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[s Mean Curvature Flow a Gradient Flow?

Abstract

It is well-known that the mean curvature flow is a formal gradient flow of the perimeter
functional. However, by the work of Michor and Mumford [9] [10], the formal Riemannian
structure that is compatible with the gradient flow structure induces a degenerate metric on the
space of hypersurfaces. It is then natural to ask whether there is a nondegenerate metric space
of hypersurfaces, on which the mean curvature flow admits a gradient flow structure. In this
paper we study the mean curvature flow on two nondegenerate metric spaces of simple closed
plane curves: the uniformness-preserving metric structure proposed by Shi and Vorotnikov
[14] and the curvature-weighted structure proposed by Michor and Mumford [10], and prove
that the mean curvature flow is not a gradient flow in either of the spaces.

1 Introduction

Mean Curvature Flow (MCF) is widely known to be a formal gradient flow of the perimeter
functional. To be more specific, let T'; := J;(I'g) C R? be a smooth family of hypersurfaces, where
Jy satisfies the following ODE

Jy=V(t,Jy), telo1],

J() (.’L‘) = XT.

If the vector field V(t, )= H = kN is the mean curvature vector field on Ty, then the trajectory T’y
is called a mean curvature flow. On the other hand, by the first variation formula of the perimeter,
a MCF satisfies p
—HIH(T,) = —/ |H|?dH (1.1)
dt r,
where H%™! is the d — 1-Hausdorff measure on R%. Formally speaking, we can naturally define a
Riemannian structure on the space of hypersurfaces: at a hypersurface I' C R?, the tangent space
is defined as all the normal vector fields on T, and for V-, W+ in the tangent space, there is an
inner product

(vawuk:i/vL»vawx (1.2)
r

In the above Riemannian structure a MCF is indeed a formal gradient flow of perimeter H4~1(-).

This structure, however, turns out to be degenerate. By the work of Michor and Mumford
[9, [10], the geodesic distance between any two hypersurfaces is zero. Now it is very natural to
ask: is there an alternative gradient flow structure for MCF on a nondegenerate metric space of
hypersurfaces?

To deal with the issue that pushforwards of Hausdorff measures do not preserve uniformness
under the flow of general normal vector fields, Shi and Vorotnikov [14] proposed a new Riemannian
structure with tangent space defined as a subspace of vector fields on I' composed of V such that

divpV = Const., (1.3)

where divr is defined as the tangential divergence on I'. For 17, W in the new tangent space, the
inner product is defined as

(ﬁWﬁ:AﬁWW*P (1.4)
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Notice that, different from 7 the right-hand side of involves the tangential components
of V and W.

In the Riemannian structure described above, Shi and Vorotnikov discussed the gradient flow
of perimeter functional and discovered a new geometric flow called Uniformly Compressing Mean
Curvature Flow (UCMCF). The MCF itself can also be understood as a flow in the new structure
by modifying the tangential components of the mean curvature vector fields [1], but because of the
modifications in , the velocity field that drives UCMCEF has a nontrivial difference from that
of MCF in general.

Moreover, UCMCEF is also a gradient flow of log perimeter in the space of normalized Hausdorff
measures. This space is canonically embedded into the Wasserstein space (in the sense of Otto’s
formal Riemannian structure [12]) because the tangent space is defined as before and the inner
product is simply a normalized version of the inner product

(VW) = ][ Vo Wantt, (1.5)

This embedding ensures that the geodesic distance induced by is nondegenerate because it
is lower bounded by the Wasserstein distance. Similarly, tangentially modified MCF can also be
discussed in this normalized structure. More detailed discussions of the structure and the flows
are contained in Section 2.

In [10], Michor and Mumford also proposed a nondegenerate metric for plane curves by adding
a term that involves curvatures to (1.2

(P4, ) 0 = / (1+82) VL WLdn?, (16)
r

where k is the scalar curvature of the curve. In this structure, MCF can be understood as a flow

directly without any further modifications.

The Riemannian structures and are appealing for various reasons. First and fore-
most they both result in nondegenerate geodesic distances on the space of embedded curves.
The Shi-Vorotnikov uniformness-preserving metric is also appealing for preserving the “density
of grid points” on the curve, a property that helps increase the computational stabilities of surface
evolutions|[13]. The tangential constraint and the metric also arise in evolution models
for incompressible membranes |3, 4}, [11]. Both metrics were introduced in the context of studying
the MCF or MCF-like flows as gradient flows. It is natural to ask if the MCF itself is a gradient
flow of some functional under these metric structures. In this paper we show that it is not in both
cases:

Theorem 1.1. The mean curvature flow for simple closed plane curves is not a gradient flow
either in the Riemannian structure (1.5 proposed by Shi and Vorotnikov [14] or (L.6) proposed by
Michor and Mumford [10].

As far as the author knows, no results concerning non-gradient-flow properties for MCF have
been published (neither do those on rigorous gradient flow structures). On the other hand, many
works over the past few decades indicate that MCF can be well approximated by true gradient
flows. For example, it is known that MCF can be understood as the sharp interface limit of
the Allen-Cahn equation, which is an L? gradient flow of a Ginzburg-Landau type functional [5].
The well-known MBO thresholding scheme [§] for MCF is proved to have a discrete gradient flow
structure |2} [7].

2 Some Preparations

2.1 On a Submanifold of the Wasserstein Space
In [14], Shi and Vorotnikov discussed a special Riemannian structure on the space

Ci={le C>*(S1RY); T is an embedding of S~ in Rd} / ~,
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where “~” is the equivalence relation that identifies any two embeddings with the same image.
Although the arguments in this section can also be applied to higher codimensional cases, we will
focus on hypersurfaces. The new structure naturally gives an embedding i : Cg < Wy(R?) to the
2-Wasserstein space of probability measures on R?, where the assignment i is defined as

(2.1)

We will not distinguish T'; [I'], ¢([[']) and Im(T") when it is unambiguous. For example, “dI"” will
simply mean “d (¢([T']))”.

Definition 2.1 (Coherent Space). We call Cq endowed with the metric (1.5) the Coherent

Space of hypersurfaces in R?. At each T' € Cy, we would call TrCy the space of all vector fields 1%
on T satisfying (1.3) the Coherent Tangent Space at T.

We start by discussing the paths in C4. Let ®4(z) be a flow map of the following ODE

{cbt =V(t,®,), telo,1], (2.2)

Oy (z) = x.

We consider T'; := ®&,(T'y) (flow of images) and observe according to first variation formula [6], for
every smooth test function ¢, I'; (as normalized Hausdorff measures) should satisfy

d d H!
L [ ¢ar, =& A
dt _/C ¢ dt ~/‘I>t(ro) C Hd—l(f‘t)

1 — 1 -
- V¢, Y dH ! 7/ divp, V (£, )dHo
?ﬁ_%FﬁLAtVC V(t,)dH 4+?M—%Fg IyCanVT,) H 03
1 . '
— [ de, V ydH [ cand?
7{d_1(rt)J£t e, V{6 JdH HIH(Ty) Ftc "

= /vg -V (t,-)dI, +/< (dithV(t,~) - /dithV(t,~)dFt> dr;.
Observe that if V' is smooth, then we have by Poincaré inequality,

%/le“t <C (HV‘

which means that the path I'; is in fact a Lipschitz path in the Wasserstein space. Let us now
interpret ®,(Iy) (flow of images) as pushforward of measures.

"

divp, V (t,-) — / divp, V(t,)dT;

) I9¢le,.  (24)
L2, :

2
Lrt

Proposition 2.1. Let Ty = ®,(Ty) be defined as before with respect to a smooth vector field 17,
then T'y as a family of probability measures should satisfy for all smooth test functions (,

d .
%/(jdf‘t = /VC~ (V+ 4+ Vr,Uy)dl'y,
where V* is the normal component of‘7 and Uy satisfies the following elliptic equation
~Ar Ui = [V Har, -V 8,

/UtdFt =0. (22

Moreover, if ®, is the flow map of the vector field v+ Vr, U, then we have

fHd—1|Ft B fHd—1|FO

77—[‘#1@}) = @t#i’l{dfl(ljo)' (2.6)
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Remark 2.1. (i) The transformation

(i)

(iii)

(i)

(v)

P = Ppt : TFtWQ — TFtWQ
‘7 — VL + VFt U,
is a projection, where Tt, Wy is the space of all smooth vector fields on Ty (we would call this

the Wasserstein tangent space). Indeed, if we call ndivp W = divp W — fdivFWdF, then it
can be seen by the following computation

/ ¢(ndivy, (V5 + Vi, Up)dl, = / ¢divp, V+dl, — / divp, V+dr, - / ¢dr,

+ /CAF,, Udl'y

e

_|_
—
<u
]
Q,
e
N
Q,
g
o
3

Observe that the projection P = Pr, only relies on the information of the current surface
I'y. Moreover, the image of the projection Pr is indeed the coherent tangent space because
of the above remark. Since the structure defined in is simply the restriction of Otto’s
formal Riemannian structure [12], we arrive at the conclusion that Cq is indeed a Riemannian
submanifold of Wo(R?).

The vector field Vi Vr,Us can be written as the gradient of some function. Indeed, if
we take an e-tube neighborhood of T'y, then we may just find that VLi=VV, onT, for some
function V; that is nonconstant only along the normal trajectories. Extending U; as a constant

along the normal trajectories, we then can write, at least in a e-tube neighborhood of I'y there
is a function V; + Uy such that V4 + Vp,U; = V(V; + Uy) on Ty.

This proposition tells us that given any smooth path of curves I't, t € [0,1], there is a smooth
reparametrization ®.(0) : ST — Ty € R? satisfying

\/det (D@7 Do) = 1,/|5"".

where l; == HI (). In particular if d = 2 then we have |0p®| = 1;/27.

When d = 2, we know that Co is connected by paths of above type. This is indicated by the
Whitney—Graustein theorem, which states that regular homotopy classes of plane curves can
be classified by their turning numbers.

Proof. First observe that

/ ¢divp, Vdl, = / divr, (a?) ~Vp,¢ - VT,
(2.8)
:f/a?.ﬁ+vptg.x7drt.

Now the last term in formula (2.3 becomes

/VC~17dFt+/CndithI7dFt = /g </V~ﬁd1‘t —Vﬁ) + V+¢ - VL.
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Using this equation and the estimate (2.4), we are able to solve
d - . -
%/Cdft = /V(~thft = /V@VdFtJr/CndlthVdFt,
with G, minimizing the L?-energy [ \ét|2dFt. This is equivalent to solve
/ V(- Gydly = / V(- Vdl, + / ¢ndivy, VdT,

/<</V-ﬁdrtx7~ﬁ>+vlcw7drt.

Fixing ¢ = 0 on I';, we observe that a solution Gy should share the same normal component with
V. Hence we need only compute the tangential component, which is equivalently solving

/vptg - Qudly = /g (/17 CHdly, -V - ﬁ) dr;. (2.9)

Moreover, because the normal part of Gy is fixed, we just need to minimize the L?-energy of its
tangential part Qt. To that end, we recall that the space of tangential vector fields on I'; (which
has the same topology as the unit sphere) can be decomposed as the direct sum of two orthogonal
subspaces: gradients of functions and divergence-free vector fields. Here a tangential vector field
S is called divergence-free if for all test functions ¢ € Cg°(R%)

/vptg - 8dry, = 0. (2.10)

Observe that if @, is a solution to (2.9) and Sis a divergence-free vector field, then Q; + S is
still a solution to (2.9). Therefore, to minimize the L?-energy of the tangential component it is
equivalent to find @y satisfying

/|@: + §|2drt > /|@f\2dFt, V divergence-free g,
which gives us the following variational formula
/Cj: . 8dI', = 0, V divergence-free S.

Now we may write for some function U, € H(T})

—

Qr = thUf,a

and then we can modify (2.9) as

/VrtCVnUtdrt =/C(/I7-ﬁdrt—x7-ﬁ> dr,

which is equivalently solving the elliptic equation (2.5). We immediately obtain the smoothness
of Q; from the standard elliptic theory. Equality (2.6) is obtained by observing that ®; is a
constant-speed reparametrization for I'; for all ¢. O

2.2 The Uniformly Compressing MCF

Let us now discuss a geometric flow that is very similar to MCF. We define the log perimeter
functional R on Cy4 as R(T) := log H?~1(T'). Its differential can be written explicitly: Let T'; be a
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path with respect to some vector field V fort € [0,1]. Then we have by the first variation formula

d d
—R(T = —logH* (T
g (o) o g s () o
L Hd—l
= - | HVd———
/ Hd*l(ro)

To
= — | H-Vdr,.

The (coherent) tangential derivative of R at I'g is the realization of the above differential in the
coherent tangent space Tr,Cq, which means that there is a unique V¢, R(Tg) € Tr,Cq such that

/vcdn(ro) Vdly = —/ﬁ -Vdly, VYV € Tr,Cq.

The gradient flow of R with respect to the coherent metric (1.5) was first introduced by Shi and
Vorotnikov [14] and is called the wuniformly compressing mean curvature flow. It is the following
interface evolution written in weak form: T'; : [0,T] — C4 satisfies for all smooth test function ¢,

d
£/Cdft = —/VcdR(Ft) -V{dry.
Let us now compute V¢, R. Recall that for all coherent vector field 1%

/vcdRVdF = f/ﬁ«VdF
= —/ﬁ-xﬂdr,

while on the right-hand side, if we denote the normal part of V¢, R by W, and its tangential part
by VW, then we have

—/ﬁ-xﬂdr = /w-VldFJr/vFW-vFUdr
_ /w-xﬂdr—/WArUdr
— /w-VLdr—/VL-Wﬁdr
= /VL.(waﬁ)dr.

Since this holds for all normal velocity fields Vl, we get the pointwise equality H=—-o+WH.
On the other hand, by the coherence of the vector field V¢, R we have the equation —ApW =
J @ Hdl' — @ - H, then we get

—ArW = /wﬁdr—w.H

- /(W_1)|m2dr— (W — 1)|HP=. (2.11)

At this stage, we obtain the following lemma.

Lemma 2.1. Let W be the unique solution to (2.11) such that [ Wdl' = 0, then the coherent
tangential derivative of R at ' takes the following form
Ve,R(T) = (W —1)H + VpW.

Remark 2.2. The above lemma implies that the uniformly compressing mean curvature flow is
generally not mean curvature flow. Indeed, the UCMCEF is driven by (1 — W)ﬁ in the normal
direction instead of simply ﬁ, and when the surfaces are not of constant curvature, W is a non-
trivial function, and hence the flows are distinct.
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2.3 MCF as a Flow on Cy

In previous sections, we derived the gradient flow of log perimeter under the special submanifold

structure induced by the embedding Cy < Wy (R%). Now we would like to interpret MCF as a flow
on C4. We may write for some surface I' and its mean curvature vector field H = Hp

Pr(H) = H+Vry,
where ¥ satisfies
—ArY =/|ﬁ|2dr— |H|?,
(2.12)
/ZdF =0.

Thinking of P.(H.) as a vector field on C; we can see that a MCF T, (viewed as normalized
Hausdorfl measures) satisfies for all test function ¢

%/Cdft :/VC-Prt(ﬁ)dFt-

That is to say, the MCF is the flow of the vector field P.(H.) on C4. This flow may be referred to
as “tangentially modified” MCF. It is equivalent to MCF when we look at the support of the flow.

3 The Proof of Theorem [1.1

The proof of the first part is composed of Sections 3.1 and 3.2. The proof of the second part with
respect to the structure proposed by Michor and Mumford follows the same outline and is given
in Section 3.3.

3.1 The Hypothesis and a Criterion

We are interested in the existence of an energy functional F on Cy such that its gradient flow in
the coherent space is exactly the mean curvature flow (also known as the curve-shortening flow).
If there were such an energy functional F, then for any closed path of simple closed plane curves
I'; driven by some vector field \_/; € Tr, W, for ¢ € [0,1], we would have

if(l—‘t) = - (PFt (ﬁl"t)’PFt(‘_/;))

dt Tr, W2

_ 7/ (HoVi+ Vi, ViU dr,

where 3; satisfies (2.12), and U, satisfies (2.5). Integrating both sides with respect to ¢ € [0, 1] we
have

1
0= F() — F(Lo) = —/ / (Ht Vi + V5 - thUt) dT,dt.
0

Thus if the MCF were a gradient flow in Cy, then the vector field P.(H.) would be “conservative™
its integral along any closed path in Co would be zero.

Hypothesis 3.1. For all closed paths Ty driven by a vector field V, = Pr‘t(‘?t),

1
/ / (Ert RTANE v SN thUt) dDydt = 0, (3.1)
0

with ¢ and Uy defined the same as above.
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We present the proof by giving a contradiction of Hypothesis Observe that the first term

satisfies
1 . N 1 d
/ / d, - V,dldt = / ARyt

=logl; —logly
=0,

and hence we only have to compute

1 1
/ /thEt . VFtUtdFtdt = —/ /EtAFtUtdFtdt
0 0

1
_ _/ /EtﬁtWZdI‘tdt.
0

According to Remark (iv), we have a smooth (piecewise smooth in time) constant speed
reparametrization ®;(0) : S' — T; such that |9p®;| = l;/2mw. This implies that for every ¢ € [0, 1]
we have

(3.2)

/ S, - Vidl, = 2i / S (B1(0)), (04(68)) - Vi(1(8))db. (3.3)
™ Jo

Assuming that s = s; € [0,1;] is a unit speed reparametrization of I'y, then we have 95 = i—ja@,
and hence we have

P(@,(0) = b1(6),  FH(@,00)) = - 080,(0). 0 < [0.24] (3.0

Moreover, the differential equation for () := 3;(®;(9)) is

2% Am® [ 1 (%7 25 |2 2 |2
—892t:lT 27 |89¢)t| d9—|89(1)t‘ 5 XS [0,27‘(},
27 B ¢ TJo (35)
0
We solve equation (3.5) via Green’s kernel G(0,¢) : [0,27])? — R satisfying
1
_agG(97£) = 65(9) - 27, 579 € [07 2”}7
21 g (3.6)
G(6,£)df = 0.
0
Green’s kernel G to (3.6) has the following form, although we will not need it,
G(8,€) = 1-(€— ) + min(&,0) — Z(€+6) + 5 (37)
ST 4 Ty 3™ '
Now, the solution £; can be written as
- 42 27 9 9
X(0) = R G(0,8)|05P+(8)[7d¢. (3.8)
t Jo
Collecting (3.4) and (3.8), we may rewrite (3.3)) as
. N 87'{'3 27 27 ) 5o .
Yy Hy - Vidl'y = - G(0,8)[05P:(8)]705 Py - 1(0)dEdo. (3.9)
t Jo Jo
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Introducing ®; = ®,/l;, we have, ignoring the constants
1 2 27 . 2 27 B B .
i ceodenerse duoaas = [ [ 6.0 Pog - buo)dsas
t Jo Jo o Jo
2m 2m .
[ | c.0@aoPsd. - bi(o)icap
o Jo

27 27
+ 0, logls / G(0,6)[028,(£) 2028, - By(0)dedo
0 0
(3.10)

Observe that ®, is also a constant speed parametrization of another closed path I, = Im(D,).
Moreover, we have that H4~1(T';) = 1.

Lemma 3.1. If Hypothesis[3.1 holds true for all closed paths, then given any smooth curve T’ € Cq
and its unit speed parametrization ® : S' - T C R?,

27 1 27 27
/ |®|?| Di®|*d6 — 7/ |®\2d0/ |D2®|%df = 0. (3.11)
0 2 Jo 0

In particular, for any @ € R?,
27 1 27 2
/ ® - i |DiP*do = 7/ d>~ﬁd9/ |D2®|%d6. (3.12)
0 2m Jo 0

Proof. Integrating both sides of (3.10) with respect to time ¢ € [0, 1] we have, according to Hy-
pothesis
1 2m 2m
/ oy log 1, / G(6,€)]|020,(€)|202D; - By(0)dEdOdt = 0. (3.13)
0 o Jo

Fixing ®,, we observe that equation (3.10) still holds if we replace ®; by 1,®, for any smooth
positive 1-periodic function l;. This implies that

21T 21
/ G(0, )02, (€) 2038, - &,(0)dedo (3.14)
0 0

is independent of time. Since by Remark (v) Cq is path-connected, the above quantity should
be a constant for all elements in Cs that have perimeter 1. On the other hand, we have

8g|(i)t|2 = 283&% . (i)t + 2|89i)t|2
=202, - O, + 2,

and then
2 2m - 5 5 1 2m 5 2m N
| [ co.00aeras. duores =5 [ igERR [ Go.)05 s
0 0 0 0
1 2r -
:_5/ &, 2|02, |2d6 (3.15)
0

+ 1/2ﬂ|<i> 2d9/2ﬂ|82<§ 12d6
47T 0 t 0 o=t '

We have shown (3.11]) by observing that the quantity above is clearly 0 for any circle with perimeter
1. Equation (3.12) is derived by variation of (3.11]) in the direction . O
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3.2 The Construction of a Counter-example

Although (3.12)) seems unlikely to hold for all curves in Cy, we provide here a counter-example to
exhibit precisely the contradiction.

Lemma 3.2. There erists a smooth constant speed embedding ® : S' — T' C R? such that there is
a it € R?

27 2 27
1
/ - |Di®|2dl # 7/ ® - do/ |D2®|%d6.
0 27 Jo 0

Proof. We would like to construct an example of the shape illustrated in Figure Let I';, 0 <

C 12
.
1
08
06
04
02
04 02 0 02 0.4 06 08

02
0.4

‘\ s e

A B
Figure 1: The example curve I is close to a right triangle with mass center 0; A = (—%, —@) , B=

(3.-4).0= (-426)

€ < 1 denote a family of curves that are smooth in a neighborhood of scale O(¢g) at each node A, B
and C, and coinciding with the triangle AABC elsewhere, and p. is defined as their arc-lengths.
To illustrate the shape of I'., we translate one of A, B, C' to the origin and rotate the triangle so
that the triangle can be locally written as the function graph of

_ Jeot(a/2)z, x€]0,¢],
U(z) = {Cot(a/2)x, z € [—&,0), (3.16)

where a € [0, 27] denotes the open angle of the cone at the chosen node. We would like to construct
I'.’s by replacing v by some function u satisfying

u”(sc) = ¢€($), HAS [_5>E]a
u'(—e) = —u/(e) = — cot(a/2), (3.17)
u(—e) = u(e) = cot(a/2)e,

10
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where we would like to choose ¢. € C§°(—¢,¢) to be an even function satisfying ¢.(z) = K > 0
onx € (—e+e?e—e?)and 0 < ¢. < K elsewhere. Observe that the replacement of 1 by u gives
us a smooth curve near the chosen node.

Before computing , let us compute some basic qualities of u. By compatibility condition,
we have

(26 + O(e*))K =~ ) be(z)dx = 2cot(a/2), (3.18)

which implies that

K =

M +0(1). (3.19)

On the other hand, we have the derivative of u has the form

u/(x) = f o (y)dy — ;/E e (2)dz
= Kz +0(e) (3.20)

_ cot(a/2)
=0 x + O(e).

Collecting these values, we are now able to compute (3.12)). Observe that because our refinement

of triangle AABC is only at scale e, we have the following asymptotics (where ®.(s) is some unit
speed reparametrization of T',)

pe ~ 3+ V3, /@sds/ |D2®.2ds = O(K2%%) = O(1), (3.21)

and

/<I>5|Df<1>5\2d8 = / /<a2dsA+/ m2dsB+/ k2dsC 4+ O(1). (3.22)
B(A,106)NT. B(B,10¢)NT, B(C,10e)NT.

Using (3.20) and , we have
S u” 2
/ KJZdS:/ P sV 1+ v |?dy
B(A,10e)NI'. —& (

1 + [u/|2)3
€ 2
e
k2 [ Lo
/—6 (1 + (Kx)2>5/2 (3.23)
- (Cot(@A/Q))Q/E dz +0(1)

5/2
€ —€ <1+ (COt(O;A/Z)x)z) /

cot(aa/2) [eot(@a/2) dx
- M/ — =+ 0(1),
€ — cot(aa/2) (1+(E2)

Plugging a4 = 7/2, we have

2, _ cot(m/4) cot(m/4) dx
/ s = e T O
(A,10¢) —cot(n/4) (1 + x2)

_Lft dw 3.24
€ L (1+22)°? +ow) 324

5v2 1
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Similarly, we have

cot(ap/2)
/ 2ds — M/ ;mdw—i—O(l)
B(B,10¢) € —cot(ap/2) (14 22)
cot(m/6) [eot(r/6) dx
= M/ = + 0(1)
€ — cot(m/6) (1 +x ) (325)
V3
3 d
— \f/ 79”5/2 +0(1)
€ J-v3(1+a?)
9 1
4 ¢ +0(),
and
cot(ac/2)
[ am ool [0 1o
B(C,10¢) € —cot(ac/2) (14 22)
t 12 COt(T(/lQ) d
_ ot(r/12) / =+ 0(1)
S — cot(m/12) (]. +x ) (326)

2+3 Va+2 dzx
= — =5t o(1)
€ JvB2(1+a?)
_A41V2+25v6 1
B 24 £

Combining (3.21)), (3.22), (3.24), (3.25) and (3.26)), we may make the conclusion that when & > 0
is very small,

1 1 41
[ocipzepas— - [o.ds [|p2e.pas - <5*6/5A gy mc) Lo
De

+0(1).

4 24

™

1 1 5/2 2 9 1 41v/2+25V6
— .V, 2 2 2 EVETAOVE 1
5(3 6 "31°3 24 7*>+0()
1
~ o (0.5487, %) # 0.
(3.27)
The proof is done by choosing ®(6) = ®. (p;:) for a small € > 0.
O

3.3 The Proof of the Second Part of Theorem [1.1

Similar to Section 3, we prove the theorem by giving a contradiction to the following hypothesis:

Hypothesis 3.2. For all closed paths Ty in the space of plane curves driven by a vector field
Vi =V,

1
/ / (1+|ﬁt|2) H, -V, dH'dt = 0. (3.28)
0 I

Observe that the first term on the left-hand side of Hypothesis (3.28) is 0 by using the first
variation formula of perimeters. By using (3.4) we can rewrite the second term of the left-hand
side as (where C' is a computable constant)

1 1 2
S o= o 1 .
2 1 2 202
/ VA28, - T, dHldt = C / . / 1020, (60)|202,(6) - By (0)dbdt. (3.29)
0 T 0 “t JO
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Introducing &, = ®, /1y, we have

1 27 . 1 27 - ~ 2
L / 03, (6)[203,() - B,(0)d0 = / 1028,(6)]2028,(6) - B4(6)d6
1 Jo I Jo (3.30)

-0, (zlt) /Ozﬂ |02D(0)|>02D,(6) - ,(0)d6.

Lemma 3.3. If Hypothesis [3.2 holds true for all closed paths in the space of plane curves, then
given any smooth curve I' € Co and its unit speed parametrization ® : S' — I' C R?, we have

2
/ |D;®2Djddo = 0. (3.31)
0
Proof. Integrating both sides of (3.30) with respect to time ¢ € [0, 1] we obtain by Hypothesis
1 1 2m N B . 1 2m _ N B
/0 - /0 102, (0)2028,(0) - By (0)d0 — 0, (lt) /0 028, (0)[2028,(0) - &, (0)d6dt = 0. (3.32)

Fixing ®;, and replacing ®; in (3.30) by lt<I>t for an arbitrary smooth 1-periodic function I, >0,
we observe by integration by parts in ¢ in (3.32) that ®, should satisfy

at/ 028,202, - ®,(6)d6 +/ 1928, |202®, - B,(0)d6 = 0. (3.33)
0 0
Replacing ®; above by &, 4 @ for some @ € R2, we see that @, should satisfy
27
o / |9 @, [202D,df = 0. (3.34)
0
Similar to Section 3, path-connectivity of C3 and the computation about circles imply (3.31).
O
Now let us construct a counterexample to (3.31)).
Lemma 3.4. There exists a smooth constant speed embedding ® : S' — I' C R? such that
2
/ |D2®|>D3®dO # 0. (3.35)
0

Proof. We would like to construct a curve of the shape in Figure

Similar to the proof of lemma , we mollify the conic points A, B and C by locally replacing
the curve by the function graph of the solution to equation . Near point A, the mollification
is at scale O(1), but near B and C' the mollifications are at scale O(e). Let T'c denote the family of
the mollified curves, 4.2022 < p. < 2 + 2/2 be their arc-lengths and ®(s) : [0, p.] — T'. € R? be
a family of unit speed reparametrization of the mollified curves at scale €, we have the following
asymptotics

/ |D2®°|2D2d%ds = / K3Nds + / k3Nds 4+ O(1)
B(B,106)NT. B(C,10¢)NT'. (3.36)

= B+C+0(1).

Because the curve is symmetric with respect to the vertical axis, we observe that B and C share the
same vertical component and B + C has zero horizontal component. Moreover, since the mollified
curve near C (or B) is locally symmetric with respect to the middle-angle line passing through C
(or B), the vector C has a fixed direction that is not parallel to the horizontal line, and hence it

suffices to show that
/ k3 Nds
B(C,10e)NT.

13

> 0(1). (3.37)
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Figure 2: The curve is close to the right triangle AABC, with O(1) mollification at A = (0, 1),
and O(e) mollification at B = (—1,0) and C' = (1,0) for some ¢ > 0 small.

In fact, after rotation and translation of the curve so that C'is at the origin and the curve is locally

of the form (3.16)), we have

/ 3Nd /a (u//)3 J
K s| = ———dx
B(C,10¢)NT: —e (14 (u)?)9/2
~ (cot(aC/Q) )2 /C°t<ac/2> dx (3.38)

€ — cot(ac/2) (1 + I2)9/2
> 0(1).

The proof is done by choosing ®(6) = ®° (”Q%f) for a small £ > 0.
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