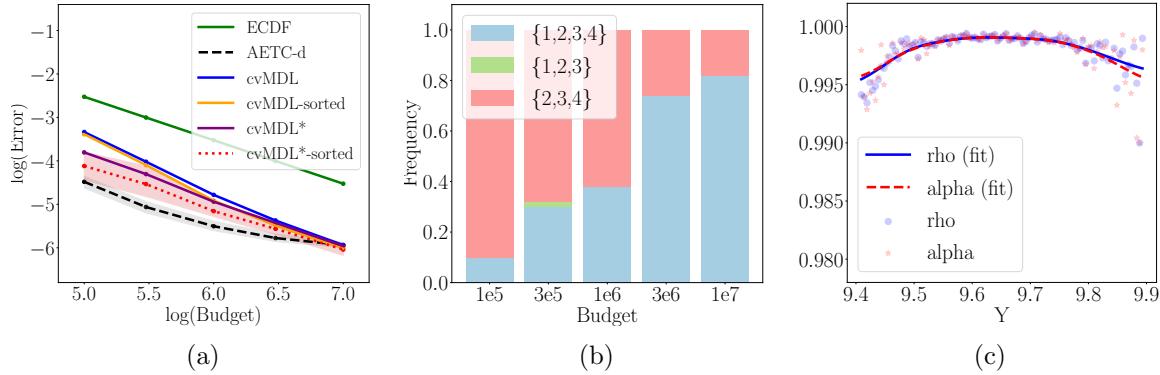


Figure 3: Linear elasticity. (a). Mean $\omega(x)$ -weighted L^2 error between F_Y and the estimated CDFs given by ECDF, AETC-d, cvMDL, and its variants, with the 5%-95% quantiles (for ease of visualization, we only plot the quantiles for AETC-d and cvMDL*-sorted) to measure the uncertainty. (b). Frequency of different models selected by cvMDL. (c). Scatter plot of the estimated $\alpha(x)$ and $\rho(x)$ when $\mathcal{S} = \{1, 2, 3, 4\}$ using 50,000 i.i.d. samples in the 1%-99%-quantile regime of Y . Gaussian kernel smoothing is applied to both data Gaussian kernel with bandwidth $bd = 0.0358$ chosen using 5-fold cross-validation.

751 6.1.1. **Results for estimating the CDF.** Figure 3 shows the simulation results given
 752 by different multifidelity estimators as well as more refined statistics of the cvMDL-related
 753 algorithms. In Figure 3(a), we see that AETC-d has the smallest error for smaller budgets
 754 but its asymptotic convergence is constrained by the model misspecification effects (associated
 755 with theoretical assumptions on the applicability of AETC-d), i.e., the error curve starts to
 756 plateau when B exceeds 10^6 . Although this can be mitigated by including additional nonlinear
 757 (e.g. polynomial) terms as additional covariates, trustworthy practical guidance is still lacking
 758 for this approach. On the other hand, both cvMDL and its variants demonstrate superior
 759 performance over ECDF, with cvMDL*-sorted achieving a result competitive to AETC-d
 760 without the plateau effect.

761 In Figure 3(b), we note that as the budget increases, the model $\hat{\mathcal{S}}^*$ selected by cvMDL
 762 converges to $\{1, 2, 3, 4\}$, which is the same as the optimal model computed under oracle sta-
 763 tistics in Figure 2 (right). We note that the suboptimal model $\mathcal{S} = \{2, 3, 4\}$ is selected often
 764 by cvMDL, but not other models whose $\gamma_{\mathcal{S}}$ is close to that of $\{1, 2, 3, 4\}$. We believe this
 765 occurrence is due to the aggressive exploration steps taken by cvMDL, in particular when
 766 we double exploration samples causing suboptimal models \mathcal{S} with large values of $m_{\mathcal{S}}^*$ (e.g.,
 767 $\mathcal{S} = \{2, 3, 4\}$) become the preferred model.

768 The significant error reduction achieved by cvMDL is indicated by near-unity values of
 769 $\rho_{\mathcal{S}}(x) = \text{Corr}[\mathbf{1}_{\{Y \leq x\}}, h(X_{\mathcal{S}}; x)]$ where $\mathcal{S} = \{1, 2, 3, 4\}$, shown in Figure 3(c). For cvMDL
 770 variants, either estimating $\alpha(x)$ in the tail regime through (5.8) (cvMDL*) or sorting CDF
 771 values to ensure monotonicity (cvMDL/cvMDL*-sorted) can help further reduce the errors.
 772 The former is particularly helpful in the small-budget regime where exploration data are not

773 sufficient to estimate the full support of the QoI.

774 The weight function $\omega(x)$ in this scenario is constant on \mathbb{R} thus the estimates produced
 775 by cvMDL-type estimators are expected to capture the global structure of F_Y (e.g. bulk and
 776 tails). To inspect this, we fix $B = 10^7$ and plot the estimated CDFs in the tail and bulk
 777 regimes separately. The CDFs of the pointwise errors (at 1000 discretization points) in the
 778 three regimes are shown in Figure 4. It can be seen that cvMDL*-sorted has the smallest
 779 errors in all three regimes.

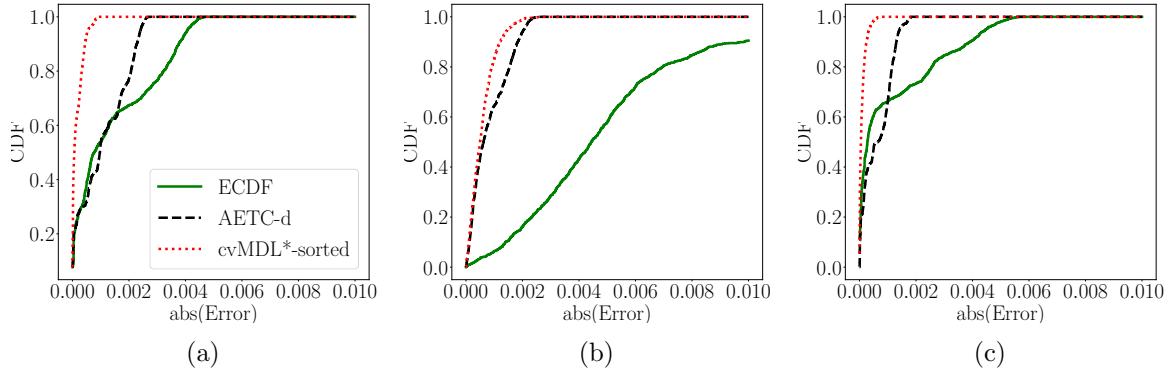


Figure 4: Linear elasticity. One realization of the distribution of pointwise CDF errors computed by cvMDL*-sorted, AETC-d, and ECDF for budget $B = 10^7$. We plot CDFs of errors in three different regimes: (a) the lower tail of Y defined by the $0 - 0.05$ quantile region, (b) the bulk defined by the $0.05 - 0.95$ quantile region, (c) the upper tail defined by the $0.95 - 1.00$ quantile region.

780 **6.1.2. Risk metrics.** We now compare some risk metrics of the estimated CDFs. For
 781 example, one frequently used metric is the conditional value-at-risk (CVaR), also called the
 782 expected shortfall, which is defined as the conditional expectation of Y in a tail regime (here,
 783 Y being large):

$$784 \quad \text{CVaR}_a(Y) := \mathbb{E}[Y | F_Y(Y) \geq a] = \frac{1}{1-a} \int_a^1 F_Y^{-1}(x) dx \quad 0 < a < 1,$$

786 where a is the quantile level. Assuming F_Y is known, CVaR can be numerically computed using
 787 linear interpolation of F_Y^{-1} . Fixing $B = 10^7$ as before, we use the estimated CDFs by ECDF,
 788 AETC-d, and cvMDL*-sorted to compute the CVaR of Y for $a = 0.95$ and 0.99 , respectively.
 789 The experiment is repeated 50 times, and the corresponding statistics are summarized using
 790 boxplots in Figure 5 (a)-(b). For both choices of a , cvMDL*-sorted outperforms the other
 791 methods by a noticeable margin. It is worth noting that although AETC-d and cvMDL*-
 792 sorted have similar errors under the tested budget globally (Figure 3 (a)), the model mis-
 793 specification effects result in the former estimates being biased upward. The cvMDL*-sorted
 794 estimates, on the other hand, remain unbiased.

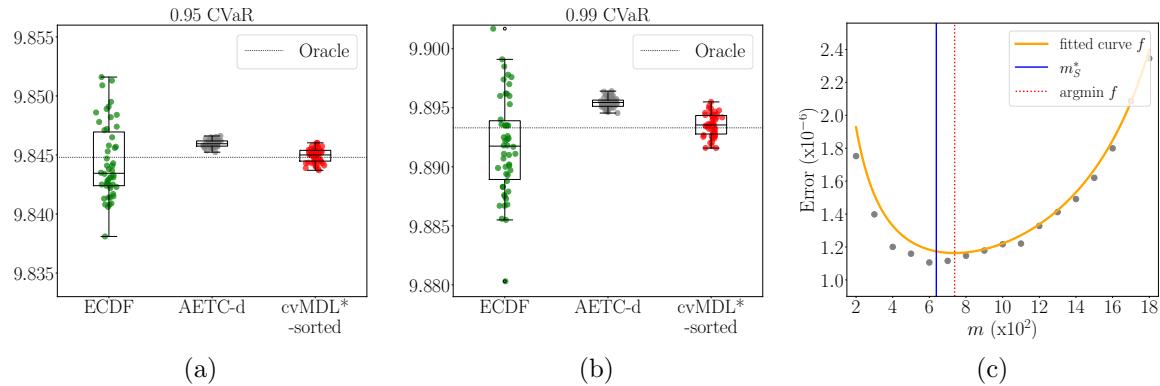


Figure 5: Linear elasticity. (a): Boxplots of the $\text{CVaR}_{0.95}(Y)$ computed using the estimated CDFs given by ECDF, AETC-d, and cvMDL*-sorted when $B = 10^7$ with 50 experiments. (b): Same but for $\text{CVaR}_{0.99}(Y)$. (c): Inspection of how well the estimated loss \hat{L}_S mimics the oracle loss curve as a function of m . The discrete data are fitted using a function $f(m; a, b)$ of the form $\frac{a}{m} + \frac{b}{B - c_{\text{epm}}m}$, with fitted values for a and b given by 2.64×10^{-4} and 5.57, respectively.

795 **6.1.3. Oracle versus estimated loss.** We investigate the model selection criteria used in
 796 cvMDL. Note for each $\mathcal{S} \subseteq \{1 : n\}$, there is a discrepancy between the exact loss function
 797 versus the estimator \hat{L}_S constructed with empirical data. We inspect if this approximation is
 798 reasonable. To numerically determine if the exploration-exploitation trade-off is optimal, we
 799 fix $B = 10^7$ and $\mathcal{S} = \{1, 2, 3, 4\}$. For a given value of m , we first take m exploration samples to
 800 estimate the control variates parameters and then use them to build an estimator \tilde{F}_S for F_Y
 801 as in (5.10). We then compute the (exact) mean weighted L^2 loss associated with this value
 802 of m . We repeat the experiment 10 times and compute the average loss value. We compile
 803 results of the above for m in the range from 200 to 1800. The results are reported in Figure 5
 804 (c). It can be seen that the optimal exploration rate under oracle loss L_S , 638 (see Figure 2,
 805 right), almost matches the empirically identified optimal exploration rate, which is 736. The
 806 small gap can be attributed to the underestimation of exploration error committed due to the
 807 finite-sample estimation of parameters.

808 **6.2. Extrema of Geometric Brownian Motion.** Geometric Brownian motion is a continuous-
 809 time stochastic process that is widely used in financial modeling. In a simple setting, a geo-
 810 metric Brownian motion S_t is a random process with a constant initial state $s_0 > 0$ whose
 811 evolution is described using the stochastic differential equation

$$812 \quad dS_t = \mu S_t dt + \sigma S_t dW_t \quad t \geq 0, \quad S_0 = s_0,$$

814 where both μ and $\sigma > 0$ are constants, and W_t is a standard Brownian motion process. A
 815 unique explicit solution for S_t exists and can be written as

$$816 \quad 817 \quad S_t = s_0 \exp \left(\left(\mu - \frac{\sigma^2}{2} \right) t + \sigma W_t \right).$$

818 Set $\mu = 0.05, \sigma = 0.2, s_0 = 1$. We are interested in estimating the joint distribution of the
 819 extreme values of S_t over the time interval $[0, 1]$:

820
$$(S_{\min}, S_{\max})^\top \in \mathbb{R}^2 \quad S_{\min} := \min_{0 \leq t \leq 1} S_t, \quad S_{\max} := \max_{0 \leq t \leq 1} S_t.$$

 821

822 We thus choose as the QoI the random vector $(S_{\min}, S_{\max})^\top$. We evaluate these quantities by
 823 discretizing the stochastic differential equation in time using the Euler–Maryuama scheme with
 824 time step Δt and computing the discrete extrema. The computational complexity (cost) of the
 825 corresponding procedure is proportional to the number of grid points used for discretization.

826 We construct a multifidelity model for this problem based on time discretization. In par-
 827 ticular, we consider four different time scales $\Delta t \in \{2^{-4}, 2^{-6}, 2^{-8}, 2^{-14}\}$, with the high-fidelity
 828 model Y corresponding to $\Delta t = 2^{-14}$ and X_1, X_2, X_3 corresponding to $\Delta t = 2^{-8}, 2^{-6}, 2^{-4}$,
 829 respectively. This results in (normalized) model costs $(c_0, c_1, c_2, c_3) = (1024, 16, 4, 1)$. The
 830 total budget B takes values in $[10^4, 10^6]$. To generate joint samples, the randomness of W_t is
 831 simulated from the same realization used in the high-fidelity model. The oracle CDF of the
 832 high-fidelity model is computed using MC with 10^5 samples. The oracle correlations between
 833 the QoIs of the high- and low-fidelity models in Table 1.

Table 1: Geometric Brownian motion. Oracle correlations between the high-fidelity and low-
 fidelity model QoIs computed using 50,000 samples.

Model QoIs	$S_{\min}(2^{-8})$	$S_{\max}(2^{-8})$	$S_{\min}(2^{-6})$	$S_{\max}(2^{-6})$	$S_{\min}(2^{-4})$	$S_{\max}(2^{-4})$
$S_{\min}(2^{-14})$	0.999	0.682	0.997	0.682	0.984	0.680
$S_{\max}(2^{-14})$	0.681	0.999	0.681	0.998	0.674	0.988

834 In this example, all model QoIs are two-dimensional random vectors so AETC-d cannot
 835 be directly applied. For cvMDL and its variants, setting $\omega(\mathbf{x}) \equiv 1$ violates [Assumption 5.5](#).
 836 Instead, since $S_{\min} \leq s_0 = 1 \leq S_{\max}$, we choose $\omega(\mathbf{x}) = \mathbf{1}_{\mathcal{T}}(\mathbf{x})$ as an indicator function on a
 837 two-dimensional bounded region $\mathcal{T} \subset \mathbb{R}^2$ where the most likely outcomes reside. For instance,
 838 here we take $\mathcal{T} = [0.5, 1] \times [1, 3]$. The statistics of the estimation errors and the selected models
 839 by cvMDL are reported in Figure 6(a),(b). Panel (c) shows that the correlation coefficient
 840 $\rho_S(\mathbf{x})$, is close to unity over the entire domain, suggesting that our chosen control variate
 841 ([3.6](#)) is a good choice.

842 [Figure 6](#) shows that cvMDL is consistent on the region \mathcal{T} , and the corresponding estimation
 843 error is on average much lower than that of ECDF. As the budget goes to infinity, the model
 844 selected by cvMDL converges to the single low-fidelity model $\{1\}$, which coincides with the
 845 optimal model computed using oracle statistics. With additional sorting to stabilize the
 846 algorithm, cvMDL-sorted slightly further reduces the errors of cvMDL, which is consistent
 847 with the observations in the 1d case. In the pre-asymptotic regime when the budget is small,
 848 the models selected by cvMDL have relatively large fluctuations, but these stabilize for larger
 849 budgets. More results from this experiment are presented in [Appendix B.1](#).

850 **6.3. Brittle fracture behavior of a fiber-reinforced matrix.** We investigate a two-dimensional
 851 fiber-reinforced matrix, a subject commonly explored in the field of fracture mechanics. Our
 852 QoI is the maximum load that induces brittle fracture within the matrix region adjacent to the

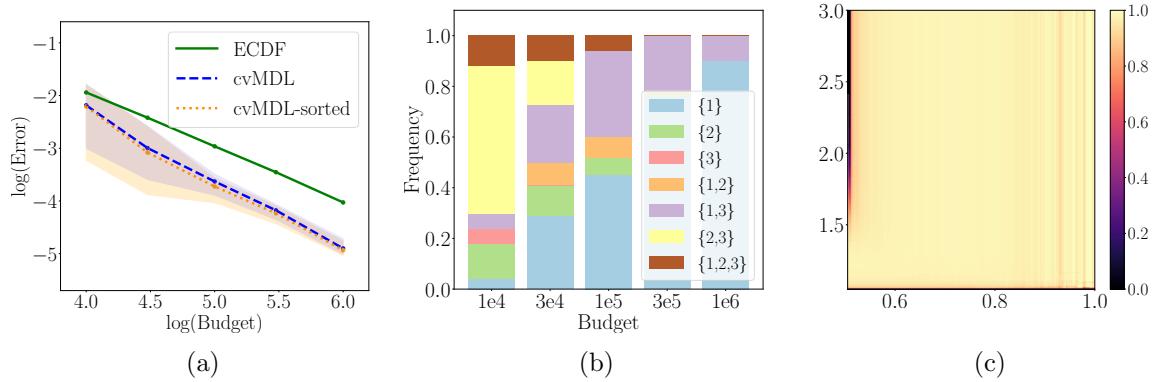


Figure 6: Geometric Brownian motion. (a): Mean $\omega(\mathbf{x})$ -weighted L^2 error between F_Y and the estimated CDFs given by ECDF, cvMDL, and cvMDL-sorted, with the 5%-50%-95% quantiles to measure the uncertainty. (b): Frequency of different models selected by cvMDL; cf. optimal model losses in Figure 11. (c) Estimated $\rho_S(\mathbf{x})$ from (3.6) when $\mathcal{S} = \{1\}$ using 50,000 i.i.d. samples for $\mathbf{x} \in \mathcal{T}$.

fiber. To obtain the QoI, we solve a quasi-static, two-dimensional finite element problem. Fig-

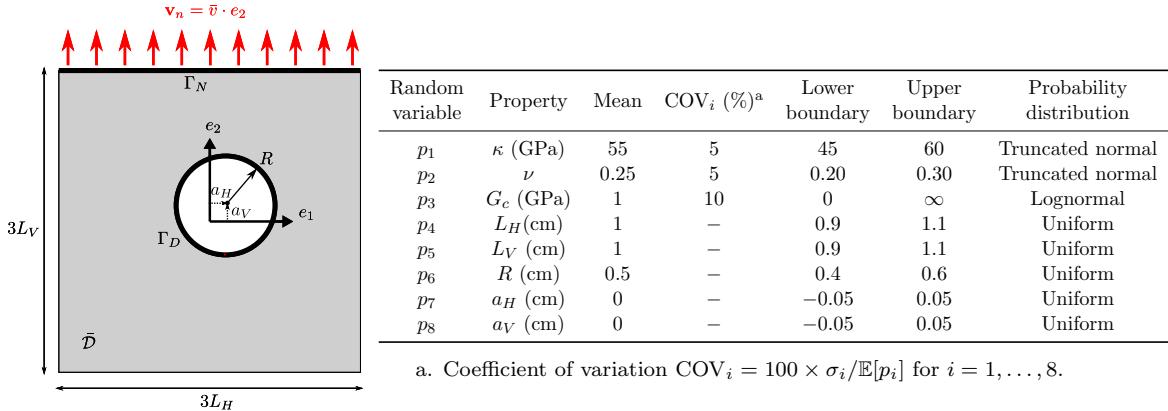


Figure 7: Fiber-reinforced matrix. Left: Geometry, loading, and boundary condition. We consider the domain $\mathcal{D} = [-1.5L_H, 1.5L_H] \times [-1.5L_V, 1.5L_V] \in \mathbb{R}^2$ including a circular hole of radius R at (a_H, a_V) in the e_1 and e_2 directions of the center lines. Right: Properties of the eight random inputs in the fiber-reinforced matrix. Here, κ is the Young's modulus and ν is the Poisson ratio, see Appendix B.2 for details.

853
854 Figure 7 (left) shows a square plate of length $3L_H$ in the e_1 direction and $3L_V$ in the direction with
855 a circular inclusion of radius R . In the domain $\mathcal{D} = [-1.5L_H, 1.5L_H] \times [-1.5L_V, 1.5L_V] \in \mathbb{R}^2$,
856 the loading is given by an applied normal displacement $\mathbf{v}_n = \bar{v} \cdot e_2$ on the boundary Γ_N . The
857 The other boundaries, denoted Γ_D , are free, corresponding to zero displacement on Γ_D . The

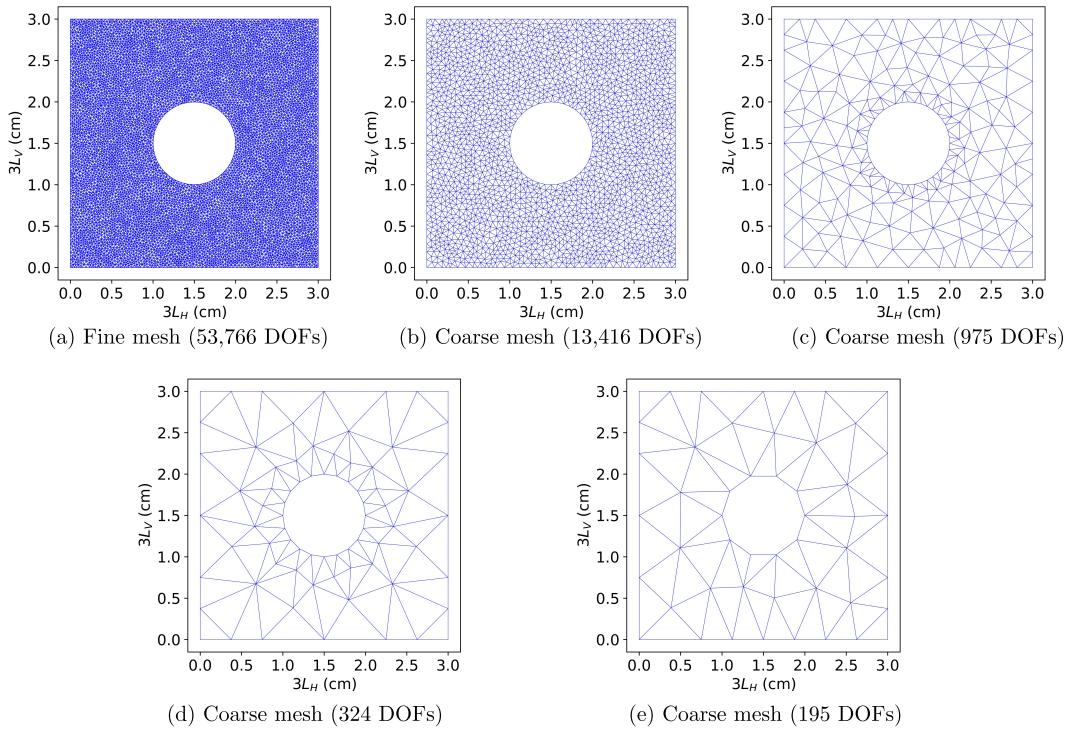


Figure 8: Fiber-reinforced matrix. The fine finite-element mesh in (a) is used to generate the high-fidelity QoI Y , while the coarse meshes in (b)–(e) are used to generate the low-fidelity QoIs X_1, X_2, X_3, X_4 , respectively.

closure of the domain is $\bar{\mathcal{D}} \equiv \mathcal{D} \cup \Gamma$, with $\Gamma = \Gamma_D \cup \Gamma_N$. The unknowns are the displacement field $\mathbf{u} = (u, v)^\top \in \mathbb{R}^2$ and the scalar damage variable $\phi_d \in \mathbb{R}$ in the domain $\bar{\mathcal{D}}$ of the elastic body. This setup models the traction experiment of a fiber-reinforced matrix [1, 6], with the corresponding boundary value problem as described in [25]. The PDE formulation is: find $\mathbf{u}(\mathbf{x})$ and $\phi_d(\mathbf{x})$ for $\mathbf{x} = (x_1, x_2)^\top \in \bar{\mathcal{D}}$, such that

853 (6.1)
$$[(1 - \phi_d(\mathbf{x}))^2 + q] \nabla \cdot \boldsymbol{\sigma}(\mathbf{x}) = \mathbf{0},$$

854 (6.2)
$$-G_c \ell_0 \nabla^2 \phi_d(\mathbf{x}) + \left[\frac{G_c}{\ell_0} + 2H(\mathbf{x}) \right] \phi_d(\mathbf{x}) = 2H(\mathbf{x}),$$

855 with corresponding boundary conditions on Γ_N and Γ_D . The full model details, including 856 definitions for ℓ_0 , $\boldsymbol{\sigma}$, q , and H are shown in [Appendix B.2](#). We consider eight input random 857 variables, p_1, \dots, p_8 , which are stemming from material properties and geometries, see [Figure 7](#) 858 (right).

859 **6.3.1. High-fidelity and low-fidelity models.** The model (6.1) and (6.2) for brittle fracture 860 analysis is solved using an iterative solver, wherein we solve for the scalar damage variable 861 (ϕ_d) using the displacement fields (\mathbf{u}). Subsequently, the updated damage variable is used 862 to solve for the displacement field, and the process is repeated until the difference between 863

874 the current and previous iterates becomes less than the user-defined tolerance $\delta \ll 1$. We set
 875 $\delta = 5 \times 10^{-3}$ for the high-fidelity model, and $\delta = 5 \times 10^{-2}$, 0.2, 0.4 for the lower-fidelity mod-
 876 els. Figure 8 shows a fine mesh and several coarse meshes used for the high and low-fidelity mod-
 877 els, respectively. The details of the high and low-fidelity models, including CPU times to
 878 implement finite element analysis, are reported in Table 2, which also reports (normalized)
 879 model costs. The oracle correlations between the QoI (Y) of the high-fidelity model and its
 low-fidelity QoIs X_1, X_2, X_3, X_4 are 0.96, 0.93, 0.87, and 0.74, respectively.

Table 2: Fiber-reinforced matrix. Comparison of the high-fidelity and four different low-fidelity finite element models to compute the QoI.

Model type	Tolerance (δ)	DOFs	CPU time (s) ^a	Normalized cost ^b
High-fidelity, Y	5×10^{-3}	53,766	250.51	108.9
Low-fidelity 1, X_1	5×10^{-2}	13,416	20.95	9.1
Low-fidelity 2, X_2	0.2	975	2.97	1.3
Low-fidelity 3, X_3	0.2	324	2.50	1.1
Low-fidelity 4, X_4	0.4	195	2.30	1

a. The CPU time is averaged over 5 trials.

b. The cost is normalized so that sampling X_4 has unit cost.

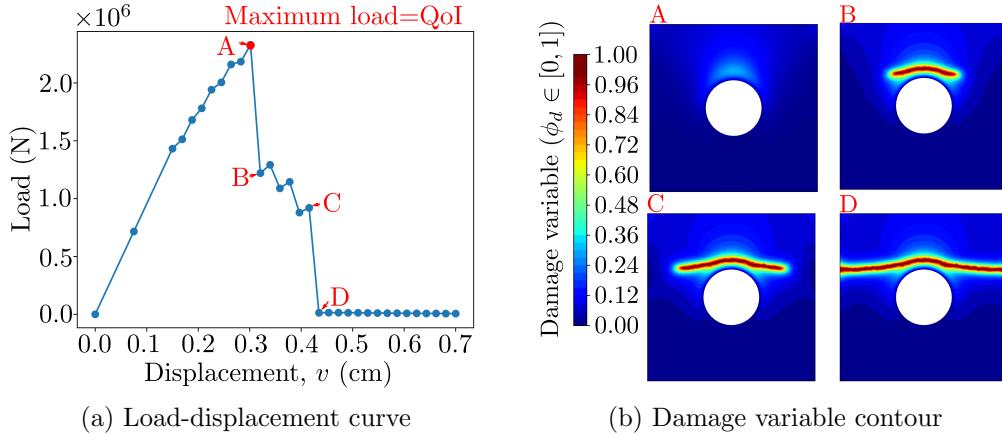


Figure 9: Fiber-reinforced matrix. Finite element analysis results: (a) The ultimate tensile load in the load-displacement curve is recorded as the QoI. (b) the damage variable contour shows the degree of damage ($0 < \phi_d \leq 1$) that occurred in regimes ‘A’–‘D’ of the load-displacement curve, indicating that brittle fracture occurred at the top of circular hole advances in the regime ‘A’ to ‘B’ before a complete fracture occurs in regime ‘D’.

880
 881 We measure the maximum tensile load as a QoI from the load-displacement curve. Fig-
 882 ure 9a presents the relationship between the resulting load and the imposed displacement on
 883 the top of the fiber-reinforced matrix. As the applied displacement \bar{v} at the top increases from

884 0 cm to 7.5×10^{-2} cm, the resulting load exhibits an almost linear increase until the structure
 885 begins to sustain damage. Upon reaching a peak load, the rate of change of the resulting load
 886 over displacement significantly decreases. This behavior is observed from regimes ‘A’ to ‘B’
 887 in Figure 9a. The regimes occur due to the partial fracturing of the matrix, as indicated by a
 888 damage variable of value $\phi_d = 1$ in Figure 9b. There is another substantial drop in load from
 889 regimes ‘C’ to ‘D’, presenting complete fracture throughout the entire domain of the matrix.
 890 The maximum tensile load at ‘A’ is represented as a scalar; thus, for the high-fidelity QoI we
 891 have $d = 1$, while for the low-fidelity QoIs we have $d_1 = d_2 = d_3 = d_4 = 1$.

Table 3: Fiber-reinforced matrix. Comparison of the accuracy of cvMDL*-sorted and ECDF in estimating CDF, mean, standard deviation, and CVaR at $\beta = 0.99$ for the QoI (the ultimate tensile load). We present the mean error of these estimates relative to oracle estimates obtained from 5500 i.i.d. high-fidelity samples ($B = 577,170$) over 100 trials.

Method	CDF (error) ^a	Mean (-) ^b	Standard deviation (-) ^b	CVaR _{0.99} (-) ^b
Budget $B = 20,000$				
cvMDL*-sorted	2.192×10^{-4}	1.559×10^{-3}	2.291×10^{-2}	6.698×10^{-3}
ECDF	3.916×10^{-4}	2.991×10^{-3}	3.837×10^{-2}	9.435×10^{-3}
Budget $B = 35,000$				
cvMDL*-sorted	1.194×10^{-4}	1.168×10^{-3}	1.575×10^{-2}	5.531×10^{-3}
ECDF	2.269×10^{-4}	2.311×10^{-3}	2.955×10^{-2}	7.577×10^{-3}
Budget $B = 50,000$				
cvMDL*-sorted	8.441×10^{-5}	8.957×10^{-4}	1.340×10^{-2}	4.846×10^{-3}
ECDF	1.627×10^{-4}	1.983×10^{-3}	2.670×10^{-2}	7.102×10^{-3}

a. We determine the mean $\omega(x)$ -weighted L^2 error between F_Y and the estimated CDFs given by cvMDL*-sorted and ECDF. The mean $\omega(x)$ -weighted L^2 errors are averaged over independent 100 trials.

b. We use the mean relative error of the estimates in the comparison of the oracle estimates over independent 100 trials.

892 **6.3.2. Results for CDF, mean, standard deviation, and CVaR estimation.** The high-
 893 fidelity simulations are costly enough here that we must approximate the oracle solution with
 894 limited samples: 6000 high-fidelity simulations are generated, and we randomly select 5500
 895 to estimate a quantity. We generate an ensemble of 100 such instances and use the average
 896 as the oracle. For the multi-fidelity procedure, 6000 joint high- and low-fidelity samples are
 897 used as the pool from which model samples are drawn. We investigate three budget values
 898 as reported in Table 3. Over the corresponding 100 trials, cvMDL*-sorted predominantly
 899 selects the model subset $\mathcal{S} = \{2, 4\}$ (selected 95, 96, and 98 times for the 3 budget values,
 900 respectively) and less frequently selects the model subset $\mathcal{S} = \{4\}$ (selected 5, 4, and 2 times,
 901 respectively) from the model set $\{1, 2, 3, 4\}$. This process yields averaged optimal exploration
 902 sample numbers $m_{\mathcal{S}}^* = 140, 245$, and 350 for each respective budget B .

903 In Table 3, cvMDL*-sorted surpasses ECDF in terms of mean errors for CDF, mean,
 904 standard deviation, and CVaR at $a = 0.99$ for the QoI. The second column of Table 3 reports
 905 the mean-weighted L^2 error for F_Y over $Y \in [1.5 \times 10^6, 3 \times 10^6]$ (N). The last four columns of

906 that table show that the proposed cvMDL approach yields nearly twice the accuracy compared
 907 to the ECDF method, and this increased accuracy extends to the estimated statistics and risk
 metric.

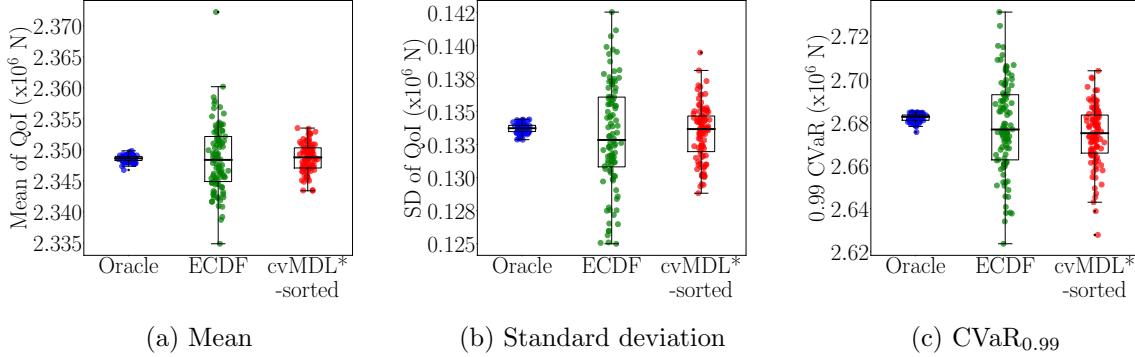


Figure 10: Fiber-reinforced matrix. (a): Boxplots of the mean of QoI, computed by ECDF and cvMDL*-sorted when $B = 50,000$ with 100 experiments. (b): Same boxplots for the standard deviation of QoI. (c): Same boxplots for CVaR (a=0.99).

908
 909 Figures 10a–10c present the results of the statistical mean, standard deviation, and CVaR
 910 at $a = 0.99$ via boxplots. The cvMDL*-sorted method achieves higher accuracy than the
 911 ECDF by a significant margin when compared to the oracle results. The box plots demonstrate
 912 that the statistical estimates by the cvMDL*-sorted method exhibit a lower spread than those
 913 of the ECDF, showing that cvMDL*-sorted estimates have smaller variance for this example.

914 **7. Conclusions.** We developed a versatile framework for efficiently estimating the CDFs
 915 of QoI subject to a budget constraint. To implement this framework, we constructed a set
 916 of binary control variables based on linear surrogates and used them in an adaptive meta
 917 algorithm (cvMDL) that estimates the CDFs. We established both uniform consistency and
 918 trade-off optimality for the corresponding algorithm as the budget tends to infinity.

919 Although the proposed framework is built upon an existing bandit-learning paradigm,
 920 our treatment of exploration and exploitation distinguishes itself from the previous works.
 921 In particular, the new approach employed in our framework leads to innovative estimators
 922 that dramatically relaxes the reliance on underlying model assumptions. Furthermore, the
 923 approach allows for the treatment of different types of QoIs, both vector- and scalar-valued.
 924 To the best of our knowledge, our framework provides the first robust multifidelity CDF
 925 estimator under a budget constraint that can deal with both heterogeneous model sets and
 926 multi-valued QoIs at the same time, meanwhile requiring no a priori cross-model statistics.

927 **Appendix A. Proofs of the main results.**

928 **A.1. Proof of Theorem 5.2.** Sort the entries of \mathbf{T} in increasing order: $z^{(1)} < \dots < z^{(M)}$,
 929 where M is the product of each dimension M_i of \mathbf{T} : $M = M_1 \cdots M_d$. At the beginning
 930 of the algorithm, the index of $z^{(1)}$ is strictly decreasing in each direction. As a result, $z^{(1)}$

arrives at the entry of \mathbf{T} with index $(1, \dots, 1)$ after a finite number of iterations, and after that, it remains unchanged in the subsequent iteration. In fact, for every $s < M$, assuming $z^{(1)}, \dots, z^{(s)}$ have reached their final positions after which no change occurs, the index of $z^{(s+1)}$ is decreasing in each direction if the algorithm has not converged yet. The result follows by noting that M is finite, and a stationary point must possess the desired monotonicity.

A.2. Proof of Lemma 5.8. This section contains the proofs of statements (i) through (vi) in Lemma 5.8. The proof of statement (ii), the asymptotic consistency of $\hat{\mathbf{B}}_{\mathcal{S}^+}$, is a direct result of the strong law of large numbers, so we omit this proof.

A.2.1. Proof of Statement (i). We only prove (5.15b) as the proof for (5.15a) is similar. Denote by \mathbf{e}_i the i th unit vector in \mathbb{R}^d , i.e., $\mathbf{e}_d^{(j)} = \delta_{ij}, j \in \{1 : d\}$, where δ is the Kronecker notation, and $\mathbf{e} := \sum_{i \in \{1:d\}} \mathbf{e}_i$ is the all-ones vector in \mathbb{R}^d . For fixed $\mathbf{x} \in \mathbb{R}^d$, without loss of generality, we assume $F_{V(\mathbf{A}) \vee Y}(\mathbf{x}) \leq F_{V(\mathbf{B}_{\mathcal{S}^+}) \vee Y}(\mathbf{x})$, as the other case is similar by reversing $F_{V(\mathbf{A}) \vee Y}(\mathbf{x})$ and $F_{V(\mathbf{B}_{\mathcal{S}^+}) \vee Y}(\mathbf{x})$. Meanwhile,

$$V(\mathbf{B}_{\mathcal{S}^+}) \vee Y \leq \mathbf{x} \Rightarrow V(\mathbf{A}) \vee Y \leq \mathbf{x} + \Delta\mathbf{x} \Rightarrow V(\mathbf{A}) \vee Y - \|\Delta\mathbf{x}\|_\infty \mathbf{e} \leq \mathbf{x},$$

where

$$\Delta\mathbf{x} = \sum_{i \in \{1:d\}} |X_{\mathcal{S}^+}^\top (\mathbf{A}^{(i)} - \mathbf{B}_{\mathcal{S}^+}^{(i)})| \mathbf{e}_i.$$

Hence, under Assumptions 5.3 and 5.6, for $t > 0$,

$$\begin{aligned} |F_{V(\mathbf{A}) \vee Y}(\mathbf{x}) - F_{V(\mathbf{B}_{\mathcal{S}^+}) \vee Y}(\mathbf{x})| &= F_{V(\mathbf{B}_{\mathcal{S}^+}) \vee Y}(\mathbf{x}) - F_{V(\mathbf{A}) \vee Y}(\mathbf{x}) \\ &\leq F_{V(\mathbf{A}) \vee Y - \|\Delta\mathbf{x}\|_\infty \mathbf{e}}(\mathbf{x}) - F_{V(\mathbf{A}) \vee Y}(\mathbf{x}) \\ &\leq F_{V(\mathbf{A}) \vee Y - te}(\mathbf{x}) - F_{V(\mathbf{A}) \vee Y}(\mathbf{x}) + \mathbb{P}(\|\Delta\mathbf{x}\|_\infty \geq t) \\ &= F_{V(\mathbf{A}) \vee Y}(\mathbf{x} + te) - F_{V(\mathbf{A}) \vee Y}(\mathbf{x}) + \mathbb{P}(\|\Delta\mathbf{x}\|_\infty \geq t) \\ &\lesssim C\sqrt{dt} + \sum_{i \in \{1:d\}} \mathbb{P}\left(\|X_{\mathcal{S}^+}^\top (\mathbf{A}^{(i)} - \mathbf{B}_{\mathcal{S}^+}^{(i)})\|_2 \geq t\right) \\ &\stackrel{(5.13)}{\lesssim} C\sqrt{dt} + \frac{1}{t^2} \sum_{i \in \{1:d\}} \|\mathbf{A}^{(i)} - \mathbf{B}_{\mathcal{S}^+}^{(i)}\|_2^2, \end{aligned}$$

where the penultimate inequality follows from the Lipschitz condition on $F_{V(\mathbf{A}) \vee Y}$ and a union bound, and the last inequality follows from Markov's inequality. Taking $t = \|\mathbf{A} - \mathbf{B}_{\mathcal{S}^+}\|_F^{2/3}$ yields the desired result.

A.2.2. Proof of Statement (iii). We only prove the first statement; the second can be proved similarly. Recall that

$$\widehat{F}_{\hat{\mathbf{H}}_{\mathcal{S}}}(\mathbf{x}) = G(\hat{\mathbf{B}}_{\mathcal{S}^+}; \mathbf{x}) \quad G(\mathbf{A}; \mathbf{x}) := \frac{1}{m} \sum_{\ell \in \{1:m\}} \mathbf{1}_{\{(X_{\text{epr}, \ell, \mathcal{S}^+}^\top \mathbf{A})^\top \leq \mathbf{x}\}} \quad \mathbf{A} \in \mathbb{R}^{(ds+1) \times d},$$

964 where $X_{\text{epr},\ell,\mathcal{S}^+}$ denotes the ℓ th exploration sample of $X_{\mathcal{S}}$ with intercept. It follows from the
 965 direct computation that

$$\begin{aligned}
 966 \quad & \sup_{\mathbf{x} \in \mathbb{R}^d} |\widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x}) - F_{H_{\mathcal{S}}}(\mathbf{x})| \\
 967 \leq & \sup_{\mathbf{x} \in \mathbb{R}^d} \left| G(\widehat{\mathbf{B}}_{\mathcal{S}^+}; \mathbf{x}) - \mathbb{P}((X_{\mathcal{S}^+}^\top \widehat{\mathbf{B}}_{\mathcal{S}^+})^\top \leq \mathbf{x}) \right| + \sup_{\mathbf{x} \in \mathbb{R}^d} \left| \mathbb{P}((X_{\mathcal{S}^+}^\top \widehat{\mathbf{B}}_{\mathcal{S}^+})^\top \leq \mathbf{x}) - \mathbb{P}((X_{\mathcal{S}^+}^\top \mathbf{B}_{\mathcal{S}^+})^\top \leq \mathbf{x}) \right| \\
 968 \leq & \sup_{\mathbf{A} \in \mathbb{R}^{(d\mathcal{S}+1) \times d}} \sup_{\mathbf{x} \in \mathbb{R}^d} \left| G(\mathbf{A}; \mathbf{x}) - \mathbb{P}((X_{\mathcal{S}^+}^\top \mathbf{A})^\top \leq \mathbf{x}) \right| + \sup_{\mathbf{x} \in \mathbb{R}^d} \left| \mathbb{P}((X_{\mathcal{S}^+}^\top \widehat{\mathbf{B}}_{\mathcal{S}^+})^\top \leq \mathbf{x}) - \mathbb{P}((X_{\mathcal{S}^+}^\top \mathbf{B}_{\mathcal{S}^+})^\top \leq \mathbf{x}) \right| \\
 969 = & \underbrace{\sup_{\mathbf{A} \in \mathbb{R}^{(d\mathcal{S}+1) \times d}} \left| G(\mathbf{A}; \mathbf{0}) - \mathbb{E}[G(\mathbf{A}; \mathbf{0})] \right|}_{\Lambda_{m,1}} + \underbrace{\sup_{\mathbf{x} \in \mathbb{R}^d} \left| \mathbb{P}((X_{\mathcal{S}^+}^\top \widehat{\mathbf{B}}_{\mathcal{S}^+})^\top \leq \mathbf{x}) - \mathbb{P}((X_{\mathcal{S}^+}^\top \mathbf{B}_{\mathcal{S}^+})^\top \leq \mathbf{x}) \right|}_{\Lambda_{m,2}}
 \end{aligned}$$

■

971 where $X_{\mathcal{S}^+}$ a general notation that is independent of $\widehat{\mathbf{B}}_{\mathcal{S}^+}$ and $\mathbf{0}$ is the all-zeros vector. Note
 972 that $\Lambda_{m,1}$ has no supremum over \mathbf{x} since one is able to alter the intercept coefficients in \mathbf{A} to
 973 yield different values of $\mathbf{x} \in \mathbb{R}^d$ without changing the coefficients of $X_{\mathcal{S}}$. In what follows, we
 974 show that both $\Lambda_{m,1}$ and $\Lambda_{m,2}$ converge to 0 a.s.

975 To bound $\Lambda_{m,1}$, we appeal to the empirical process theory. For any $\mathbf{A} \in \mathbb{R}^{(d\mathcal{S}+1) \times d}$,
 976 the indicator function $\mathbf{1}_{\{(X_{\ell,\mathcal{S}^+}^\top \mathbf{A})^\top \leq \mathbf{0}\}} \leq 1$. According to Massart concentration inequality [7,
 977 Theorem 14.2], we have for any $t > 0$ such that

$$978 \quad \mathbb{P}(\Lambda_{m,1} > \mathbb{E}[\Lambda_{m,1}] + t) \leq \exp(-mt^2/8).$$

979 Taking $t = 4\sqrt{\log m/m}$,

$$980 \quad (\text{A.1}) \quad \mathbb{P}\left(\Lambda_{m,1} > \mathbb{E}[\Lambda_{m,1}] + 4\sqrt{\frac{\log m}{m}}\right) \leq m^{-2}.$$

981 Since $\sum_{m=1}^{\infty} m^{-2} < \infty$, by the Borel-Cantelli lemma, we conclude that

$$982 \quad (\text{A.2}) \quad \Lambda_{m,1} \leq \mathbb{E}[\Lambda_{m,1}] + 4\sqrt{\frac{\log m}{m}}$$

984 for all sufficiently large m a.s. To bound $\mathbb{E}[\Lambda_{m,1}]$, note that the supremum in $\mathbb{E}[\Lambda_{m,1}]$ is taken
 985 over all indicator functions defined on d intersections of hyperplanes in $\mathbb{R}^{d\mathcal{S}}$ (the constant
 986 dimension is only a shift), which has a finite Vapnik–Chervonenkis (VC) dimension of order
 987 $d\mathcal{S}d \log d$ [4]. According to [34, Theorem 8.3.23], there exists a universal constant C' such that
 988 $\mathbb{E}[\Lambda_{m,1}] \leq C' \sqrt{d\mathcal{S}d \log d/m}$. This combined with (A.2) shows that $\Lambda_{m,1} \rightarrow 0$ a.s.

989 To bound $\Lambda_{m,2}$, note that by Statement (ii) in Lemma 5.8, a.s., for all sufficiently large
 990 m , $\|\widehat{\mathbf{B}}_{\mathcal{S}^+} - \mathbf{B}_{\mathcal{S}^+}\|_F < \varepsilon$ where ε is the same as in Assumption 5.6. Since $X_{\mathcal{S}^+}$ is independent
 991 of $\widehat{\mathbf{B}}_{\mathcal{S}^+}$, conditioning on $\|\widehat{\mathbf{B}}_{\mathcal{S}^+} - \mathbf{B}_{\mathcal{S}^+}\|_F < \varepsilon$ and applying Statement (i) of Lemma 5.8,
 992 $\Lambda_{m,2} \lesssim \|\widehat{\mathbf{B}}_{\mathcal{S}^+} - \mathbf{B}_{\mathcal{S}^+}\|_F^{2/3}$. Now taking $m \rightarrow \infty$ shows $\Lambda_{m,2} \rightarrow 0$ a.s.

993 **A.2.3. Proof of Statement (iv).** Note $\mathcal{K}_1(\mathbf{x}) + \mathcal{K}_2(\mathbf{x}) = \widehat{F}_Y(\mathbf{x})(1 - \widehat{F}_Y(\mathbf{x}))$, which is a
 994 consistent estimator for $F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))$ for all $\mathbf{x} \in \mathbb{R}^d$ a.s. as a result of the strong law of
 995 large numbers. Therefore, it suffices to prove the consistency for $\mathcal{K}_2(\mathbf{x})$ only.

996 Note $\mathcal{K}_2(\mathbf{x})$ in (5.3) can be rewritten as

$$997 \quad (A.3) \quad \mathcal{K}_2(\mathbf{x}) = \widehat{\rho}_{\mathcal{S}}^2(\mathbf{x}) \widehat{F}_Y(\mathbf{x})(1 - \widehat{F}_Y(\mathbf{x})) = \begin{cases} \frac{(\widehat{F}_{Y \vee \widehat{H}_{\mathcal{S}}}(\mathbf{x}) - \widehat{F}_Y(\mathbf{x})\widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x}))^2}{\widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x})(1 - \widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x}))} & \mathbf{x} \in (\text{supp}(\widehat{F}_{\widehat{H}_{\mathcal{S}}}))^\circ \\ 0 & \text{otherwise} \end{cases}$$

999 where

$$1000 \quad \widehat{\rho}_{\mathcal{S}}^2(\mathbf{x}) = \begin{cases} \frac{(\widehat{F}_{Y \vee \widehat{H}_{\mathcal{S}}}(\mathbf{x}) - \widehat{F}_Y(\mathbf{x})\widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x}))^2}{\widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x})(1 - \widehat{F}_{\widehat{H}_{\mathcal{S}}}(\mathbf{x}))\widehat{F}_Y(\mathbf{x})(1 - \widehat{F}_Y(\mathbf{x}))} & \mathbf{x} \in (\text{supp}(\widehat{F}_Y))^\circ \cap (\text{supp}(\widehat{F}_{\widehat{H}_{\mathcal{S}}}))^\circ \\ 0 & \text{otherwise} \end{cases}$$

1002 is the empirical estimator for $\rho_{\mathcal{S}}^2(\mathbf{x})$. On the other hand,

$$1003 \quad (A.4) \quad \rho_{\mathcal{S}}^2(\mathbf{x}) F_Y(\mathbf{x})(1 - F_Y(\mathbf{x})) = \begin{cases} \frac{(F_{Y \vee H_{\mathcal{S}}}(\mathbf{x}) - F_Y(\mathbf{x})F_{H_{\mathcal{S}}}(\mathbf{x}))^2}{F_{H_{\mathcal{S}}}(\mathbf{x})(1 - F_{H_{\mathcal{S}}}(\mathbf{x}))} & \mathbf{x} \in (\text{supp}(F_{H_{\mathcal{S}}}))^\circ \\ 0 & \text{otherwise} \end{cases}$$

1005 Comparing (A.3) and (A.4), the desired result follows from statement (iii) in Lemma 5.8.

1006 **A.2.4. Proof of statement (v).** We prove the consistency of $\widehat{k}_2(\mathcal{S})$; the consistency
 1007 of $\widehat{k}_1(\mathcal{S})$ can be proved similarly. By statement (iv) in Lemma 5.8, $\mathcal{K}_2(\mathbf{x})$ converges to
 1008 $\rho_{\mathcal{S}}^2(\mathbf{x}) F_Y(\mathbf{x})(1 - F_Y(\mathbf{x}))$ for all $\mathbf{x} \in \mathbb{R}^d$ as $m \rightarrow \infty$ a.s.

1009 We first prove the first case where $d = 1$ and $\|\omega\|_{L^\infty(\mathbb{R})} = C < \infty$, and we change the
 1010 notation \mathbf{x} to the lowercase x . Under the moment condition in Assumption 5.3, according to
 1011 [5, Theorem 2.13],

$$1012 \quad W_1 \left(F_Y, \widehat{F}_Y \right) = \int_{\mathbb{R}} |\widehat{F}_Y(x) - F_Y(x)| dx \rightarrow 0 \quad m \rightarrow \infty,$$

1014 where W_1 is the Wasserstein-1 metric. Fix an arbitrary trajectory in the sample space such
 1015 that $\mathcal{K}_2(x) \rightarrow \rho_{\mathcal{S}}^2(x) F_Y(x)(1 - F_Y(x))$ and $\int_{\mathbb{R}} |\widehat{F}_Y(x) - F_Y(x)| dx \rightarrow 0$. In the following, we
 1016 treat $\mathcal{K}_2(x)$ as a deterministic sequence.

1017 To show the consistency of $\widehat{k}_2(\mathcal{S})$, it remains to justify the change of order of taking limit
 1018 and integration:

$$1019 \quad \lim_{m \rightarrow \infty} \widehat{k}_2(\mathcal{S}) = \lim_{m \rightarrow \infty} c_{\mathcal{S}} \int_{\mathbb{R}} \omega(x) \mathcal{K}_2(x) dx = c_{\mathcal{S}} \int_{\mathbb{R}} \lim_{m \rightarrow \infty} \omega(x) \mathcal{K}_2(x) dx \\ 1020 \quad = c_{\mathcal{S}} \int_{\mathbb{R}} \omega(x) \rho_{\mathcal{S}}^2(x) F_Y(x)(1 - F_Y(x)) dx = k_2(\mathcal{S}),$$

1022 for which we appeal to the Vitali convergence theorem. To apply the Vitali convergence
 1023 theorem, we need to verify that the sequence $\omega(x) \mathcal{K}_2(x)$ is uniformly integrable and has

1024 absolutely continuous integrals. To this end, recall the representation $\mathcal{K}_2(x)$ in (A.3). Since
 1025 the square of the empirical correlation estimator is bounded by 1, a.s.,

$$1026 \quad 1027 \quad \omega(x)\mathcal{K}_2(x) \leq \omega(x)\widehat{F}_Y(x)(1 - \widehat{F}_Y(x)) \leq \frac{C}{4} < C.$$

1028 The absolutely continuous integrals part follows immediately from the uniform boundedness.
 1029 For uniform integrability, we first observe

$$1030 \quad \int_{\mathbb{R}} |\omega(x)F_Y(x)(1 - F_Y(x)) - \omega(x)\widehat{F}_Y(x)(1 - \widehat{F}_Y(x))|dx \leq \int_{\mathbb{R}} \omega(x)|\widehat{F}_Y(x) - F_Y(x)|dx \\ 1031 \quad 1032 \quad \leq C \int_{\mathbb{R}} |\widehat{F}_Y(x) - F_Y(x)|dx \rightarrow 0.$$

1033 Thus,

$$1034 \quad \int_{|x|>M} \omega(x)\mathcal{K}_2(x)dx \leq \int_{|x|>M} \omega(x)\widehat{F}_Y(x)(1 - \widehat{F}_Y(x))dx \\ 1035 \quad \leq \int_{|x|>M} \omega(x)F_Y(x)(1 - F_Y(x))dx + C \int_{|x|>M} |\widehat{F}_Y(x) - F_Y(x)|dx \\ 1036 \quad 1037 \quad \lesssim \int_{|x|>M} \frac{C}{x^2}dx + C \int_{\mathbb{R}} |\widehat{F}_Y(x) - F_Y(x)|dx,$$

1038 where the last step follows from Assumption 5.3 and Chebyshev's inequality. For every $\varepsilon > 0$,
 1039 we can choose m and M sufficiently large so the right-hand side is less than ε . The uniform
 1040 integrability follows by enlarging M to accommodate the first m terms.

1041 The proof for (b) is similar. It suffices to verify the change of order for the sequence
 1042 $\omega(\mathbf{x})\mathcal{K}_2(\mathbf{x})$. Since $\omega(\mathbf{x})\mathcal{K}_2(\mathbf{x}) \leq \omega(\mathbf{x})$ and the latter is integrable and independent of m , the
 1043 dominated convergence does the rest.

1044 **A.2.5. Proof of statement (vi).** For $\mathbf{x} \in (\text{supp}(F_{H_S}))^\circ$, it is easy to show via a con-
 1045 tradiction argument that $\mathbf{x} \in \text{supp}(\widehat{F}_{\widehat{H}_S})$ for all sufficiently large m a.s. By statement (iii)
 1046 in Lemma 5.8, $\widehat{F}_{Y \vee \widehat{H}_S}$ and $\widehat{F}_{\widehat{H}_S}$ are consistent estimators. Meanwhile, $\widehat{F}_Y(\mathbf{x})$ is a consistent
 1047 estimator for $F_Y(\mathbf{x})$ due to the strong law of large numbers. Therefore, we obtain

$$1048 \quad \widehat{\alpha}(\mathbf{x}) = \frac{\widehat{F}_{Y \vee \widehat{H}_S}(\mathbf{x}) - \widehat{F}_Y(\mathbf{x})\widehat{F}_{\widehat{H}_S}(\mathbf{x})}{\widehat{F}_{\widehat{H}_S}(\mathbf{x})(1 - \widehat{F}_{\widehat{H}_S}(\mathbf{x}))} \rightarrow \alpha(\mathbf{x}) = \frac{F_{Y \vee H_S}(\mathbf{x}) - F_Y(\mathbf{x})F_{H_S}(\mathbf{x})}{F_{H_S}(\mathbf{x})(1 - F_{H_S}(\mathbf{x}))}$$

1049 as $m \rightarrow \infty$ almost surely.

1050 **A.3. Proof of Lemma 5.10.** Recall in (5.10) that

$$1051 \quad \widetilde{F}_S(\mathbf{x}) = \widehat{F}_Y(\mathbf{x}) - \frac{1}{m} \sum_{\ell \in \{1:m\}} \left(\widehat{\alpha}(\mathbf{x})\widehat{h}_S(X_{\text{epr},\ell,S}; \mathbf{x}) - \frac{1}{N_S} \sum_{j \in \{1:N_S\}} \widehat{\alpha}(\mathbf{x})\widehat{h}_S(X_{\text{ept},\ell,S}; \mathbf{x}) \right) \\ 1052 \quad 1053 \quad = \widehat{F}_Y(\mathbf{x}) - \widehat{\alpha}(\mathbf{x})\widehat{F}_{\widehat{H}_S}(\mathbf{x}) + \widehat{\alpha}(\mathbf{x}) \left(\frac{1}{N_S} \sum_{j \in \{1:N_S\}} \mathbf{1}_{\{(X_{\text{ept},j,S}^\top \widehat{B}_{S+})^\top \leq \mathbf{x}\}} \right).$$

1054 Thus,

$$\begin{aligned}
 1055 \quad & \sup_{\mathbf{x} \in \mathbb{R}^d} |\tilde{F}_{\mathcal{S}}(\mathbf{x}) - F_Y(\mathbf{x})| \leq \sup_{\mathbf{x} \in \mathbb{R}^d} |\hat{F}_Y(\mathbf{x}) - F_Y(\mathbf{x})| + \sup_{\mathbf{x} \in \mathbb{R}^d} |\hat{\alpha}(\mathbf{x})(\hat{F}_{\hat{H}_{\mathcal{S}}}(\mathbf{x}) - F_{H_{\mathcal{S}}}(\mathbf{x}))| \\
 1056 \quad & \quad + \sup_{\mathbf{x} \in \mathbb{R}^d} \left| \hat{\alpha}(\mathbf{x}) \left(\frac{1}{N_{\mathcal{S}}} \sum_{j \in \{1:N_{\mathcal{S}}\}} \mathbf{1}_{\{(X_{\text{ept},j,\mathcal{S}^+}^{\top} \hat{B}_{\mathcal{S}^+})^{\top} \leq \mathbf{x}\}} - F_{H_{\mathcal{S}}}(\mathbf{x}) \right) \right| \\
 1057 \quad & \stackrel{(5.9)}{\leq} \underbrace{\sup_{\mathbf{x} \in \mathbb{R}^d} |\hat{F}_Y(\mathbf{x}) - F_Y(\mathbf{x})|}_{(i)} + \underbrace{\sup_{\mathbf{x} \in \mathbb{R}^d} |\hat{F}_{\hat{H}_{\mathcal{S}}}(\mathbf{x}) - F_{H_{\mathcal{S}}}(\mathbf{x})|}_{(ii)} \\
 1058 \quad & \quad + \underbrace{\sup_{\mathbf{x} \in \mathbb{R}^d} \left| \left(\frac{1}{N_{\mathcal{S}}} \sum_{j \in \{1:N_{\mathcal{S}}\}} \mathbf{1}_{\{(X_{\text{ept},j,\mathcal{S}^+}^{\top} \hat{B}_{\mathcal{S}^+})^{\top} \leq \mathbf{x}\}} - F_{H_{\mathcal{S}}}(\mathbf{x}) \right) \right|}_{(iii)}.
 \end{aligned}$$

1059

1060 Note (i) converges to 0 as $m \rightarrow \infty$ due to the multivariate Glivenko-Cantelli theorem. (ii) 1061 converges to 0 as $m \rightarrow \infty$ due to statement (iii) in [Lemma 5.8](#). A similar argument as in 1062 the proof of statement (iii) of [Lemma 5.8](#) can be used to prove that (iii) converges to 0 as 1063 $N_{\mathcal{S}} \rightarrow \infty$, which is not repeated here.

1064 **A.4. Proof of Theorem 5.7.** To reduce notational confusion with m , we use t to denote 1065 the number of exploration samples. The exploration rate m grows nonlinearly with respect 1066 to an index that counts the iterations of the exploration loop in [Algorithm 5.2](#). We let q 1067 denote the loop iteration index, and t_q the corresponding exploration rate, i.e., $t_1 = n + 2$. 1068 Let $q(B)$ be the total number of exploration iteration steps in [Algorithm 5.2](#), which is random. 1069 It follows from the definition that $t_{q(B)} = m(B)$ and

$$1070 \quad (A.5) \quad n + 1 \leq t_q \leq t_{q+1} \leq 2t_q \quad 1 \leq q < q(B).$$

1072 We first show that $m(B)$ diverges as $B \rightarrow \infty$ a.s. According to statement (v) in [Lemma 5.8](#), 1073 $\hat{k}_1(\mathcal{S}) \rightarrow k_1(\mathcal{S})$, $\hat{k}_2(\mathcal{S}) \rightarrow k_2(\mathcal{S})$ for $\mathcal{S} \subseteq \{1 : n\}$ a.s. As a result, for almost every realization 1074 $\omega \in \Omega$, where Ω denotes the product space of exploration samples, there exists an $0 <$ 1075 $L(\omega), L'(\omega) < \infty$,

$$1076 \quad \sup_{t > n+1} \max_{\mathcal{S} \subseteq \{1:n\}} \hat{k}_1(\mathcal{S}; \omega) < L(\omega) < \infty \quad \inf_{t > n+1} \min_{\mathcal{S} \subseteq \{1:n\}} \hat{k}_2(\mathcal{S}; \omega) > L'(\omega) > 0$$

1078 The exploration stopping criterion of cvMDL in [Algorithm 5.2](#) requires that

$$1079 \quad m(B; \omega) \geq \hat{m}_{\mathcal{S}(B; \omega)}^* \geq \frac{B}{c_{\text{epr}} + \sqrt{\frac{c_{\text{epr}} L(\omega)}{L'(\omega)}}} \rightarrow \infty \quad B \rightarrow \infty.$$

1081 Thus,

$$1082 \quad (A.6) \quad \lim_{B \rightarrow \infty} m(B; \omega) = \infty.$$

1084 We now work with a fixed realization ω along which $m(B; \omega) \rightarrow \infty$ as $B \rightarrow \infty$, and
 1085 $\hat{k}_1(\mathcal{S}), \hat{k}_2(\mathcal{S})$ converge to the true parameters as $t \rightarrow \infty$. We prove that both (5.14a) and
 1086 (5.14b) hold for such an ω . Fix $\delta < 1/2$ sufficiently small. Since \mathcal{S}^* is assumed unique, a
 1087 continuity argument implies that there exists a sufficiently large $T(\delta; \omega)$, such that for all
 1088 $t \geq T(\delta; \omega)$,

1089 (A.7)
$$\max_{(1-\delta)m_{\mathcal{S}^*}^* \leq m \leq (1+\delta)m_{\mathcal{S}^*}^*} \hat{L}_{\mathcal{S}^*}(m; t) < \min_{\mathcal{S} \subseteq \{1:n\}, \mathcal{S} \neq \mathcal{S}^*} \hat{L}_{\mathcal{S}}^*(t).$$

1090 (A.8)
$$1 - \delta \leq \frac{\hat{m}_{\mathcal{S}}^*(t; \omega)}{m_{\mathcal{S}}^*} \leq 1 + \delta \quad \forall \mathcal{S} \subseteq \{1:n\},$$

1092 where $\hat{L}_{\mathcal{S}^*}(\cdot; t)$ is the estimated loss function for \mathcal{S}^* using t exploration samples, and $\hat{L}_{\mathcal{S}}^*(t)$ is
 1093 the estimated $L_{\mathcal{S}}^*$ in (3.11) using t exploration samples.

1094 Since $m_{\mathcal{S}}^*$ scales linearly in B and $m(B; \omega)$ diverges as $B \rightarrow \infty$, there exists a sufficiently
 1095 large $B(\delta; \omega)$ such that for $B > B(\delta; \omega)$,

1096 (A.9)
$$\min_{\mathcal{S} \subseteq \{1:n\}} m_{\mathcal{S}}^* > 4T(\delta; \omega)$$

1097 (A.10)
$$t_{q(B)} = m(B; \omega) > 4T(\delta; \omega).$$

1099 Consider $q' < q(B)$ that satisfies $t_{q'-1} < T(\delta; \omega) \leq t_{q'}$. Such a q' always exists due to (A.10),
 1100 and satisfies

1101 (A.5)
$$t_{q'} \leq 2t_{q'-1} < 2T(\delta; \omega) \stackrel{(A.9)}{\leq} \frac{1}{2} \min_{\mathcal{S} \subseteq \{1:n\}} m_{\mathcal{S}}^* \stackrel{(A.8), \delta < 1/2}{\leq} \hat{m}_{\mathcal{S}}^*(t_{q'}; \omega).$$

1103 This inequality tells us that in the q' -th loop iteration, for all $\mathcal{S} \subseteq \{1:n\}$, the corresponding
 1104 estimated optimal exploration rate is larger than the current exploration rate. In this case,

1105
$$\hat{L}_{\mathcal{S}}(t_{q'} \vee \hat{m}_{\mathcal{S}}^*(t_{q'}; \omega); t_{q'}) = \hat{L}_{\mathcal{S}}(\hat{m}_{\mathcal{S}}^*(t_{q'}; \omega); t_{q'}) = \hat{L}_{\mathcal{S}}^*(t_{q'}) \quad \forall \mathcal{S} \subseteq \{1:n\}.$$

1107 This, along with (A.7) and (A.8), tells us that \mathcal{S}^* is the estimated optimal model in the current
 1108 step, and more exploration is needed.

1109 To see what $t_{q'+1}$ should be, we consider two separate cases. If $2t_{q'} \leq \hat{m}_{\mathcal{S}^*}^*(t_{q'}; \omega)$, then

1110
$$T(\delta; \omega) < t_{q'+1} = 2t_{q'} \leq \hat{m}_{\mathcal{S}^*}^*(t_{q'}; \omega) \leq (1 + \delta)m_{\mathcal{S}^*}^*,$$

1112 which implies

1113 (A.11)
$$(1 - \delta)m_{\mathcal{S}^*}^* \stackrel{(A.8)}{\leq} t_{q'+1} \vee \hat{m}_{\mathcal{S}^*}^*(t_{q'+1}; \omega) \leq (1 + \delta)m_{\mathcal{S}^*}^*.$$

1115 If $t_{q'} \leq \hat{m}_{\mathcal{S}^*}^*(t_{q'}; \omega) < 2t_{q'}$, then

1116
$$t_{q'+1} = \left\lceil \frac{t_{q'} + \hat{m}_{\mathcal{S}^*}^*(t_{q'}; \omega)}{2} \right\rceil \leq \hat{m}_{\mathcal{S}^*}^*(t_{q'}; \omega) \stackrel{(A.8)}{\leq} (1 + \delta)m_{\mathcal{S}^*}^*,$$

1118 which also implies (A.11). But (A.11) combined with (A.7) and (A.8) implies that \mathcal{S}^* is again
 1119 the estimated optimal model in the $(q' + 1)$ -th loop iteration. Applying the above argument

1120 inductively proves $\mathcal{S}(B) = \mathcal{S}^*$, i.e. (5.14b). Note (A.11) holds true until the algorithm
 1121 terminates, which combined with the termination criteria $t_{q(B)} \geq \hat{m}_{\mathcal{S}^*}^*(t_{q(B)}; \omega) \geq (1 - \delta)m_{\mathcal{S}^*}^*$
 1122 implies

$$1123 \quad 1 - \delta \leq \frac{m(B; \omega)}{m_{\mathcal{S}^*}^*} = \frac{t_{q(B)}}{m_{\mathcal{S}^*}^*} \leq 1 + \delta.$$

$$1124$$

1125 (5.14a) now follows by noting that δ can be set arbitrarily small.

1126 Finally, let $\tilde{F}'(\mathbf{x}; B)$ be chosen as in (5.10) with $\mathcal{S} = \mathcal{S}^*$, $m = m_{\mathcal{S}^*}^*$ and $N_{\mathcal{S}} = (B -$
 1127 $c_{\text{epr}}m_{\mathcal{S}^*}^*)/c_{\mathcal{S}^*}$. Note both $m, N_{\mathcal{S}}$ are deterministic and diverge as $B \rightarrow \infty$. By the triangle
 1128 inequality,

$$1129 \quad \sup_{\mathbf{x} \in \mathbb{R}^d} |\tilde{F}(\mathbf{x}; B) - F_Y(\mathbf{x})| \leq \sup_{\mathbf{x} \in \mathbb{R}^d} |\tilde{F}(\mathbf{x}; B) - \tilde{F}'(\mathbf{x}; B)| + \sup_{\mathbf{x} \in \mathbb{R}^d} |\tilde{F}'(\mathbf{x}; B) - F_Y(\mathbf{x})|.$$

$$1130$$

1131 As $B \rightarrow \infty$, the first term on the right-hand side converges to 0 due to (5.14a) and (5.14b)
 1132 in Theorem 5.7, and the second term on the right-hand side converges to 0 due to Theorem
 1133 5.10. This proves (5.14c).

1134 Appendix B. Additional numerical results.

1135 **B.1. Additional results for geometric Brownian motion in Subsection 6.2.** We present
 1136 two figures that provide experimental results to supplement those presented in Subsection 6.2.
 1137 A plot of the oracle CDF is visualized in Figure 11 (left, middle). The oracle model loss and
 1138 exploration sample count are in Figure 11 (right). Figure 12 shows an instance of a heatmap of
 1139 the absolute estimation errors of ECDF, cvMDL, and cvMDL-sorted when $B = 10^6$, providing
 1140 supporting evidence that cvMDL is more accurate than ECDF on \mathcal{T} .

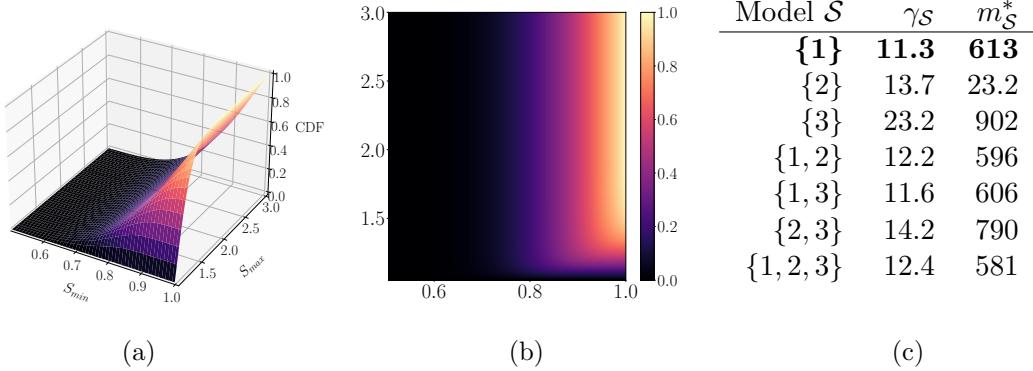


Figure 11: Geometric Brownian motion. (a)-(b): Oracle CDF of (S_{\min}, S_{\max}) in the high-fidelity model computed using 10^5 Monte Carlo samples. (c): Oracle scaled loss $\gamma_{\mathcal{S}}$ (3.11) and the optimal exploration sample count $m_{\mathcal{S}}^*$ (3.11) for budget $B = 10^6$, computed using 50,000 samples.

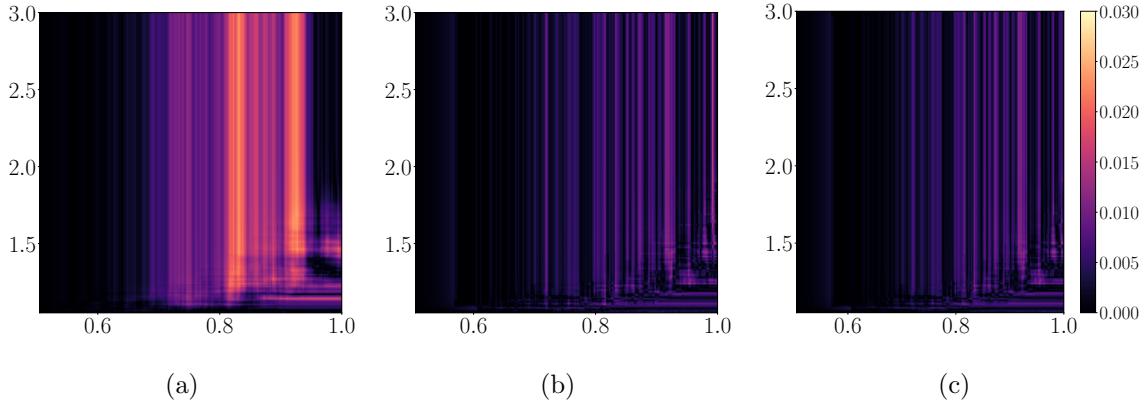


Figure 12: Geometric Brownian motion. An instance of absolute pointwise estimation errors of (a) ECDF, (b) cvMDL, and (c) cvMDL-sorted for budget $B = 10^6$.

1141 **B.2. Additional results for brittle fracture in Subsection 6.3.** We present additional

1142 experimental details that supplement those presented in Subsection 6.3.

1143 Recall the boundary value problem in (6.1) and (6.2). The boundary conditions on Γ_N
1144 and Γ_D are

$$1145 \quad [(1 - \phi_d(\mathbf{x}))^2 + q] \nabla \cdot \boldsymbol{\sigma}(\mathbf{x}) = \mathbf{v}_n, \quad \mathbf{x} \text{ on } \Gamma_N,$$

$$1146 \quad \mathbf{u}(\mathbf{x}) = \mathbf{0}, \quad \mathbf{x} \text{ on } \Gamma_D,$$

$$1147 \quad \nabla \phi_d(\mathbf{x}) \cdot \mathbf{n} = 0, \quad \mathbf{x} \text{ on } \Gamma_N,$$

1149 where $q \ll 1$, $\boldsymbol{\sigma}(\mathbf{x}) = \frac{\partial \Psi(\boldsymbol{\epsilon}(\mathbf{x}))}{\partial \boldsymbol{\epsilon}(\mathbf{x})}$ is the Cauchy stress tensor, and $\Psi(\boldsymbol{\epsilon}(\mathbf{x})) = \frac{1}{2} \lambda (\text{tr}(\boldsymbol{\epsilon}(\mathbf{x})))^2 +$
1150 $\mu \text{tr}(\boldsymbol{\epsilon}(\mathbf{x})^2)$ is the elastic energy density with μ and λ the Lamé constants, i.e.,

$$1151 \quad \lambda = \frac{\nu \kappa}{(1 + \nu)(1 - 2\nu)}, \quad \mu = \frac{\kappa}{2(1 + \nu)}$$

1152 with Young's modulus κ and Poisson's ratio ν , and $\boldsymbol{\epsilon}(\mathbf{x}) = \frac{1}{2} [\nabla \mathbf{u}(\mathbf{x}) + \nabla \mathbf{u}(\mathbf{x})^\top]$ is the small
1153 strain tensor. In (6.2) the history variable $H(\mathbf{x})$ is defined as:

$$1154 \quad H(\mathbf{x}) = \begin{cases} \Psi(\boldsymbol{\epsilon}(\mathbf{x})), & \Psi(\boldsymbol{\epsilon}(\mathbf{x})) < H_i(\mathbf{x}) \\ H_i(\mathbf{x}), & \text{otherwise} \end{cases}, \quad i = 1, 2, \dots, n,$$

1155 where $H_i(\mathbf{x})$ is the strain energy computed at i th step of the discretized load, which corre-
1156 sponds to the iterative solver stage $\bar{v}_i \cdot e_2$, with $\bar{v}_i \in [0, \bar{v}]$.

REFERENCES

1158 [1] H. AMOR, J.-J. MARIGO, AND C. MAURINI, *Regularized formulation of the variational brittle fracture*
 1159 *with unilateral contact: Numerical experiments*, Journal of the Mechanics and Physics of Solids, 57
 1160 (2009), pp. 1209–1229.

1161 [2] E. ANDREASSEN, A. CLAUSEN, M. SCHEVENELS, B. S. LAZAROV, AND O. SIGMUND, *Efficient topology*
 1162 *optimization in matlab using 88 lines of code*, Structural and Multidisciplinary Optimization, 43
 1163 (2011), pp. 1–16.

1164 [3] Q. AYOUL-GUILMARD, S. GANESH, S. KRUMSCHEID, AND F. NOBILE, *Quantifying uncertain system*
 1165 *outputs via the multi-level Monte Carlo method–distribution and robustness measures*, International
 1166 Journal for Uncertainty Quantification, 13 (2023).

1167 [4] A. BLUMER, A. EHRENFEUCHT, D. HAUSSLER, AND M. K. WARMUTH, *Learnability and the vapnik-*
 1168 *chervonenkis dimension*, Journal of the ACM (JACM), 36 (1989), pp. 929–965.

1169 [5] S. BOBKOV AND M. LEDOUX, *One-dimensional empirical measures, order statistics, and kantorovich*
 1170 *transport distances*, Memoirs of the American Mathematical Society, 261 (2019).

1171 [6] B. BOURDIN, G. A. FRANCFOR, AND J.-J. MARIGO, *Numerical experiments in revisited brittle fracture*,
 1172 Journal of the Mechanics and Physics of Solids, 48 (2000), pp. 797–826.

1173 [7] P. BÜHLMANN AND S. VAN DE GEER, *Statistics for high-dimensional data: methods, theory and applica-*
 1174 *tions*, Springer Science & Business Media, 2011.

1175 [8] M. CROCI, K. WILLCOX, AND S. WRIGHT, *Multi-output multilevel best linear unbiased estimators via*
 1176 *semidefinite programming*, Computer Methods in Applied Mechanics and Engineering, 413 (2023),
 1177 p. 116130.

1178 [9] I.-G. FARCAS, *Context-aware model hierarchies for higher-dimensional uncertainty quantification*, PhD
 1179 thesis, Technische Universität München, 2020.

1180 [10] I.-G. FARCAS, B. PEHERSTORFER, T. NECKEL, F. JENKO, AND H.-J. BUNGARTZ, *Context-aware learning*
 1181 *of hierarchies of low-fidelity models for multi-fidelity uncertainty quantification*, Computer Methods
 1182 in Applied Mechanics and Engineering, 406 (2023), p. 115908.

1183 [11] M. B. GILES, *Multilevel Monte Carlo path simulation*, Operations Research, 56 (2008), pp. 607–617.

1184 [12] M. B. GILES, T. NAGAPETYAN, AND K. RITTER, *Multilevel Monte Carlo approximation of distribution*
 1185 *functions and densities*, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), pp. 267–295.

1186 [13] M. B. GILES, T. NAGAPETYAN, AND K. RITTER, *Adaptive multilevel Monte Carlo approximation of*
 1187 *distribution functions*, arXiv preprint arXiv:1706.06869, (2017).

1188 [14] P. GLASSERMAN, *Monte Carlo methods in financial engineering*, vol. 53, Springer, 2004.

1189 [15] P. GLASSERMAN, P. HEIDELBERGER, AND P. SHAHABUDDIN, *Efficient Monte Carlo methods for value-*
 1190 *at-risk*, Mastering Risk, 2 (2000), pp. 5–18.

1191 [16] A. A. GORODETSKY, G. GERACI, M. S. ELDRED, AND J. D. JAKEMAN, *A generalized approximate control*
 1192 *variate framework for multifidelity uncertainty quantification*, Journal of Computational Physics, 408
 1193 (2020), p. 109257.

1194 [17] A. GRUBER, M. GUNZBURGER, L. JU, AND Z. WANG, *A multifidelity monte carlo method for realistic*
 1195 *computational budgets*, Journal of Scientific Computing, 94 (2023), p. 2.

1196 [18] M. HEINKENSCHLOSS, B. KRAMER, AND T. TAKHTAGANOV, *Adaptive reduced-order model construction*
 1197 *for conditional value-at-risk estimation*, SIAM/ASA Journal on Uncertainty Quantification, 8 (2020),
 1198 pp. 668–692.

1199 [19] M. HEINKENSCHLOSS, B. KRAMER, T. TAKHTAGANOV, AND K. WILLCOX, *Conditional-value-at-risk*
 1200 *estimation via reduced-order models*, SIAM/ASA Journal on Uncertainty Quantification, 6 (2018),
 1201 pp. 1395–1423.

1202 [20] T. C. HESTERBERG AND B. L. NELSON, *Control variates for probability and quantile estimation*, Management
 1203 Science, 44 (1998), pp. 1295–1312.

1204 [21] S. KRUMSCHEID AND F. NOBILE, *Multilevel Monte Carlo approximation of functions*, SIAM/ASA Journal
 1205 *on Uncertainty Quantification*, 6 (2018), pp. 1256–1293.

1206 [22] T. LATTIMORE AND C. SZEPESVÁRI, *Bandit algorithms*, Cambridge University Press, 2020.

1207 [23] D. LU, G. ZHANG, C. WEBSTER, AND C. BARBIER, *An improved multilevel monte carlo method for*
 1208 *estimating probability distribution functions in stochastic oil reservoir simulations*, Water resources
 1209 research, 52 (2016), pp. 9642–9660.

1210 [24] A. J. MCNEIL, R. FREY, AND P. EMBRECHTS, *Quantitative risk management: concepts, techniques and*
1211 *tools-revised edition*, Princeton University press, 2015.

1212 [25] S. NATARAJAN AND R. K. ANNABATTULA, *A FEniCS implementation of the phase field method for*
1213 *quasi-static brittle fracture*, Frontiers of Structural and Civil Engineering, 13 (2019), pp. 380–396.

1214 [26] A. B. OWEN, *Monte Carlo theory, methods and examples*, Stanford, 2013.

1215 [27] B. PEHERSTORFER, *Multifidelity monte carlo estimation with adaptive low-fidelity models*, SIAM/ASA
1216 *Journal on Uncertainty Quantification*, 7 (2019), pp. 579–603.

1217 [28] B. PEHERSTORFER, B. KRAMER, AND K. WILLCOX, *Multifidelity preconditioning of the cross-entropy*
1218 *method for rare event simulation and failure probability estimation*, SIAM/ASA *Journal on Uncer-*
1219 *tainty Quantification*, 6 (2018), pp. 737–761.

1220 [29] B. PEHERSTORFER, K. WILLCOX, AND M. GUNZBURGER, *Optimal model management for multifidelity*
1221 *Monte Carlo estimation*, SIAM *Journal on Scientific Computing*, 38 (2016), pp. A3163–A3194.

1222 [30] E. QIAN, B. PEHERSTORFER, D. O’MALLEY, V. V. VESSELINOV, AND K. WILLCOX, *Multifidelity Monte*
1223 *Carlo estimation of variance and sensitivity indices*, SIAM/ASA *Journal on Uncertainty Quantifica-*
1224 *tion*, 6 (2018), pp. 683–706.

1225 [31] C. R. RAO, C. R. RAO, M. STATISTIKER, C. R. RAO, AND C. R. RAO, *Linear statistical inference and*
1226 *its applications*, vol. 2, Wiley New York, 1973.

1227 [32] D. SCHADEN AND E. ULLMANN, *On multilevel best linear unbiased estimators*, SIAM/ASA *Journal on*
1228 *Uncertainty Quantification*, 8 (2020), pp. 601–635.

1229 [33] D. SCHADEN AND E. ULLMANN, *Asymptotic analysis of multilevel best linear unbiased estimators*,
1230 SIAM/ASA *Journal on Uncertainty Quantification*, 9 (2021), pp. 953–978.

1231 [34] R. VERSHYNIN, *High-dimensional probability: An introduction with applications in data science*, vol. 47,
1232 Cambridge University Press, 2018.

1233 [35] Y. XU, V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN, *A bandit-learning approach to multi-*
1234 *fidelity approximation*, SIAM *Journal on Scientific Computing*, 44 (2022), pp. A150–A175.

1235 [36] Y. XU AND A. NARAYAN, *Budget-limited distribution learning in multifidelity problems*, *Numerische Math-*
1236 *ematik*, 153 (2023), pp. 171–212.