2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) | 979-8-3503-2658-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/ISCA59077.2024.00028

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

Bosehedral: Compiler Optimization for Bosonic Quantum Computing

Junyu Zhou*, Yuhao Liu*, Yunong Shif, Ali Javadi-Abhari* and Gushu Li*
*Department of Computer and Information Science, University of Pennsylvania, Philadelphia, USA
Email: {junyuzh,liuyuhao,gushuli} @seas.upenn.edu
TAWS Quantum Technology, New York, USA, Email: shiyunon@amazon.com
1IBM Quantum, New York, USA, Email: Ali.Javadi@ibm.com

Abstract—Bosonic quantum computing, based on the infinite-

dimensional qumodes, has shown promise for various practical n)
applications that are classically hard. However, the lack of |1) 2)
compiler optimizations has hindered its full potential. This paper 1)
introduces Bosehedral, an efficient compiler optimization frame- [0) 0
work for (Gaussian) Boson sampling on Bosonic quantum hard- Qubit |)Qumode
ware. Bosehedral overcomes the challenge of handling infinite- Maupic kd Maumode
dimensional qumode gate matrices by performing all its program lp) = a|0) + BIN—L=519) 9) = Z a|ln)———1¢")
n=0

analysis and optimizations at a higher algorithmic level, using
a compact unitary matrix representation. It optimizes qumode
gate decomposition and logical-to-physical qumode mapping, and
introduces a tunable probabilistic gate dropout method. Overall,
Bosehedral significantly improves the performance by accurately
approximating the original program with much fewer gates. Our
evaluation shows that Bosehedral can largely reduce the program
size but still maintain a high approximation fidelity, which
can translate to significant end-to-end application performance
improvement.

Index Terms—Bosonic Quantum Computing, Gaussian Boson
Sampling, Compiler Optimization

I. INTRODUCTION

Bosonic quantum computing, also known as continuous-
variable quantum computing [31], is built upon Bosonic
modes. Contrary to qubit-based discrete variable quantum
computing, the basic information processing unit in Bosonic
quantum computing, the qumode, by itself has an infinite-
dimensional state space (shown in Fig. 1). Bosonic quan-
tum computing (QC) is attractive for multiple reasons: long
lifetimes of qumodes (e.g., superconducting cavities [49]),
the ability to transduce between stationary and flying (e.g.,
photonic) information [37], etc. In particular, Bosonic QC has
strong built-in information encoding and processing capability
to naturally and efficiently encode certain computations, such
as Boson sampling [3] and Gaussian Boson Sampling [20],
with various practical applications [11] (e.g., graph clique [8],
graph similarity [42], point process [22], and molecule vi-
brational spectra simulation [21]) that are hard for classical
computing. Recently, the quantum advantage [34, 57, 58]
has been experimentally demonstrated on several Bosonic QC
platforms. Several startups are pursuing the commercialization
of Bosonic QC with various technologies [1, 24, 35, 45].

Despite the great hardware progress, the development of
software and compiler optimizations for Bosonic QC is

We thank the anonymous reviewers and shepherd for their constructive
feedback and guidance. We thank Nathan Wiebe and Steven Girvin for
insightful discussions. This work was partially supported by NSF CAREER
Award 2338773, and the U.S. Department of Energy, Office of Science,
National Quantum Information Science Research Centers, Co-design Center
for Quantum Advantage (C2QA) under contract number DE-SC0012704.

dim(Mqubit) =2 dim(Mqumode) =

Fig. 1. Qubit vs Qumode

far behind. Early efforts on programming and compilation
for Bosonic QC, including Strawberry Fields [24], Bosonic
Qiskit [44], and Perceval [35], provide basic programming
interfaces and operation decomposition functions [15, 41] but
miss program optimizations. To summarize, compilation for
Bosonic QC is in its infancy. In contrast to qubit-based QC,
rich libraries of compilation passes [39, 43] are non-existent,
hindering the full exploitation of these computing platforms.

The complexity of devising compiler optimizations for
Bosonic QC arises from the inherent infinite-dimensional
state space of each individual qumode [31]. All the gates
manipulating the state of qumodes, even for a single qumode,
have infinite-dimensional gate matrices. Thus, it is highly
non-trivial for the quantum compiler that runs on a classical
computer to derive equivalent program transformations for
optimization. Traditional techniques employed for quantum
program transformations on qubit-based devices, which rely
on gate matrices, encounter substantial obstacles when con-
fronting the infinite-dimensional qumode gate matrices.

In this paper, we tackle this grand challenge by investi-
gating the compiler optimization in the high-level semantics
of Bosonic QC. Instead of directly handling the infinite-
dimensional gate matrices applied on the qumode state, the
unique high-level semantics of Bosonic QC allow us to an-
alyze and optimize the program components efficiently and
effectively in a compact data structure. In particular, we focus
on the linear interferometer, the pivotal component containing
most of the gates in a (Gaussian) Boson sampling program
(a widely used Bosonic QC paradigm illustrated in Fig. 2).
A linear interferometer can be considered as a unitary matrix
of size N x N for an N-qumode program without losing any
algorithmic information. All the program transformation and
optimization techniques proposed in this paper can be reasoned
about in the high-level unitary matrix.

To this end, we propose Bosehedral, an effective and effi-
cient compiler optimization framework for (Gaussian) Boson

979-8-3503-2658-1/24/$31.00 ©2024 IEEE 261
DOI 10.1109/ISCA59077.2024.00028
Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

sampling on Bosonic quantum hardware. In contrast to peep-
hole approximations performed by qubit-based compilers [39,
43], Bosehedral can approximate and simplify circuits at a
large scale by exploiting the global program semantics. First,
Bosehedral optimizes the qumode gate decomposition for
linear interferometers, which can be considered as adjusting
the elimination patterns for different input high-level unitary
matrices to maximize the occurrence of two-qumode gates
with very small rotation angles. These small-angle gates are
functionally akin to the identity and can be safely disregarded
to reduce the gate error with minimal effect on the overall
program semantics. Second, Bosehedral modifies the logical-
to-physical qumode mapping, which can be considered as
applying row and column permutations on the high-level
unitary. Bosehedral can find better qumode mapping to further
reduce rotation angles in the compiled two-qumode gates.
The remapping is implemented via re-labeling the physical
qumodes without any execution overhead. Third, Bosehe-
dral comes with a tunable probabilistic gate dropout method
to approximate linear interferometers. Gates with exceedingly
small rotation angles will very likely be dropped, while
gates with rotation angles near the threshold will be dropped
probabilistically to average over the algorithmic approximation
errors. As a result, Bosehedral can approximate (Gaussian)
Boson sampling accurately using considerably fewer gates and
thus substantially enhances the overall performance by largely
mitigating the hardware error effects.

Overall approximation effect reasoning One key ad-
vantage of Bosehedral is that it can easily reason about
the overall effect of the approximation during compilation
time. After the gate decomposition and dropout, the global
high-level semantics of the approximated program can be
reconstructed by reversing the elimination process on the high-
level unitary matrix. This is hard to achieve in the qubit-based
approximation compilations because they usually rely on the
unscalable low-level gate semantics and the gate matrices are
exponentially large as the number of qubits increases.

Our experimental results show that Bosehedral can reduce
gate by ~ 25% to 40% but maintain program fidelity of ~ 98%
t0 99.9% for various benchmarks and underlying architectures.
Compared with the baseline Strawberry Fields [24], the di-
vergence between the sampled output distribution in noisy
simulation and the ideal output distribution is reduced by
26.1% on average, which translates to significant end-to-end
application performance improvement as demonstrated in our
detailed application studies.

Our major contributions can be summarized as follows:

1) We proposed Bosehedral, the first efficient and effective
compiler optimization framework for (Gaussian) Boson
sampling in Bosonic quantum computing.

Bosehedral overcomes the challenges of infinite-
dimensional gate matrices by performing program anal-
ysis and compiler optimization at a high-level represen-
tation.

We proposed several compiler optimization algorithms
for qumode gate decomposition, logical-to-physical

2)

3)

262

qumode mapping, and probabilistic gate dropout for
program simplification.

Our evaluation shows that Bosehedral can outperforms
baseline Bosonic quantum compilers by significantly
improving the execution fidelity and the end-to-end
application performance for various benchmarks and
architectures.

4)

II. BOSONIC QUANTUM COMPUTING

This section introduces the necessary background on
Bosonic quantum computing. We recommend [31, 50] for
more comprehensive introductions.

A. Infinite-Dimensional Quantum Information Processing

In discrete variable quantum computing, the basic infor-
mation processing unit is a qubit, whose state lies in a two-
dimensional Hilbert space spanned by two basis states |0) and
[1). In contrast, in Bosonic quantum computing, also known
as the continuous-variable quantum computing, the basic in-
formation processing unit is a quantum mode or qumode.
Its state lies in infinite-dimensional Hilbert space spanned
by the Fock basis: {|n)}22,. In literature, this infinite-level
system is usually called a Bosonic mode and the corresponding
quantum computing paradigm is called the Bosonic quantum
computing [31, 50].

To understand how the states of Bosonic qumodes are
manipulated, we first introduce the ladder operators, including
the annihilation operator and creation operator, in the system
state Hilbert space. For the k-th qumode, the annihilation
operator @y, and the creation operator &L are defined as follows:

ak|n)r = v/nln — 1)y for n > 1
allnyy = vn+1ln+ 1), for n>0

and ay|0) 0. For an N-qumode system, we have the
following operator vectors:

AT
Lan

)T
Qumode gates are usually defined with the aj’s and
&L’s. Some common qumode gates used in this paper are
listed in Fig. 2 and introduced in the following. Squeezing
Gate is a single-qumode gate denoted by °S’. A squeezing

gate applied on the k-th qumode is defined as: S(a) =
exp (L(a*a? — aaf’)), where a € C. Phase Shifter is a
single-qumode gate denoted by ‘R’. A phase shifter applied
on the k-th qumode is defined as: R(¢) = exp(iqbéz,&k), where
¢ € R. Beamsplitter is a two-qumode gate denoted by ‘BS”.
A Beamsplitter applied on the k-th and [-th qumodes is defined
as: BS(0,¢) = exp (0(e'®ara) — e*i‘bdzél)), where ¢ and
0 € R. Displacement is a single-qumode gate denoted by ‘D’.
A displacement gate applied on the k-th qumode is defined as:
D(a) = emp(adL — a*ay), where « € C. Note that all these
gates have infinitely-large gate matrices as all axs and &};s are
infinite-dimensional.

Compared with Finite-Dimensional Quantum Informa-
tion Processing Qumodes are very different from three-

i = (a1, as,...,an)T, at = (al,al,..

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

level qutrits or general d-level qudits because their infinite-
dimensional nature leads to fundamentally different algorithm
formulations. For qutrits and qudits, even if they have higher
dimensions, the information is still encoded on the amplitudes
of each discrete basis state. For example, we have the follow-
ing qudit state:

d-1
|qudit) = ZO” |7)
i=0

The information is encoded in the «;’s. Thus the qutrits and
qudits, together with qubits, still belong to the conventional
discrete-variable quantum computing. While for qumodes,
the corresponding algorithms are designed by the princi-
ple of continuous-variable quantum computing, a computing
paradigm different from discrete-variable quantum computing.
The information is encoded in a continuous function on an-
other set of basis states, usually called the position/momentum
basis. For example, a qumode state can be expressed either in
the Fock basis or the position basis:

|qgumode) = Za,; i) = / P(z) |x)dr,i e Nyz € R
i=0 —o0

The 1 (z) encoding the algorithmic information is a continuous
function where x € R is a real number representing the
position of the qumode’s corresponding harmonic oscillator.
The qumode gates are defined to manipulate the continuous
functions t(z)’s rather than the amplitudes on the discrete
basis states. This inherent difference makes it difficult to
adapt the existing compilation approaches for photonic [56]
or higher-dimensional systems like qutrits [19] which are
designed for discrete-variable quantum computing.

B. Current State of Bosonic Quantum Computing

Bosonic quantum computing has attracted much attention
recently due to its theoretical success and broad applications,
as well as the high performance (such as low decoherence) of
its processing unit: qumode. On the hardware side, Bosonic
quantum computing is being pursued with mostly two different
technologies, the superconducting Bosonic quantum processor
by Quantum Inc. [1], and the photonics quantum processor
by Xanadu [24], Quandela [35], and QuiX Quantum [45].
The errors of Bosonic quantum hardware are also different
from those of qubit-based quantum hardware. The photon
loss error is arguably the most significant error in Bosonic
hardware [11, 27]. Other types of error include dephasing [27]
and thermal noise [4]. Their error rates are usually only about
10% of the photon loss error rate on average [27]. Regarding
the operation fidelity, the most recent quantum photonics
device Ascella [35] containing 12 qumodes can achieve fidelity
of 99.6% and 93.8% for single-qumode and two-qumode
gates, respectively. The state-of-the-art measurement fidelity
is 95% on Xanadu’s X8 device. On the superconducting
Bosonic quantum processor [49], error rates are reported as
around 1% for beamsplitters, 1% for squeezing gates, 0.02%
for displacement gates, 1% ~ 0.1% for measurement. In

263

State Preparation Linear Interferometer D & Measurement
|SHHR@ 55 6.0y
lo{s
: MZI1 MZI 2 :
l0){s R, o = frorf,c m x| - H{DHW)
[0S 4’2 4’27k .. 4 m

Fig. 2. Overview of a Gaussian Boson sampling (GBS) program

summary, the errors from two-qumode gates and measurement
are dominant for now.

Along with the hardware development, initial efforts in
programming and compilation for Bosonic Quantum Comput-
ing, such as Strawberry Fields [24], Bosonic Qiskit [44], and
Perceval [35], have established basic programming interfaces,
allowing users to construct Bosonic quantum programs with
basic gates. Yet the compiler optimization development is
much less developed.

III. GAUSSIAN BOSON SAMPLING

Gaussian Boson sampling (GBS) is a computation paradigm
based on Bosonic QC. In this section, we provide an overview
of GBS, as well as how to program GBS device. For interested
readers, we recommend [11, 20] for more details.

A. GBS Program

A typical GBS program is depicted in the circuit dia-
gram Figure 2. Similar to the quantum circuit for qubit-
based quantum computing, each horizontal line represents one
basic information processing unit: qumode. The blocks with
different letters represented different qumode gates introduced
in the previous Section II-A. The blocks are placed on different
horizontal lines, representing those gates applied on different
qumodes. The blocks with the "M’ symbol at the end represent
measuring the qumodes. In GBS, the measurement is usually
on the Fock basis and will return an integer {0,1,2,...}. The
number represents the energy level of the current state and is
usually called the number of photons in Physics literature.
So that such measurement is also called the photon count
measurement.

A GBS program typically has three major steps: state
preparation, linear interferometer, and measurement. Usually,
all qumodes are initialized to the vacuum state |0) with
photon count 0. (Note that in Bosonic QC literature, many
terms such as photons, interferometers, etc. are shared with
photonics. However, in this paper, they represent purely soft-
ware concepts, and can be implemented via diverse hardware
platforms.) State preparation adds some photons to the system
to prepare an initial state, which is done by applying squeezing
gates in GBS. The prepared state will then be fed into a linear
interferometer to perform a special calculation where the high-
level semantics is a unitary matrix U applied on the vector

of annihilation operators of the system and denoted as:
a — a’ = Ua, where a = (ay,az,...,an)T.

The output of the linear interferometer is a multi-qumode
Gaussian state. Finally, qumodes are measured. Sometimes

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

displacement gates are applied before the measurement, de-
pending on the application.

B. Advantage of GBS

The GBS program above can demonstrate quantum advan-
tage because it can compute the Hafnian of a matrix [9]
efficiently while the Hafnian calculation is hard on classical
computers. By carefully tuning the parameters in the qumode
gates, we can obtain a final system state where the covariance
matrix for the states of N qumodes is Xanx2on. Then the
Hafnian of the covariance matrix Yonywxon can be obtained
by sampling from the final state with the photon count
measurement [11, 20, 25] . The probability Pr(S) of obtaining
the measurement outcome S = (s1, S2,...,sn) (s; stands for
observing s; photons in qumode 7) is given by:

Pr(S) = 1 Haf (As)

\/det (Q) s1lso!. . sy!

here Q and A are completely determine by Yonxon:

ey

Q =Xonxon +on/2

0 I
A= (g) tx-a

and Ag is submatrix of A4 by selecting its rows and columns
according to sample pattern S.

The matrix function Haf(-) shown in (1) is the Hafnian [9],
and calculating the matrix Hafnian is a # P-hard problem [48]
(#P-hard is at least as hard as N P-complete), thus it will be
inefficient to obtain on classical computers.

C. Application of GBS

Consequently, GBS is suitable for applications that can ben-
efit from fast matrix Hafnian calculation. We briefly introduce
the following two categories:

(1) Graph Problem Associated with Hafnian: Many
N P-hard graph problems, such as dense subgraph [6], graph
clique [8], graph similarity [42], point process [22], can benefit
from GBS since GBS can efficiently calculate the hafnian
of graph’s adjacency matrix. Although GBS cannot directly
solve these problems in polynomial time, theoretical study
shows that GBS can enhance any stochastic algorithm (e.g.,
random search, simulated annealing, and greedy algorithms)
for such problems with provable speedup/success probability
increase [7].

(2) Simulating Bosonic System: For example, molecule
vibrational spectra simulation [21] is modeling Bosons which
have infinite-dimension state space. Bosonic QC has natural
advantages here as the Bosons can be directly encoded in
qumodes and the Boson operations are also usually natively
supported on Bosonic QC hardware.

These applications of different purposes can be programmed
onto GBS devices by changing the qumode gate’s parameters
and the linear interferometer’s unitary matrix. The three-step
overall GBS program structure remains unchanged. How to
turn the application into its corresponding program parameter

264

setup can be found in [11]. The techniques in this paper do
not rely on any application-specific information.

D. Limitation of GBS

On the hardware side, executing GBS programs requires
Bosonics quantum processors with native hardware qumodes.
Similar to qubit-based quantum computing hardware, they also
suffer from noise, especially for the two-qumode gate, as
introduced in Section II-B. Also, we cannot reach a state with
infinite photons in practice. The reported numbers of photons
measured from a physical qumode in experiments are 15
and 18, on superconducting Bosonic quantum processor [49]
and photonic quantum processor [5], respectively. Fortunately,
the amplitude of a high photon count basis state is usually
exponentially small [5, 24].

On the theory side, although Bosonic quantum computing
is universal, GBS is not a universal computing paradigm
as it is mostly focused on accelerating the matrix Hafnian
calculation. And due to the hardware noise, we can only
execute approximate GBS in realistic hardware. Theoretical
studies [3, 20, 25] show that if approximate Hafnian estimation
can be efficiently solved on classical computers, it will imply
polynomial hierarchy collapse [3, 52], which is believed to
be unlikely to happen. Consequently, a common conjecture is
that approximate GBS is also in #P [25].

E. GBS Program Compilation

Programming GBS device is to decide the parameters for
each quantum gate. Typically, the parameters of squeezing gate
and displacement gate are easy to calculate according to the
applications. However, the linear interferometer, which is the
largest building block in GBS, is given by a high-level unitary
matrix U and needs to be decomposed into basic single- and
two-qumode gates to be executed on hardware.

An N x N unitary matrix U for N qumode system has the
following decomposition formula [41]:

U = A . H Tm,n ((9, ¢) (2)

(m,n)eS

Here T, (0,) is a rotation in two-dimensional subspace,
and S is a set containing pairs that describe the information
of the dimension where the rotation is acting on. We also call
the parameter # as the rotation angle. A is the diagonal matrix
whose diagonal entries \;; have modules |\;;| = 1. The matrix
representation of T, ,, (6, @) is:

column m column n
I 0 0 0
rowm [0 e*?cos(6) —sin(0) 0
T (0,0) = S S
rown | 0 e'®sin(0) cos(f) 0
0 0 0 I

Each T,, ,, (6,¢) can be implemented by an Mach-Zehnder
interferometer (MZI) [40] circuit block applied on the m-th
and n-th qumode [41]. This is the most expensive part of the
computation due to noise. The error rate of a Beamsplitter

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

Matrix Circuit Pattern
_009 —012 —099y (DHR]]
Step 1 (—0.45 -0.88 o.15>) BS1
—0.89 046 0.03 —_—— Siep
RI, @ = 0.00
—0.15 0.03 —0.99 @ () 05) IRemove
Step 2 (—0.99 0.00 0.15) © BS2 O] @ E@]
0.00 1.00 0.03 BS2,0 = 1.54 Step 2
R2, @ = 0.00
—015 099 o000y @D
Step 3 <70.99 —0.15 0.00) BS3
0.00=0.00 1.0 BS3,6 = 1.42 Step 3
R3, @ = 0.00
) RI R3
Final /100 000 000\ Final O . Bs1
Diagonal< 000 —1.00 0A00> Circuit
Matrix \ 0.00 0.00 1.00. @ BS2]
| B

Fig. 3. Numerical example of the elimination process

can be over 10x higher than that of other single-qumode
gates [13, 49]. One MZI block can be realized using a Phase
Shifter R(¢$) on qumode m and a Beamsplitter BS(6,0) on
qumodes m and n (‘MZI 1’ in Fig. 2). Some Bosonic quantum
hardware platforms only natively support fixed 50 : 50 Beam-
splitters BS(mw/4,7/2) [12]. In this way, one MZI block can
be implemented with two Phase Shifters and two Beamsplitters
(‘MZI 2’ in Fig. 2). The discussion in this paper assumes the
first implementation, but our proposed techniques are equally
effective if using the second implementation.

Fig. 3 shows a numerical example of decomposing a 3-
dimensional unitary matrix as well as the corresponding cir-
cuit. For step 1, we use qumode 2 to eliminate qumode 1,
resulting in a circuit on qumode 1 and 2 shown in the middle.
Such elimination can also be denoted in an elimination pattern.
Each node in this pattern represents a qumode. We use the
arrow from qumode 1 to 2 to represent this elimination. Then
in step 2, we eliminate qumode 2 with qumode 3. This finishes
the elimination in one row and the last qumode is removed
from the pattern. In step 3, we use qumode 2 to eliminate
qumode 1 and finally generate a diagonal matrix. The final
constructed circuit is at the bottom. The elimination pattern is
also used later in Section V-A.

IV. PROBLEM FORMULATION

In this section we introduce the high-level algorithmic
optimization opportunity to overcome the challenge of infinite-
dimensional qumode gate matrices and formulate our Bosonic
compiler optimization problem.

A. Opportunities from Decomposition Flexibility

The optimization opportunities come from the high-level
algorithmic property of the T, (6, ¢) transformations. This
transformation can be considered as using one entry in column
n to eliminate the entry in column m in the unitary U, similar
to a Gaussian elimination process. Overall, the decomposition
of U is to find a series of T,,,(0,¢) transformations to
convert the unitary U into a diagonal matrix. Note that
the original decomposition formula in (2) does not require
any specific elimination order. Thus, the decomposition can
be very flexible. Existing decomposition methods [15, 41]
decompose the unitary into some special T, (0, ¢)’s where

265

. L. . U3y
Option 1: eliminate u3q with uz, 1. |tan(8;)| = |—
* * * U3y
T1,2(312»¢12) * * * U3y
' [tan(613)| = |—

0 uz, us U

2. amplitude accumulation
[uzal? = luzzl? + lus 1?

* * *
(* * * >
U3y U3z Usz
T13(013, ¢13)

* * *
* * * luzs? = lugsl?® + luzq |
'
Option 2: eliminate uz, with uzs\0 Usz Uss
A

L

Fig. 4. Example of flexible decomposition

n = m + 1 is always fixed. The optimization opportunities
from the flexible decomposition were missed.

We first illustrate the flexible decomposition of the linear
interferometer unitary with the example in Fig. 4. There are
two decomposition options in Fig. 4 to perform elimination
on the row (ug1, u32, uzz). The first option in the upper half
of Fig. 4 is to eliminate uz; with uge using an MZI block
T1,2(012, ¢12) on qumode 1 and 2. The parameters ¢, and
¢12 are determined by ws3; and uzs with following equation:

3)

We observe that there are two key properties of this elimination
process that can help with the follow-up optimizations.

First, the rotation angle of the Beamsplitter in the generated
MZI block satisfies: |tan(f12)| = |ugi/us2|. And we can
notice that the parameter f1o will be very small when |uss]
is much larger than |usy|. In this case, the Beamsplitter in
the generated MZI block will be very close to an identity.
Theoretically, the distance between a Beamsplitter with a small
rotation angle # and the identity is bounded by ~ 6%/N.

Second, all the matrices we used in decomposition are
unitary, and the norm in every column and every row is always
preserved. Therefore the amplitudes will be accumulated dur-
ing the elimination. For example, in the first decomposition
option in Fig. 4, the amplitude of the entry us; will be
accumulated into the new amplitude uj, after the elimination
with [uls|* = [uz|* + Juza|*.

Another option shown in Fig. 4 is to eliminate ug; with
ugs. This time the MZI block will be applied on qumode 1
and 3. The parameters and the amplitude accumulation will be
different. This is a three-qumode example and the flexibility
can be much larger with more qumodes.

U31€_i¢12 COS(912) — U32 sin(912) =0

B. Compilation Problem Formulation

This paper also considers the hardware’s characteristics.
Similar to qubit-based quantum hardware, Bosonic quantum
hardware suffers from noise, and it is desirable to reduce
the number of gates, especially the expensive two-qumode
Beamsplitters. We also consider the qumode connectivity con-
straints and only allow MZI blocks to be applied on physically-
adjacent qumode pairs with native Beamsplitter support.

Here we formulate the compilation problem of this paper.
Given the input GBS program and the underlying hardware
constraints, Bosehedral needs to find 1) the logical-to-physical
qumode mapping and 2) the decomposition of the linear
interferometer unitary into hardware-supported MZI blocks.
Moreover, to mitigate the hardware noise effects, Bosehedral

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

aims to exploit the flexibility in decomposition such that the
rotation angles in the generated Beamsplitters can be very
small. These Beamsplitters are very close to the identity and
can thus be dropped to mitigate their high gate error without
significantly affecting the overall GBS program. Importantly,
our method does not merely approximate the program, but
it does so at the point of decomposition and mapping, and
the compiler output’s accuracy can be easily and scalably
controlled by evaluating the fidelity of the reconstructed high-
level unitary.

The compiler optimization in Bosehedral can be applied
beyond optimizing GBS because its optimization target, the
quantum linear interferometer, is a key component in many
other applications [47], including but not limited to non-
Gaussian Boson Sampling [3], quantum simulator [26], quan-
tum metrology [18], quantum repeater network [46], etc.

V. ELIMINATION PATTERN FINDING

We will first introduce the unitary decomposition optimiza-
tion in Bosehedral. Our objective is to maximize the generation
of MZI blocks with small Beamsplitter rotation angles. Our
decomposition approach will only generate MZI blocks that
are compatible with the qumode without any remapping in the
middle. We will assume a trivial logical-to-physical qumode
mapping in this section and discuss the related further opti-
mization in the next section. Our design is based on the widely
used two-dimensional lattice hardware coupling structure. But
our idea and design flow can be generalized to other layouts
like triangular or hexagonal arrays.

A. Elimination Pattern Template

We define an elimination pattern template to represent
how the entries in the linear interferometer unitary U are
eliminated. In this template, each node represents a qumode.
When we eliminate one entry of one qumode 7 using the entry
of another qumode j, we use a directed edge to connect the
two corresponding qumodes from ¢ to j.

Baseline elimination For example, the template in the
upper part of Fig. 5 is the elimination template of existing
decomposition methods [15, 41]. It has a chain structure. u;
is first eliminated with us so there is an edge from qumode 1 to
2. Then us is eliminated with ug, u3 is eliminated with wuy, .. .,
and finally u_1 is eliminated with uy. After the elimination
of the last row finishes, |uy| should be 1 due to amplitude
accumulation. Then for the next row N — 1, the last node N
in the elimination pattern is removed. The elimination of row
N — 1 will follow the same pattern from w; but terminate at
un—_1. The node N — 1 is then removed and the elimination
of row N — 2 will begin. Such process repeats from row N to
row 1 and all the nodes in the elimination pattern are removed.

Bosehedral leverages the elimination flexibility mentioned
in Section IV-A and redesigns a new elimination pattern. We
first discuss the requirements and desired properties of such
an elimination pattern graph.

First, the template must be a tree with all the directed
edges from child nodes to parent nodes. As discussed in

266

Baseline: e e e ok
(i) 0@~ @
U Uy Uz o Uy
A
Bose: N O IO O N-1
(/\ S~) @) N -2
AR S O NGO
% B () Remove
PN o N g ONONO,
U U Uz Uy Us Ug -
Al[{o_wl w{/s 6 o e o N-—-2
0o 0 - 01/ ® ©® ©®

Fig. 5. Elimination pattern template: baseline vs Bosehedral

Section IV-A, the amplitudes of the entries are accumulated
during the elimination process. The directed edges in the
graph then naturally represent the flow of the amplitude
accumulation. To complete the elimination of one row in the
unitary, all the amplitudes must be finally accumulated onto
one entry and all other entries must be zeroed. A tree with
all the directed edges from child nodes to parent nodes can
naturally represent how the amplitudes are accumulated from
the leaf nodes to the root node. The dependency is that the
entry of a parent node can only eliminate the entry of one
child node after the entry of this child node has eliminated
the entries of all its child nodes. For example, in the middle
of Fig. 5, we must first eliminate qumode 2 and 3 with qumode
1 before we can further eliminate qumode 1 with qumode 4.

Second, recall that we hope to generate MZI blocks with
small Beamsplitter rotation angles for further optimization and
approximation. This can be realized by eliminating a small
entry with a large entry (recall the first property of elimination
in Section IV-A and Fig. 4). Meanwhile, the entries will
become larger and larger as the elimination process gets close
to the root due to the amplitude accumulation (the second
property of elimination). If we can attach small entries to these
entries with accumulated large amplitudes, we can create more
large-small eliminations.

Finally, we also consider that this elimination pattern graph
will later be physically realized in a two-dimensional lattice
coupling structure. Although we have not considered the actual
mapping onto hardware, we require that each node in this
graph can have at most four neighboring nodes, so that it
can be later mapped onto the hardware without introducing
complicated transformations.

With all these considerations, our elimination pattern tem-
plate graph design is shown in the lower part of Fig. 5.
Basically, we have a main path in this elimination pattern
reflecting the main flow of amplitude accumulation (the chain
of nodes 1, 4, 7, ...). We can expect the amplitudes of previous
nodes will be accumulated to the node throughout this main
path, and they will be relatively large when they are used
to eliminate other nodes. Thus for each node in the main
path, we attach some leaf nodes as the branches. These branch
nodes do not eliminate any other nodes so their amplitudes are
expected to be small and large-small eliminations are created.
Considering that each node has at most four neighbors, we
attach two leaf nodes to each main path node, except the first
and last node in the main path.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

(C) 24-qumode
substructure

Fig. 6. Example of elimination pattern embedding

The elimination process is executed row by row from bot-
tom to top. We start from row N and eliminate uo and us with
uq first. Then u; is eliminated with uy. The elimination will
follow the pattern on the right and finishes after accumulating
all the amplitudes in row N to ux and we have |uy| = 1. All
other entries in the column /N will also become zero due to the
column normalization of unitary matrices. Then we eliminate
row N — 1 and the node N is removed from the elimination
pattern since there is no amplitude in the last entry of row
N — 1. We also need a small modification at the end of the
pattern, flipping the edge direction from N —1 to N — 2. This
will make the elimination terminate at the N — 1 node, which
is a leaf node in the tree, and then this node N —1 is removed
when eliminating the next row N — 2. Such an elimination
process repeats from row N to 1. The MZI blocks in the
decomposed circuit can be generated using the parameters of
the T, , (0, ¢)’s obtained in the elimination.

B. Zigzag Elimination Pattern Embedding

The next step is to embed the elimination pattern into the
actual hardware coupling graph, a two-dimensional lattice. We
propose a Zigzag pattern embedding to maintain the overall
structure in the original template. A general procedure is
shown in Fig. 6 (a). We start the embedding by aligning the
main path with the longer edge of the two-dimensional lattice.
Here we start from the bottom left of the lattice and embed the
pattern template in the first three rows. The start node of the
main path is denoted as the ‘start point’. When the embedding
reaches the right side, the main path will turn up and align
with the column edge. Around the turning point, we may be
unable to attach two branch nodes to each main path node. If
one node cannot be directly connected to the main path, we
can attach it to one branch node (e.g., nodes 23 and 20 in
Fig. 6 (b)). After we reach the next three rows, our main path
will turn to the left and follow similar patterns to add branches.
When we reach the left side, the main path will turn up again
and finally formulate a Zigzag pattern. Depending on the result
of the number of rows modulo 3, we may need to drop some
branch nodes at the end. Fig. 6 (b) shows the three different
cases. Finally, the main path will end on either the left or right
edge at a point denoted as the ‘end point’.

267

branches Physical-qumode

small entries

main path
large entries

Fig. 7. Example of logical-to-physical mapping
C. Sub-Pattern Selection

The last step is to select some of the physical qumodes for
the follow-up computation when the total number of qumodes
on the device exceeds the total number of logical qumodes in
the program. Recall that the purpose of our template pattern
is to use the entries on the main path to eliminate entries on
the branches to produce small rotation angles. Therefore, we
will select the qumodes on the main path connecting to more
branch qumodes and disregard those main path qumodes with
fewer branch qumodes.

Our physical qumode selection will first label all the phys-
ical qumodes based on a breadth-first-search starting with the
first qumode (‘start point’) in the template pattern. Fig. 6
(c) shows an embedding structure that comes from a 4 x 8
device. As shown in Fig. 6 (b), the qumodes that are far
away from the start point will have fewer branches due to
the edge of the two-dimensional lattice. We will choose the
qumodes from the lower label to the higher label until the
number of total qumodes is satisfied to implement the problem
we are considering. An example of selecting a 24-qumode
substructure from a 32-qumode 4 x 8 device is in Fig. 6 (c).

VI. QUMODES MAPPING OPTIMIZATION

In the previous section, we select a hardware-compatible
elimination pattern based on the trivial mapping. In this
section, we will introduce how the logical-to-physical qumode
mapping can be optimized to further improve the yield of small
Beamsplitter rotation angles via permutation operations that
come with no execution overhead.

A. Motivating Example

We introduce our qumode mapping algorithm with a moti-
vating example considering the unitary decomposition in one
row. Recall that the small rotation angles are expected to
happen when we use a qumode in the main path of the pattern
to eliminate another qumode on the branches. If we can map
the qumodes with large entries in the unitary on the main
path and those with small entries on the branches at the very
beginning, the angles we produced during the elimination will
be further reduced. Suppose we have a 24-dimensional vector:

(I1, 12,13, .., l24)

and we assume that their amplitudes satisfy |l1] > |lo] >
. > |la4] without loss of generality. In this example, we
will perform elimination on this row using the 24-qumode
elimination pattern from Fig. 6 (c).
A desired logical-to-physical qumode mapping of this ex-
ample is depicted in Fig. 7. The 8-qumode row in the middle is

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

our main path, with its branches on two sides. Since we want
large entries to appear in the main path, [y, [, ..., ls will be
mapped to the main path from the start point because they are
the largest one. After mapping the main path, we deal with the
remaining branches, and the large entries remaining should be
sent to the branch near the start point, thus lg, [are branches
to /1, other mappings are similar. In this way, the accumulated
amplitude will be even larger when the elimination process
along the main path is approaching the end point, because the
branch nodes with large amplitudes are attached close to the
start point. The branch nodes attached to the main path nodes
near the end point will have the smallest amplitudes.

A special case is that the qumode on the main path has 3
branch qumodes, like qumode contains /7 shown in Fig. 7.
We will first map the larger one to the long branch, and the
smaller one to the short branch. In Fig. 7, we put lo; and loo
to long side and l53 to the short side.

B. Mapping via Permutation

The qumode mapping of GBS in this paper is highly
different from its counterpart in discrete-variable quantum
computing, the qubit mapping problem. The qubit mapping
usually involves determining the initial logical-to-physical
qubit layout and injecting SWAPs in the middle to resolve the
dependencies for each two-qubit gate. In contrast, our mapping
optimization will directly encode the mapping transition into
the unitary, the high-level algorithmic representation of the
linear interferometer. We identify that the qumode mapping in
GBS can be considered as adding permutation matrices before
and after the unitary. And the permutation operations can be
implemented without any additional gates.

We first show that performing the row permutation and
column permutation to the unitary encoded in the GBS in-
terferometer will not affect the final sampling result.

A matrix permutation can be expressed as:

Uper = P, UP,

where U is the original matrix, Upe, is the matrix after
permutation, P, and P, are row permutation and column
permutation, respectively. We can rewrite the matrix U as:

U= PTUpe, PT

In this case, if we want to encode unitary matrix U into the
device, we can first encode the permutation PCT , then encode
the unitary Upe,, and lastly encode another permutation PTT R
as shown in Fig. 8.

Since the state preparation and measurement in GBS usually
do mnot involve multi-qumode operations, P can be done
by changing the initial logical-to-physical qumode mapping.
Suppose the PT is given by the following permutation:

Cc
i — (1)

this relationship means we transfer the qumode ¢ into qumode
7e(), thus the physical qumode 7. (i) after PT contains the

qumode 7 before this permutation. As a result, to implement
the same transformation we can omit the permutation 7 and

268

Fig. 8. Mapping via Permutation

map logical qumode ¢ into the physical qumode 7. () directly,
as shown on the left of Fig. 8.

Similarly for the permutation PT, suppose we get output;
in the physical qumode ¢ after the unitary transformation
Uper, this output should lie in the physical qumode . (7)
if we execute permutation P!, where m, (i) stands for the
permutation given by PT. Thus, instead of implementing the
PT in the circuit, we can directly obtain the output of logical
qumode 7,.(7) from the output of physical qumode i.

In summary, to obtain the GBS execution results with U as
the linear interferometer from the GBS experiments using the
permuted unitary Uper, we just need to relabel the qumodes
before and after the GBS program based on the permutation
matrices PT and PT.

C. Two Properties of Elimination

We first introduce two mathematical properties of the elim-
ination process. These two properties will guide the design of
our qumode mapping algorithm. We use the example in Fig. 9.
Suppose a and ¢ have large amplitudes while b and d are much
smaller. We use ¢ to eliminate d in the last row.

First, the elimination will not change the sum of the squares
of the amplitudes in the region of a row containing all the
entries that have changed in the elimination. In Fig. 9, we
highlight the red region in the second row and the blue region
in the last row. In the example, changes only happen in the
first and third columns. The two highlighted regions contain
all the entries that have changed values in the transformation.

la? + b = [a]® + [b]?

Note that:
{ le|* +1d]* = [e]?

Thus the sum of the squares of the amplitudes in the high-
lighted region will not change.

This property allows us to focus on the amplitude in the
region as a whole instead of each entry’s specific amplitude
in this region. For example, in Fig. 9, when we decompose the
last row, we may accumulate the amplitude of the first entry
and second entry into the third entry. This process happens
in the blue region, and then the third entry and the last entry
can form a large-small pair to produce a small rotation angle.
Because the sum of the squares of the amplitudes in the blue
region is fixed, we can expect their amplitude accumulated as
a whole to be large without checking each individual entry.

Second, the elimination for one row does not change the
relative order of amplitudes of another row if the entries in
both two rows are in decreasing order and the generated Beam-
splitter rotation angle is small. That is, after the elimination,
the amplitudes of @ and ¢ are still larger than that of b. This

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

*
*
—p
*

* * | *

¢ | * *

Fig. 9. Property of elimination

property can be understood with the formula that represents
the elimination process:

{

The last equation gives the relationship that:

@ = ae~ cos(0) — bsin(6), b = ae~sin(f) + bcos(h)
¢ =ce " cos(f) — dsin(f), 0= ce *?sin(f) + dcos(f)

c

| tan ()]

which indicates 6 is small since we assume d is small and ¢
is large. From the first equation, we have the following:

a b
2> 12 s
121> |cos(®)] ~ | sin(®)

since ¢ and |§| are small, the amplitude of @ remains large.
Similarly, the amplitude of ¢ also remains large.
As for b, we can derive the inequality that:

b b
2 < Isi Z
=1 < [sin(9)] + || cos(9)|

Since ¢ and |2| are small, the amplitude of b remains small
compared with a.

This property is useful if we have a matrix in which the
large entries appear in the beginning, and the small entries
occur in the end for every row. Eliminating one of its rows
won’t change the order of absolute value in the remaining
rows. As a result, if we find a good mapping for one of its
rows (similar to the motivating example in Section VI-A), the
elimination of other rows can still benefit from this mapping
after the elimination of this row.

D. Finding the Permutations

We now describe our mapping method based on the prop-
erties and observations above. We explain it using the 24-
qumode elimination pattern in Fig. 7. In the elimination
pattern, there are 8§ qumodes on the main path and 16 qumodes
on the branches. Our objective is to map the large entries to
the main path as much as possible. The first property allows us
to consider the amplitudes in a region with multiple columns.
So our first step is to move large entries to the left side via the
column permutations. As depicted on the left of Fig. 10, we
vertically divide the unitary into multiple regions. The first
region is for the main path with 8 columns. The following
regions are for the branches and each region corresponds to
one branch. They usually have one or two columns because
the branches have one or two qumodes.

After the column partition, we will calculate the sum of
the squares of the amplitudes in the main path region in each
row as shown on the right of Fig. 10. There summations are
denoted as {«1,...,a24}. We denote the K-th largest one in

269

column permute

main path branEhes

large
entry

anwaad mou

A 24

regi:)n 1

1
region k

regi:)n 1 region k

Fig. 10. Column and row permutations

this array as an indicator (K can be around the size of half
of the unitary dimension). In practice, we select the value of
K that can generate more small Beamsplitter rotation angles
(6 < 0.1).This indicator generally represents the amplitudes of
the main path region entries of the largest K rows. Then we
try to exchange the columns in the main path region 1 with
the columns of other regions. If we find that one exchange can
increase the indicator, we will accept this exchange. Such a
process will merge the large entries to the main path and the
first few branches. With the recorded column exchanges, we
will generate the overall column permutation.

We then find the row permutation. Since we decompose the
unitary from the bottom row, we hope that rows with good
numerical properties (i.e., those with large entries in the main
path) are placed at the bottom. With those good rows at the
bottom, we can take advantage of the second property of the
elimination process mentioned in Section VI-C. These bottom
rows are first executed and the elimination of these rows will
not affect the good numerical properties of other rows. Overall,
our row permutation is generated by reordering the rows based
on the sum of the squares of the amplitudes in the main path
region of each row.

VII. PROBABILISTIC GATE DROPOUT

The optimizations above have increased the occurrence of
small rotation angles in the Beamsplitters. In this section,
we introduce the probabilistic gate dropout method that will
select a sequence of rotation angles in the decomposition of
unitary. The purpose of this probabilistic dropout method is
to drop those Beamsplitters with very small rotation angles
with high probabilities while those with rotation angles near
the threshold will be dropped more randomly to average over
the algorithmic errors incurred by the approximation.

Reconstructing High-Level Semantics One key advantage
of Bosehedral is that it can easily know the overall approx-
imation effect after some gate dropout by reconstructing the
high-level semantics from the decomposed gates. Recall the
unitary decomposition formula in (2). Once we drop some
Beamsplitters, we can reuse this formula to calculate the
approximated unitary by setting the #’s in the corresponding
MZI blocks to be 0. For example, if we drop the Beamplitter
in the second and the third MZI blocks. We can just use the
following formula to obtain the approximated unitary Ugapp
by setting 0y = 03 = 0:

Uapp = A (T (01,¢1) T (02 =0,¢2) T (03 =0,¢3)---)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

Note that all the matrices in this formula have size N x N
so that the overall approximated unitary can be calculated
efficiently. This allows us to easily know and tune how much
approximation we will have during compilation time.

We now introduce our gate dropout method which monitors
the overall approximation during dropout gate selection. After
the decomposition, we will have N (N —1)/2 MZI blocks with
their Beamsplitter rotation angles {61,0s,..., GN(N,U/Q}.
These angles will be selected using the following procedure.

1) We will select an accuracy threshold 7. Then we find the
angle threshold |©] such that if we omit the rotations in
which the angel’s absolute value is less than |O|, we can
get the approximation unitary whose accuracy is just
above the accuracy threshold 7. Suppose there are M
angles kept at this step.

All the angles are divided by |©]. We will select a
positive integer K and raise the absolute values of the
angles in the list to the K-th power.

{161/01%,102/01%, ... |0n(n=1)/2/O|*}

We normalize these new angles to construct a probability
distribution:

2)

3)

16:/0]%
SYYD 29, /0K

This distribution represents how likely an angle 6; will
be picked into matrix reconstruction. There are two
special cases. If K = 1, we are randomly sampling the
Beamsplitters by their rotation angle amplitudes. If K
goes to infinite (usually 100 is enough), we simply drop
the angles smaller than the angel threshold |©].

We select L as the number of iterations. We select M
angles by the probability distribution for each iteration
and reconstruct the approximation unitary matrix. We
denote 7x as the average fidelity of the L iterations.
We find the positive integer K such that this process can
maximize 7. In this case, we are able to maximize the
approximation accuracy with M MZI blocks.

After M, |0, and K are determined, Bosehedral will gener-
ate the GBS circuit for each sample. One GBS program may
require over thousands of repeated executions to obtain the
final distribution. In each execution, we will use the probability
distribution above to select M rotations and generate the GBS
circuit with their associated MZI blocks.

pi =

4)

5)

VIII. EVALUATION

In this section, we evaluate Bosehedral by comparing with
state-of-the-art baselines, analyze the effects of each optimiza-
tion step, and study the end-to-end application performance.

A. Experiments Setup

Experiment Configurations: To illustrate the effect of each
optimization step, we design four experiment configurations.
1. ‘Baseline’ is to use the vanilla linear interferometer unitary
decomposition [15] without any optimization. 2. ‘Rot-Cut’
is to directly drop gates under the baseline decomposition

270

TABLE I
BENCHMARK INFORMATION
Benchmark | Qumode# | Squeezing | Displacement | Phase Shifter | Beamsplitter
DS 24 24 0 300 276
MC 24 24 0 300 276
GS 24 24 0 300 276
VS 24 48 24 0 552

to reach a given unitary approximation rate. 3. ‘Decomp-
Opt’ is to only use our optimized decomposition pattern with
unitary approximation without qumode mapping optimization.
4. ‘Full-Opt’ is to apply all Bosehedral optimizations.

Hardware Configuration: Similar to the qubit-based su-
perconducting quantum architectures, two-dimensional lat-
tice coupling is widely adopted in both recent experimen-
tal progress [49] and schematic design of superconducting
Bosonic processors [10]. We select three different 2D lattices:
6x6,5x7,and 3 x 8.

Benchmarks: We select four different typical GBS applica-
tions, Dense Subgraph (DS), Maximum Clique (MC), Graph
Similarity (GS), and Molecule Vibration Spectra Simulation
(VS), with four program instances for each benchmark. For
DS, MC, and GS, we generate four random graphs of 24 nodes
for each application and add edges between each pair of nodes
with a probability of 0.7 to 0.9. The numbers of different types
of gates for the benchmarks are listed in Table 1. Note that for
GBS programs, the numbers of gates mostly depend on the
number of qumodes. For VS, we select the molecule Pyrrole
using the data from Strawberry Fields [24]. We simulate its
vibrational spectra at four temperatures (1000K, 750K, 500K,
and 250K). All the programs in our benchmarks have 24
qumodes. This scale is limited by the classical simulator ca-
pability. One 24-qumode GBS experiment simulation requires
a few CPU hours, and we report the simulation results of over
1000 GBS experiments in this paper.

Metrics: We use the Jensen-Shannon Divergence (JSD) [2]
between the output distribution of the different experiment
configurations and the standard output distribution as an
application-independent metric to evaluate the improvement
of Bosehedral. The standard distribution of each benchmark
is generated by noise-free simulation of the original GBS
program. The compilation effect is indicated by the fidelity
of the approximated unitary matrix of the linear interfer-
ometer and the number of gates. The fidelity is defined as
tr(Uqpp - UT)/N for N-qumode programs where U is the
original N x N unitary and Uy, is the approximated unitary.
We also adopt application-specific metrics at the end to provide
a more intuitive understanding of the end-to-end benefit of
Bosehedral.

Implementation: We implemented Bosehedral in Python
and leveraged basic infrastructure in Strawberry Fields [24].
Our noisy GBS simulation experiments are executed on the
‘Gaussian’ simulator backend in Strawberry Fields [24]. To
the best of our knowledge, this is already the most advanced
simulator available which can allow us to accurately simulate
24-qumode GBS experiments with noise. We simulate the
gate photon loss error, which is the most significant error in

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

2 dense subgraph max clique graph similarity ~ vibration simulation
(.03 0.15 0.30 h
Q
£02 0.10 0.20
Q
201 005 0.10
g 03 0.15 0.10
S0.2 28
= 0.10 0.05 33
0.05 0.00 gz
) > 5B
B9 0.15 =4/0.02 S 2
& 3 3
']
0.10 0.01 z8
0.05 =
0.15 0.20 h
{/I
0.2 e
a0 - 0.15
T
01 A= 0.10
L A 0.05 v o
- S
o2 %015 71020 § &
. e -
e " Joto| EEetT 0.15 > ER
5 0.1 “in 0.10 & =
o 0.05 f S
5 o
02 *lo.15 —§15)0.20 z
% ' " oo — 0.15 C
& 0.1 “E 0.10
e 0.05 ./'/. J
002 006 010 002 006 010 002 006 010 002 006 010 |

—>— Baseline —— Rot-Cut

Decomp-Opt —=— Full-Opt

Fig. 11. Overall GBS execution quality improvement with Bosehedral optimizations

TABLE 1T
BEAMSPLITTER REDUCTION AND APPROXIMATED UNITARY FIDELITY

Benchmark & Fidelity | Rot-Cut | Decomp-Opt | Full-Opt (Avg. Beamsplitter #)
DS, 99.90% 4.3% 16.8% 28.8% (197)
MC, 99.96% 5.0% 18.4% 24.1% (210)
GS, 99.90% 3.4% 18.8% 26.0% (204)
VS, 98.00% 11.8% 34.7% 39.6% (333)

Bosonic hardware [11, 27] and currently the only error type
supported in currently available simulator. Other types of error
include dephasing [27] and thermal noise [4]. Their error rates
are usually only about 10% of the photon loss error rate on
average [27] while they are not covered by photon loss. We
set the photon loss error rate from 0.01 to 0.1 based on recent
experimental data [13, 32]. Each GBS experiment is sampled
by 10000 times. In the probabilistic gate dropout, the accuracy
threshold 7 is set to be from 98.00% to 99.96%, then the
Beamsplitter count M and angle threshold |©| are determined
as described in Section VII. The power index K is decided by
repeating select M Beamsplitters and calculating the average
unitary approximation fidelity in 10000 samples, and its value
ranges from 20 to 100. The experiments are executed on a
server with 16 CPU cores and 128GB memory.

B. Overall Improvement

We first apply Bosehedral to approximate the linear inter-
ferometer to a certain fidelity for all the four benchmarks
on the 6 x 6 architecture, and the results are the first four
rows in Fig. 11. The X-axis is the loss rate and the Y-axis
is the Jensen-Shannon Divergence (JSD) between the output
distribution of the standard output and the distribution of
the corresponding experimental configuration. Each column
represents one application and has four program instances

271

for each. Table II shows the fidelities of the approximated
unitaries and the gate count reduction Bosehedral is able to
achieve. A small JSD will indicate better performance. It can
be observed that as the loss increases, the JSD of ‘Full-Opt’
grows much slower than that of ‘Baseline’. On average, the
JSD of ‘Full-Opt’ can be reduced by 31.6%, 33.8%, 12.6%,
26.4%, compared with ‘Baseline’ for the DS, MC, GS, and
VS benchmarks, respectively. The great improvement comes
from the fact that Bosehedral can approximate the linear
interferometer accurately using much fewer gates. As shown
in Table II, ‘Full-Opt’ can reduce 28.8%, 24.1%, 26.0%,
39.6% Beamsplitters but still maintain the fidelity of the linear
interferometer unitary over 99.90%, 99.96%, 99.90%, 98.00%,
respectively. The average remaining Beamsplitter count for
‘Full-Opt’ is also in Table II. Note that the single-qumode
gates are not changed in Bosehedral. In summary, with a
tiny algorithmic error introduced in the unitary approximation,
Bosehedral can improve the overall performance by largely
mitigating the hardware error.

Importance of new decomposition and mapping: It can
be observed that directly dropping the gates can hardly provide
any improvement as the JSDs of ‘Baseline’ and Rot-Cut’ are
very close (shown in Fig. 11). The Beamsplitter reduction is
also very small (6.1% on average in Table II), indicating a
large hardware error. These results suggest that the optimized
decomposition pattern and qumode mapping is necessary to
enable the optimizations in Bosehedral.

Effect of Each Step: The effect of the decomposition
pattern optimization can be obtained by comparing ‘Decomp-
Opt’ against ‘Baseline’. Fig. 11 shows that ‘Decomp-Opt’
can reduce the JSDs by 21.2%, 16.3%, 7.2%, 19.5%. Table II

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

X-axis: Loss Y-axis: Success Probability
0.10 0.03
(a) 0.05 ggi
-y g .
0.00 .
. 0.10
0.02 \ 0.04
(®) 0.01
i\- 0.02
0.00 < % mn 4| 0.00
0.02 0.06 0.10 0.02 0.06 0.10
—%— baseline —#— full-opt
® G1_Baseline B G1_Full-Opt
©® G2_Baseline B G2_Full-Opt ol
Fse‘“‘“e 0.17 0.17
pace o = 0.16
u
" 3 0.05
00 oV 0
© O s 0

300 1000K 750K
300—
=
1507 150~ 8
0 0 Lo pb .
W, Correlation: -0.23| 300~ Correlation: 0.38
200~ M o
| B
(¢
100 150T 5
0 04 Logp | s

100-

Correlation: 0.95

0 <, % [y [o <, ¥ [y &
o, %o, %, % o, %o, %,
% % D % % % D %
(d) Energy (cm™1)

Fig. 12. End-to-end performance improvement. (a) Dense Subgraph, (b) Maximum Clique, (c¢) Graph Similarity, (d) Vibration Spectra

shows that ‘Decomp-Opt’ can reduce the gate count by 16.8%,
18.4%, 18.8%, 34.7%. The effect of qumode mapping can
be observed when comparing ‘Full-Opt and ‘Decomp-Opt’.
At the given approximated unitary fidelities, our logical-to-
physical qumode mapping can further reduce the JSD by
10.4%, 17.5%, 5.4%, and 6.9% on average for the four
benchmarks. Table II also shows that the Beamsplitter count
reduction is increased by 12.0%, 5.7%, 7.2%, 4.9% (7.4% on
average), respectively. The contribution breakdown between
the decomposition optimization and the qumode mapping
optimization is about 1.6 : 1 and 3.0 : 1 by comparing the
JSD and Beamsplitter count reduction, respectively.

C. Hardware Structure Impact

We also studied the impact of different hardware coupling
structures, and the results are in the last three rows in Fig. 11.
Each column represents one application, and each row repre-
sents one hardware structure. We select one program instance
for each application (one random graph for DS, MC, GS, and
the 750K temperature simulation for VS). The results of other
program instances of one application are similar. It can be
observed that the improvement of Bosehedral is not affected
by changing to a different 2D lattice structure. On the 5 x 7
and 3 x 8 structures, the JSDs are reduced by 36.6%, 25.1%,
16.1%, 28.9% for the four benchmarks, which is similar to
the improvement on 6 X 6 structure.

D. End-to-End Application Performance Improvement

In order to better understand the impact of Bosehedral
optimizations on the end-to-end application performance, we
append the post-GBS data processing for all the benchmarks
and evaluate them case-by-case. The details of the post-
processing procedures for the selected benchmarks are out-
of-scope, but they can be found in [11].

Dense Subgraph: The GBS output will directly indicate
a subgraph, and we measure the probability of successfully
finding the densest subgraph of which the number of nodes is

272

greater or equal to 10 in two of our random graphs, and the
results are in Fig. 12 (a). The end-to-end success probability is
increased by 64.1% on average after Bosehedral optimizations.

Maximum Clique: The GBS output will serve as an initial
trial in a follow-up clique finding subroutine. We measure the
probability of successfully finding the clique whose nodes are
greater or equal to 10 in two random graphs, and the results are
in Fig. 12 (b). The end-to-end success probability is increased
by 72.9% on average after using Bosehedral.

Graph Similarity: The sampled output distribution will
be converted into graph features. We randomly generate two
highly-different graphs as two seeds and then generate two
sets of similar graphs by adding small modifications to the
two different seeds. Fig. 12 (c) shows the feature vectors in
the feature space sampled from the graphs in the two similarity
sets G1 and G2. On the left are the feature vectors obtained
from ‘Baseline’. On the right are the feature vectors obtained
with ‘Full-Opt’. We can observe that the feature vectors are
almost mixed for ‘Baseline’ as the significant photon loss
error tends to lose information about the sampled graphs.
But for the feature vectors of ‘Full-Opt’, they remain easily
distinguishable for two clusters. We measure the distance
between the two clusters’ central positions in Fig. 12 (c).
It shows that the distance is increased by 135% after using
Bosehedral.

Vibration Spectra: We calculate the sampled molecule
vibrational spectra using the GBS output. Fig. 12 (d) shows the
simulated vibrational spectra at 1000K and 750K with loss at
0.02. The brown bars in the plot are the histogram of sampled
energies and the green curve above is a Lorentzian broadening
of the spectrum, which is a common practice in visualizing
such a spectrum [11]. The first row is the standard vibrational
spectra. The second row is the spectra obtained from the
‘Baseline’ configuration. The third row is the spectra obtained
from ‘Full-Opt’. Compared with ‘Baseline’, the results of
‘Full-Opt’ are much more similar to the ideal spectra for both

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

TABLE IIT
PERFORMANCE AT DIFFERENT PROBLEM SCALES (FIDELITY=0.95)

Qumode # 10 15 20 60 100 200 500
BS Gate # drop | 29.33% | 34.9% | 31.6% | 27.6% | 271.5% | 27.3% | 27.1%
Decomp time 0.013s | 0.033s | 0.056s | 0.67s 2.4s 21.4s | 615.6s
Total time 0.016s | 0.039s | 0.067s | 0.85s 3.3s 32.3s | 1071.1s

temperature settings. Quantitatively, the Pearson correlation
coefficients between the spectra generated by ‘Baseline’ and
the standard spectra are -0.23, 0.38 at 1000K and 750K,
and the results of ‘Full-Opt’ have much higher correlation
coefficients 0.89 and 0.95. A correlation coefficient closer to
1 is better. The spectra of the ‘Baseline’ tend to shift to the
low energy side due to the photon loss during the simulation.

E. Scalability Study

Although our GBS simulation is limited within 24 qumodes
due to the complexity of classically simulating GBS, Bosehe-
dral comes with great scalability and can be applied to much
larger GBS programs. All the program analysis and compi-
lation are performed on the high-level unitary representation
of the linear interferometer, whose size grows linearly as the
number of qumodes increases. The most time-consuming step
is the matrix decomposition that has a complexity of O(N?3)
where N is the number of qumodes. Here we select seven
numbers of qumodes from 10 to 500. For each qumode count
N, we randomly generate five unitaries as the interferometer,
and then apply Bosehedral to optimize it with a unitary
approximation fidelity at 95% on a 3 x % device. Table III
shows the average results, including the gate count reduction,
the decomposition time, and the total time, of applying full
optimization on five random unitaries. Even for 500-qumode
programs, Bosehedral can still reduce the number of gates by
27.1% and the overall compilation time is about 18 minutes.

E. Discussion on Approximated Compilation

To summarize, Bosehedral optimizes the qumode gate de-
composition and logical-to-physical qumode mapping to gen-
erate more BS gates with small rotations. Then these gates
with small rotation parameters can be pruned.

Result of Approximation. The result of the approximation
technique with gate pruning is that the hardware errors asso-
ciated with the pruned gates are eliminated. The semantics of
the original GBS program have also changed since the unitary
of the linear interferometer is approximated. But the semantics
are only slightly changed because we only remove gates with
small rotation parameters and these gates are very close to the
identity. Overall, the benefit from gate error reduction is larger
than the side effect of approximation, and the final execution
fidelity can be improved, as reflected by the JSD decrease.

Tolerable Approximation Ratio. The approximation ratio
that can be tolerated is mostly determined by the desired
fidelity of the specific application. For DS and MC tasks, if a
suboptimal sampled graph is acceptable then a higher approx-
imation ratio can be tolerated. For GS and VS, the tolerable
approximation ratio is determined by the desired robustness of
the follow-up classifier and the required simulating accuracy,
respectively.

273

Tolerable Gate Pruning. First, it is obvious that the toler-
able gate pruning is directly related to the tolerable approxi-
mation ratio. A higher approximation ratio can naturally lead
to more gate pruning. Second, the entry amplitude distribution
of the linear interferometer unitary, usually determined by the
application, will affect how many gates we can prune.

In addition to the effect of the applications, the hardware
coupling structure will also affect the gate pruning because
different hardware can support different elimination patterns.
Recall that in the elimination template in Fig. 5, each node
on main path has two branches, which means we can have
two quantum gates with small rotation angles together with
one quantum gate with big rotation angle. Then the upper
bound of gate pruning ratio in this pattern template is around
2/3 because we always need to keep the gates in the main
path. But if we have a fully connected qumode device, we
can freely apply the BS gate on arbitrary two qumodes to
create much more small rotation angles and the upper bound
of gate pruning can be much higher (in our preliminary study
we can reach over 0.9).

IX. RELATED WORK

Bosonic Quantum Software Frameworks There have
been several early efforts on the software framework for
programming and compilation of Bosonic QC, such as the
Xanadu’s Strawberry Fields [24], Quandela’s Perceval [35],
and Bosonic Qiskit [44]. These works provide basic pro-
gramming infrastructures for Bosonic QC but with almost no
optimizations to the best of our knowledge. In addition, [23]
studied the low-level pulse compilation for individual qumode
gates with analytical solutions for a single superconducting
qubit-qumode pair. [14] designed a language to describe the
linear optic quantum circuit. Unfortunately, none of them is
able to simplify a Bosonic quantum program.

Linear Interferometer Implementation To help design the
linear optics experiments, previous works [15, 41] have studied
how to implement a linear interferometer with available optics
instruments. Their solutions later serve as the linear inter-
ferometer implementation methods in Bosonic QC software
frameworks like the Strawberry Fields [24] and Perceval [35].
As introduced in Section V-A (Fig. 5), they use a chain-
structure elimination pattern with no remapping where it is
hard to generate Beamsplitters with small rotations.

Approximated and Topology-Aware Quantum Compi-
lation The approximated or topology-aware compilation has
been widely explored in qubit-based quantum computing. No-
table examples include a series of works [16, 38, 51, 53, 55] in
the BQSKkit project [54] as well as some other works [17, 28—
30, 33, 36]. However, due to the difficulty in evaluating
the gate matrices when the number of qubits is large, their
approximation calculation and topology-aware resynthesis are
usually limited to small-scale circuit blocks at each step
or special types of circuits like Hamiltonian simulation. In
summary, these approaches targeting qubit-based QC are not
applicable in Bosonic QC because of the built-in infinite-
dimensional state spaces.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

APPENDIX
A. Abstract

This artifact contains the code of the core algorithm of
Bosehedral compiler and related experiments to reproduce our
key results and figures, including Tables II, III and all sub-
figures in Figures 11 and 12. The artifact and experiments
require an x86-64 Linux server with at least 32GB RAM
and 50GB available disk space. Multiple machines are recom-
mended to prepare to obtain all results in Figures 11 and 12 in
a reasonable amount of time. We split sub-figures into different
files for possible parallelization.

B. Artifact check-list (meta-information)

o Algorithm: Our key algorithm, the Bosehedral compiler frame-
work, is in each notebook.

o Program: Our simulation programs for different experiments
are prepared in each notebook.

o Run-time environment: Python 3.10, Jupyter Notebook

o Hardware: an x86-64 Linux server with at least 32GB RAM
and 50GB disk space

o Metrics: Unitary approximation fidelity and Jensen-Shannon

divergence

Experiments: Tables II, III and Figures 11, 12

Disk space required: 50GB

Time needed to prepare workflow: 10 minutes

Time needed to complete experiments: 2 weeks

Publicly available: Yes

Code licenses: MIT

Workflow framework: Python, StrawberryFields, Jupyter note-

book

o Archived: 10.5281/zenodo.10895187

C. Description

1) How to access: Our artifact is published on GitHub
https://github.com/JunyuZhou2002/Compiler-Optimization-
for-Bosonic-Quantum-Computing.git or through archive
https://doi.org/10.5281/zenodo.10895187.

2) Hardware dependencies: A Linux server with a single
CPU can execute our artifact. RAM should be 32GB or
above, and available disk space should be 50GB or more.
However, since most experiments are independent and to avoid
long execution time, we strongly recommended preparing
multiple machines with powerful CPUs to evaluate multiple
experiments simultaneously.

3) Software dependencies: Python 3.10 is required to run
our experiments. Linux is recommended since some Python
packages may only work under Linux. All software depen-
dencies are included in the requirements.txt.

D. Installation

After cloning or downloading our artifact, enter the folder. It
is recommended to work inside a virtual environment to avoid
conflicts. Use the following commands to install the necessary
Python packages for our experiment:

python3 -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt

274

E. Experiment workflow

After downloading our artifact and preparing the virtual en-
vironment following installation instructions, you can open the
Jupyter Notebooks in the virtual environment to reproduce our
results. Notebooks are carefully split, and the order does not
matter. The correspondents between experiments and artifacts
are in Tables IV and V:

TABLE IV
CORRESPONDENTS BETWEEN FIGURES AND ARTIFACTS
Figure Sub-Figure Artifacts
dense subgraph src/dense-subgraph/*
Figure 11 max ‘clique‘ src/max—cliqug/* .
graph similarity src/graph-similarity/*
vibration simulation | src/vibration-spectra/*
(a) left src/dense—-graph/4
(a) right src/dense—-graph/2
(b) left src/max—-clique/4
. (b) right src/max-clique/3
Figure 12 (c) left src/graph-similarity/1&4
(c) right src/graph-similarity/1&4
(d) left src/vibration-spectra/l
(d) right src/vibration-spectra/4

TABLE V
CORRESPONDENTS BETWEEN TABLES AND ARTIFACTS
Table Artifacts
Table Il | src/fidelity/fidelity.ipynb
Table IIl | src/scalability/scale.ipynb

FE. Evaluation and expected results

Notebooks plot the exact sub-figures as in our paper, except
for some styling differences. Tables II and III are directly
printed.

G. Experiments Customization

Due to internal issues with OpenBLAS, we limited its thread
number to 8 at the beginning of each notebook. However,
you could set default n_threads to a larger number
for higher speedup if it does not cause errors.

H. Notes

It is recommended to simultaneously run multiple experi-
ments on multiple machines since simulating GBS classically
consumes vast amounts of time.

REFERENCES

“Careers // quantum circuits, inc.” https://quantumcircuits.com/careers,
(Accessed on 11/21/2023).

“Jensen—shannon divergence - wikipedia,” https://en.wikipedia.org/wiki/
Jensen%E2%80%93Shannon_ divergence, (Accessed on 08/06/2023).
S. Aaronson and A. Arkhipov, “The computational complexity of linear
optics,” in Proceedings of the Forty-Third Annual ACM Symposium
on Theory of Computing, ser. STOC ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 333-342. [Online].
Available: https://doi.org/10.1145/1993636.1993682

E. J. Anderson and B. A. Bash, “Fundamental limits of thermal-
noise lossy bosonic multiple access channel,” in 2022 IEEE Globecom
Workshops (GC Wkshps). 1EEE, 2022, pp. 1-6.

(11
(21

(41

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. M. Arrazola, V. Bergholm, K. Bradler, T. R. Bromley, M. J. Collins,
I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal,
T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran,
S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti,
B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada,
A. Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton,
A. Szava, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and
Zhang, “Quantum circuits with many photons on a programmable
nanophotonic chip,” Nature, vol. 591, no. 7848, pp. 54-60, Mar 2021.
[Online]. Available: https://doi.org/10.1038/s41586-021-03202- 1

J. M. Arrazola and T. R. Bromley, “Using gaussian boson sampling to
find dense subgraphs,” Physical review letters, vol. 121, no. 3, p. 030503,
2018.

J. M. Arrazola, T. R. Bromley, and P. Rebentrost, “Quantum approximate
optimization with gaussian boson sampling,” Physical Review A, vol. 98,
no. 1, p. 012322, 2018.

L. Banchi, M. Fingerhuth, T. Babej, C. Ing, and J. M. Arrazola,
“Molecular docking with gaussian boson sampling,” Science Advances,
vol. 6, no. 23, p. eaax1950, 2020. [Online]. Available: https:
/Iwww.science.org/doi/abs/10.1126/sciadv.aax1950

A. Bjorklund, B. Gupt, and N. Quesada, “A faster hafnian formula for
complex matrices and its benchmarking on a supercomputer,” Journal
of Experimental Algorithmics (JEA), vol. 24, pp. 1-17, 2019.

A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, “Circuit
quantum electrodynamics,” Rev. Mod. Phys., vol. 93, p. 025005, May
2021. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.
93.025005

T. R. Bromley, J. M. Arrazola, S. Jahangiri, J. Izaac, N. Quesada,
A. D. Gran, M. Schuld, J. Swinarton, Z. Zabaneh, and N. Killoran,
“Applications of near-term photonic quantum computers: software
and algorithms,” Quantum Science and Technology, vol. 5, no. 3, p.
034010, may 2020. [Online]. Available: https://dx.doi.org/10.1088/2058-
9565/ab8504

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lépez, N. J.
Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma,
M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews,
T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,”
Science, vol. 349, no. 6249, pp. 711-716, 2015. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.aab3642

B. J. Chapman, S. J. de Graaf, S. H. Xue, Y. Zhang, J. Teoh, J. C.
Curtis, T. Tsunoda, A. Eickbusch, A. P. Read, A. Koottandavida, S. O.
Mundhada, L. Frunzio, M. Devoret, S. Girvin, and R. Schoelkopf,
“High-on-off-ratio beam-splitter interaction for gates on bosonically
encoded qubits,” PRX Quantum, vol. 4, p. 020355, Jun 2023. [Online].
Available: https:/link.aps.org/doi/10.1103/PRXQuantum.4.020355

A. Clément, N. Heurtel, S. Mansfield, S. Perdrix, and B. Valiron,
“LO_v-Calculus: A Graphical Language for Linear Optical Quantum
Circuits,” in 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), ser. Leibniz
International Proceedings in Informatics (LIPIcs), S. Szeider, R. Ganian,
and A. Silva, Eds., vol. 241. Dagstuhl, Germany: Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, 2022, pp. 35:1-35:16. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2022/16833

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and
I. A. Walmsley, “Optimal design for universal multiport interferometers,”
Optica, vol. 3, no. 12, pp. 1460-1465, Dec 2016. [Online]. Available:
https://opg.optica.org/optica/abstract.cfm?URI=optica-3-12- 1460

M. G. Davis, E. Smith, A. Tudor, K. Sen, I Siddigi, and
C. Iancu, “Towards optimal topology aware quantum circuit synthesis,”
in 2020 IEEE International Conference on Quantum Computing
and Engineering (QCE), 2020, pp. 223-234. [Online]. Available:
https://doi.org/10.1109/QCE49297.2020.00036

A. M.-v. de Griend and R. Duncan, “Architecture-aware synthesis of
phase polynomials for nisq devices,” arXiv preprint arXiv:2004.06052,
2020. [Online]. Available: https://arxiv.org/abs/2004.06052

J. P. Dowling, “Quantum optical metrology—the lowdown on high-n00n
states,” Contemporary physics, vol. 49, no. 2, pp. 125-143, 2008.

P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown, K. R. Brown, and
F. T. Chong, “Asymptotic improvements to quantum circuits via qutrits,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, pp. 554-566.

C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn,
and I. Jex, “Gaussian boson sampling,” Phys. Rev. Lett., vol. 119, p.

=<

[21]

[22]

(23]

[24]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

170501, Oct 2017. [Online]. Available: https:/link.aps.org/doi/10.1103/
PhysRevLett.119.170501

J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, and
A. Aspuru-Guzik, “Boson sampling for molecular vibronic spectra,”
Nature Photonics, vol. 9, no. 9, pp. 615-620, aug 2015. [Online].
Available: https://doi.org/10.1038%2Fnphoton.2015.153

S. Jahangiri, J. M. Arrazola, N. Quesada, and N. Killoran, “Point
processes with gaussian boson sampling,” Phys. Rev. E, vol. 101, p.
022134, Feb 2020. [Online]. Available: https:/link.aps.org/doi/10.1103/
PhysRevE.101.022134

C. Kang, M. B. Soley, E. Crane, S. Girvin, and N. Wiebe, “Leveraging
hamiltonian simulation techniques to compile operations on bosonic
devices,” arXiv preprint arXiv:2303.15542, 2023. [Online]. Available:
https://arxiv.org/abs/2303.15542

N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and
C. Weedbrook, “Strawberry fields: A software platform for photonic
quantum computing,” Quantum, vol. 3, p. 129, mar 2019. [Online].
Available: https://doi.org/10.22331%2Fq-2019-03-11-129

R. Kruse, C. S. Hamilton, L. Sansoni, S. Barkhofen, C. Silberhorn, and
I. Jex, “Detailed study of gaussian boson sampling,” Physical Review A,
vol. 100, no. 3, p. 032326, 2019.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P.
Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbi-
eri et al., “Towards quantum chemistry on a quantum computer,” Nature
chemistry, vol. 2, no. 2, pp. 106-111, 2010.

P. Leviant, Q. Xu, L. Jiang, and S. Rosenblum, “Quantum capacity and
codes for the bosonic loss-dephasing channel,” Quantum, vol. 6, p. 821,
2022.

G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1001-1014.
[Online]. Available: https://doi.org/10.1145/3297858.3304023

G. Li, Y. Shi, and A. Javadi-Abhari, “Software-hardware co-optimization
for computational chemistry on superconducting quantum processors,”
in Proceedings of the 48th Annual International Symposium on
Computer Architecture, ser. ISCA *21. IEEE Press, 2021, p. 832-845.
[Online]. Available: https://doi.org/10.1109/ISCA52012.2021.00070

G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and
Y. Xie, “Paulihedral: A generalized block-wise compiler optimization
framework for quantum simulation kernels,” in Proceedings of the
27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
554-569. [Online]. Available: https://doi.org/10.1145/3503222.3507715
S. Lloyd and S. L. Braunstein, “Quantum computation over continuous
variables,” Phys. Rev. Lett., vol. 82, pp. 1784-1787, Feb 1999. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.82.1784

Y. Lu, A. Maiti, J. W. Garmon, S. Ganjam, Y. Zhang, J. Claes,
L. Frunzio, S. Girvin, and R. J. Schoelkopf, “A high-fidelity
microwave beamsplitter with a parity-protected converter,” arXiv
preprint arXiv:2303.00959, 2023. [Online]. Available: https://arxiv.org/
abs/2303.00959

L. Madden and A. Simonetto, “Best approximate quantum compiling
problems,” ACM Transactions on Quantum Computing, vol. 3, no. 2,
mar 2022. [Online]. Available: https://doi.org/10.1145/3505181

L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent,
J. E F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. I.
Collins, A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti,
I. Dhand, Z. Vernon, N. Quesada, and J. Lavoie, “Quantum
computational advantage with a programmable photonic processor,”
Nature, vol. 606, no. 7912, pp. 75-81, Jun 2022. [Online]. Available:
https://doi.org/10.1038/s41586-022-04725-x

N. Maring, A. Fyrillas, M. Pont, E. Ivanov, P. Stepanov, N. Margaria,
W. Hease, A. Pishchagin, T. H. Au, S. Boissier, E. Bertasi, A. Baert,
M. Valdivia, M. Billard, O. Acar, A. Brieussel, R. Mezher, S. C.
Wein, A. Salavrakos, P. Sinnott, D. A. Fioretto, P.-E. Emeriau,
N. Belabas, S. Mansfield, P. Senellart, J. Senellart, and N. Somaschi,
“A general-purpose single-photon-based quantum computing platform,”
2023. [Online]. Available: https://arxiv.org/abs/2306.00874

S. Martiel and T. G. d. Brugiere, “Architecture aware compilation of
quantum circuits via lazy synthesis,” Quantum, vol. 6, p. 729, Jun.
2022. [Online]. Available: https://doi.org/10.22331/q-2022-06-07-729

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[406]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

A. Narla, S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, E. Zalys-
Geller, S. O. Mundhada, W. Pfaff, L. Frunzio, R. J. Schoelkopf,
and M. H. Devoret, “Robust concurrent remote entanglement between
two superconducting qubits,” Phys. Rev. X, vol. 6, p. 031036, Sep
2016. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.6.
031036

T. Patel, E. Younis, C. Iancu, W. de Jong, and D. Tiwari, “Quest:
Systematically approximating quantum circuits for higher output
fidelity,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 514-528. [Online]. Available:
https://doi.org/10.1145/3503222.3507739

Qiskit contributors, “Qiskit: An open-source framework for quantum
computing,” 2023. [Online]. Available: https://doi.org/10.5281/zenodo.
2573505

J. Rarity, P. Tapster, E. Jakeman, T. Larchuk, R. Campos, M. Teich, and
B. Saleh, “Two-photon interference in a mach-zehnder interferometer,”
Physical review letters, vol. 65, no. 11, p. 1348, 1990.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental
realization of any discrete unitary operator,” Phys. Rev. Lett., vol. 73,
pp. 58-61, Jul 1994. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevLett.73.58

M. Schuld, K. Bradler, R. Israel, D. Su, and B. Gupt, “Measuring
the similarity of graphs with a gaussian boson sampler,” Physical
Review A, vol. 101, no. 3, mar 2020. [Online]. Available: https:
//doi.org/10.1103%2Fphysreva.101.032314

S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t|ket): a retargetable compiler for nisq devices,” Quantum
Science and Technology, vol. 6, no. 1, p. 014003, nov 2020. [Online].
Available: https://dx.doi.org/10.1088/2058-9565/ab8¢92

T. J. Stavenger, E. Crane, K. C. Smith, C. T. Kang, S. M. Girvin, and
N. Wiebe, “C2qa - bosonic qiskit,” in 2022 IEEE High Performance
Extreme Computing Conference (HPEC), 2022, pp. 1-8. [Online].
Available: https://doi.org/10.1109/HPEC55821.2022.9926318

C. Taballione, M. C. Anguita, M. de Goede, P. Venderbosch,
B. Kassenberg, H. Snijders, N. Kannan, W. L. Vleeshouwers, D. Smith,
J. P. Epping, R. van der Meer, P. W. H. Pinkse, H. van den
Vlekkert, and J. J. Renema, “20-Mode Universal Quantum Photonic
Processor,” Quantum, vol. 7, p. 1071, Aug. 2023. [Online]. Available:
https://doi.org/10.22331/q-2023-08-01-1071

M. Takeoka, S. Guha, and M. M. Wilde, “Fundamental rate-loss tradeoff
for optical quantum key distribution,” Nature communications, vol. 5,
no. 1, p. 5235, 2014.

S-H. Tan and P. P. Rohde, “The resurgence of the linear
optics quantum interferometer — recent advances & applications,”
Reviews in Physics, vol. 4, p. 100030, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405428318300431
L. G. Valiant, “The complexity of computing the permanent,” Theoret-
ical computer science, vol. 8, no. 2, pp. 189-201, 1979.

C. S. Wang, J. C. Curtis, B. J. Lester, Y. Zhang, Y. Y. Gao, J. Freeze,
V. S. Batista, P. H. Vaccaro, I. L. Chuang, L. Frunzio, L. Jiang,
S. M. Girvin, and R. J. Schoelkopf, “Efficient multiphoton sampling of
molecular vibronic spectra on a superconducting bosonic processor,”
Phys. Rev. X, vol. 10, p. 021060, Jun 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.10.021060

C. Weedbrook, S. Pirandola, R. Garcia-Patrén, N. J. Cerf, T. C. Ralph,
J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev.
Mod. Phys., vol. 84, pp. 621-669, May 2012. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.84.621

M. Weiden, J. Kalloor, J. Kubiatowicz, E. Younis, and C. Iancu,
“Wide quantum circuit optimization with topology aware synthesis,”
in 2022 IEEE/ACM Third International Workshop on Quantum
Computing Software (QCS), 2022, pp. 1-11. [Online]. Available:
https://doi.org/10.1109/QCS56647.2022.00006

Wikipedia contributors, “Polynomial hierarchy — Wikipedia,
the free encyclopedia,” 2024, [Online; accessed 3-April-
2024]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Polynomial_hierarchy&oldid=1196336821

X.-C. Wu, M. G. Davis, F. T. Chong, and C. Iancu, “Reoptimization
of quantum circuits via hierarchical synthesis,” in 2021 International
Conference on Rebooting Computing (ICRC), 2021, pp. 35-46.
[Online]. Available: https://10.1109/ICRC53822.2021.00016

[54]

[55]

[56]

[57]

[58]

E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, E. Smith, and USDOE,
“Berkeley quantum synthesis toolkit (bgskit) v1,” 4 2021. [Online].
Available: https://www.osti.gov//servlets/purl/1785933

E. Younis, K. Sen, K. Yelick, and C. Iancu, “Qfast: Conflating search
and numerical optimization for scalable quantum circuit synthesis,”
in 2021 IEEE International Conference on Quantum Computing
and Engineering (QCE), 2021, pp. 232-243. [Online]. Available:
https://doi.org/10.1109/QCE52317.2021.00041

H. Zhang, A. Wu, Y. Wang, G. Li, H. Shapourian, A. Shabani,
and Y. Ding, “Oneq: A compilation framework for photonic one-way
quantum computation,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, 2023, pp. 1-14.

H.-S. Zhong, Y.-H. Deng, J. Qin, H. Wang, M.-C. Chen, L.-C. Peng,
Y.-H. Luo, D. Wu, S.-Q. Gong, H. Su, Y. Hu, P. Hu, X.-Y. Yang, W.-J.
Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li,
N.-L. Liu, J. J. Renema, C.-Y. Lu, and J.-W. Pan, “Phase-programmable
gaussian boson sampling using stimulated squeezed light,” Phys.
Rev. Lett., vol. 127, p. 180502, Oct 2021. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.127.180502

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H.
Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang,
H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L.
Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using
photons,” Science, vol. 370, no. 6523, pp. 1460-1463, 2020. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.abe8770

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 30,2025 at 21:15:19 UTC from IEEE Xplore. Restrictions apply.

