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ABSTRACT
Silicon quantum dot devices stand as promising candidates for large-
scale quantum computing due to their extended coherence times,
compact size, and recent experimental demonstrations of sizable
qubit arrays. Despite the great potential, controlling these arrays
remains a significant challenge. This paper introduces a new virtual
gate extraction method to quickly establish orthogonal control on
the potentials for individual quantum dots. Leveraging insights
from the device physics, the proposed approach significantly re-
duces the experimental overhead by focusing on crucial regions
around charge state transition. Furthermore, by employing an effi-
cient voltage sweeping method, we can efficiently pinpoint these
charge state transition lines and filter out erroneous points. Exper-
imental evaluation using real quantum dot chip datasets demon-
strates a substantial 5.84× to 19.34× speedup over conventional
methods, thereby showcasing promising prospects for accelerating
the scaling of silicon spin qubit devices.

CCS CONCEPTS
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1 INTRODUCTION
Electron spin qubits in gate-defined silicon quantum dots are one of
the most promising candidates to implement large-scale quantum
computers due to long coherence times [23, 29], small size [4],
and fast single- and two-qubit operations [15, 17, 28]. In addition,
silicon quantum dots can be fabricated en masse using the existing
semiconductor fabrication infrastructure, which offers enormous
potential for rapid scaling [34]. As of now, most of the DiVincenzo’s
criteria [5] for a quantum computer have been satisfied for silicon
spin qubits: long coherence times [22, 29], state preparation [8, 15,
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27], high-fidelity universal gates [9, 15, 19, 27, 31], and high-fidelity
readout [7, 14, 21]. Recently, the quantum dot chips of 12 qubits
and 16 qubits have been experimentally demonstrated by Intel [10]
and Delft [2], respectively.

While fabricating large-scale quantum dot arrays is relatively
straightforward, controlling such large-scale arrays is a major hur-
dle. Quantum dot device tuning is a multi-stage process in which
the voltages applied to metallic electrodes are varied until the de-
vice supports individual electrons beneath specific gates. Depend-
ing on the qubit encoding, the ideal electronic charge configura-
tion can vary. This process becomes increasingly complicated and
time-consuming as the number of qubits increases. Currently, it
can take hours of human effort to achieve a satisfying voltage
configuration. This has motivated the development of computer-
aided tuning techniques targeting various stages of the tuning
process [12, 16, 18, 24, 32, 33].

This paper focuses on a critical step in the tuning process, es-
tablishing independent control over the energy potential of each
dot in a device. Ideally, a gate voltage only affects the potential
level of its corresponding dot, but due to cross-capacitance, it also
affects the potential levels of nearby dots. A widely adopted tech-
nique for establishing such “one-to-one" control is constructing the
so-called virtual gate with a linear combination of the capacitively
coupled gates to a given dot [1]. This virtual gate technique has
been successfully applied to quantum dot array devices [13, 26].

Existing automation techniques for virtual gate extraction rely on
analyzing complete charge stability diagrams, deploying computer
vision techniques such as the Hough transform [12, 18], or more
advanced techniques such as convolutional neural network [32].
However, the techniques’ reliance on low-noise charge stability dia-
grams dramatically limits their scalability since obtaining a charge
stability diagram on an actual device often takes minutes. The num-
ber of diagrams scales linearly with the number of dots, creating
multi-hour overhead on devices with merely tens of qubits. As the
number of qubits grows, a fast automated procedure for virtual gate
extraction will be vital for scaling up silicon spin qubit devices.

In this paper, we make a key observation that there is a large
redundancy in existing virtual gate extraction methods. Most of
these data points in the charge stability diagram are not necessary,
and only those data points on or close to the charge state transition
lines contribute to constructing the virtualization matrix. Suppose
we can locate the region of transition lines. In that case, we can
probe only the points near them to significantly reduce the required
experimental data and thus accelerate the virtual gate extraction.

To this end, this paper proposes a fast virtual gate extraction
method. By making reasonable assumptions based on the device
physics, our method can locate the transition lines and construct the
virtualizationmatrices withmuch fewer experimental requirements.
First, the device physics puts constraints on the possible values of
the transition line slopes. Thus, the transition lines can only appear
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Figure 1: (a) Top-view scanning electron microscopy of a qua-
druple-dot device, (b) Lateral-view of the device’s dot-side

on a specific region in the entire charge stability diagram. By quickly
locating this specific region, we can greatly reduce the number of
voltage configurations we need to experimentally test. Second, we
further propose an efficient voltage configuration sweeping method
to adaptively narrow our data probing to the critical area around the
transition lines to further reduce the experimental requirements.

We evaluate the proposed fast virtual gate method on charge
state datasets of real quantum dot chips from the qflow dataset [35].
Experimental results show that our method can outperform the
baseline method using Hough transformwith about 5.84× to 19.34×
speedup with an even higher success rate. The speedup mostly
comes from the reduction in the number of data points probed as
our method only requires about 10% of the entire CSD data to locate
the transition lines.

2 BACKGROUND
In this section, we introduce the basics of quantum dot technol-
ogy and gate voltage tuning. Note that the term ‘gate’ in the rest
of this paper refers to the hardware gate electrode fabricated on
the chip rather than the unitary transformations in the quantum
algorithm/software.

2.1 Quantum Dot
The quantum dot devices under consideration in this paper have
the structure shown in Figure 1 (a). On one side of this device (the
upper half of Figure 1 (a)), it consists of a source (marked by 𝑆), a
drain (marked by 𝐷), a set of plunger gates (marked by 𝑃1 ∼ 𝑃4)
and a set of barrier gates (marked by 𝐵1 ∼ 𝐵5). By adjusting the
gate voltages, one can trap electrons under the gates, forming the
so-called “dots”. On the opposite side (the lower half of Figure 1
(a)) of the device, there are two charge sensors (C1 and C2), both of
which are single quantum dots. The charge sensors’ conductance
is sensitive to changes in the local electrostatic potential. It can,
therefore, detect changes in the number of electrons in the dots
through current change in the sensors.

The upper half of Figure 1 (b) shows the cross-sectional view
of the plunger (𝑃1 ∼ 𝑃4) and barrier gates (𝐵1 ∼ 𝐵5) as well as
the additional layers and the trapped electrons below the gates
(charge sensors are on the opposite side and not shown). The device
has multiple layers made of different semiconductor materials. The
electrons are sandwiched in the middle layer. They are subject to
the electrostatic potential (represented by the curvy line in the
lower half of Figure 1 (b)) generated from tuning the gate voltages.
A desirable potential profile, like the one in Figure 1 (b), creates
four dots labeled from 1 to 4 under each plunger gate. In Figure 1
(b), each dot confines and stabilizes one electron, forming the Loss-
DiVincenzo qubits [11], where |0〉 and |1〉 are encoded as the spin
up and down of the electron, respectively.

2.2 Charge Stability Diagram
To understand how gate voltage tuning can trap the electrons,
an example of a double-dot device is shown in Figure 2. On the
left is the cross-sectional view of this device and the electrostatic
potential designed to trap individual electrons. This device has
two plunger gates, and electrons are trapped under each plunger
gate. Since an electron carries a negative charge, increasing 𝑃1
or 𝑃2 voltage deepens the potential level at the dot 1 or 2 (from
the black solid line to the black dashed line), respectively. Then,
we can increase/decrease the number of electrons in the dot by
adjusting its corresponding plunger gate voltage to raise/lower the
energy potential. However, adjusting the plunger gate voltage also
has an unwanted effect, the cross-capacitance, which will affect
the potential at the nearby dots by a non-negligible amount. For
example, the increased 𝑃2 voltage also pushes the potential level
of dot 1 further to the red dashed line, which is deeper than the
desired black dashed level.
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Figure 2: Example charge stability diagram of a double quan-
tum dot device

Charge Stability Diagram The effect of nearby plunger gates
on the charge state can be visualized in a Charge Stability Diagram
(CSD). The CSD of the example double-dot device is on the right of
Figure 2. A CSD represents the charge sensor current as a function
of two adjacent plunger gate voltages. Charge state transition lines
can be observed in a CSD, separating the diagram into four main
regions, each representing a distinct charge state. The charge state
of a dot is simply the number of electrons trapped in a dot. In the
case of a double dot, we use a tuple (𝑁1,𝑁2) to represent the double
dot’s charge state collectively, where 𝑁1 is the number of electrons
in dot 1, and 𝑁2 is the number of electrons in dot 2. The charge
states of the four regions are labeled in Figure 2. Assuming we
start from the (0, 0) region, as 𝑃2 voltage is increased, the charge
state changes from (0, 0) to (0, 1), corresponding to the arrow 2
in Figure 2 (right), meaning that the increased 𝑃2 voltage traps
an electron in dot 2. Similarly, increasing the 𝑃1 voltage achieves
transition from (0, 0) to (1, 0), corresponding to the arrow 1 in
Figure 2, traps an electron in dot 1.

The cross-capacitance effect is indicated by the slopes of the
charge state transition lines in the CSD. Assuming we start from
a point in the (0, 1) region and close to the (1, 1) region, then
due to the sloped (0, 1) to (1, 1) transition line, an increment in 𝑃2
voltagemay transit the state to (1, 1), represented by the short arrow
3 in Figure 2. This is an undesirable effect, and ideally, plunger
gate voltages should independently control the charge state of its
corresponding dot.
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Figure 3: Virtual gate example

2.3 Virtual Gate
To resolve the aforementioned cross-capacitance nonideality and
realize precise orthogonal control over individual quantum dots,
a virtual gate technique is introduced to compensate for the non-
negligible side effects fromnearby plunger gates. A dot’s virtual gate
voltage is a linear combination of nearby physical gate voltages with
carefully determined coefficients such that the linear combination
of them realizes the ideal "one-to-one" control of the dot’s potential,
where one can adjust the energy level of the target dot without
affecting adjacent dots.

Figure 3 shows an example of virtual gates for a double quantum
dot device. On the left is the original CSD.𝑉𝑃1 and𝑉𝑃2 are the actual
voltages on plunger gates 1 and 2. The virtual gate voltages𝑉 ′𝑃1 and

𝑉 ′𝑃2
are the linear combination of the actual gate voltages:

[
𝑉 ′
𝑃1

𝑉 ′
𝑃2

]

=

[
1 𝛼12

𝛼21 1

] [
𝑉𝑃1
𝑉𝑃2

]

where the 2x2 matrix is the virtualization matrix. The process of
establishing virtual gates is equivalent to finding 𝛼12 and 𝛼21 in the
virtualization matrix.

The values of 𝛼12 and 𝛼21 can be computed based on the slopes
of the transition lines - the boundaries between different charge
state areas in a CSD. Suppose𝑚1 and𝑚2 are the slopes of (0, 0)→(0,
1) and (0, 0)→(1, 0) transition lines. Then we have

𝛼12 = −𝑚1, 𝛼21 = −1/𝑚2

The virtual gate extraction can be extended to a 𝑛-dot array by
sequentially applying it to every pair of nearby plunger gates [13],
and 𝑛 − 1 sequentially executed extraction processes are needed for
an n-dot array.

On the right of Figure 3 is the CSD with the virtual gates. The
virtualization matrix defines an affine transformation that warps
the space to orthogonalize the transition lines. The orthogonal
transition lines in the virtualized space demonstrate "one-to-one"
control—increasing one virtual plunger gate voltage only affects
the charge state on its corresponding dot.

3 PREVIOUS WORK
Previous works for constructing the virtualizationmatrix aremostly
obtaining the full CSD for each pair of nearby plunger gates and
then applying computer vision techniques on the CSDs to extract
the slopes of the transition lines [12, 13, 18, 32]. However, obtaining
a full CSD is slow. Each data point (𝑉𝑃1 ,𝑉𝑃2 ) in the CSD requires
physically setting the voltages of the two plunger gates to be 𝑉𝑃1
and 𝑉𝑃2 , waiting a dwell time, and then measuring the current in
the charge sensor (shown as a function in Algorithm 1).

The major bottle neck is the dwell time in line 3. This delay is
necessary to account for the heavy filtering on the wires applying
the bias voltages to the device. While hardware improvements can
reduce this dwell time, typical dwell times are often on the order of

Algorithm 1 Get charge sensor current

1: function getCurrent(𝑣1, 𝑣2)
2: Set gate voltages to 𝑣1, 𝑣2
3: 𝑤𝑎𝑖𝑡 (dwellTime)
4: return charge sensor current

milliseconds, meaning typically it takes minutes to record one CSD
of two quantum dots. Due to this overhead, the CSD acquisition
becomes significant overhead for tuning large-scale devices.

4 FAST VIRTUAL GATE EXTRACTION
This paper aims to accelerate the virtual gate extraction so that the
electron spin qubits can be quickly established for further experi-
ments. Our optimization is based on a key observation that there
is significant redundancy in the existing computer vision-based
virtual gate extraction process. We aim to locate the transition lines
using as few data points in the CSD as possible. Then, in the ac-
tual experiments, we only need to probe very few data points to
reconstruct the virtualization matrix.

4.1 Redundancy in Full CSD Data
Since constructing the virtualization matrix depends on the slopes
of the transition lines, only the data points near the transition lines
will contribute to the calculation. Ideally, to find the slope of a line,
if there were no noise in the experiment, two data points along the
line would be enough to determine the slope of one transition line.
Although there is inevitable noise in real experiments and more
data points are required to precisely determine the transition lines,
a lot of data points in the CSD are not necessary since the transition
lines and their nearby data points are only a small portion of the
entire CSD.

4.2 Locating Critical Region
To eliminate the redundancy, the first step of our method is to locate
the region where the transition lines will lie in roughly. We first
observe that the transition lines have negative slopes, and the slope
of the (0, 0)→(0, 1) transition line is steeper than the (0, 0)→(1, 0)
transition line. This observation can be validated by the physics
capacitance model for quantum dots [6]. This prior knowledge
suggests that if we know two endpoints (one on the (0, 0)→(1, 0)
transition line and one on the (0, 0)→(0, 1) transition line), both
transition lines are within the right triangular area defined by these
two points. An example is shown in Figure 4. If the two red points
are known, the highlighted right triangular region can cover both
transition lines, and we only need to search in this region to locate
the rest of the points on the lines. We name the points defining

90o

Gradient

Figure 4: The highlighted area confines both transition lines.
Points on the transition lines have a larger gradient in the
positively tilted direction
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Figure 5: (a) Row-major sweep, (b) Column-major sweep

the triangle “anchor points”. We assume that the anchor points
are known for now and will introduce how to find them later in
Section 4.4.

4.3 Searching in the Critical Region
4.3.1 Gradient-Based Feature. After locating the critical region, we
use a gradient-based feature to locate the points on the transition
lines inside the triangular area. Note that a transition line indicates a
sharp change in charge sensor current across the line. This feature
results in a positively tilted gradient at the transition points, as
shown on the top right of Figure 4. We use this positively tilted
gradient as the feature to find the transition lines. For a point in
the voltage space, we represent its positively tilted gradient by the
sum of its differences in charge sensor current with the right and
upper-right pixels, which we define as the feature gradient. Note
the pixel here refers to the voltage granularity, not the actual image
pixel. On real devices, assuming the gate voltages are at (𝑉𝑃1 , 𝑉𝑃2 ),
to get the charge sensor current at the right and upper-right pixels,
the gate voltages are sequentially adjusted to (𝑉𝑃1 , 𝑉𝑃2 + 𝛿) and
(𝑉𝑃1 +𝛿 ,𝑉𝑃2 +𝛿), where 𝛿 is the voltage granularity that defines the
pixel size. The procedure for computing gradient at gate voltages
(𝑣1, 𝑣2) is shown in Algorithm 2.
4.3.2 Search for Transition Lines. Using the gradient-based feature
above, our method will locate points on the charge state transition
lines in the triangular region by performing a bottom-to-top row-
major sweep and a left-to-right column-major sweep. During the
sweeps, the triangular region is dynamically shrunk to ensure only
points near the transition lines are probed.

The row-major sweep goes through the points in a row-major
fashion. As shown in Figure 5 (a), the sweep iterates through the
rows from bottom to top. The upper left anchor point is fixed, and
the lower right anchor point moves up. At each row, it probes the
segment of points within the triangular region. We use a point’s
pixel center to determine whether it’s inside the triangular region.
GetGradient is applied to each point in the segment to calculate
their feature gradient, and the point with the maximum feature
gradient is saved as a charge state transition point. We then update
the lower anchor point to be the newly found charge state tran-
sition point–effectively shrinking the triangular area. Figure 5 (a)

Algorithm 2 Compute feature gradient

1: function GetGradient(𝑣1, 𝑣2)
2: 𝑐 ← GetCurrent(𝑣1, 𝑣2 )

3: 𝑐𝑅𝑖𝑔ℎ𝑡 ← GetCurrent(𝑣1, 𝑣2 + 𝛿 )

4: 𝑐𝑈𝑝𝑝𝑒𝑟𝑅𝑖𝑔ℎ𝑡 ← GetCurrent(𝑣1 + 𝛿, 𝑣2 + 𝛿 )

5: return (𝑐 − 𝑐𝑅𝑖𝑔ℎ𝑡 ) + (𝑐 − 𝑐𝑈𝑝𝑝𝑒𝑟𝑅𝑖𝑔ℎ𝑡 )

demonstrates the row-major sweep. The grid represents the voltage
space. The points probed are marked with spots. The red spots
represent the anchor points on each row. The black spots represent
the points probed but not saved. The small black arrows on each
row represent the order and direction of the sweep. As an example,
when sweeping row 10, the following procedures are applied:

1. The lower anchor point is currently at (11, 12) (row, column),
which is the charge state transition point located at row 11.
The other fixed anchor point is at (1, 0). These two anchor
points define the right triangular region whose vertices are
(1, 0), (1, 12), (11, 12). The edges of the triangle are the dashed
red lines in Figure 5 (a).

2. The sweep goes through points (10, 12) and (10, 11), the
only two points within the triangular area on row 10, and
then computes their feature gradients. Here, point (10, 12)
has a larger feature gradient, so it is saved as a charge state
transition point.

3. Update the lower anchor point from (11, 12) to the newly
found charge state transition point (10, 12).

The row-major sweep performs these procedures on each row until
it reaches the row of the fixed anchor point (row 1 in 5a). Notice that
the shrinking triangular region keeps the search near the transition
lines, probing only a few points at each row where charge state
transition is most likely to occur.

The row-major sweep is effective in locating points on the (0,
0)→(0, 1) transition line but less effective in locating points on
the (0, 0)→(1, 0) transition line because it is less orthogonal to
the sweeping direction. As shown in Figure 5 (a), when the row-
major sweep reaches the (0, 0)→(1, 0) transition region (row 3 and
above), the segment inside the triangular region becomes relatively
long (e.g., the segment at row 2 in Figure 5 (a) is longer than the
segments at row 5-13), making the search more susceptible to noise.
It is also possible in this region that a falsely located point deviates
the triangular region from the transition line, producing a series
of falsely located points. To locate equally accurate points on the
(0, 0)→(1, 0) transition line, a column-major sweep is performed
in analogs to the row-major sweep. The column-major sweep is
performed from left to right and is demonstrated in Figure 5 (b). It
is similar to the previous row-major sweep, with only the row and
column exchanged.

A post-processing step shown in Figure 6 is included to filter
erroneous points. The upper left image in Figure 6 shows all points
located by the two sweeps on an example voltage space, where

Filter 
erroneous 

points from 
row-major 

sweep

Join

Join

Filter erroneous 
points from 

column-major 
sweep

Fitting

(x0 ,  y0) 
fitting 

parameters

Result

Figure 6: Post processing procedure running on example data
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Algorithm 3 Sweeps + Post-processing

1: procedure PostProcess(𝑝𝑜𝑖𝑛𝑡𝑠)
2: 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠1 = { (𝑥, 𝑦) | ∀ (𝑥, 𝑦′ ) ∈ 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑦 ≤ 𝑦′ }

3: 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠2 = { (𝑥, 𝑦) | ∀ (𝑥 ′, 𝑦) ∈ 𝑝𝑜𝑖𝑛𝑡𝑠,𝑥 ≤ 𝑥 ′ }

4: return 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠1 ∪ 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠2

5: procedure sweeps((𝑥1, 𝑦1 ), (𝑥2, 𝑦2 ))
6: 𝑎𝑛𝑐ℎ𝑜𝑟𝑃𝑜𝑖𝑛𝑡1,𝑎𝑛𝑐ℎ𝑜𝑟𝑃𝑜𝑖𝑛𝑡2← (𝑥1, 𝑦1 ), (𝑥2, 𝑦2 )

7: 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠 = [ ]

8: for 𝑖 ← 𝑦2 + 1 to 𝑦1 − 1 do
9: 𝑃 ← points inside the triangular region at row 𝑖

10: (𝑥∗, 𝑦∗ ) ← argmax
(𝑥 ,𝑦)∈𝑃

getGradient(𝑦,𝑥 )

11: append (𝑥∗, 𝑦∗ ) to 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠
12: 𝑎𝑛𝑐ℎ𝑜𝑟𝑃𝑜𝑖𝑛𝑡2← (𝑥∗, 𝑦∗ )

13: 𝑎𝑛𝑐ℎ𝑜𝑟𝑃𝑜𝑖𝑛𝑡2← (𝑥2, 𝑦2 )

14: for 𝑗 ← 𝑥1 + 1 to 𝑥2 − 1 do
15: 𝑃 ← points inside the triangular region at column 𝑗

16: (𝑥∗, 𝑦∗ ) ← argmax
(𝑥 ,𝑦)∈𝑃

getGradient(𝑦,𝑥 )

17: append (𝑥∗, 𝑦∗ ) to 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠
18: 𝑎𝑛𝑐ℎ𝑜𝑟𝑃𝑜𝑖𝑛𝑡1← (𝑥∗, 𝑦∗ )

19: return postProcess(𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠 )

the red points are produced by the row-major sweep and the yel-
low points are produced by the column-major sweep. Erroneous
points are likely to be produced when the row-major sweep at-
tempts to locate points in the (0, 0)→(1, 0) transition region and
when the column-major sweep attempts to locate the points in the
(0, 0)→(0, 1) transition region because they will sweep more points
in a row/column and are more error-prone. The post-processing
step produces two filtered sets of points and joins them together.
For the first set, we only keep the point with the smallest y value
at each x position (i.e., the lowest point in each column). This is
designed to exclude erroneous red points using the yellow points
below them. Similarly, for the second set, we only keep the point
with the smallest x value at each y position (i.e., the leftmost point
in each row). By joining the two filtered sets, we get a comprehen-
sive set of points on both transition lines with minimal erroneous
points. The procedures of row-major, column-major sweeps, and
post-processing are summarized in Algorithm 3.

4.3.3 Slope Extraction. After the transition line points are located,
we parameterize a 2-piece-wise linear shape by the two initial an-
chor points and the intersecting point of the two transition lines,
where the coordinates of the intersecting point are the fitting pa-
rameters. We use SciPy’s curve fitting function to find the optimal
position of the intersecting point [25]. The slopes of the transition
lines are then computed using the intersecting point and the initial
anchor points.

4.4 Preprocessing for Anchor Points
Finally, we introduce our preprocessing method to locate the two
initial anchor points. We first probe ten equally spaced points span-
ning the diagonal from the lower left to the upper right. Then we
apply the following masks along x and y directions, starting from
the brightest point found in the previous step or 10% width and
height, whichever is more distant from the lowest and leftmost
point. These masks are designed to compute a positively sloped gra-
dient across three pixels, a more noise-resilient indicator of charge

state transition than the feature gradient.

𝑀𝑎𝑠𝑘𝑥 =








1 1 −3 −4 −4
2 2 0 −2 −2
4 4 3 −1 −1








, 𝑀𝑎𝑠𝑘𝑦 =












−1 −2 −4
−1 −2 −4
3 0 −3
4 2 1
4 2 1












We sweep the masks along their corresponding axis and sum the
entries of their element-wise product with the pixel values. The
resulting arrays are then multiplied element-wise by the 1D Gauss-
ian distribution. The point with the maximum value in each array
is used as an initial anchor point.

5 EVALUATION
In this section, we evaluate the proposed fast virtual gate extraction
method with respect to the speed and accuracy of experimental
data of real quantum dot devices.

5.1 Experiment Setup
Benchmark We adopt the 12 experimentally measured charge
stability diagrams (CSDs) in the qflow dataset version 2 [35]. Note
that this has covered all the real experimental data from this dataset.
These CSDs were measured in the double-dot configuration on a
triple-dot 𝑆𝑖/𝑆𝑖𝐺𝑒 device fabricated on a 300mm industrial line [20,
35]. The diagrams are cropped to focus on the 50% width and height
region where the (0, 0), (0, 1), (1, 0), (1, 1) charge state regions are
located. The final data have pixel resolutions ranging from 63 × 63
(126×126 before cropping) to 200×200 (401×401 before cropping).

Metrics We use the rate of successfully finding the transition
lines to indicate the applicability of the proposed algorithm and the
baseline. We use the total runtime to evaluate the overall speedup.
We also collect the number of data points probed because this is
the bottleneck in the entire virtual gate extraction process, and our
speed is achieved by reducing the number of probed data points.

Implementation We prototype the proposed virtual gate ex-
traction algorithm in Python and simulate the experiment setup
using the data from real experiments. When the proposed algorithm
needs to obtain a data point with a specific voltage combination,
it will call a simulated getCurrent function with the voltage co-
ordinates. The getCurrent function will return a current from a
CSD in the dataset to simulate an experiment on that device. The
getCurrent function uses a dwelling time of 50ms, which is a
typical time delay for charge-sensor-based devices [30]. Since the
benchmark dataset does not provide reference virtual gates, we plot
the final affine transformed diagram for virtualization and manually
examine whether the virtual gate extraction is successful or not.

Baseline Our baseline is the Hough transform with Canny
edge detection, an existing technique used for virtual gate automa-
tion [12, 18] implemented using the opencv-python [3]. The base-
line first obtains a full CSD by calling the simulated getCurrent

on all voltage combinations before image processing.

5.2 Result
Table 1 shows the results of applying the proposed method and
the baseline on all the benchmarks. Overall, our fast virtual gate
extraction method can successfully find the transition lines and
then construct the virtual gate in 10 out of the 12 benchmarks, while
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Table 1: Result Summary
Benchmark Success/Fail Number/percentage of points probed Total runtime Speedup

CSD Index Size Fast Extraction Baseline Fast Extraction Baseline Fast Extraction Baseline Speedup
1 200×200 Fail Fail 1753 (4.38%) 40000 (100%) 87.94s 2005.12s N/A
2 200×200 Fail Fail 1692 (4.23%) 40000 (100%) 84.89s 2004.98s N/A
3 63×63 Success Success 643 (16.2%) 3969 (100%) 32.26s 198.96s 6.16×
4 63×63 Success Success 679 (17.1%) 3969 (100%) 34.06s 198.97s 5.84×
5 63×63 Success Success 484 (12.19%) 3969 (100%) 24.28s 198.94s 8.19×
6 100×100 Success Success 1002 (10.02%) 10000 (100%) 50.27s 501.25s 9.97×
7 100×100 Success Fail 985 (9.85%) 10000 (100%) 49.42s 501.26s 10.14×
8 100×100 Success Success 1179 (11.79%) 10000 (100%) 59.14s 501.26s 8.48×
9 100×100 Success Success 974 (9.74%) 10000 (100%) 48.86s 501.27s 10.26×
10 100×100 Success Success 1054 (10.54%) 10000 (100%) 52.88s 501.27s 9.48×
11 100×100 Success Success 927 (9.27%) 10000 (100%) 46.5s 501.26s 10.78×
12 200×200 Success Success 2067 (5.17%) 40000 (100%) 103.69s 2005.02s 19.34×

the baseline Hough transform succeeds on only 9 benchmarks. We
manually checked the two benchmarks we failed on. The reason is
that those two devices have too much noise in the CSDs and both
our method and the baseline fail to locate the transition lines. We
also investigated the case CSD 7 where the baseline fails while our
method succeeds. We found that the edge detection in the baseline
could not locate enough points to establish the line. Meanwhile, the
column-major sweep in our method successfully located the line.

In terms of the virtual gate extraction speed, our fast extraction
method can achieve a speedup ranging from 5.84× to 19.34× against
the baseline. The speed-up mostly comes from the reduction in the
number of data points probed as our method adaptively locates
the critical region and only probes a small number of actual gate
voltage configurations. The baseline probes every point in the space
to fill a full CSD, while our method only probes 10% on average as
shown in the middle of Table 1. As an example, Figure 7 shows the
data points probed in CSD 6 and CSD 10 by our method, and the
probed data points for other benchmarks are similar. Note that the
points are mostly scattered around the two transition lines, with
additional points probed to determine the initial anchor points. In
summary, our fast virtual gate extraction method outperforms the
Hough transform baseline with faster virtual gate extraction, fewer
experimental data requirements, and even higher accuracy.

Figure 7: Data points probed in benchmark CSD 6 and 10
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