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Protein folding and evolution are intimately linked phenomena. Here, we revisit the
concept of exons as potential protein folding modules across a set of 38 abundant and
conserved protein families. Taking advantage of genomic exon–intron organization and
extensive protein sequence data, we explore exon boundary conservation and assess
the foldon-like behavior of exons using energy landscape theoretic measurements.
We found deviations in the exon size distribution from exponential decay indicating
selection in evolution. We show that when taken together there is a pronounced
tendency to independent foldability for segments corresponding to the more conserved
exons, supporting the idea of exon–foldon correspondence. While 45% of the families
follow this general trend when analyzed individually, there are some families for
which other stronger functional determinants, such as preserving frustrated active
sites, may be acting. We further develop a systematic partitioning of protein domains
using exon boundary hotspots, showing that minimal common exons correspond with
uninterrupted alpha and/or beta elements for the majority of the families but not for
all of them.

exon | protein folding | energy landscape | foldon

Protein evolution and folding are two intertwined aspects of a complex problem. Over the
past decades, a reasonable shortcut to simplify this problem has been to try to break down
protein structures into distinct modules. In 1973, Wetlaufer proposed that the initial
stages of folding nucleation may occur independently in separate regions (1). Addressing
Levinthal’s paradox, he claimed that if there were individual modules that fold in parallel,
the searching time for folding the entire molecule can be exponentially reduced and would
be comparable to the isolated segments’ folding time. With the discovery of silent DNA
interrupting coding regions in Eukarya, Gilbert (2) and Blake (3) posited that if genes
resemble a mosaic divided into pieces, then the coding pieces—christened by Gilbert
“exons”—can reasonably be expected to translate into integrally folded protein pieces,
such as domains or supersecondary structures. These fragments could then shuffle and
combine over evolutionary timescales, giving rise to novel functional proteins. Indeed,
exons of several proteins were early characterized as structural units, including hemoglobin
(4). Among various theories, it has been argued that exon-shuffling may have played a
significant role in metazoan evolution, coinciding with a burst of evolutionary creativity
during the emergence of multicellularity (5).

Energy landscape theory explains how proteins fold within relevant timescales using
parallel paths without explicitly dividing the molecule into parts. When a polymer is
minimally frustrated, parallel search can be done in a delocalized manner as native contacts
can guide the polymer folding (6). Of course, some paths may be modestly favored
over others, and these variations have been successfully predicted by perfectly funneled
models (7). Different protein regions may fold at different times quasi-independently if
the sufficiently strong native interactions largely contained within them can overcome
their entropy loss. These units then may fold in a single cooperative step which have
been called foldons by Panchenko et al (8). Using a simple energy field model and a
searching algorithm, they assigned foldons to many proteins and they compared them
with exons. They found only a weak correlation between the evolutionary units and the
folding regions (8, 9).

Exons have also been compared with secondary structure elements, with negative
results (10, 11). Evidence of a co-occurrence between exon boundaries and protein
domain border positions has been found by others and used to support the exon-shuffling
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theory (12, 13). At least for some genomes, it has been shown
that this correlation of domains and exons can not be explained
with a neutral null model (14).

The search for folding elemental units on some particular
proteins has been pursued directly with various experimental
methods and models. Foldons have been identified for Cy-
tochrome C through Hydrogen exchange experiments (15, 16).
These agreed with those found computationally with a perfectly
funneled energy model (17). Dihydrofolate reductase (DHFR)
has been analyzed by molecular dissection (18), circular permu-
tation (19), systematic Alanine insertion (20) and overlapped
contact volume (21), leading to potential modular decomposi-
tions.

Folding units are not necessarily continuous in sequence.
Secondary structure motifs have been grouped into overlapping
foldons (22) and physically connected amino acids in the tertiary
structure have been correlated into “protein sectors” (23).

In the case of repeat-proteins, their structural symmetry allows
a way to naturally define folding units for an entire protein family
(24, 25). Remarkably, by modeling the interactions between these
minimal common foldons, different groups of elements that fold
at the same time emerge naturally for each protein, defining
domains that coincide with those described experimentally (26).
Interestingly, it has been seen that repeat-proteins are made of
exons that encode one or two complete repeats, exhibiting a
striking conservation of intron position and phase (27).

In this work, we revisit the concept of exon regions as potential
protein folding modules. By leveraging gene annotation and
protein sequence databases, we explore exon conservation across
38 protein families to assess whether exons exhibit foldon-like
behavior through energy landscape measures. To accomplish
this, we use the coarse-grained forcefield Associative memory,

Water Mediated, Structure and Energy Model (AWSEM) (28)
to establish a quantitative score that assesses the independence of
foldability for sequence fragments. Furthermore, we investigate
a systematic partitioning of proteins into nonoverlapping units
using exon boundary hotspots.

Results

Exons As Protein Segments. We mapped exon positions to the
amino acid sequence in the multiple sequence alignments (MSA)
for 38 protein domain families. Details about the data for each
family are summarized in SI Appendix, Table S1, with curation
specifics available in Materials and Methods. We divided the
protein sequences into the segments that are encoded by each
exon. It is noteworthy that the distribution of exons per protein
in this set follows an exponential pattern (SI Appendix, Fig. S1).
The distribution of exon sizes for the entire set also exhibits an
exponential decay, a result expected under the assumption that
intron positions are the result of independent trials of a neutral
stochastic process (SI Appendix, Fig. S1).

However, when we focus our analysis on individual protein
families, we observe deviations from the general trends. We
present specific results for the DHFR family in Fig. 1 for
illustrating this phenomenon. In the DHFR family, certain
exceptionally large exon sizes are overrepresented (B), suggesting
that natural selection may influence exon lengths. Results for
other families are presented in SI Appendix, Fig. S3. Interestingly,
none of the families individually shows a clear exponential
decay trend. Instead, some preferred exon sizes stand out. For
structurally symmetric domains like the Cristall or MHC-I
family, a characteristic exon length emerges and the exponential
decay is not present at all.

A B C

D

E

Fig. 1. Exon characterization for DHFR family. (A) Number of exons per protein. (B) Exon size distribution, measured in the amino acids of the corresponding
protein segment. (C) Abundance-rank plot, including exons present in at least 0.5% of the effective sequences. (D) Abundance as a function of the aligned
sequence position for the exons in panel (C). (E) Projection on the 3D family reference structure (PDB: 8dfr) for the most abundant exon (blue), the second one
(orange), the third one (green), the fourth one (red), and fifth one (purple). Color assignment to exon is shared between panels (C–E).
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Along the MSA, exon positions are sometimes exactly
conserved allowing us to measure exon relative abundance.
Abundance-rank plots present power-law trends, which can be a
consequence of spreading phylogenetic diversity represented by
exons. The DHFR case is shown in Fig. 1 C–E. We see that
the two most abundant exons (blue and orange) are present in
10% of the sequences, causing a division of the domain at residue
119 into two consecutive fragments. The fourth (red) and the
fifth (purple) most frequent exons define an almost completely
alternative partition of the structure. In contrast, some other
exons while abundant do not always come along with a specific
exon in the complementary part of the chain. An example of this
is the third-most abundant exon (green). This pattern suggests
the existence of multiple alternative options that can complete
the open reading frame.

Exon Foldability. Do natural exons behave as foldons? Foldons
have been defined as quasi-independent foldable protein seg-
ments (8). A foldon then should be at least as minimally frustrated
by itself as in the context of the whole protein that contains it. We
therefore examine exons comparing their frustration using two
schemes (Fig. 2A). In one scheme, the protein segment encoded
in an exon is treated as a totally independent polymer folding
to its final three-dimensional structure. In the other scenario,
the folding of the same segment is treated in the context, still
interacting with the rest of the protein that contains it. Using
both the independent scheme (I) and the context scheme (C)
we compute the correspondent total frustration index, a Z score
defined as f = ΔE/�E , where ΔE is the energy gap between the
native configuration and the molten globule state, represented by
a set of decoys, and �E2 is the energy variance of those decoys
(29). The quantities are related to the characteristic transition
temperatures of the chain segments through the configurational
entropy loss upon folding from a compact molten globule S.
For the protein to be foldable on a relevant timescale, the
folding temperature (Tf ∝ ΔE/S) should exceed its glass
transition temperature (Tg ∝ �E/S1/2). Protein foldability,
which has been used to search foldons (8, 9), can be written
as Θ = f S1/2

∝ Tf /Tg .
Here, we have employed the mutational frustration index,

where decoys are scrambled versions of the original sequence.
The energies are computed using the coarse-grained AWSEM
potential (28). The exon energy is averaged over all the sequences
in the alignment that share that same exon. A single Protein
Data Bank (PDB) structure is used as reference for each family,
threading the corresponding sequence each time. We take the
independent segment to retain the structure that it has in context.
Details of the implementation are provided in Materials and
Methods.

We introduce �f , the relative change in total frustration of a
protein segment in the transition from the independent (I) to the
in context (C) scheme

�f =
fC − fI
−|fI |

. [1]

If the configurational entropy loss S is the same in the two
scenarios, the relative change in the total frustration can be seen
also as the relative change in the foldability Θ and in the ratio
Tf /Tg .

In Fig. 2A we present two examples. On the one hand, DHFR
exon 1—the most conserved exon in Fig. 1 E1—shows a small
change in total frustration �f1 = 8%. It’s a segment that in
isolation is almost as minimally frustrated in the context of the

A

B

Fig. 2. Relative change in total frustration. (A) Definition, using as examples
DHFR exons 1 and 4 (blue and red in Fig. 1E). The relative change in
total frustration of a protein segment �f compares it in two schemes, as
independent segment (Left) and the same segment in the context of the
whole protein (Right). We color the segments in the reference structure (PDB:
8dfr) according to the total frustration. For exon 1, the segment in context
(fC1 = −5.47) is as frustrated as the independent scheme (fI1 = −5.05), the
relative change �f1 = 8% is small, the exon as minimally frustrated as it can be
without the rest of the protein. But for exon 4, fC4 = −6.59 while fI4 = −0.43,
therefore the relative change �f4 = 1,446% is huge. Contact frustration is
added for indicating the contacts that stabilize (green) or destabilize (red) the
segment in each scheme. (B) Total frustration relative change as a function of
exon abundance for all the families together, in a box plot in logarithmic scale.
Blue boxes contain the central 50% of data, with a black line in the median
and a notch indicating its CI. Abundance interval for each box is indicated on
Top. The red box on the Right represents the distribution of a control group
of alternative exons, sampled from each family size distribution. Below an
abundance of 5%, natural exons distribution is indistinguishable from the
control one. Over that frequency, the frustration relative change smoothly
decrease.
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whole structure, as the foldon definition requires. On the other
hand, exon 4—which is slightly shorter and less conserved than
exon 1—has a huge relative change �f4 = 1446%. In this case,
the exon present in the context numerous stabilizing contacts
between the fragment and the rest of the protein that minimize
the total frustration. Those stabilizing native interactions are ab-
sent for the independent segment. By itself, the segment is notably
less foldable, making it difficult to characterize it as a foldon.

To see whether there is a systematic relationship between the
foldability independence and the exon conservation, for each
protein family we compute �f for all the exons having an
abundance greater than 0.5% and for a control group made
of exon alternatives sampled from the family size distribution.
Considering all families together, the relative change in total
frustration median decreases with exon abundance, as Fig. 2B
box plot shows. Below an abundance of 5%, �f distribution
for natural exons is not distinguishable from the control group
distribution. But for the more abundant exons, the frustration
relative change starts a descending trend. This effect does not
directly result from exon length, which does not significantly
change with abundance (SI Appendix, Fig. S4). Most conserved
exons are more likely to behave as foldons than do the less
abundant exons.

Minimal Common Exons. Exon boundaries are not evenly dis-
tributed along the sequences. We present a histogram of exon
boundary positions for the DHFR family as a case study in Fig.
3A (black bars). We note that there are no absolutely prohibited
positions for the exon boundaries when one considers the entire
sequence alignment. In addition, high-frequency hotspots appear
every 20 to 40 residues. Taking into account the exon size
distribution for DHFR (Fig. 1B), the hotspots are too close
to each other to be explained just by repeating some very
abundant exons. Instead, they reveal an overlap of different
sequence partitions. The hotspots can be interpreted as alternative
breakup points in the exon–intron structure, conserved through
the family. A similar pattern is seen for the other studied families
(SI Appendix, Figs. S6 and S7).

The local maxima in the histogram of Fig. 3A (red stars) can
be used to divide each protein domain (and the corresponding
MSA) into a set of segments, that we call minimal common exons
(MCE). We identify the minimal common exons with different
colors along the secondary structure description on Top of the
histogram of Fig. 3A and the PDB structure in Fig. 3B.

The relationship between the MCE and secondary structure
stands out in this case. With a single exception (position 121) the
hotspots do not break alpha helices or beta strands; instead, the
breaks occur in coil-like regions. Equivalently, one can describe
the MCE as being complete secondary structure elements or
combinations of them.

We compare this picture with a neutral model, where
alternative exons are generated by sampling the exponential size
distribution of MCE from each and every family (Materials and
Methods). A Z score comparing the natural MCE and those
alternative pieces reveals that for the majority of the families that
we studied (including DHFR) the actual boundaries occur more
than expected in coil-like regions and rarely occur in alpha or
beta elements (Fig. 4).

A local smoothed frustration signal can be defined computing
the total mutational frustration for a segment of five residues on
a sliding window (Fig. 3A, blue line). This signal shows some
correlation with secondary structure categories. The beta regions
generally have lower frustration than the rest of the structure on
average (SI Appendix, Fig. S5). A Z score comparing natural MCE
and pieces sampled from a neutral model shows that frustration
is higher than expected on boundaries for the majority of families
(Fig. 4), but there are some exceptions to the pattern.

We compute �f , the relative change in total frustration for
the MCE. A comparison of the MCE �f distribution with that
generated by the neutral model yields heterogeneous results. Only
around one third of the families that we studied have significantly
more independently foldable MCE than the neutral model would
give (Fig. 4).

We see that MCE are not as independently foldable as actual
exons. They seem to be too short to be independent from the
rest of the protein. Instead, they work as fundamental units that

A

B

Fig. 3. Exon boundary analysis for DHFR. (A) Histogram of exon boundaries (black bars). Boundary hotspots, histogram local maxima, are marked with red
stars. Below the horizontal dashed gray (density = 0.01) line we ignore the peaks, considering them background noise. We also ignore peaks closer than 10
residues from each other or to alignment limits (vertical dashed gray lines). Over the histogram, the local smoothed frustration signal (blue), its average over
the sequences as a solid line and SD as a shadow. On Top, the secondary structure representation of the reference structure of the family (PDB: 8dfr). Colors
represent the minimal common exons (MCE), the sequence partition given by boundary histogram hotspots. Almost all the MCE are made of uninterrupted
secondary structure elements or combinations of them. (B) Minimal common exons projected on the reference 3D structure with the same colors used in panel
(A), with two different orientations of the structure.
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Fig. 4. Summary for each family. We include two groups of results in heat
maps, each one with the corresponding scale at the Bottom. First and second
columns on the Left represent the fraction of �f distribution below the family
control group median for the actual exons (first) and the minimal common
exons (second). These scores go from 0% (red), where all the exons are less
independently foldable than the reference, to 100% (blue) where all the exons
are more independently foldable than it. The families are sorted using the
first column score. The last two columns on the Right represent Z scores
comparing boundary hot spot positions (MCE boundaries) with alternative
ones generated with a neutral model. In the third column, the score is positive
(blue) when boundaries occur more than expected in coil-like regions. In the
last column, the score is positive (blue) when boundaries occur in regions
that are more frustrated than expected.

can alternatively combine into different bigger segments (the real
exons). Within these possibilities, the most frequent ones stand
out as more independently foldable than random segments.

Family Specific Characteristics. We summarize the results ob-
tained from four different approaches for the actual exons of the
38 studied families in a heat map (Fig. 4). The first heat map
column on the Left represents the fraction of the �f distribution
having values below the median of the alternative exons control
group, which is family-specific. This score runs from 0% (red),
where all the exons are less independently foldable than the alter-
native exon sampled reference, to 100% (blue) where all the exons
are more independently foldable than in the reference. The

families are sorted according to this statistic. We performed a two-
tailed Mann–Whitney U statistical test for each family and found
that the trend for each family individually is significant for 17
out of all 38 studied families (SI Appendix, Fig. S9 and Table S2).

For the majority but not all of the families studied the natural
exons are more independently foldable than would be expected
by chance. Nevertheless, the results are somewhat diverse, and for
some families, the alternative pieces generated at random are more
independently foldable than the naturally occurring segments.
This may reflect distinct evolutionary histories of the different
families, highlighting that there may be no common mechanism
involved in the exonic partitioning for every individual protein
family. It is likely that the selection pressure for foldability is
not the only controlling driving force for the location of exon
boundaries. This is not unexpected because functional sites are
often required to be frustrated but must be conserved for function
(30). Those protein families for which nonnatural chance
partitions are more independently foldable than the actual exons
(red in the first column of Fig. 4) may also hint that other strong
biological determinants are at play, for example at the RNA level.

We compare the �f for the MCE with the correspondent
control group. The fraction of the �f distribution below the
control group median for MCE is shown in the second column of
the heat map (Fig. 4). With a few exceptions (IL1, Cytochrome C,
Lipocalin), the actual exons show higher scores than do the MCE
of the same family.

The third column represents the Z score that compares MCE
boundaries to those of a neutral control group. A positive Z score
(blue) indicates there are more boundaries in coil-like regions
than what would be expected based on a neutral model, while a
negative score (red) would indicate that there are more boundaries
in the stable secondary structure regions. Finally, the last column
shows whether the MCE boundaries are more frustrated than
expected, measuring frustration using a five-residues sliding
window.

We find that protein families display several patterns when
we take together the analysis of exon foldability and boundary
occurrence regions. For some families, MHC-I, Crystall, Beta-
lactamase, forkhead associated domain (FHA), Gpdh-C, and
Trypsin, exons are independently foldable and codify mostly
uninterrupted stable secondary structure regions. In another
set of families, the most common boundaries are clearly not
random, but exon folding does not seem to be the most relevant
signature for their evolutionary selection. This is the case for
Ribonuclease, Death, V-set, Glycolytic, and SNase. There are
some other examples however, Barstar, IL1, Kazal, and Phage
lysozyme, where the actual exons are more independently foldable
than expected, but their boundaries do not particularly occur in
highly frustrated or coil-like regions.

In the case study presented previously in this work, DHFR,
as in ubiquitin, Serpin, and Flavodoxin, we find that the actual
exons are more independently foldable than expected, but this
is not the case for the minimal common exons. Interestingly,
these minimal common exons are mostly contiguous secondary
structure elements that may not fold by themselves but can
combine into larger segments—the actual exons—that are less
frustrated.

Concluding Remarks

We have revisited the correspondence between exons and protein
folding modules. By mapping the exon–intron boundaries to
multiple sequence alignments, we identified conserved exon
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partitions. For each protein family, the size distribution of
exons deviates from exponential decay due to particular and
very common instances. A neutral model, where intron positions
are chosen through sequential independent trials of a stochastic
process, cannot explain these patterns. Through frustration
analysis, we found that protein segments corresponding to the
most common exons are clearly more independently foldable
than others. On average, the size of the foldable fragments does
not change with exon abundance. Presumably, natural selection
acting on exons is influencing the size distribution by taking
into account the folding of the corresponding protein fragment.
If exons have been shuffled during evolution, the foldability
independence of the protein region encoded by an exon becomes
an advantageous feature, allowing it to be inserted in a different
topology or copied in tandem and maximizing the chances of
giving rise to a foldable polymer.

Unfortunately, we are still lacking a unique and consistent way
to experimentally define foldons in natural proteins, thus there
is no universal ground truth in the laboratory to directly evaluate
the foldon-exon correspondence. We have proposed in this
paper an alternative computational evaluation of the independent
foldability of exonic regions as compared to alternative partitions
of the primary structure.

The most common exons can function as folding units. Nev-
ertheless, it’s important to note that these exons may not always
span the entire protein domain; instances exist where they overlap
with each other. We define a systematic way of partitioning
a multiple sequence alignment into nonoverlapping segments
using the exon boundary histogram hot spot positions along the
sequence. These selected hot spots divide the protein into MCE.
For the majority of the studied families, the MCE consists of
uninterrupted alpha and/or beta elements, and the boundaries
between them occur in highly frustrated or coil regions. This
co-occurrence has been previously studied in earlier works, but
no significant tendency to co-occur was reported (10, 11).

While it has been observed that domain boundaries may
match exon boundaries (12–14), our results show that there
is an internal structure within the protein domains. The most
conserved intron positions define possible splitting points for
the actual modules of a protein domain. The diversity of exons
within a protein family arises from the alternative usage of these
breaking points, forming the actual exons. It should be noted
that each family may have a different evolutionary history, where
the exon boundaries may be seen as scars of that history and
may be maximizing the chances of giving rise to a new fold. We
have shown that in certain families, conserved exon boundaries
clearly delineate secondary structure elements, whereas in other
families, exon frustration is remarkably minimal. Folding in vivo
may require the assistance of external factors that may interfere
with autonomous protein folding, and this effect may be acting
not on a family but on specific family members (31). We propose
that both aspects must be taken into account when analyzing the
relations between protein folding and evolution of particular
protein domains.

Materials and Methods
Data Curation. A total of 38 well-behaved protein families with distinct
topologies (all alpha, all-beta, alpha+beta, alpha/beta) were used, including the
instances studied in the first paper that analyzed exon–foldon correspondence
(8) along with an additional 26 protein families of the Start2fold database
(32), consulted in January 2023. Protein MSA for each family were obtained
in December 2022 from Pfam (33), now hosted by InterPro database (34). For
minimizing phylogenetic bias within each MSA, we clustered by full sequence

similarity using CD-hit (35) at 90% cutoff and we assigned a weight to each
sequence defined as 1/ni, being ni the number of sequences in the ith cluster.
All the statistics were made taking into account these sequence weights. We used
a target 3D structure selected from the PDB (36) for each family (SI Appendix,
Table S1) and we aligned the MSA to its corresponding sequence, keeping only
the positions of the MSA that are present in the target sequence. To summarize,
MSA positions are Pfam domain positions in the target PDB structure. All the
calculations that involve the protein tertiary structure were made using the target
PDB structure selected for the family. Secondary structure data were obtained
using the Define Secondary Structure of Proteins (DSSP) algorithm (37) on the
target structures. Exon data were obtained from GenBank database (38). We
downloaded all the gene files corresponding to the Uniprot IDs (39) in our MSAs,
excluding Bacteria. Single-exon sequences were excluded from the analysis. We
parsed the gene files to get the exon positions and we mapped them to the
corresponding MSA, obtaining the amino acid sequence segment corresponding
to each exon. Every exon starting and ending position was referenced to the
MSA. We calculated the exon relative abundance as the sum of the sequence
weights of all the sequences that have an exon in the same position of the
MSA, normalized by the sum of the sequence weights of the protein family.
Data download and curation were carried out using python scripts. The code is
available at GitHub: https://github.com/eagalpern/exon-foldon.

Total Frustration Relative Change. To determine the energy of a protein
segment we used the AWSEM coarse-grained forcefield, including only the
burial and the contact terms (28). We used a single 3D target structure for
each family and we threaded it with the particular sequence we wanted to
evaluate. The total energy of a segment is calculated according to two different
scenarios. The independent (I) scheme energy includes the contact terms of all
the pairs within the segment, while the in-context scheme (C) considers also all
the contacts between segment residues and other protein positions outside it,

HI =
b∑

i=a

Hburial
i +

b∑
i=a

b∑
j=a

Hcontact
ij [2a]

HC =

b∑
i=a

Hburial
i +

b∑
i=a

L∑
j=1

Hcontact
ij , [2b]

where the segment goes from position a to b, within a sequence of L residues.
For each exon, segment energy is a weighted average over all the sequences in
the alignment that have the exon. We exclude from the average exons where
gaps represent more than 50% of their sequence. The frustration f was calculated
using decoy sets, constructed by randomizing the identity of the amino acids
of the complete sequences. Decoy sequences were also threaded through the
same tertiary structure selected for the family. Energy calculations were made
using a python implementation of the protein frustratometer (40), available at
Github: https://github.com/HanaJaafari/DCA_Frustratometer. Total frustration
calculation scripts are available at GitHub: https://github.com/eagalpern/exon-
foldon.

Local Frustration. The local frustration of position x was calculated evaluating
the total frustration (as defined previously) of a five-residues segment centered
on x. The signal was obtained by sliding this five-residue window along the
sequence. We consider each segment in the context of the whole protein.

Boundary Local Maxima Searching Criteria. We searched for relative
maxima in the exon boundary histograms comparing positions with another
10 to each side. We discarded any maximum closer than 10 positions to the
beginning or to the end of the sequence, and also positions with histogram
density below 0.01. The exon assignment is robust to small changes in these
parameters for most of the families, as the effective exons count is large.

Visualization Tools. Secondary structure linear visualizations were made
adapting SSDraw python library (41). Tertiary structure visualizations were made
using py3Dmol python library (42).
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Exon Control Groups. To compare the properties of actual exons and MCE,
we generated specific sets of exon alternatives as control groups. Each exon
alternative represents a fragment defined by its initial sequence position
and length within a protein family. For the actual exons, we sampled each
family’s exon size distribution and a random initial position to generate exon
alternatives, resulting in family-specific exon control groups. To measure the
energy of an exon alternative, we assigned 100 sequences randomly selected
from the corresponding positions of the family’s multiple sequence alignment
to each generated fragment. These sequences were then threaded along
the reference tertiary structure, and we then calculated the energy average
over the 100 sequences. As MCEs are limited in number per family, MCE
alternatives were obtained by generating consecutive segments, sampling their
sizes from a geometrical distribution fitted from the sizes of all MCEs across
families. This approximation follows a neutral model for the size distribution,
leading us to designate this set of MCE alternatives as the neutral control
group. MCE alternatives shorter than 10 residues were eliminated, as they are
smaller than the minimum distance we imposed between histogram maxima
(10 residues).

Fraction Scores. The distribution of the total frustration relative change for
exons �fexon was compared for each family with the corresponding size-wise
control group distribution. We used as a score the weighted fraction of �fexon
below the median of the distribution �fcontrol, given by

frac.scoreexon =
∑
i

wi �i, �fi<median(�fcontrol)
, [3]

wherewi is the abundance of the exon i and �i,x is the Kronecker symbol, taking
value one if the condition x is True for the exon i and zero otherwise.

For the MCE, the reference is given by the median of �fcontrol for the MCE
control group

frac.scoreMCE =
∑
i

�i, �fi<median(�fcontrol)
/N, [4]

where i are the MCE and N is the number of MCE for the family.

Boundary Secondary Structure Z Score. The occurrence of exon boundary
local maxima (or MCE boundaries) on coil-like regions (not alpha or beta) for a
family was compared to the occurrence on the alternative partitions that define
the MCE control using a Z score defined as

Z scorecoil =
�̄MCE − 〈�̄control〉

��control

, [5]

where � is the Kronecker symbol, ∗̄ represents the average over the partition,
〈∗〉 the average over all the decoy partitions and � the SD. We consider the
boundary as being the ending position of each segment (MCE or control) and
the first position of the next one. If at least one of them is not an alpha or beta
region, we take that boundary i as a positive case �i = 1, while if the two of
them are beta and/or alpha, �i = 0.

Boundary Frustration Z Score. Local frustration on exon boundary local
maxima (or MCE boundaries) for a family was compared with the frustration on
the alternative partitions that define the MCE control using a Z score defined as

Z scoref =
f̄MCE − 〈f̄control〉

�fcontrol

, [6]

where f is the local frustration, ∗̄ represents the average over the boundary
positions of a partition, 〈∗〉 the average over all the control partitions and �
the SD. We consider as boundary the ending position of each segment (MCE or
control) and the first position of the next one.

Data, Materials, and Software Availability. All input data needed to
reproduce the main results, including Figs. 1 D and E and 3 for the 38 protein
families that we studied is available at GitHub: https://github.com/eagalpern/
exon-foldon (43), along with a Jupyter notebook for visualization.

ACKNOWLEDGMENTS. This work was supported by the Consejo de Investiga-
ciones Científicas y Técnicas (CONICET) (D.U.F. is CONICET researchers and E.A.G.
is a postdoctoral fellow); CONICET Grant PIP2022-2024—11220210100704CO.
Universidad de Buenos Aires UBACyT 20020220200106BA. Additional support
from NASA Astrobiology Institute (NAI) and Grant Number 80NSSC18M0093
Proposal ENIGMA: EVOLUTION OF NANOMACHINES IN GEOSPHERES AND
MICROBIAL ANCESTORS (NASA ASTROBIOLOGY INSTITUTE CYCLE 8). PGW was
supported both by the Bullard–Welch Chair at Rice University, grant C-0016,
and by the Center for Theoretical Biological Physics sponsored by NSF grant
PHY-2019745. We call the attention of the international scientific community
to the potential erosion of Argentina’s strong scientific tradition due to current
funding constraints and the sudden termination of long-term policies.

Author affiliations: aProtein Physiology Lab, Departamento de Química Biológica, Facultad
de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA,
Argentina; bInstituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales,
Consejo Nacional de Investigaciones Cientificas y Tecnicas - Universidad de Buenos
Aires, Buenos Aires C1428EGA, Argentina; cCenter for Theoretical Biological Physics, Rice
University, Houston, TX 77005; dApplied Physics Graduate Program, Smalley-Curl Institute,
Rice University, Houston, TX 77005; eDepartment of Chemistry, Rice University, Houston,
TX 77005; and fDepartment of Physics, Rice University, Houston, TX 77005

1. D. B. Wetlaufer, Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. Natl.
Acad. Sci. U.S.A. 70, 697–701 (1973).

2. W. Gilbert, Why genes in pieces? Nature 271, 501–501 (1978).
3. C. C. Blake, Do genes-in-pieces imply proteins-in-pieces? Nature 273, 267–267 (1978).
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