
Detecting Unsuccessful Students in Cybersecurity
Exercises in Two Different Learning Environments

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works. Cite this article as follows: V. Švábenský, K. Tkáčik, A. Birdwell, R. Weiss, R. S. Baker, P. Čeleda, J. Vykopal, J. Mache, A. Chattopadhyay. Detecting Unsuccessful
Students in Cybersecurity Exercises in Two Different Learning Environments. In Proceedings of the 54th IEEE Frontiers in Education Conference (FIE ’24). Washington, D.C., USA,
2024. DOI: 10.1109/FIE61694.2024.10893135.

Valdemar Švábenský
University of Pennsylvania

Pennsylvania, USA
valdemar.research@gmail.com

Kristián Tkáčik
Masaryk University

Czech Republic
tkacikk@mail.muni.cz

Aubrey Birdwell
Georgia Institute of Technology

Georgia, USA
aubrey.birdwell@gatech.edu

Richard Weiss
The Evergreen State College

Washington, USA
weissr@evergreen.edu

Ryan S. Baker
University of Pennsylvania

Pennsylvania, USA
ryanshaunbaker@gmail.com

Pavel Čeleda
Masaryk University

Czech Republic
celeda@fi.muni.cz

Jan Vykopal
Masaryk University

Czech Republic
vykopal@fi.muni.cz

Jens Mache
Lewis & Clark College

Oregon, USA
jmache@lclark.edu

Ankur Chattopadhyay
Northern Kentucky University

Kentucky, USA
chattopada1@nku.edu

Abstract—This full paper in the research track evaluates the
usage of data logged from cybersecurity exercises in order to
predict students who are potentially at risk of performing poorly.
Hands-on exercises are essential for learning since they enable
students to practice their skills. In cybersecurity, hands-on
exercises are often complex and require knowledge of many
topics. Therefore, students may miss solutions due to gaps in their
knowledge and become frustrated, which impedes their learning.
Targeted aid by the instructor helps, but since the instructor’s
time is limited, efficient ways to detect struggling students are
needed. This paper develops automated tools to predict when
a student is having difficulty. We formed a dataset with the
actions of 313 students from two countries and two learning
environments: KYPO CRP and EDURange. These data are used
in machine learning algorithms to predict the success of students
in exercises deployed in these environments. After extracting
features from the data, we trained and cross-validated eight
classifiers for predicting the exercise outcome and evaluated their
predictive power. The contribution of this paper is comparing two
approaches to feature engineering, modeling, and classification
performance on data from two learning environments. Using
the features from either learning environment, we were able to
detect and distinguish between successful and struggling students.
A decision tree classifier achieved the highest balanced accuracy
and sensitivity with data from both learning environments. The
results show that activity data from cybersecurity exercises are
suitable for predicting student success. In a potential application,
such models can aid instructors in detecting struggling students
and providing targeted help. We publish data and code for building
these models so that others can adopt or adapt them.

Index Terms—cybersecurity education, exercise success, per-
formance prediction, educational data mining, learning analytics

I. INTRODUCTION

As cyber threats become increasingly complex, organizations
have big demand for cybersecurity experts [1]. In order to train
more experts, effective teaching methods such as hands-on
exercises must be employed at universities and in professional
learning contexts. However, cybersecurity exercises incorporate
a wide range of topics, including operating systems, security

Funded by the European Union (grant number 101087529) and the National
Science Foundation (grant numbers 2216492 and 2216485).

vulnerabilities, and proficiency with command-line tools and
programming languages. Due to the exercises’ complexity,
students often get stuck or frustrated [2], [3], which discourages
them and hinders their learning.

Therefore, it is crucial for instructors to know when a student
is at risk of not completing an exercise. This should be detected
quickly – the instructors’ time is limited, so it should be
invested in helping students who need it the most. Moreover, not
all students will let instructors know when they need support,
or even deny needing it, so the instructors may be unaware that
a specific student is struggling. In these cases, automated tools
help focus instructors’ attention [4]. This enables instructors
to target teaching interventions, such as hints, with the goal of
positively impacting student learning.

A. Goals and Scope of This Paper

Our goal is to extract information from student actions in
cybersecurity exercises, in order to predict student success or
a potential risk of performing poorly. We evaluate tools that
highlight students who may need help with an exercise task.

In our context, we broadly define successful students as
being able to complete a certain amount of the exercise tasks;
Section III-F explains the specifics. Our work focuses on the
education of cybersecurity students at the university level or
beyond, though it could also be adapted to K-12 contexts.

This paper poses two research questions (RQ):
1) How well do different machine learning classifiers predict

(un)successful students in cybersecurity exercises?
2) Are the best classifiers in one context also the best in

another context, when trained using the same methods
with a second student population in different exercises?

B. Contributions to Research and Practice

First, we collected an original dataset from a total of 313 stu-
dents in two learning environments. Second, we automatically
extracted two feature sets from these data. Third, we used these
features to train and evaluate eight types of binary classification
models for predicting student success in the exercises. Feature

https://doi.org/10.1109/FIE61694.2024.10893135

selection and hyperparameter tuning were conducted for each
model using nested cross-validation. To support reproducibility
and replicability of the research, as well as recent calls for
open educational data [5], the data and code for this paper are
publicly available (see Section V-B).

Our choice of research methods is a response to the calls
made in an extensive literature review on student performance
prediction [6]. Its authors urged the community to:

• Use data from a second population at another institution,
since only 28 of 357 (7.8%) articles assessed the prediction
in more contexts. In a review aimed at CS1 [7], only 2
of 47 (4.3%) studies were conducted in more institutions.

• Use data from multiple courses and semesters to avoid
single-course single-semester case studies, which dominate
the current literature but have limited generalizability.
In [7], only 7 of 47 (14.9%) studies were conducted over
the period of more than one year.

• Publish the data collection instruments and the dataset
itself. Almost no datasets from previous studies were made
public, and only 91 of 357 (25.5%) articles included the
data collection instruments [6].

This study adopts a multi-national, multi-institutional ap-
proach that overcomes many shortcomings of previous comput-
ing education papers [8]. It involves two distinct learning
platforms, two sets of exercises, and student populations
from two continents. This setup helps us to make progress
towards understanding which techniques work in general for
the problem of detecting unsuccessful students.

II. RELATED WORK IN PREDICTIVE MODELS

This section provides an overview of studies that analyzed
data from educational contexts to predict student performance.
We discuss the state of the art in cybersecurity education
(Section II-A) and in other computing education domains
(Section II-B). Then, Section II-C summarizes the literature
gaps that our work addresses. The model evaluation metrics
discussed here are defined in detail in Section III-H2.

A. Hands-on Cybersecurity Education

Cybersecurity education literature employs student data to
achieve different goals [9], [10], such as clustering students
into high- and low-performing based on students’ strategies for
completing exercises [11]. However, the problem of predicting
student performance is not covered much in previous research.

Vinlove et al. [2] detected at-risk students in a command-line-
based security exercise. They collected logs from 25 students
and extracted three features: (1) average number of commands
per task, (2) longest repeat of a command, and (3) edit
distance between the command and “known-good” commands
for the exercise. A support vector machine (SVM) reached
80% accuracy in classifying exercise completion. However,
this work used a rather small dataset and only one model.

Deng et al. [12] predicted course performance of 103
students based on their activity (e.g., executed commands or
mouse clicks) in a learning environment. The behavioral data,
combined with real-time assessments, were used to train a

naive Bayes classifier to predict students’ grade category. At-
risk students (the worst grades) were predicted with 90.9%
accuracy. Similarly to Vinlove et al. [2], this study evaluated
only one classifier and reported only the accuracy metric.

Silva et al. [13] searched for factors impacting the perfor-
mance of 11 professionals in cybersecurity exercises. Shorter
time gaps between participants’ answer submissions correlated
with submitting incorrect answers, which led to higher task
abandonment. Also, participants who often switched between
tools submitted more incorrect answers. However, unlike the
other two papers, this work explored only statistical models.

B. Other Areas of Computing Education

Beyond the cybersecurity context, research on student
success prediction is considerable. Hellas et al. [6] reviewed
357 articles published by 2018 on predicting performance in
computing courses, noting that the best papers “utilized data
from multiple contexts and compared multiple methods”. The
shortcomings of the reviewed papers were: lack of clearly
defined research questions, single student population, limited
discussion of validity, and little sharing of research data. Our
work aims to address these shortcomings.

Koutcheme et al. [4] highlighted methodological issues in
predicting unsuccessful students as they progress through a
week-by-week course. The research uses student data to predict
early in the semester whether a certain student is at risk of
becoming inactive in the following week(s). The authors argue
that if such predictive models are built using data of all students,
including those who have already dropped out (an including
approach), the model performance is inflated because the
inactive students stop generating new data, which simplifies the
model decision-making (i.e., no activity → likely unsuccessful).
This way, the model has access to “future” information it
would otherwise not have in a realistic situation during the
semester. Instead, they argue for an excluding approach: to
predict performance in week n+ 1 such that only the data of
students who are still active in week n are included.

The remainder of our literature review covers papers after
2018 to complement Hellas et al. [6]. We divide the publications
based on whether they focus on individual exercises or whole
courses. The former scope is closer to our work, but it has
been rarely explored – the latter scope dominates the literature.

1) Prediction of Student Success in Exercises: Arakawa et
al. [14] argued that predicting student performance at the course
level provides insufficient insight into specific student struggles.
They also suggested that features specific to the course or the
student demographics may hinder replicating and automating
the prediction. Instead, they identified struggling students at
the level of programming assignments, using features such as
the number of added code lines and the ratio of the passed
tests. The study compared four models trained on data of
312 students; the best-performing one was a long short-term
memory (LSTM) network with an AUC of 92.2%.

Hicks et al. [15] explored whether the student success on
in-class coding exercises can predict success on weekly lab
coding exercises. The data for training four predictive models

reflected the performance of 300 students in previous in-class
exercises. The data captured two aspects: recency (time between
the in-class exercise and the lab exercise) and relevancy of the
in-class exercise to the lab exercise. The performance in recent
relevant in-class exercises was the best predictor of success,
with the corresponding Random Forest model reaching 84%
accuracy and 77% precision and recall.

2) Prediction of Student Success in Courses: Koutcheme
et al. [4] investigated student performance in three computing
courses to compare the including and excluding approach
(see Section II-B). Using the data of at least 1657 students,
they extracted six types of features to train four models. The
performance was better for the including approach. However,
the results were inconclusive as to whether certain features are
better for either of the two approaches.

Quille et al. [7] presented 13 years of evolution of a model
that employed a multi-institutional dataset for early prediction
of student success in introductory programming. Using the data
of 692 students, the Naive Bayes classifier (the best out of six
models) achieved prediction accuracy of 71%, sensitivity of
75%, and specificity of 66%. In a follow-up work [16], they
used a dataset of 472 students that was also multi-national.
The three measures of the Naive Bayes classifier improved
to 78%, 79%, and 78%. In addition, a decision tree classifier
reached 89%, 90%, and 89%, respectively.

Gao et al. [17] mined patterns in process data of 106 students
from a programming environment. The patterns were used
to train an AdaBoost classifier that predicted student course
outcomes with 79% accuracy.

Leinonen et al. [18] compared two time-on-task metrics:
coarse-grained (first keystroke to first exercise submission)
and fine-grained (sum of delays between all keystrokes until
the first submission). The latter was a stronger predictor of
performance. Using data of 132 students, the best model out
of three was a Random Forest classifier (97% AUC).

Gordon et al. [19] analyzed data from a learning system
for programming. They studied correlations between metrics
(such as completion of reading assignments) and student exam
performance. A decision tree predicted students at risk of
failing the exam with 82% sensitivity and 89% specificity.

Edwards et al. [20] used students’ keystroke data from two
different programming courses at two institutions. The Python
course at a US university had 265 students, and the Java
course at a Finnish university had 303 students. Two Random
Forest models (one for each course) were trained using 10-
fold cross-validation in 10 runs with different random seeds.
The average accuracy of predicting outcomes was 62% in the
Python course and 68% in the Java course. Reducing the dataset
only to students who attended the course exam improved the
latter model (72%), but did not change the former model.

Higueras et al. [21] predicted performance in a computer
science course based on 86 students’ interaction with a version
control system. The prediction features included the number of
commits or code additions/deletions. Naive Bayes and Random
Forest were the best-performing classifiers trained on these
features, scoring slightly above 80% in accuracy and F1 score.

C. Literature Gaps and Novelty of This Paper

The novel contributions of our study and unexplored areas
compared to the prior work are discussed below.

1) Focus on Cybersecurity: Liao et al. [22] point out that
computing education research has focused on introductory
programming, but much less is known about students in follow-
up courses. We identified few studies about cybersecurity; 10
out of 13 reviewed papers examine programming education.
Although predicting performance in cybersecurity might not
considerably differ from programming exercises, since many
prediction features are universal, the literature is missing the
investigation of whether results in cybersecurity would differ
from those in other areas. Quoting Liao et al. [22], there is
“much to gain by studying courses that have not received as
much research attention to this point”.

2) Application of Multi-Contextual Data: Hellas et al. [6]
and Liao et al. [22] encourage researchers in prediction
modeling to perform studies across institutions, curricula, and
semesters. However, multiple datasets from different contexts
were not used in previous related research in cybersecurity, and
rarely in other domains. Only 3/13 papers included data from
more than one institution; 3/13 investigated more than one
course, and 4/13 collected data over more than one semester.
Our study goes beyond previous work by evaluating prediction
models across two learning environments in two countries,
throughout multiple courses and semesters in different schools.

3) Prediction in Smaller Time Frames: 9/13 papers predict
success in a course that lasts several weeks. Few papers look
at the scope of a single exercise. However, the prediction at
this granularity, as in our study, is arguably more difficult than
throughout a course, since students generate less data.

4) Comparison of Various Methods: The papers compared
limited number of models, 4 of them reporting the results of
only one classifier, often with a limited feature set. We extract a
large number and variety of features from two types of security
exercise log data to train and evaluate eight models.

5) Sharing of Research Artifacts: Hellas et al. [6] implore
researchers to share research data and code to support repro-
ducibility and replicability. However, only 2 of the reviewed
papers shared code, and only 1 paper shared the data (from 25
students only) [2]. We make our datasets publicly available.

III. RESEARCH METHODS

The term exercise denotes a set of complex, multi-step tasks
in which the students practice cybersecurity skills. For example,
the task can involve scanning open network ports of a computer
system. As Figure 1 shows, we studied several exercises
with student populations in two learning environments: KYPO
CRP [23] and EDURange [24]. Our research quantitatively
analyzes data from these two different contexts.

A. Format and Content of the Cybersecurity Exercises

In KYPO CRP exercises, students breach vulnerable emu-
lated hosts using a Kali Linux [25] virtual machine (VM). For
this study, we aggregated data from all 12 available exercises
because all have the same underlying principles. The exercise

KYPO CRP
Set of exercises 1

EDURange
Set of exercises 2

244 students
(Czech Republic)

69 students
(USA)

Command and web logs
+ success labels (Dataset 1)

Command logs
+ success labels (Dataset 2)

Tools for feature
extraction and model

training/evaluation

Set of classifiers 1

Set of classifiers 2

Comparison

Fig. 1. Overview of the study design.

instructions are presented via a web interface. In each exercise,
the student must complete several linearly ordered tasks and
obtain text strings representing the answers. After submitting
the correct answer to the web interface, the task is completed,
and the student proceeds to the next task. If a student lacks
the time or knowledge to complete a task, they can use the
web interface to display the step-by-step solution [26].

EDURange includes attack and defense exercises. For this
study, we chose the most thoroughly tested exercise, in which
the students use Linux command-line tools in a VM to find
files, change permissions, etc. The exercises are deployed via
a web application and an SSH session, with instructions on
the VM as text files. EDURange was designed independently
from KYPO CRP and differs in three aspects: (a) students can
complete the tasks in any order, (b) step-by-step task solutions
are not available, and (c) answers are not submitted and
evaluated automatically in a web interface. Instead, EDURange
automatically detects when a student has completed a task by
comparing student data with known solutions.

In both platforms, the student has to complete complex
tasks rather than multiple choice or short answer questions, so
measuring progress is not straightforward. Like in programming,
there can be multiple solutions, but there is no abstract syntax
tree or unit tests to look at. Therefore, we use machine learning
to discover patterns within these complex data of students.

B. Data Collection in the Two Learning Platforms

In KYPO CRP, two data types are collected for each student:
command logs (all commands executed inside an interpreter
such as Bash, Z shell, and Metasploit; with metadata such as
timestamps) [27] and event logs (interactions with the web
interface of KYPO CRP, such as submitting an answer or
displaying a solution). The data collection instrument is open-
source software [27]. An example dataset, including a detailed
explanation of its format, is publicly available as well [28].

EDURange uses a single logging format that stores character
stream data from a terminal. The command-line entries are
automatically filtered and parsed, resulting in labeled log
data. The first log entry of a student is triggered with the
first submitted command. Each log entry consists of unique
identifiers for the course, student, and task; a timestamp;
and command input and output. Input is parsed into its
command name (tool), options, and arguments. These pieces
are compared, component-wise, to a set of known solutions,
in order to match student behaviors to known actions.

C. Data Collection for This Study

KYPO CRP accommodated 244 students from May 2020 to
May 2022. The participants were cybersecurity professionals,
computer science students from three European universities,
and senior high school students. Some exercises were parts of
the university courses on cybersecurity, where they constitute
a mandatory lab session in which all students participate. No
grade is given for the exercise, since it is only a practice
session during the semester, and students are not penalized
for mistakes. Other exercises were deployed during optional
extracurricular activities such as educational events for popu-
larizing cybersecurity – hence the diverse population. Sessions
of both types were either in-person or remote because some
of them took place during the COVID-19 restrictions. Each
exercise usually lasted 2–3 hours. In rare cases, some students
finished the exercise at home within 24 hours of the start.

In EDURange, we collected data from 69 students during
three undergraduate computer science courses offered at Lewis
& Clark and The Evergreen State College between Fall 2020
and Fall 2022. Sometimes, the exercises were used as labs
toward credit in these courses, and other times as optional
workshops or extra credit assignments. Again, the learning
modality (in-person or remote) varied. Most exercises were
completed during a 2-hour lab session, but students were
allowed to return to their work outside of the lab – in some
cases, even the next scheduled class session within 1–3 days.

During all exercises in both platforms, the students were
allowed to use online resources, but were instructed to work
individually. However, brief collaboration, such as when a
student asked their neighbor a question, could not always be
prevented. If a student needed help, and received it from another
student, the exercise logs indicate a successfully solved task. As
in most past studies, we cannot detect student cross-talk from
the logs. However, since the goal is to recognize students who
need timely help from the instructor, a student who can finish
the task after asking for help from another student is ultimately
classified correctly if they are classified as successful.

D. Data Privacy and Research Ethics

In both platforms, the participants received a written ex-
planation that their anonymized exercise activity data may be
used for educational research. Before starting the exercise, all
participants whose data are included in this study gave informed
consent, agreeing to this data collection. The collected data
were manually checked to ensure they do not contain any
personal information that could reveal a student’s identity.
Likewise, the classification models that result from this work
cannot leak any identifiable information about an individual
student. Therefore, this research received a waiver from the
institutional review boards of the involved universities.

E. Data Cleaning and Filtering

In addition to the data anonymization, multiple authors
subjected the dataset to a thorough manual and automated
inspection. We removed rare occurrences of unreasonable
values in the data, such as the same command with the same

timestamp logged multiple times, which were most likely
caused by temporary network outages within the exercise
platforms. The final dataset used for the research includes:

• For 244 students in KYPO CRP, we have 21,659 command
logs and 8,690 event logs from the web interface.

• For 69 students in EDURange, we have 4,762 command
logs (the platform does not use web event logs).

The combined sample includes data from 313 students over
the period of more than two years across several semesters.
This is well beyond the recommended minimal sample size
for prediction studies in computing education: 96 students [7].
We used this dataset for all the subsequent modeling steps.
While we acknowledge the potential risks of including the
complete dataset for making predictions (see the discussion
of Koutcheme et al. [4] in Section II-B), we argue that this
decision makes sense in our context for three reasons.

First, Koutcheme et al. [4] operate in the time frame of
weeks in a semester (and argue that this extrapolates to days
in a week). When a student becomes inactive for several days,
it is reasonable to assume that the student has most likely
dropped out and exclude their data. However, our context is a
single, one-time exercise session that lasts a few hours. When
a student becomes inactive during this exercise (i.e., no action
is logged for a certain time), the log data alone do not provide
ground truth for deciding whether this student dropped out or
will continue later. For example, the student can be discussing
something with the instructor, experiencing technical difficulties
with the exercise platform, or simply taking a small break.

Second, in our context, any criterion for rejecting student
data as inactive would be arbitrary and hard to justify from
the data (see Kovanović et al. [29] discuss the challenges of
choosing cut-offs for inactivity within interaction data).

Third, since our goal is to classify whether a student will
finish the exercise, if we eliminated the data of students
who stopped working, our training set would include (almost)
exclusively successful students. So, the model would have
(almost) no data based on which to learn to predict failure.
Partial data of students who dropped out of the exercise are
valuable, as they capture the behavior of unsuccessful students.

Ultimately, inactive students are a part of the learner
population and naturally occur in teaching contexts. Thus,
continuing to use such data better reflects the model’s potential
practical use. However, to provide an empirical comparison,
we will also present results on a subset (half) of the dataset.

F. Definition of Class Labels and Data Labeling

Our goal is to predict if a student needs help. The exercise
outcome is represented with a binary class variable (label).
This label is set to 1, which is a positive class that we want to
detect, if a student was not successful (i.e., potentially at risk);
and 0, the negative class, indicating the student succeeded.
Table I shows the labels’ distribution in the dataset.

Exercise success is defined as at least 50% completion. In
KYPO CRP, this means that the student (a) did not display the
solutions for more than 50% of the tasks in the exercise and (b)
submitted the correct answers for all tasks (whether discovered

TABLE I
THE DISTRIBUTION OF POSITIVE AND NEGATIVE TRAINING LABELS IN THE

DATASETS FROM THE TWO LEARNING ENVIRONMENTS.

Unsuccessful (1) Successful (0) Total
KYPO CRP 63 (26%) 181 (74%) 244
EDURange 14 (20%) 55 (80%) 69

by the student or offered by the solution). In EDURange, this
is simply finishing at least half of the tasks (rounding down
when the exercise had an odd number of tasks).

While this cut-off is low, it was chosen because it represents
a minimal completion of the exercises, and we want to focus
on identifying students who need help the most, i.e., those who
are unable to reach even 50%. This is consistent with the goal
of the exercises, which is to provide a learning experience to
undergraduates (often cybersecurity beginners), not to evaluate
student performance for a letter grade.

Although this choice makes the dataset imbalanced towards
successful students, this reflects the settings in which both
platforms were employed. The 50% threshold is the lowest
passing grade in most courses at the university where KYPO
CRP is used. In addition, the second half of the tasks are highly
challenging compared to the first half, so setting the threshold
higher might lead to more predictions of failure than would
be actionable for the instructor.

G. Feature Extraction and Selection

For KYPO CRP data, we engineered 25 features in pre-
liminary work [30]. The features were derived only from the
exercise problem-solving. Like Edwards et al. [20], we did
not use (or even collect) student personal information. Next,
all features were unitized (before model training to avoid data
leakage). Then, we applied automated feature selection using
L1-regularized linear models [31], which pruned the feature set
before the training phase of each model (see Section III-H1).
Table II lists the 25 selected features and their descriptive
statistics. Most of the features are analogous to those identified
in the review by Hellas et al. [6] (e.g., time on task, number
of attempts, and correctness), which are commonly used in the
literature and also generalize outside the cybersecurity context.

EDURange followed the same process, engineering 15
features in Table III. The difference reflects the absence of web
interface log data. On the other hand, EDURange produced
features about command execution failure from the command-
line output stream that were not available in KYPO CRP.

H. Model Training and Evaluation

Datasets from both platforms were used for modeling
separately, since the feature sets differ. However, we use the
same analysis framework: the code for processing the datasets
and training the models is the same, with slight adjustments to
account for each platform’s specifics. Cross-platform research
in learning analytics almost inherently has this property, unless
features that do not perfectly map are discarded.

TABLE II
ALL 25 FEATURES USED FOR BUILDING MODELS FROM KYPO CRP DATA. ALL VALUES ARE COMPUTED FROM PER-STUDENT DATA, n = 244.

Feature description [unit or permissible range] Min Max Med Avg Std

C
om

m
an

d
us

ag
e 1 Avg number of commands executed per task [∈ R+

0] 0.8 71.6 12.7 15.4 11.4
2 Min number of commands executed per task [∈ N0] 0 10 0 1 2
3 Max number of commands executed per task [∈ N0] 2 211 35 46 37
4 Avg number of commands executed per minute [∈ R+

0] 9e−6 2e−3 3e−4 3e−4 2e−4

5 Length of longest sequence of repeated commands [∈ N0] 1 16 2 3 2
6 Avg time gap between two command executions [m:ss] 0:10 29:41 1:00 1:23 2:03

T o
ol

us
ag

e

7 Avg number of unique tools used per task [∈ R+
0] 0.6 19.6 4.3 5.0 3.1

8 Min number of unique tools used per task [∈ N0] 0 5 0 1 1
9 Max number of unique tools used per task [∈ N0] 1 66 11 13 10

10 Avg number of unique tools used per minute [∈ R+
0] 7e−6 4e−4 7e−5 8e−5 5e−5

11 Length of longest sequence of repeated tools [∈ N0] 2 37 6 7 5
12 Avg time gap between using two different tools [m:ss] 0:11 59:53 1:29 2:21 4:24

So
lu

tio
ns

13 Number of solutions displayed per task [0/1] 0 1 0.17 0.25 0.28
14 Solution displayed to a task in the first half of the exercise [0/1] 0 1 0 0.37 0.48
15 Solution displayed for two consecutive tasks [0/1] 0 1 0 0.28 0.45
16 Min time from task start to solution displayed [m:ss] 0:02 68:26 30:40 37:00 29:33

A
ns

w
er

s

17 Avg number of wrong answers per task [∈ R+
0] 0 11.3 0.5 0.7 1.1

18 Max number of wrong answers without action performed [∈ N0] 0 23 1 2 2
19 Avg time gap between two consecutive answers [m:ss] 0:37 248:08 8:22 11:12 16:26
20 Avg time from task start to the first answer in that task [m:ss] 3:34 199:15 14:01 16:23 14:05
21 Min time from task start to the first answer in that task [m:ss] 0:05 49:40 3:04 4:16 4:56
22 Max time from task start to the first answer in that task [m:ss] 7:33 824:58 31:44 60:53 53:29

D
ur

at
io

n 23 Avg time to successfully complete a task [m:ss] 3:34 239:01 14:57 17:58 21:24
24 Min time to successfully complete a task [m:ss] 0:07 38:35 3:50 5:21 5:36
25 Max time to successfully complete a task [m:ss] 7:33 824:58 31:27 40:28 73:31

TABLE III
ALL 15 FEATURES USED FOR BUILDING MODELS FROM EDURANGE DATA. THE VALUE IS AGAIN ALWAYS PER STUDENT, n = 69.

Feature description [unit or range] Min Max Med Avg Std

C
om

m
an

d
us

ag
e

1 Avg number of commands executed per task [∈ R+
0] 1.8 28.3 6.3 6.3 4.3

2 Min number of commands executed per task [∈ N0] 1 4 1 1 1
3 Max number of commands executed per task [∈ N0] 3 98 23 24 60
4 Avg number of commands executed per minute [∈ R+

0] 3e−5 0.10 0.03 0.03 0.02
5 Length of longest sequence of repeated commands [∈ N0] 1 85 2 5 13
6 Avg time gap between two command executions [hh:mm:ss] 0:10 10:48:03 0:31 10:33 1:18:01
7 Avg number of unique commands executed per task [∈ R+

0] 1.7 4.6 2.9 2.9 0.6
8 Min number of unique commands executed per task [∈ N0] 1 2 1 1 1
9 Max number of unique commands executed per task [∈ N0] 2 12 7 7 2

E
rr

or
s

10 Avg number of errors per task [∈ R0] 0 3.4 0.4 0.6 0.6
11 Max number of errors per task [∈ N0] 0 23 3 3 3

D
ur

at
io

n 12 Avg time to successfully complete a task [hh:mm:ss] 2:16 50:24:55 9:52 56:37 6:02:39
13 Min time to successfully complete a task [hh:mm:ss] 0:00 5:23 0:00 0:27 1:00
14 Max time to successfully complete a task [hh:mm:ss] 3:49 75:36:18 24:06 1:36:10 9:03:15
15 Avg time gap between two task completions [hh:mm:ss] 0:52 25:12:06 2:40 25:15 3:01:40

We systematically compared the performance of eight
classifiers: logistic regression, naive Bayes, support vector
machines (with linear or RBF kernel), K-nearest neighbors,
decision tree (CART), Random Forest, and XGBoost. We
selected these standard models because, compared to deep
learning models, simpler classifiers are more interpretable [32],
which is suitable for educational purposes, and usually require
less data. All implementations come from the Python library
scikit-learn [33], only XGBoost has a separate package [34].

1) Cross-validation: We used nested student-level cross-
validation [35], [36] (rather than allocating a holdout test set).
This method was chosen since EDURange dataset was smaller,
and we wanted to use the same training process for both.

The inner cross-validation loop is used for feature selection

and hyperparameter tuning. Both procedures are performed on
the training set, split into training and validation folds. The
best model is selected by the outer loop automatically among
all models from the inner loop, by evaluating them on the test
data (not used for feature selection or tuning for that fold).

Both loops use stratified k-fold cross-validation to account
for the label imbalance. The value for k is commonly set to
10 for the outer loop [7], [20], [22], which we chose as well,
and a smaller number for the inner loop [35] (we chose 5).

Since the test set split is used only for model evaluation,
not feature selection or hyperparameter tuning, and data from
one student are not divided between the training and test set
split (i.e., we use student-level cross-validation), there is no
information leakage.

TABLE IV
CLASSIFIER PERFORMANCE USING THE 244 DATA POINTS FOR KYPO CRP.
THE MODELS ARE SORTED BY THE BALANCED ACCURACY DESCENDING.

Classifier Sensitivity Specificity Bal-Acc AUC
Decision tree 0.869 0.900 0.884 0.921
XGBoost 0.788 0.944 0.866 0.929
SVM (linear kernel) 0.838 0.884 0.861 0.909
Random Forest 0.759 0.961 0.860 0.931
SVM (RBF kernel) 0.776 0.911 0.843 0.901
Nearest neighbors 0.714 0.961 0.837 0.907
Naive Bayes 0.747 0.927 0.837 0.901
Logistic regression 0.776 0.889 0.832 0.889

TABLE V
CLASSIFIER PERFORMANCE USING THE 69 DATA POINTS FOR EDURANGE.
THE MODELS ARE SORTED BASED ON TABLE IV FOR EASIER COMPARISON.

Classifier Sensitivity Specificity Bal-Acc AUC
Decision tree 0.900 0.740 0.820 0.826
XGBoost 0.500 0.816 0.658 0.821
SVM (linear kernel) 0.750 0.813 0.781 0.843
Random forest 0.700 0.873 0.786 0.853
SVM (RBF kernel) 0.850 0.700 0.775 0.796
Nearest neighbors 0.050 0.866 0.458 0.725
Naive Bayes 0.450 0.793 0.621 0.600
Logistic regression 0.800 0.733 0.766 0.828

2) Model Evaluation Metrics: The metrics were chosen
to maximize practical utility. We use sensitivity to quantify
the classifier’s ability to identify struggling students, which is
crucial so that the instructor can provide assistance. However,
since the instructor’s time is limited, it is also vital that students
who do not need assistance are not reported as struggling. For
this reason, we also consider specificity – the ability to predict
successful students. These two metrics were also used in related
publications [7], [22]. Quille et al. [7] argue that these metrics
are important, but rarely reported in related work (only in 4
out of 47 papers they reviewed).

When comparing models with a single metric (e.g., for
hyperparameter tuning), we use balanced accuracy [37] (the
average of the sensitivity and specificity of the given model).
Finally, we compute the Area Under the Receiver Operating
Characteristic Curve (AUC), which is independent of decision
thresholds and unaffected by data imbalance [38].

3) Naive Baseline Models: For comparison, we consider two
trivial models. One is majority classification – each student is
classified to the most prevalent class (0 in our case). The other
is random classification – each student is classified randomly.

IV. RESULTS AND DISCUSSION

Table IV reports the model performance for KYPO CRP and
Table V for EDURange. The values are macro-averages across
the scores of the 10 models trained in the outer cross-validation
loop. All eight models performed much better than the baseline.

A. RQ1: Classifier Performance in KYPO CRP

The decision tree has the highest balanced accuracy (88.4%)
and sensitivity (86.9%). The best specificity (96.1%) was

achieved by Random Forest, which also had the best AUC
(93.1%), and Nearest neighbors, which was less suitable due
to having the lowest sensitivity (71.4%).

The decision tree is also the least biased toward a particular
class (it has the smallest absolute difference between sensitivity
and specificity, 3.1%). This is desirable since we want to
maximize the ability to detect at-risk students while minimizing
the number of students incorrectly identified as struggling.

The difference between the balanced accuracy across the
models is small: only 5.2% between the highest and lowest-
scoring classifier. Similarly, the difference between the highest
and lowest AUC is low: 4.2%. This suggests that while some
classifiers are more suitable for the given context, none are
entirely unusable, which is a good sign.

Surprisingly, experimenting with a subset of the dataset
(using 50% of each log file to simulate the students being
somewhere in the middle of the exercise) did not deteriorate
the models substantially. The balanced accuracy dropped by
less than 0.1, and AUC by less than 0.05. In one model (logistic
regression), the two metrics even marginally improved.

B. RQ2: Comparison With EDURange

Our next question was to evaluate if and how the results
change when the methods are applied to another context.
Despite differences in the number of students and features,
EDURange results are generally consistent with KYPO CRP.
High values for all metrics were achieved by the same
classifiers. Again, decision tree reached the highest balanced
accuracy (82%) and sensitivity (90%). It also had an AUC of
82.6%: well above the baseline. However, its 16% difference
between sensitivity and specificity indicates some bias.

Random Forest performed the second best, achieving a
balanced accuracy of 78.6% and an AUC of 85.3%. Both SVMs
performed well, with a balanced accuracy of 78.5% and 78.1%.
SVM with the linear kernel was favorable given the distribution
of our dataset, since it had lower absolute difference between
sensitivity and specificity (6.3%) and higher AUC (84.3%).

Since KYPO CRP uses features derived from its web
interface, the two systems favored different features for the
most part, but commands per minute and the average number of
commands used to complete a task were used in both contexts.
For EDURange, those features were chosen by many models.

Using 50% of the dataset again deteriorated the models only
slightly (balanced accuracy by up to 0.13 and AUC by up to
0.09), and even improved several models.

Despite some differences, the EDURange features were
largely equivalent to KYPO CRP when possible. Overall, the
feature sets are comparably rich. EDURange ran the modeling
with fewer data, and its logs captured only command-line
activity. The slightly worse performance indicates that having
additional web interface data improves the predictive power.

C. Limitations and Threats to Validity

1) Internal Validity: Any threshold that separates successful
and at-risk students (including our setting of 50% completion)
is an arbitrary choice that affects the results. However, there

is no theoretical basis or a “gold standard” in the literature to
determine exactly when to consider a student as struggling [4].

Regardless of where the cut-off is set, students who are
near the threshold may belong in either category (e.g., two
similar students who achieve a score of 51% and 49% end up
classified into separate categories). As a result, the class labels
(“unsuccessful” and “successful”) should be treated with some
caution. However, this is a limitation of any binary classification.
For example, Castro-Wunsch et al. [39] also used a 50% cut-off.
Edwards et al. [20] used a median split, predicting whether
the student will be in the top or bottom half performance-wise.
Liao et al. [22] defined a 40% cut-off, remarking that it can be
adjusted to “trade off the sensitivity and specificity of a given
model”. Ultimately, the threshold will vary according to the
context relevant for a particular course or exercise.

2) External Validity: Exercise sessions sometimes differed
in aspects such as student demographics, instructor, or modality.
However, these changes are natural in field research in
computing education. As Liao et al. [22] argue, it is unrealistic
to expect that all conditions will remain constant across all
teaching sessions. Moreover, due to the different design of
the two platforms (which were developed before this study
was considered), the two feature sets were not the same,
despite having a substantial overlap. On the positive side, these
differences may enhance generalizability.

Results of computing education research might not always
transfer to a different context [40]. Our models were trained
and evaluated only on the two presented datasets. Therefore,
we cannot make reliable claims regarding the generalizability
to other exercises or platforms. Nevertheless, if exercises in
other platforms allow quantifying student success, our methods
can be applied with minimal modifications, since the source
code is available (see Section V-B).

D. Implications for Teaching Practice

The classifiers can be trained for other exercise environments
and then deployed to detect unsuccessful students. To illustrate,
suppose the best model was deployed in KYPO CRP. The
model has a sensitivity of 0.869, meaning that of all at-risk
students, it can correctly classify 86.9% of them. Next, the
model has a specificity of 0.900, so it can correctly classify
90% of all students who are actually successful. Finally, given
a successful and unsuccessful student, the model with the AUC
of 0.921 can accurately distinguish them in 92.1% of cases.

As evidenced in the raw logs, students perform hundreds
of exercise actions, which is far too much for the instructor
to evaluate manually. Therefore, the detectors would help
direct the instructor’s attention to students who need advice.
Even if some students are misclassified, the rate of false
positives/negatives is manageable in hands-on cybersecurity
courses, which tend to have dozens (not hundreds) of students.

A learning environment providing this detection would allow
instructors to interact with students on a one-to-one basis,
even within a large exercise, in-person or online. It can also
counteract implicit bias because it removes the need for students
to request help and for instructors to choose whom to monitor.

The classification algorithms have no explicit information about
demographics, as recommended by recent literature [41].

From the technical perspective, developers of cybersecurity
learning environments can implement logging of data that pro-
duce the most significant features. These include the number of
commands, errors made, and the timing of answer submissions,
as well as the exercise metadata, such as requesting solutions.

V. CONCLUSIONS

Identifying students who are at risk of performing poorly is
essential for providing targeted interventions. To the best of our
knowledge, only a few studies explored student performance
prediction in cybersecurity exercises, and none of these studies
were conducted across two platforms. We attempted to bridge
this gap by using student activity data from KYPO CRP and
EDURange platforms to determine student success. Specifically,
we employed classification to assess how well the features
extracted from the activity data predict exercise outcomes.
Evaluating eight models for the two platforms demonstrated
that predicting student success based on exercise data is a
promising approach that generalizes across contexts.

A. Open Research Challenges

The goals of the prediction can be modified in various ways.
For example, future work can aim to discover specific tasks
in the exercise on which the student will struggle. Classifying
whether a student will complete a particular task eliminates
the need to set arbitrary thresholds for success. Alternatively,
the goal can be reframed as ranking the students based on how
likely they are to need help, determining the priority for the
instructor. Ultimately, future work should evaluate the practical
deployment of these methods in a classroom.

Another scope of future work is detecting at-risk students
as early as possible. The earlier an accurate prediction is
made, the more beneficial it is [4], [7], since instructors can
intervene to support students quickly. Others explored this
problem within an entire semester, achieving promising results
using week-by-week data [4], [22]. However, we are not aware
of publications in a security context within a smaller time frame
of a short exercise. An open challenge is therefore employing
meaningfully selected data only from a subset of the exercise.

B. Publicly Available Supplementary Materials

We publish the datasets, as well as scripts for process-
ing exercise logs, extracting features, and training clas-
sifiers. The code is documented and can be extended
to extract additional features or evaluate more models.
For KYPO CRP, see https://gitlab.fi.muni.cz/cybersec/papers/
2024-FIE-unsuccessful-students. For EDURange, see https:
//github.com/aubreybirdwell/2024-FIE-unsuccessful-students.

ACKNOWLEDGMENT

The researchers from Masaryk University were supported by
the European Union under Grant Agreement No. 101087529.
Part of this paper is based upon work supported by the
National Science Foundation under grant numbers 2216492
and 2216485.

https://gitlab.fi.muni.cz/cybersec/papers/2024-FIE-unsuccessful-students
https://gitlab.fi.muni.cz/cybersec/papers/2024-FIE-unsuccessful-students
https://github.com/aubreybirdwell/2024-FIE-unsuccessful-students
https://github.com/aubreybirdwell/2024-FIE-unsuccessful-students

REFERENCES

[1] (ISC)2, “Cybersecurity Workforce Study,” ISC2, Inc., Tech. Rep., 2022.
[Online]. Available: https://www.isc2.org/Research/Workforce-Study

[2] Q. Vinlove, J. Mache, and R. Weiss, “Predicting student success in
cybersecurity exercises with a support vector classifier,” J. Comput. Sci.
Coll., vol. 36, no. 1, p. 26–34, 10 2020.

[3] K. Chung and J. Cohen, “Learning Obstacles in the Capture The Flag
Model,” in 2014 USENIX Summit on Gaming, Games, and Gamification
in Security Education. Berkeley, CA: USENIX Association, 2014.

[4] C. Koutcheme, S. Sarsa, A. Hellas, L. Haaranen, and J. Leinonen,
“Methodological considerations for predicting at-risk students,” in Pro-
ceedings of the 24th Australasian Computing Education Conference, ser.
ACE ’22. New York, NY, USA: ACM, 2022, p. 105–113.

[5] N. Kiesler and D. Schiffner, “Why we need open data in computer
science education research,” in Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education, ser. ITiCSE
2023. New York, NY, USA: ACM, 2023, p. 348–353.

[6] A. Hellas et al., “Predicting academic performance: A systematic
literature review,” in Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education.
New York, NY, USA: ACM, 2018, p. 175–199.

[7] K. Quille and S. Bergin, “CS1: how will they do? How can we help? A
decade of research and practice,” Computer Science Education, vol. 29,
no. 2-3, pp. 254–282, 2019.

[8] M. Guzdial and B. du Boulay, “The history of computing education re-
search,” in The Cambridge Handbook of Computing Education Research.
Cambridge University Press, 2019, ch. 1, pp. 11–39.

[9] V. Švábenský, J. Vykopal, P. Čeleda, and L. Kraus, “Applications
of Educational Data Mining and Learning Analytics on Data From
Cybersecurity Training,” Springer Educ. and Inf, Technologies, vol. 27,
2022. [Online]. Available: https://doi.org/10.1007/s10639-022-11093-6

[10] M. Macak, R. Oslejsek, and B. Buhnova, “Process mining analysis of
puzzle-based cybersecurity training,” in Proceedings of the 27th ACM
Conference on Innovation and Technology in Computer Science Education.
New York, NY, USA: ACM, 2022, p. 449–455.

[11] C. Koutcheme, A. Tilanterä, A. Peltonen, A. Hellas, and L. Haaranen,
“Exploring How Students Solve Open-Ended Assignments: A Study of
SQL Injection Attempts in a Cybersecurity Course,” in Proceedings of
the 27th ACM Conference on Innovation and Technology in Computer
Science Education. New York, NY, USA: ACM, 2022, p. 75–81.

[12] Y. Deng, D. Lu, C.-J. Chung, D. Huang, and Z. Zeng, “Personalized
Learning in a Virtual Hands-on Lab Platform for Computer Science
Education,” in 2018 IEEE Frontiers in Education Conference (FIE).
New York, NY, USA: IEEE, 10 2018, pp. 1–8.

[13] A. R. Silva, J. T. McClain, B. R. Anderson, K. S. Nauer, R. Abbott,
and J. C. Forsythe, “Factors impacting performance in competitive cyber
exercises,” Sandia National Lab, Tech. Rep., 2014.

[14] K. Arakawa, Q. Hao, W. Deneke, I. Cowan, S. Wolfman, and A. Peterson,
“Early identification of student struggles at the topic level using context-
agnostic features,” in Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education, ser. SIGCSE 2022. New York, NY,
USA: Association for Computing Machinery, 2022, p. 147–153.

[15] E. Hicks, A. Cook, K. Malasri, A. Zaman, and V. Phan, “Keep It Relevant!
Using In-Class Exercises to Predict Weekly Performance in CS1,” in
Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education V. 1. New York, NY, USA: ACM, 2022, p. 154–160.

[16] K. Quille, S. Nam Liao, E. Costelloe, K. Nolan, A. Mooney, and K. Shah,
“PreSS: Predicting Student Success Early in CS1. A Pilot International
Replication and Generalization Study,” in Proceedings of the 27th ACM
Conference on Innovation and Technology in Computer Science Education
Vol. 1, ser. ITiCSE ’22. New York, NY, USA: ACM, 2022, p. 54–60.

[17] G. Gao, S. Marwan, and T. W. Price, “Early performance prediction using
interpretable patterns in programming process data,” in Proceedings of
the 52nd ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’21. New York, NY, USA: ACM, 2021, p. 342–348.

[18] J. Leinonen, F. E. V. Castro, and A. Hellas, “Time-on-task metrics for
predicting performance,” in Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education, ser. SIGCSE 2022. New
York, NY, USA: ACM, 2022, p. 871–877.

[19] C. Gordon, S. Zhao, and F. Vahid, “Ultra-Lightweight Early Prediction
of At-Risk Students in CS1,” in Proceedings of the 54th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE 2023. New
York, NY, USA: Association for Computing Machinery, 2023, p. 764–770.

[20] J. Edwards, J. Leinonen, and A. Hellas, “A study of keystroke data in
two contexts: Written language and programming language influence
predictability of learning outcomes,” in Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’20.
New York, NY, USA: ACM, 2020, p. 413–419.

[21] A. M. Guerrero-Higueras, N. DeCastro-García, V. Matellán, and M. A.
Conde, “Predictive models of academic success: A case study with version
control systems,” in Proceedings of the 6th International Conference on
Technological Ecosystems for Enhancing Multiculturality. New York,
NY, USA: Association for Computing Machinery, 2018, p. 306–312.

[22] S. N. Liao, D. Zingaro, K. Thai, C. Alvarado, W. G. Griswold, and
L. Porter, “A robust machine learning technique to predict low-performing
students,” ACM Trans. Comput. Educ., vol. 19, no. 3, 2019.

[23] J. Vykopal, P. Čeleda, P. Šeda, V. Švábenský, and D. Tovarňák,
“Scalable Learning Environments for Teaching Cybersecurity Hands-on,”
in Proceedings of the 51st IEEE Frontiers in Education Conference,
ser. FIE ’21. New York, NY, USA: IEEE, 10 2021, pp. 1–9. [Online].
Available: https://doi.org/10.1109/FIE49875.2021.9637180

[24] R. Weiss, S. Boesen, J. F. Sullivan, M. E. Locasto, J. Mache, and E. Nilsen,
“Teaching cybersecurity analysis skills in the cloud,” in Proceedings of
the 46th ACM Technical Symposium on Computer Science Education
(SIGCSE ’15). New York, NY, USA: ACM, 2015, pp. 332–337.

[25] Offensive Security. (2024) Kali Linux. [Online]. Available: https:
//www.kali.org/

[26] Masaryk University. (2022) KYPO Cyber Range Platform Documentation.
[Online]. Available: https://docs.crp.kypo.muni.cz/

[27] V. Švábenský, J. Vykopal, D. Tovarňák, and P. Čeleda, “Toolset
for Collecting Shell Commands and Its Application in Hands-on
Cybersecurity Training,” in 51st Frontiers in Education Conference, ser.
FIE ’21. New York, NY, USA: IEEE, 10 2021, pp. 1–9. [Online].
Available: https://doi.org/10.1109/FIE49875.2021.9637052

[28] V. Švábenský, J. Vykopal, P. Seda, and P. Čeleda, “Dataset of
shell commands used by participants of hands-on cybersecurity
training,” Data in Brief, vol. 38, p. 107398, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352340921006806

[29] V. Kovanovic, D. Gašević, S. Dawson, S. Joksimovic, and R. Baker,
“Does time-on-task estimation matter? implications on validity of learning
analytics findings,” Journal of Learning Analytics, vol. 2, no. 3, pp. 81–
110, Feb. 2016.

[30] K. Tkáčik, “Predicting Student Success in Cybersecurity Training,”
Master’s thesis, Masaryk University, 2022. [Online]. Available:
https://is.muni.cz/th/dkm2u/?lang=en

[31] scikit-learn. (2024) Feature selection. [Online]. Available: https:
//scikit-learn.org/stable/modules/feature_selection.html

[32] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, vol. 1, no. 5, pp. 206–215, 2019.

[33] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] xgboost developers. (2024) XGBoost Documentation. [Online]. Available:
https://xgboost.readthedocs.io/en/stable/index.html

[35] Jason Brownlee. (2020) Nested Cross-Validation for Machine Learning
with Python. [Online]. Available: https://machinelearningmastery.com/
nested-cross-validation-for-machine-learning-with-python/

[36] scikit-learn. (2024) Nested versus non-nested cross-validation. [Online].
Available: https://scikit-learn.org/stable/auto_examples/model_selection/
plot_nested_cross_validation_iris.html

[37] P. Thölke et al., “Class imbalance should not throw you off balance:
Choosing the right classifiers and performance metrics for brain decoding
with imbalanced data,” NeuroImage, vol. 277, p. 120253, 2023.

[38] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data–
recommendations for the use of performance metrics,” in Humaine As-
sociation Conference on Affective Computing and Intelligent Interaction.
New York, NY, USA: IEEE, 2013, pp. 245–251.

[39] K. Castro-Wunsch, A. Ahadi, and A. Petersen, “Evaluating neural
networks as a method for identifying students in need of assistance,” in
Proceedings of the 2017 SIGCSE Technical Symposium on Computer
Science Education. New York, NY, USA: ACM, 2017, p. 111–116.

[40] P. Ihantola et al., “Educational Data Mining and Learning Analytics in
Programming: Literature Review and Case Studies,” in Proceedings of
the 2015 ITiCSE on Working Group Reports, ser. ITICSE-WGR ’15.
New York, NY, USA: ACM, 2015, pp. 41–63.

[41] R. S. Baker, L. Esbenshade, J. Vitale, and S. Karumbaiah, “Using
demographic data as predictor variables: a questionable choice,” Journal
of Educational Data Mining, vol. 15, no. 2, p. 22–52, Jun. 2023.

https://www.isc2.org/Research/Workforce-Study
https://doi.org/10.1007/s10639-022-11093-6
https://doi.org/10.1109/FIE49875.2021.9637180
https://www.kali.org/
https://www.kali.org/
https://docs.crp.kypo.muni.cz/
https://doi.org/10.1109/FIE49875.2021.9637052
https://www.sciencedirect.com/science/article/pii/S2352340921006806
https://is.muni.cz/th/dkm2u/?lang=en
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://xgboost.readthedocs.io/en/stable/index.html
https://machinelearningmastery.com/nested-cross-validation-for-machine-learning-with-python/
https://machinelearningmastery.com/nested-cross-validation-for-machine-learning-with-python/
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html

	Introduction
	Goals and Scope of This Paper
	Contributions to Research and Practice

	Related Work in Predictive Models
	Hands-on Cybersecurity Education
	Other Areas of Computing Education
	Prediction of Student Success in Exercises
	Prediction of Student Success in Courses

	Literature Gaps and Novelty of This Paper
	Focus on Cybersecurity
	Application of Multi-Contextual Data
	Prediction in Smaller Time Frames
	Comparison of Various Methods
	Sharing of Research Artifacts

	Research Methods
	Format and Content of the Cybersecurity Exercises
	Data Collection in the Two Learning Platforms
	Data Collection for This Study
	Data Privacy and Research Ethics
	Data Cleaning and Filtering
	Definition of Class Labels and Data Labeling
	Feature Extraction and Selection
	Model Training and Evaluation
	Cross-validation
	Model Evaluation Metrics
	Naive Baseline Models

	Results and Discussion
	RQ1: Classifier Performance in KYPO CRP
	RQ2: Comparison With EDURange
	Limitations and Threats to Validity
	Internal Validity
	External Validity

	Implications for Teaching Practice

	Conclusions
	Open Research Challenges
	Publicly Available Supplementary Materials

	References

