
1

Multi-Language Software Development: Issues,
Challenges, and Solutions
Haoran Yang, Yu Nong, Shaowei Wang, and Haipeng Cai �

Abstract—Developing software projects that incorporate multiple languages has been a prevalent practice for many years. However,
the issues encountered by developers during the development process, the underlying challenges causing these issues, and the
solutions provided to developers remain unknown. In this paper, our objective is to provide answers to these questions by conducting a
study on developer discussions on Stack Overflow (SO). Through a manual analysis of 586 highly relevant posts spanning 14 years,
we revealed that multilingual development is a highly and sustainably active topic on SO, with older questions becoming inactive and
newer ones getting first asked (and then mostly remaining active for more than one year). From these posts, we observed a diverse
array of issues (11 categories), primarily centered around interfacing and data handling across different languages. Our analysis
suggests that error/exception handling issues were the most difficult to resolve among those issue categories, while security related
issues were most likely to receive an accepted answer. The primary challenge faced by developers was the complexity and diversity
inherent in building multilingual code and ensuring interoperability. Additionally, developers often struggled due to a lack of technical
expertise on the varied features of different programming languages (e.g., threading and memory management mechanisms). In
addition, properly handling message passing across languages constituted a key challenge with using implicit language interfacing.
Notably, Stack Overflow emerged as a crucial source of solutions to these challenges, with the majority (73%) of the posts receiving
accepted answers, most within a week (36.5% within 24 hours and 25% in the following six days). Based on our analysis results, we
have formulated actionable insights and recommendations that can be utilized by researchers and developers in this field.

Index Terms—Multi-Language software, Stack Overflow, developer discussion, software development issues, language interfacing,
software build, data format, cross-language interoperability, error handling

�

1 INTRODUCTION

Multilingual development, which involves the use of mul-
tiple languages within a single software project, is a widely
recognized software practice [1], [2], [3], [4]. This approach
has been commonplace for decades, with over 80% of
projects sampled from both the industry and open-source
communities utilizing two or more languages [1], [5], [6],
[7]. Moreover, the practice has grown in popularity among
developers [8], [9], [10]. The benefits of multilingual devel-
opment are clear, as developers can leverage the strengths
of different languages to increase productivity and flexibil-
ity [1], [2], [8], [11], [12], [13], [14].

Intuitively, developers who adopt multilingual devel-
opment (i.e., multilingual developers) require techniques and
tools to ensure the quality of their software. This need is
particularly pressing given the heightened complexity of
multilingual code [1]. Research has already revealed that us-
ing multiple languages can increase the likelihood of func-
tionality defects [15], [16] and security vulnerabilities [17],
[18], [19]. Addressing these concerns necessitates an under-
standing of the issues faced by multilingual developers and
the underlying challenges that contribute to those issues.
This knowledge can inform researchers and tool providers

• Haoran Yang, Yu Nong, and Haipeng Cai are with the School of Electrical
Engineering and Computer Science, Washington State University, USA.

• Shaowei Wang is with the Department of Computer Science, University
of Manitoba, Canada.

• Corresponding author: Haipeng Cai; Email: haipeng.cai@wsu.edu

Manuscript received April 25, 2023; revised Month Day, 2023.

about what to prioritize and how best to meet the needs of
multilingual developers. Furthermore, identifying current
solutions to these challenges can provide valuable insights
for designing automated tools and pinpoint areas where
further development is needed.

Prior research has extensively examined the phe-
nomenon of multilingual development, mainly focusing on
the characteristics of the end product, such as prevalence [1],
[3], [5], quality [15], [17], and cross-language links [7], [8],
[13], [20]. However, to gain insight into the practical issues
and challenges of multilingual development, a common
approach is to analyze developers’ discussions on relevant
Q&A platforms such as Stack Overflow (SO) [21]. SO has
enabled numerous informative studies on developers’ chal-
lenges with software development on a broad range of
topics [22], [23], [24]. Nonetheless, no prior research has
specifically addressed the multilingual development issues
that developers face in practice.

This paper aims to provide a systematic analysis of the
issues, challenges, and solutions associated with multilingual
development by examining relevant Stack Overflow (SO)
posts. We selected SO as our primary source of information
due to its significance as a platform where developers
exchange information about software development and as
an educational resource that influences their practices [25],
[26]. To conduct our analysis, we manually inspected 586

randomly sampled and highly relevant posts1, covering the
entire period of SO’s existence until late 2021. For each
post, we reviewed the entire discussion thread, including
the original question, answers, and comments. Our study
revolves around four key questions, and we provide our
major findings as respective answers.
RQ1: How prevalent is multilingual development as dis-

cussed on SO? (i.e., How prevalent is multilingual de-
velopment?) We examined the distribution, view counts,
number of votes, and lifespan of multilingual development
posts on SO from 2008 to 2021 to gain insights into the dy-
namics of discussions related to multilingual development.
This investigation sheds light on the sustaining activeness
and relevance of multilingual development discussions.
Starting with the existence of SO, there has been a con-
siderable number of multilingual development questions
initiated by developers each year, although this number
did not monotonically increase ever since. There were
questions becoming inactive (i.e., no follow-up answers or
comments) in every year, but those asked earlier main-
tained their active status for a non-trivial period of time
(i.e., mostly staying active for over one year). Additionally,
they consistently garnered a high number of views and
continuously received votes each year. Some of the ques-
tions have been being discussed for 10+ years, even up to
the entire time span we examined (i.e., 2008 through 2021).
Also, the total number of active posts on multilingual
development generally follows a normal distribution over
time and these posts continue to have a long active time,
indicating a sustaining interest and high dynamics in this
area. At any given year, there were on average 27% of the
studied posts being actively discussed.

RQ2: What are the issues encountered and discussed
by multilingual developers? (i.e., What are the issues
encountered?) We utilized an open coding method to
categorize posts, according to a codebook collaboratively
developed and validated by three of the authors. This
codebook-derivation process resulted in the creation of our
multilingual development issue taxonomy. And the coding
process ended up with the 586 posts being categorized by
their issue categories.
Our analysis revealed that developers faced a diverse
range of issues of 11 categories when developing multi-
language software. The primary concerns were related
to how to interface different languages (accounting for
38% of the 586 inspected posts), handle data across
languages (30%), and build the holistic multi-language
system (15%). It was observed that these issues were
often associated with specific language combinations.
The top three language combinations were found to
be PHP-JavaScript (26% of the posts), Python-C++
(10%), and C++-C# (9%), while nearly half of all the
586 issues were related to web applications. For example,
72% of embedding issues were mainly encountered in
PHP-JavaScript projects, while 30% of error/exception
handling issues were associated with the language com-

1. We consider a post relevant if it (1) discusses multilingual software,
(2) is related to software development issues, (3) has been manually
confirmed as relevant in both regards (1) and (2)—i.e., related to
multilingual development, because the automated process of validating
(1) and (2) each alone suffers imprecision (false positives).

bination of Python-C++. Although the majority of ques-
tions that received an accepted answer got it within a week,
some questions never got one. For instance, among all the
issue categories, error/exception handling issues appeared
to be hardest (with only 50% of related questions having
received an accepted answer), while security related issues
seemed to be much less difficult to resolve (with 87% of the
questions answered satisfactorily).

RQ3: Which challenges do multilingual developers face
as the root causes behind the issues? (i.e., What chal-
lenges are behind the issues?) From the result of RQ2 (i.e.,
post categorization by isuse types), we identified six most
frequent issue categories (i.e., those with top-6 numbers
of constituent posts). Subsequently, three of the authors
independently analyzed each of these six categories to
identify common challenges (i.e., across all of the posts
in that category), leveraging the SO discussions and our
prior knowledge about multilingual development.
Build issues were mainly about compilation failures, ver-
sion conflicts arising from language evolution, and project
maintenance problems. These problems may be a result
of challenges such as insufficient documentation, unin-
formative compiler error messages, and inadequate tool
support. Data handling issues mostly involved data con-
version and differences in third-party library usage, which
stemmed from challenges such as variations in library
configurations, complexity in cross-language data struc-
tures, and diversity in the type systems of different lan-
guages. Interoperability issues were frequently observed
as failures in memory management and inter-operations
across languages, caused by inconsistencies in memory
management mechanisms between languages and incom-
patibilities (and conflicts) in the data types of different
languages. Interfacing choice issues primarily pertained
to selecting appropriate language interfacing mechanisms
due to developers’ lack of familiarity with the various
complex mechanisms. Explicit interfacing issues primarily
concerned threading and foreign function calls caused
by the complexity of multiple threading and varying
multithreading requirements. Implicit interfacing issues
primarily involved message passing and handling re-
quests/responses due to the great complexity of message-
passing configurations and the vast variety of ways of
handling those requests/responses.

RQ4: How are the challenges being solved by multi-
lingual developers? (i.e., What solutions to the chal-
lenges?) We analyzed posts with accepted answers from
the six categories studied for RQ3, taking into account
their responses and comments. We then distilled these into
generalized solutions that address the common challenges
outlined in RQ3 for each issue category.
To address the challenge of insufficient documentation
underlying Build issues, solutions include using exter-
nal links to relevant information and providing multi-
lingual code examples on SO as alternative documen-
tation. For the data conversion-related challenges un-
derlying Data handling issues, solutions include using
a language-independent data format and verifying data
conversion (particularly foreign function) calls for en-
coding/serialization errors. To overcome challenges with
memory-management inconsistencies that lead to Interop-

2

erability issues, current solutions suggest avoiding pointer
and memory operations across languages. For the chal-
lenge of language unfamiliarity underlying Interfacing
choice issues, solutions include seeking documentation
or alternative references about features of individual lan-
guages and/or interfaces across languages. The main so-
lution to the challenge of threading-induced complications
underlying Explicit interfacing issues is to avoid man-
aging threads across languages and, if necessary, to use
a mutex (i.e., a language-specific thread synchronization
mechanism) to manage threads. To overcome challenges
with complex message-passing configurations that lead
to Implicit interfacing issues, current solutions suggest
ensuring correct data configurations at both the server
and client sides and using appropriate approaches to data
transfer between them.

Based on our research findings, we propose practical
recommendations for researchers and developers engaged
in multi-language software development. For instance, we
advise multilingual developers to avoid direct management
of threads and memory across languages. Instead, they
should manage threads and cross-language memory within
individual languages and delegate the responsibility of han-
dling low-level interoperations to the respective language’s
runtime. When deciding which languages to use, developers
should be cognizant of the typical issues and challenges
associated with multilingual development. This awareness
can help them make informed decisions and mitigate poten-
tial issues. For researchers, our findings indicate a need for
the development of tools that can detect data type/format
conflicts across languages, provide better API/usage rec-
ommendations for multilingual development, and facilitate
building multi-language projects. Our study suggests that
the researchers can develop tooling support that recom-
mends optimal options (e.g., concerning interfacing mecha-
nisms and language choices) based on specific requirements
(e.g., cross-language type compatibility and overall inter-
operability) for developers to make best decisions when
developing multilingual projects.

This paper extends the preliminary version of our study,
as presented in [27]. In comparison, this extended version
(1) explores an additional research question (RQ1), (2) elab-
orates further on our study methodology, especially regard-
ing the LDA-based filtering step in the data collection pro-
cess, and (3) expands the scope of challenges and solutions
pertaining to multilingual development issues. Importantly,
in this extension, we have additionally examined challenges
underlying a broader range of issues and delved further into
the originally examined challenges explored in the initial
study. Accordingly, we have also investigated solutions
for the newly identified and dissected challenges. Further
details on these extensions can be found in Section 6.3. Put
together, this extended version represented a notably deeper
and more thorough examination of the issues, challenges,
and solutions pertinent to multilingual software develop-
ment as revealed from developers’ discussions on SO.

2 BACKGROUND AND MOTIVATION

In this section, we define crucial terms and concepts to aid in
understanding the remainder of the paper. We also further

stress the importance of our study to motivate this work.

2.1 Multi-Language Software Development
Multi-language software refers to software systems that
use more than one computer language, without regard to
the language’s classification (e.g., programming, modeling,
descriptive). Each distinct code unit written in a language,
known as a language unit, is critical to the system’s func-
tionality. The process of developing multi-language soft-
ware is known as multilingual development.

2.2 Language Interfacing Mechanism
In a multi-language software project, it is important for
developers to carefully consider and decide on the mech-
anisms by which the used languages interface with each
other, which is referred to as the language interfacing
mechanism [17]. For instance, in programs that combine
Java and C, a common approach for interfacing is for the
Java code unit to call a C function via the Java Native
Interface (JNI).

In multi-language software development, developers
need to decide on the interfacing mechanism for how
the different languages interact with each other. There are
two types of interfacing mechanisms: explicit and implicit.
In an explicit interfacing mechanism, the two languages
communicate through function invocations. For example, in
Java-C software, the Java code unit invokes a C function
through Java Native Interface (JNI). There are two types
of functions involved in explicit interfacing: native functions
and foreign functions. A native function is written by the ap-
plication developer in a language different from the caller’s
language. On the other hand, a foreign function is written
by the language developer in the caller’s language and
is used to retrieve information from a different language.
For instance, as illustrated in Figure 1, the developer can
use ctypes to call C functions from Python. In this case,
the functions written in C are foreign functions, and the
functions written in Python are native functions.

Alternatively, in the case of implicit interfacing, two
language units can interact through interprocess commu-
nication (IPC) methods such as shared memory, network-
based message passing, or message queues. This method
allows one unit to access another unit’s functionalities in-
directly. For instance, in PHP-Java applications, the PHP
client communicates with the Java server through message
passing via sockets.

2.3 Embedding
In multi-language projects, another approach for integrating
units of different languages is through embedding one
language unit within the code of another language. This
technique, called embedding, is commonly used between
two declarative languages, such as HTML embedding CSS,
or between a declarative language and an imperative lan-
guage, such as HTML embedding JavaScript.

2.4 Motivation
In recent years, real-world software projects have mostly
and increasingly utilized two or more languages, as evi-
denced by several studies [1], [5], [6], [7], including the most

3

Calling C functions in Python
Asked 9 years, 3 months ago Active 7 years ago Viewed 50k times

I have a bunch of functions that I've written in C and I'd like some code I've written in
Python to be able to access those functions. ... One question recommends ctypes and
another recommends cython. I've read a bit of the documentation for both, and I'm
completely unclear about which one will work better for me. ... I don't know if it will be
easier for me to call the Python from C or vice

You should call C from Python by writing a ctypes wrapper. Cython is for making
python-like code run faster, ctypes is for making C functions callable from python. What
you need to do is the following:
 1. Write the C functions you want to use. (You probably did this already) …

Fig. 1: An example Stack-Overflow post with an accepted
answer illustrating that the ctypes is recommended to the
questioner with advice on the usage of it [28].

What challenges are
behind the issues?

What solutions to
the challenges?

What are the issues
encountered?

Category of
issue

Key challenges of
issue category

586 relevant posts

Understanding of multi-language software
development issues, challenges, and solutions

Solutions of
key challenges

RQ2 RQ3 RQ4

RQ1

How prevalent is
multilingual development?

Fig. 2: Our research questions and their relationships.

recent one by ourselves [4]. Consequently, there has been
a significant increase in the number of reported bugs and
issues (e.g., security vulnerabilities) related to multilingual
code [15], [17], [18], [19]. Intuitively, those bugs may be a
result of development issues and challenges developers face
when creating and maintaining multilingual software.

Yet currently multilingual code defects have primarily
been studied at code level only, often through a few case
studies of multilingual software projects and defects in
them [15], [17], not from a development perspective. As
it stands, there remains a lack of understanding of the
underlying challenges behind the process of developing
the multilingual code. Our study comes in to address this
gap: we examine developers’ discussions surrounding their
experiences and difficulties with multilingual development,
which helps gain insights into the development-wise issues
and challenges they face that may have resulted in the code-
level quality defects of multilingual software, hence inform-
ing future design of technique/tool support for facilitating
multilingual software quality assurance.

3 METHODOLOGY

A standard SO post comprises several properties that we
use in our analyses, as depicted in Figure 1.
� Title summarizes the question of the asker (developer).
� Created time is the post creation time, in seconds.
� Active time refers to the most recent time at which an

individual participated in a discussion on a particular post
by posting answers or comments. This time is accurate
down to the second.

� View count is the #times the post has been viewed.
� Vote count is the sheer #times the post has been liked

(i.e., #upvotes - #downvotes).
� Question is the description of the problem or issue that

the post is addressing. It is typically presented in detail,

and may include relevant code snippets, screenshots, or
links to external resources.

	 Accepted answer indicates that the answer that has been
chosen by the original poster of the question as the most
helpful or satisfactory solution to their problem. The ac-
cepted answer is indicated by a green checkmark.

 Answer describes a response from a user who attempts
to provide a solution or answer to the question raised in
the post. It may include code snippets, explanations, or
links to external resources.

3.1 Research Questions

Using the relevant posts, we seek to answer four research
questions in relation, as shown in Figure 2. Below, we clarify
the aim and justification for each question with respect to
our study goal and describe our approach to answering it.

RQ1: Prevalence. First, we aimed to assess the preva-
lence of multilingual development. To that end, we intend to
investigate the extent and activeness of discussions related
to multilingual development on SO. Our approach is to
track the yearly total views of SO to gauge any changes
in the trend of multilingual development. Recognizing the
popularity of multilingual programming can assist develop-
ers in determining its significance, and it can also encourage
researchers to conduct more studies in this area.

To answer RQ1, we examined the distribution of a sam-
ple of highly topic-relevant posts over the span of the 14
years (from 2008 the birth year of SO until 2021) our study
covered in terms of the post creation year and the year a post
became inactive. This enables insights into the dynamics
of SO discussions on multilingual development. To further
assess the activeness of those discussions, we characterize
the lifespan of each individual post, which informs the
duration of attention to respective questions.

RQ2: Issues. Then, we aimed to investigate the issues
faced by developers in multilingual development, which
can hinder their productivity and affect the software qual-
ity. Identifying these problems is the initial step towards
finding solutions to overcome these barriers. To achieve
this, we developed a taxonomy of multilingual development
issues that covers the entire software development life cycle,
from analysis and design to coding, testing, and mainte-
nance/evolution. This taxonomy serves as a comprehen-
sive guide for our further investigation into the challenges
and solutions related to multilingual development. We also
examined the language combinations associated with each
category of issues.

To answer RQ2, we adopted an open coding approach to
categorize each post, as we had no prior knowledge about
it. Three authors created and validated the codebook with
a common inter-agreement and consensus procedure, and
then used it to categorize sample posts confirmed as highly
relevant to our study, as elaborated in §3.3. As a result of
categorizing these posts, we obtained the issue taxonomy
mentioned above.

RQ3: Challenges. Next, we aimed to gain an understand-
ing of the root causes that underlie the issues identified
in response to RQ2. This is crucial for developing effective
and sustainable solutions to address the identified issues. To
achieve this, we focused on the six most prevalent categories

4

of issues and identified the major challenges associated with
each of them. The resulting insights provide a valuable ref-
erence point for our investigation into the current solutions
for addressing each of these categories of issues.

To address RQ3, we categorized the 586 posts obtained
from RQ2 based on their identified issue categories. Then,
we conducted an independent analysis of the posts in each
category to identify the common underlying challenges
across those posts. This analysis was performed by three
authors and was based on the discussion in the posts, as well
as our prior knowledge about multilingual development
and relevant online resources. Any disagreements were re-
solved through meetings until a final consensus was reached
for each post.

For each issue category, we initially read and analyzed
each post, assigning relevant tags that indicated the content
and problems discussed. These tags were then clustered
based on semantic similarities, and we examined the posts
in each cluster to identify the causal factors of the problems.
Finally, we consolidated the primary and common factors
for each cluster to identify the root causes or ”challenges”
for the issue. We identified multiple root causes/challenges
for each issue category, although we will only present the
primary challenges.

RQ4: Solutions. Finally, our goal was to identify the
existing solutions that developers have used to tackle the
multilingual development issues they faced. Answering
RQ4 would enable us to create a comprehensive catalog
of the current solutions, which could serve as a valuable
reference for developers. Additionally, it would provide
insights into the current practices and state of multilingual
development and help us chart a course for future research.
We focused on extracting the common solutions for the six
most prevalent issue categories we discovered in response
to RQ2 and their top underlying challenge identified in
response to RQ3.

To answer RQ4, we first selected the posts belonging
to the studied six categories which had accepted answers.
We then proceeded to analyze the answers and comments
provided in each selected post. Finally, we synthesized
the specific solutions offered in individual posts into more
general solutions that address the root causes or challenges
identified in RQ3 for each category of issues.

3.2 Data Collection

The complexity and diversity of each individual language
and their combinations in multilingual software make it
necessary to rely on manual inspection for content analysis
of posts. Therefore, we need to determine an adequate but
manageable number of relevant posts to investigate. As de-
picted in Figure 3, we began by including all posts available
on SO, followed by utilizing two filters to identify high-
quality relevant posts. It is essential to note that we consider
a post potentially relevant if it (1) pertains to multi-language
software (§2.1) and (2) discusses software development issues.

Filtering via language tags and #votes. To ensure man-
ageability and relevancy of our study, we began by selecting
the most popular programming languages as tags, which we
determined through consulting multiple language popular-
ity rankings [29]. Based on this research, we identified the

Stack
Overflow

k
Filtering via

tags and
#vote

Filtering via
topic modeling

(LDA)

Random
sampling for
codebook

586 posts

All posts 10,444 posts

5,565 posts

495 posts

Random
sampling for

study

1,113 postsCoding
Process

CodebookCodebook

Derive
Codebook

Fig. 3: The flow of our data collection process.

top-7 popular languages in 2020, which were JavaScript,
Python, Java, C, C++, Shell, and PHP, as our initial filter.
These languages have been widely used for a long time [1],
[2], [3]. We selected 7 as our threshold here, because this
was the number of languages commonly found in the top-10
popularity lists we consulted.

TABLE 1: Precision and recall of LDA-based post relevance
identification with different numbers (k) of keywords a post
needs to all include to be deemed relevant.

k precision recall

1 45.23% 95%
2 40.74% 55%
3 29.41% 25%
4 22.22% 10%
5 28.57% 10%
6 50.00% 10%

To further narrow down our dataset, we used the num-
ber of votes a post received as a proxy for quality, a method
previously used in similar studies [30], [31]. We only in-
cluded posts that received a minimum of 6 votes, as we
found this threshold provided a good balance between post
coverage and manageable manual effort. Using the Scrapy
tool [32], we crawled posts from SO that contained at least
two of the 7 selected language tags. We chose to crawl the
website rather than using a dump because it ensured our
study would be up to date. After filtering, we ended up with
10,444 posts that met our relevancy and quality criteria.

Filtering via topic modeling (LDA). Given our study
goals, it is essential to focus on posts that are highly relevant
to multilingual development issues. However, out of the
10,444 posts, most are clearly irrelevant to any develop-
ment issue as we have found during our quick sampling
and inspection. Nevertheless, manually filtering out these
irrelevant posts would be a tedious and costly process.
To efficiently eliminate irrelevant posts, we employed a
topic modeling technique called Latent Dirichlet Allocation
(LDA) [33] as a filtering step. First, we used LDA to extract a
list of generic topic words that are relevant to development
issues. Given that not all posts pertain to development is-
sues, the topic list (which results from applying LDA against
all those posts) ended up containing many irrelevant words.
We then manually removed noisy words (e.g., ”hence,”

5

TABLE 2: Key codes used to categorize SO posts on multilingual development issues.

Code Summary Description

Language choice Developers ask/discuss about choosing the languages to use for their multi-language project.

Interfacing Developers ask/discuss about calling interface (implicit or explicit) between two languages.

Embedding Developers ask/discuss about embedding one language unit within another language unit.

Build Developers discuss how to build (e.g., compile, install, configure) the multilingual code.

Efficiency/Performance Developers are concerned about computing/storage efficiency of their multi-language systems.

Security Developers have security/privacy/cryptography-related concerns with multilingual development.

Data handling Developers discuss cross-language data processing and/or transferring data between languages.

Error/exception handling Developers ask/discuss about handling errors and/or exceptions in multilingual code.

”solution”) that were not indicative of development issues.
Next, we kept a post if it contained k (≥1) of the remaining
topic words. Even if a post contained non-indicative or
noisy words, we did not exclude the post from our study
just because of that. Using the remaining topic words (e.g.,
”JNI,” ”SWIG,” ”socket”) as keywords, we experimented
with various potential sets of keywords, including different
combinations of words as phrases. We randomly sampled
50 posts and manually labeled them as ground truth for
validation purposes. For each potential set of keywords,
we used it to detect relevant/irrelevant posts from the 50
and calculated the precision and recall based on the ground
truth.

As shown in Table 1, increasing the number (k) of key-
words that a post must all include to be considered relevant
results in a trade-off between precision and recall. When k
is set to 1, recall is high but precision is low, indicating that
many non-relevant posts are incorrectly included. When
k=6, precision reaches its maximum value, but recall also
reaches its lowest point, indicating that many relevant posts
are being excluded. It’s important to note that the optimal
value of k may vary depending on the specific research
question and dataset being analyzed. In this case, a value
of k=1 may be sufficient for the current study goals. Thus,
we eventually chose k=1 in our LDA analysis.

After experimenting with different keyword sets, we
arrived at a final set that provided a recall rate of 95% and
precision rate of 45.23%, even though other sets delivered
better precision rates but much lower recall rates. Our
priority was to keep a high coverage of genuinely relevant
posts, despite the higher manual effort required to eliminate
false positives in the next stage. The recall rate of 95% is
satisfactory for using the LDA-based filter as a criterion, as
it ensures that we do not miss many true positives during
the final post-relevancy verification. The filtering process
utilizing LDA reduced the number of posts to 5,565.

3.3 Post Categorization
For the next step, we need to derive a codebook and then
apply it for the categorization of posts.

Random sampling for codebook. To generate the code-
book, we first randomly selected 495 out of the 5,565 posts
for analysis. This sample size is statistically significant at
98% confidence level (CL) and 5% margin of error (ME).

Derive codebook. Three of the authors independently
created an initial list of issue categories based on the 495
posts, and 262 were identified as highly relevant, followed

by addressing any discrepancies to reach a consensus on
the final codebook shown in Table 2. Specifically, each
author carefully read the posts, verified whether each post
belonged to the existing issue categories, and created a new
category if necessary. When creating a new category, they
provided a label to describe the issue in the post, created
descriptions for the category, listed some common issues
that should belong to the category, and included the post
as an example for the category. In certain instances, to
enhance the accuracy and utility of the codebook, similar
codes were merged and inappropriate ones eliminated. The
detailed processes of code extraction, merging, and deletion,
along with their rationales, are thoroughly documented in
the supplementary document.

Random sampling for study. After filtering with the
LDA, we were left with 5,565 posts. Due to the significant
time required for manual inspection, we randomly selected
20% of these posts, resulting in 1,113 posts that require
manual confirmation in the coding process. This sample size
is statistically significant at 99.9% CL and 5% ME.

Coding process. In this final step of our post catego-
rization process, the three authors participated in intensive
discussions, working diligently to reach a consensus on the
relevance and categorization of each post under review.
Specifically, starting with an initial sample of 1,113 posts,
the authors embarked on their thorough examination. Every
post was individually assessed, taking into account its con-
text, the intent behind it, and its pertinence to the study’s
goals. After comprehensive discussions and deliberations,
the three authors collectively agreed that 586 posts were
highly relevant to multilingual development.

After this manual confirmation, the subsequent task
was to systematically organize these 586 posts. Using the
codebook that had been previously developed, the authors
categorized these posts into different categories. This code-
book, detailed in Table 2, consisted of specific issue cate-
gories, each tailored to encapsulate the core essence and
concerns of the posts. The three authors distributed the
posts across these categories, ensuring each post was ap-
propriately matched to its respective place in the codebook.
To ensure the reliability of the coding procedure, we utilized
the negotiated agreement method, which is particularly useful
in research aimed at providing new insights [34]. The three
authors who developed the codebook performed the final
coding, reaching a consensus on each of the 586 posts. These
posts, hereafter referred to as relevant posts1, were further
analyzed manually to answer our four RQs.

6

4 RESULTS
4.1 RQ1: Prevalence

We started by looking into the dynamics of SO discussions
on multilingual development in terms of the number of
new posts created each year—that is, new questions that
were first asked during that year. Intuitively, as developers
who have questions that have been asked earlier by others
would be satisfied by just following up the existing posts
via new comments or simply viewing the current threads
of discussion, they would not need to create new posts for
those questions—in fact, SO prevents redundant questions
from being asked. As a result, with existing questions accu-
mulating to a (saturation) point, new questions to be asked
may not be expected to keep increasing.

Fig. 4: The number of posts (x-axis) created within each of
the 14 years studied (y-axis).

Fig. 5: The number of posts (x-axis) that became inactive
within each of the 14 years studied (y-axis).

This extrapolation is generally validated by our result.
As shown in Figure 4, the number of new questions hit
a saturation point at 2015 and it appears that attention
to multilingual development has decreased monotonically
since 2016. However, we note that two factors need to be
kept in mind when explaining this seemingly declining
trend. Firstly, during data collection, we established such
a threshold that led us to have only collected posts with
a vote count greater than five. This measure was taken
to ensure the quality of the posts and filter out low-
quality content through the voting of the Stack Overflow
community. Nevertheless, this threshold means that some
newly released posts may not have had sufficient time to
accumulate enough votes. The number of views and votes a
post receives generally increases as it is active on the site for

a longer period. Secondly, the redundancy of questions also
affects the trend, as noted above.

Fig. 6: The distribution of average view counts of each post
created in each year (top chart) and total view counts of the
posts created in each year (bottom chart).

To understand the evolution of developers’ attention to
the topic of multilingual development, we also analyzed
the (in)activeness of the posts according to their last active
time. Figure 5 shows how many of the studied posts be-
came inactive (i.e., no followup/answer and no comment
anymore) over the years. The result indicates that there
were consistently a large number (>40) of posts becoming
inactive. Considering that a significant proportion (>80%)
of the posts we analyzed were created before 2016 (Fig-
ure 4), it is noteworthy from Figure 5 that these posts have
maintained an active status for a non-trivial period of time,
with the majority of them remaining active until 2015-2021.
This highlights the enduring relevance of previously asked
questions. It is worth noting that the data collection process
concluded on August 30, 2021, and thus the data for 2021
is not fully comprehensive. However, this shall not have a
significant impact on the overall findings with respect to our
goal for RQ1.

Fig. 7: Average #votes received per post within each year.

To gain deeper insight into developers’ interest in multi-
lingual development, we also assessed the total and average
number of views for posts created annually. The bottom

7

chart of Figure 6 depicts the cumulative views of posts
created each year within the periods studied. From 2009
to 2013, there’s a notable spike in the total view count.
The subsequent years, 2014 and 2015, also maintained a
considerable view count. The top chart of Figure 6 presents
the average views per post for each year, highlighting a
pronounced peak in views from 2009-2013. The averages for
2014-2015 are also notably higher compared to those from
2016-2021. It’s worth noting that SO commenced its opera-
tions in 2008, making data from that year less representative
due to the platform’s infancy and smaller user base.

From Figure 7, it’s evident that posts concerning mul-
tilingual development average more than 3 votes annually.
It’s important to note that the 2021 data only extends to
August of that year and wasn’t fully considered, as the
posts from that period hadn’t had ample time to accumulate
votes. Such data suggests that multilingual development
topics consistently garner significant attention from the
community. On SO, the creation of duplicate or highly
similar questions is discouraged. Therefore, when a post
on a particular question already exists, developers are more
inclined to view or participate in the discussions of the pre-
existing questions. This behavior is reinforced by Figure 4,
which displays a declining trend in the number of new posts
created after 2016. Yet, combined with the findings from
Figure 5, which show that the majority of posts remained
active through 2015-2021, it is clear that interest in multilin-
gual development persists. This suggests that the topic of
multilingual development remains active on SO. Now that
developers primarily rely on existing posts for their queries,
the platform’s discouragement of duplicate content reduces
their inclination to create new posts on the same topics.
Consequently, this boosts the view counts for existing posts.

While the number of new questions on multilingual development
did not always monotonically increase, prior posts have consis-
tently attracted high views and continuously received average
votes each year. This highlights the dynamic nature of SO
discussions centered on multilingual development.

Fig. 8: The count distribution of the 586 analyzed posts (y-
axis) over different life spans in #years (x-axis).

Given the general observation on the duration of active-
ness, it is natural to see how long each individual post
has exactly been active. The data presented in Figure 8
indicates that the lifespan of posts related to multilingual
development is not short, corroborating the trends observed
in Figure 4 and Figure 5 combined. In fact, over half of the
posts have remained active for more than one year, with

approximately 8% of them still being actively discussed after
more than ten years. This suggests that the prevalence of
multilingual development is not a fleeting trend, but rather
a sustaining phenomenon.

Fig. 9: The number of posts (x-axis) that were active within
each of the 14 years (y-axis).

Finally, we examined the activeness of multilingual de-
velopment discussions on SO from another perspective—
the total volume of active discussions per year. Figure 9
depicts the number of posts that were active within each
year, The bell shape suggests a normal distribution of these
numbers. Using this information, we can deduce that the
mean (μ) of the distribution is 156 and the standard de-
viation (σ) is 82. In other words, on average, 27% of the
questions were being actively discussed in any given year,
indicating multilingual development topic remained overall
active over the years.

The community of developers involved in multilingual develop-
ment has been kept highly active—relevant questions tend to
remain active for a non-trivial period of time since first asked,
indicating that multilingual development is sustainably popular.

4.2 RQ2: Issues

We present our issue taxonomy and then examine the corre-
lation between issue categories and language combinations.
We also assess the difficulty level of each category of issues
through the ratio of answers that were accepted by the
question poster (to the total #questions in that category).

4.2.1 Issue Taxonomy (Categories)
In Figure 10, we have presented a categorization of the 586
posts. They were categorized into 11 separate and distinct
categories, which are located at the leaf nodes of the tree.
This hierarchy also provides information on the distribution
of posts across the various categories. At the highest level,
there are 8 categories derived from the codebook presented
in Table 2. The two categories with the highest number of
posts (222 and 174) were further divided to form the second
level: Interfacing choice and Invocation mechanism under
Interfacing, and Data format/compatibility and Interoper-
ability under Data handling. Additionally, the Invocation
mechanism category was broken down further into two
subcategories corresponding to the two types of interfacing
mechanisms (§2.2) at the third level. We constructed the
taxonomy such that the number of posts in all leaf categories

8

All StackOverflow posts (586)

Interfacing (222) Data handling (174)Embedding (47) Error/Exception handling (10)Security (8)Efficiency/Performance (14)Language choice (21) Build (90)

Interfacing choice (86) Invocation mechanism (136)

Explicit interfacing (78) Implicit interfacing (59)

Data format/compatibility (88) Interoperability (86)

Fig. 10: Our proposed taxonomy of multilingual development issues derived on the basis of the studied SO posts.

does not exceed 100, which makes deeper analyses for RQ3
and RQ4 more feasible.
Approximately 38% and 30% of all relevant posts are catego-
rized under Interfacing and Data handling respectively, indicat-
ing that developers require further assistance on these issues.

4.2.2 Issue Categories versus Language Combinations

19% 18%
50%

72%

23%
43%

25%

20%

7%

30%
11%

12%

9%

15%

10%
25%13% 10% 8%

14%

11%

20%

38%
10%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

26.1%

10.4% 9.0% 7.5% 7.3% 6.3% 2.7% 1.0%
0

100

200

Fig. 10: The percentage distribution of top three language
combinations involved in the posts of each issue category
(top chart), and the percentage distribution of all the 586
posts over all such language combinations (bottom chart).
The bottom chart serves as a reference for facilitating under-
standing the top chart.
Figure 10 (top chart) depicts the primary language combi-
nations linked with each of the 8 top-level issue categories,
while the distribution of all 586 posts over the involved
language combinations is provided as a reference in the
bottom chart. The outcomes in the bottom chart indicate that
PHP-JavaScript (26% of the posts), Python-C++ (10%),
and C++-C# (9%) were the top 3 language combinations
used across all issue categories. However, this does not
necessarily imply that PHP-JavaScript projects are more
prone to multilingual development issues. It could just be
a result of the higher popularity of this combination among
the ones analyzed.

Although the distribution of language combinations can
affect the overall percentage of posts associated with each
combination, our findings suggest that specific types of
issues tend to be associated with certain language combi-
nations. For example, the majority (72%) of Embedding is-
sues were encountered in PHP-JavaScript projects, while
50% of the Efficiency/Performance issues were associated

Fig. 11: The distribution of posts across answer status (ac-
cepted, undetermined, and undiscussed) for different issue
categories.

with the same language combination. Additionally, 38% of
Security issues were related to Java-JavaScript projects.
On the other hand, Data handling issues were found to be
evenly distributed across different language combinations,
as evidenced by the height of the bars in the top chart of
Figure 10, where taller bars represent a greater dominance
of the top three language combinations associated with a
particular category of issues.

The issue categories of Embedding and Efficiency/Performance
were mainly associated with a small number of highly-dominant
language combinations, whereas other issue categories exhibited
a more diverse range of language combinations.

4.2.3 Issue Difficulty

Intuitively, examining the answer acceptance status of ques-
tions after they are posted can help assess the degree of
difficulty of resolving respective issues. Accordingly, we
can gauge the level of difficulty for each issue category
using the percentage of questions (posts) in that category
that had an accepted answer. Similarly, such percentages of
posts with respect to other answer status—undetermined (i.e.,
there are answers of which none were marked as accepted)
and undiscussed (i.e. there is no answer to the question
received)—can help further understand the difficulty levels.

9

Fig. 12: The average number of answers to each category

Figure 11 shows that all categories have more than 50%
of their posts having received an accepted answer. Out
of the 586 relevant posts, a significant portion (73%) of
them received an accepted answer, which is higher than
the 57% answer acceptance rate reported for all posts on
Stack Overflow in an earlier study [35]. Interestingly, only
1% of the multilingual posts never received any answer
(i.e., undiscussed). The Security category boasts the highest
answer acceptance rate at approximately 87%. As depicted
in Figure 12, questions within the ’security’ category av-
erage 3.88 answers, placing them among the top across
all categories. Such a trend for ’security’ questions could
be attributed to several factors: they might attract greater
interest and attention, or perhaps questions in this category
are relatively straightforward, eliciting more responses.

0

10

20

Fig. 13: Distribution of the
number of days since a post
was created until it received
an accepted answer

Conversely, Figure 11
shows that the
Error/Exception category
is likely to be the
most challenging (or
least interesting to the
post viewers) as it
has the lowest answer
acceptance rate of only
50%. As illustrated in
Figure 12, the average
number of answers for
the Error/Exception
category stands at just 1.5,
markedly trailing all other
categories. We surmise
that this could be due
to the category receiving
limited attention from
developers or because
questions within this
category pose unique
challenges, resulting in

fewer responses and diminished accuracy in answers.
Furthermore, we observed no statistically significant
differences in the answer acceptance rate among the other
issue categories (rates ranging from 63% to 81%).

As illustrated in Figure 13, it is notable that the majority
of these accepted answers were provided within 7 days
of the question being posted, with nearly half of them
being answered within just 24 hours. These findings support
our initial speculation that multilingual projects receive
significant attention from the community and that most

multilingual development issues are not intractable, with
half of the issues being resolved in just one day. Even the
most challenging questions can be answered within several
days. These results suggest that the multilingual develop-
ment community on SO is highly responsive to developers’
questions, providing timely and effective assistance.

Using the answer acceptance rate of each issue category as an
indicator of its difficulty level, Security related issues appeared to
be relatively more resolvable than other issue categories (with an
87% acceptance rate) and Error/Exception handling issues the
least resolvable (with the acceptance rate of 50%). The majority
of all the issues received an accepted answer within 7 days.

4.3 RQ3: Challenges
We have chosen to concentrate on the 6 most frequent issue
categories, which together account for 84% of all posts, in
order to identify the shared challenges behind each category.

4.3.1 Build
We found that build issues mainly involved problems re-
lated to installation, compilation, configuration, and pack-
aging, and we identified 3 common challenges that summa-
rize the root causes of these issues. These challenges were
observed in 15 out of the total 90 posts on multilingual
software build issues.

Challenge 1: Documentation Insufficiency: Insufficient or
non-existent documentation was observed in the context of the
discussed build-related topic. Many developers expressed con-
cerns about inadequate or missing documentation in their
questions or comments. Specifically, among the relevant
posts, developers encountered two types of situations re-
lated to documentation:
• Missing documentation: Missing documentation on the

discussed topic is a recurring problem highlighted by
many developers in their questions and comments. For
instance, one relevant post [36] exemplifies this issue,
where the QWebChannel JS API failed to set up in
a QWebEngineView due to incomplete documentation
about Qt. Specifically, the documentation related to the
QWebChannel component was entirely missing, resulting
in difficulties for the developer in resolving the issue.

• Insufficient documentation: Relevant documentation exists,
but it only provides reference information or general ideas
for solving respective problems, as shown in the post cited
as [37]. In this post, the developer faced an issue with
splitting code into multiple modules in a general situation
using Pybind11, but the documentation only addressed a
special case and did not provide a complete method.

Challenge 2: Insufficient Support: Support for multi-
language code build is severely lacking. Developers often face
the challenge of inadequate compiler log messages and, as
a result, they seek to build tools to enhance their work
efficiency. However, the existing tools do not fully sup-
port multilingual projects. As depicted in Figure 14, the
developer was unable to remove unnecessary resources
from a multilingual project during the build process due
to inadequate build support. This was because the project
was written in C++-C#, but there was no tool available to
remove resources at runtime.

10

How do I remove unnecessary resources from my project?
Question: I am working with a very big project (a solution that contains
16 projects and each project contains about 100 files). It is written in
C++/C# with Visual Studio 2005. One of the projects has around 2000
resources out of which only 400 are actually used. How do I remove
those unused resources? I tried to accomplish the task by searching for
used ones. It worked and I was able to build the solution, but it broke at
runtime. I guess because enums are used. (IMPORTANT)

How can I make sure that it doesn't break at runtime? ...
Fig. 14: An example illustrating that tool support for build-
ing multilingual code is lacking, as a challenge causing
the issue here: unnecessary resources were not successfully
removed during the build process [38].

Hello world with boost python and python 3.2
Question: So I'm trying to interface python 3.2 and c++ using boost
python, and have come across many many issues. I've finally gotten it to
compile using the 2.7 libraries and it works, but I can't seem to make it
work with python 3.2. …

If I compile it using the 2.7 libraries it works just fine, but when I use
the 3.2 libraries I get tons of undefined references from
libboost_python.so …

And the error from the python 3 interpreter is
File "<stdin>", line 1, in <module>
ImportError: /usr/local/lib/libboost_python.so.1.47.0: undefined
symbol: PyClass_Type

Fig. 15: An example where language evolution causes com-
patibility issues between languages, as a challenge under
build issues that the build succeeded with one version but
failed with another one of the languages (Python) [39].

Challenge 3: Language Evolution: As languages continue to
evolve, certain language versions may become incompatible with
previous versions. The use of multiple languages can exacerbate
this issue, leading to even more compatibility challenges. Com-
puter languages undergo frequent version updates, leading
to changes or abandonment of some functions or modules.
Multilingual projects, which involve at least two languages,
are particularly affected by this evolution. When one of
the languages undergoes changes, it can impact the entire
project environment. This problem arises due to the inherent
complexity of multilingual environments. As illustrated in
Figure 15, C++ can interact with Python 2.7 using boost,
but fails to do so with Python 3.2, highlighting the challenge
of evolving languages and their incompatibility with current
versions.
The posts related to Build issues primarily pertain to failures
encountered during the build process, such as compilation errors,
conflicts with language versions, and challenges with project
maintenance. These difficulties arise due to various reasons,
including inadequate documentation, insufficient support, and
evolution of computer languages.

4.3.2 Data Format/Compatibility
Data format and compatibility issues often arise during
data exchange, leading to program defects. These issues can
occur due to incompatible data formats between languages.
The underlying challenges of these issues can be classified
into two main categories. These challenges are the primary
causes of data format and compatibility issues discussed in
27 out of 88 posts.

Challenge 1: Error-Prone Data Conversion: Multi-language
software development projects can involve languages with differ-
ent typing strengths and type systems, making conversions across

How can I convert Python dictionary to JavaScript hash table?
Question: I have passed to template regular Python dictionary and I need
to inside $(document).ready(function() {.. } to convert that Python
dictionary to JavaScript dictionary. I tried like var js_dict={{parameters}};
but I got errors (' instead of ' and all strings start with u'). How can I
convert Python dictionary to JavaScript hash table?

Fig. 16: An example showing that data conversion is difficult
in multilingual coding, as a challenge causing the issue:
converting the Python dictionary to JavaScript hash table
failed in this particular case [40].

Encrypt AES with C# to match Java encryption
Question: I have been given a Java implementation for encryption but
unfortunately we are a .net shop and I have no way of incorporating the
Java into our solution. Sadly, I'm also not a Java guy so I've been fighting
with this for a few days and thought I'd finally turn here for help.
 I've searched high and low for a way to match the way Java Encryption
is working and I've come to the resolution that I need to use Rijndael-
Managed in c#. I'm actually really close. The strings that I'm returning in
c# are matching the first half, but the second half are different. ...

Fig. 17: An example illustrating difficulties with encryption
and decryption between different languages, as a challenge
causing the data format/compatibility issue that the AES
encryption result is different between C# and Java [41].

such languages error-prone. In addition, developers may face
difficulties in comprehending the data type validity require-
ments and data conversion rules across different languages
due to their distinctive typing strengths and type systems.
The issue of type conversion, which is commonly observed
in multilingual software development projects, is often asso-
ciated with these challenges. The rules for type conversion
vary among programming languages, with some languages
having strong typing while others having weak typing.
Weakly-typed languages often perform implicit conversions
between data types and permit the compiler to interpret
data items as having different representations arbitrarily.
While this feature is convenient for developers, it can in-
troduce errors in data format for multilingual development
projects. For instance, as depicted in Figure 16, converting
data of the dictionary type in Python to a JS hash table is
challenging, as Python and JavaScript use different systems
to represent a dictionary internally.

Challenge 2: Differences in Library Configurations: Different
languages may have different third-party libraries, even if they
aim to implement the same algorithm. Consequently, libraries
providing functions for these algorithms may differ for distinct
languages. It is a common issue in multilingual software
development that the same algorithm used in different
languages can produce inconsistent results, despite the ex-
pectation that it should be identical. The root cause of
this problem is that different languages employ different
algorithm parameters, which results in data generated in
one language being incompatible with another, even though
both use the same algorithm. Third-party libraries provide
different functions with varying parameters to implement
the same purpose, and it can be challenging for developers
to select the correct function when they are unfamiliar with
it. Figure 17 provides an example where the encryption
result in the C# unit differs from that in the Java unit. This
issue highlights the challenge of producing identical results
in different languages, even when using the same algorithm,
due to varying parameters.

11

Memory leak using JNI to retrieve String's value from Java code
Question: I'm using GetStringUTFChars to retrieve a string's value from
the java code using JNI and releasing the string using
ReleaseStringUTFChars. When the code is running on JRE 1.4 there is no
memory leak but if the same code is running with a JRE 1.5 or higher
version the memory increases. This is a part of the code
msg_id=(*env)->GetStringUTFChars(env, msgid,NULL);
opcdata_set_str(opc_msg_id, OPCDATA_MSGID, msg_id);
(*env)->ReleaseStringUTFChars(env, msgid,msg_id);

I'm unable to understand the reason for leak. Can someone help? ...
Fig. 18: An example of garbage collection mechanism diver-
gences across different languages leading to interoperation
faults, as a challenge causing the interoperability issue that
JNI retrieving strings resulted in a memory leak [42].

The posts related to the Data Format/Compatibility issue pri-
marily discussed the difficulties encountered during data con-
version and the usage of third-party libraries. These issues stem
from the variances in the data type systems used in different
programming languages, as well as the differences in algorithm
configurations implemented by various libraries.

4.3.3 Interoperability

This is a relatively complex problem, where issues related
to data often arise during the interfacing phase, in addition
to formatting problems. These issues include parameter
configuration or type problems that occur when data is
transmitted. The two most significant challenges underlying
these interoperability issues were identified in 29 out of a
total of 86 posts on the subject.

Challenge 1: Memory-Access-Mechanism Discrepancy: In-
consistencies in memory management mechanisms, such as allo-
cation and recycling, can lead to interoperation faults, such as
buffer overflow and memory leaks, when working with different
languages. Some languages, such as C and C++, offer devel-
opers the ability to manage their own memory. While this
may appear to be a convenient approach, it can pose risks
in a multilingual environment. When multiple languages
are used in a project, differences in the garbage collection
mechanisms of each language can create development chal-
lenges for programmers. Additionally, passing data types
like pointers in the code may result in memory manage-
ment issues. For instance, as shown in Figure 18, retrieving
strings from Java using JNI can lead to memory leaks. This
is because the distinct memory management mechanisms
of different languages make interoperation between them
difficult.

Challenge 2: Incompatible Data Types: Incompatibility or
conflicts in data types between languages can result in failed
interoperation between the languages. When two languages
are unable to communicate directly, they rely on language
interaction APIs to interact. Poor semantic interoperability
often leads to issues in the data transmission process, result-
ing in buggy APIs. As shown in Figure 19, the string-type
data in C# is incompatible with the wchar_t * parameter
type returned by the C++ function. This challenge is caused
by the disparity in data type systems between the two
languages.

C# calling native C++ all functions: what types to use?
Question: I want to make a native C++ all that can be used from a C#
project. 1. If I want to pass a string from C# to the function in the C++ all,
what parameter should I use? 2. I know that C# strings use Unicode, so I
tried wchar_t * for the function but it didn't work; I tried catching any
exceptions raised from the called function, but no exception was thrown.
3. I also want to return a string so I can test it.

... What type should I use for the C++ function's return type, so that I
can call it from C# with a return type of string[]? the same Q but for the
parameter of the function to be string[] in C#?

Fig. 19: An example illustrating parameter type conflicts or
incompatibilities, as a challenge causing the interoperability
issue that C# failed to save the data of the wchar_t * type,
which returns from the C++ function, as a string [43].

The majority of posts regarding Interoperability issues were re-
lated to two main challenges: memory management discrepancies
and interoperation failures between different languages. These
challenges were caused by differences in memory management
mechanisms and incompatible data types across languages.

4.3.4 Interfacing Choice
This problem is often encountered during the design phase
of multilingual projects, especially among developers who
are not familiar with this type of development. This lack
of experience may result in inadequate knowledge of the
effectiveness and reliability of language interactions. Over-
coming this challenge could enable developers to gain a
thorough understanding of the topic, thereby providing
useful insights and references for their own multilingual
projects. The two main challenges that underlie the Inter-
facing Choice issues, as identified in 42 out of 86 posts on
this issue category, are highlighted below.

Challenge 1: Language (Interfacing) Unfamiliarity: Develop-
ers often encounter difficulties with selecting proper language in-
terfacing mechanisms when designing multilingual development
projects, particularly when they lack familiarity with individual
languages or the ways in which different languages interact.
Given the multitude of development languages and the con-
tinuous emergence of new language combinations, it is un-
realistic for developers to attain mastery of every language.
Therefore, developers face a unique set of challenges when
dealing with multilingual development projects, including
uncertainty surrounding language interfacing mechanisms,
data transmission methods, and functions, which can cause
hesitation when making choices. As shown in Figure 20,
developers may struggle to choose the right interfacing
method choice existing options (e.g., between ctypes and
cython) due to their limited familiarity with the various
kinds of ways in which language interactions may be
achieved.

Challenge 2: Complex Interaction: Integrating different lan-
guages poses a significant challenge due to the complexity of
language interactions and integration methods. Each language
has its own strengths and weaknesses, making it difficult
to balance the trade-offs and choose the optimal method.
Accordingly, different interfacing mechanisms have their
pros and cons as well. As a result, developers often struggle
to determine the most appropriate method to integrate
the different language units for their multilingual projects.
Figure 21 illustrates the dilemma faced by developers when
presented with multiple choices for integrating C and

12

Calling C functions in Python
Question: I have a bunch of functions that I've written in C and I'd like
some code I've written in Python to be able to access those functions.

I've read several questions on here that deal with a similar problem
(here and here for example) but I'm confused about which approach I
need to take. One question recommends ctypes and another
recommends cython. I've read a bit of the documentation for both, and
I'm completely unclear about which one will work better for me. Basically
I've written some python code to do some two dimensional FFTs and I'd
like the C code to be able to see that result and then process it through
the various C functions I've written. I don't know if it will be easier for me
to call the Python from C or vice versa.

Fig. 20: An example illustrating that the developer can-
not make a choice on the interfacing mechanism between
ctypes and cpython, as a challenge causing the interfac-
ing choice issue that the developer is not familiar with the
interaction across C and Python [28].

Wrapping a C library in Python: C, Cython or ctypes?
Question: I want to call a C library from a Python application. I don't
want to wrap the whole API, only the functions and datatypes that are
relevant to my case. As I see it, I have three choices: 1. Create an actual
extension module in C. Probably overkill, and I'd also like to avoid the
overhead of learning extension writing. 2. Use Cython to expose the
relevant parts from the C library to Python. 3. Do the whole thing in
Python, using ctypes to communicate with the external library. I'm not
sure whether 2) or 3) is the better choice. The advantage of 3) is that
ctypes is part of the standard library, and the resulting code would be
pure Python – although I'm not sure how big that advantage actually is.
Are there more advantages / disadvantages with either choice? Which
approach do you recommend?

Fig. 21: An example illustrating that the developer hesitates
among the three C/Python interfacing methods, as a chal-
lenge causing the interfacing choice issue that it is complex
to integrate different languages [44].

Python. Despite proposing three interfacing methods, the
developer is uncertain about which one to use, since each
of these options would come with varying advantages and
limitations.
The posts related to the Interfacing Choice issues primarily
centered around the selection of appropriate language interfacing
mechanisms. The challenges arose from the complexity and
diversity of these mechanisms, which can be difficult to choose
for developers who lack familiarity with them.

4.3.5 Explicit Interfacing
Explicit interfacing refers to using a foreign function inter-
face (FFI) such as JNI, CPython, etc., to integrate different
languages. When developers choose a specific interfacing
mechanism, they may encounter issues related to that mech-
anism. The most common challenge in Explicit Interfacing
issues, as seen in 6 out of 78 posts on this topic, is related to
errors occurring in the selected interface.

Challenge 1: Threading-Induced Complication: The correct
usage of explicit interfaces can be further complicated by multiple
threading, as there may be special or additional requirements
for sharing data or values across threads through these inter-
faces. Thread control has been a persistent challenge for
developers, and it is already complex in a single-language
development environment. In a multilingual environment,
this challenge is exacerbated by the fact that multithreading
mechanisms may differ significantly across languages. For
instance, the multithreading feature is not natively sup-
ported in the C++ language, and developers need to invoke

Does managed languages lock flush and reload variables of native libraries?
Question: When we use locks in managed languages like C# and Java, we
can always be sure we are dealing with the latest data. Specifically in Java
memory model, they have a guarantee called Happens-before
relationship. But I'm not sure what will happen with native libraries. ... As
you see, if sharedData from C side is not declared as volatile, then is
there still a guarantee that Thread 2 can always get the latest value set
by Thread 1? Does the same apply to Java using JNI too?

Fig. 22: An example illustrating that multiple threading
leads to special interfacing requirements in the multilin-
gual project, as a challenge causing the explicit interfacing
issue that the developer was confused about declaring the
’volatile’ data type in multithreading between C and C# [45].

low-level functions of the operating system to implement
multi-threading. As illustrated in Figure 22, the developer
intends to use the C# thread to retrieve a value from the
C side. However, the developer is uncertain whether the
variable in C needs to be declared as ”volatile” in the
multilingual project. Hence, the challenge stems from the
additional requirement placed on the C side variables.

The posts on Explicit Interfacing issues mostly focused on
threading and foreign function calls, which presented several
challenges for developers. These challenges were primarily caused
by the complexities of multiple threading in a multilingual
environment and the varying multithreading requirements.

4.3.6 Implicit Interfacing
In implicit interfacing, methods of an interface are applied
without explicitly specifying the interface name. This type
of interfacing is commonly used in web-based multilingual
projects where HTTP-Request (including Ajax) is the most
frequently used method, followed by Socket (using Socket
directly), pipe, and memory sharing. We will elaborate on
the top two challenges that were mentioned in 20 out of 59
entries on these problems.

Challenge 1: Complex Message-Passing Configuration: Im-
plicit interfacing, which is frequently utilized in multilingual
projects for message passing between languages through high-level
protocols like HTTP request or Socket, can be a complex and error-
prone process due to its intricate configurations. Developers
often face challenges when programming sockets, especially
when dealing with header and token components. Similarly,
working with headers and forms in HTTP requests can be
difficult. Even when utilizing Ajax within a jQuery wrap-
per, developers may encounter configuration challenges.
For instance, as depicted in Figure 23, a developer mis-
configured the interface between JavaScript (which sends
the request) and PHP (which receives the request) through
HTTP requests. The data encoding was wrongly specified
in the request header, and as a result, the receiver used
undecoded data, which is incorrect.

Challenge 2: Diversity of Message Passing: Cross-language
message passing through implicit interfacing involves handling
message responses in different ways, often requiring the use of var-
ious frameworks. Cross-language message passing through
implicit interfacing involves handling message responses in
different ways, often requiring the use of various frame-
works. As depicted in Figure 24, developers may encounter
obstacles when using Ajax to transfer data via a specific
framework, such as Krajee Bootstrap. In this case,

13

Content-Transfer-Encoding in file uploading request
Question: I'm trying to upload file, using XMLHTTPRequest, and sending this headers:
… Content-Transfer-Encoding: base64 … But on server side PHP ignore header
"Content-Transfer-Encoding: base64" and write base64 undecoded data directly into
the file! Is there any way to fix it?

Fig. 23: An example illustrating that the configuration is
complicated for the developer in an HTTP-Request, as a
challenge causing the implicit interfacing issue that the
configuration in the header that is aimed to encode the
content to the base64-type data on the server side does
not work. [46]

Krajee Bootstrap File Input, catching AJAX success response
Question: I'm using Krajee the Bootstrap File Input plugin to perform an
upload via AJAX call. Here is the link to the Krajee plugin AJAX section:
Krajee plugin AJAX.

Right now I get a response from PHP whatever it is an error or a
success as JSON, I have went through the plugin documentation and I still
can't find how to catch the AJAX response and act according to that
response as we do in jQuery with the ajax success function: success:
function (response) {} How can I do this?

Fig. 24: An example illustrating that the response of Ajax
is complicated for the developer, as a challenge causing the
implicit interfacing issue that the developer is unaware of
catching the response since he only knows the function that
can work in jQuery to catch the response. [47]

catching the response may be difficult for developers who
are not familiar with the differences in handling responses
between frameworks, especially when compared to using
jQuery. This highlights the challenge of dealing with the
various ways in which message responses can be handled,
which may lead to difficulties in their proper handling.

The issues related to Implicit Interfacing primarily involved
managing message passing and handling requests and responses.
These challenges arose from the intricate nature of configuring
message passing and the wide range of methods available for
handling requests and responses.

4.4 RQ4: Solutions
After identifying the challenges, we proceeded with looking
into the solutions currently available for addressing the
primary challenge in each of the 6 major issue categories
we identified as common challenges in RQ3.

4.4.1 Documentation Insufficiency Challenge
We did not find any universal solutions for the documen-
tation insufficiency challenge underlying the Build issues.
However, we did come across two helpful suggestions.

Solution 1: According to the accepted answers, includ-
ing external links can be helpful for the asker in resolving
their issue. In some cases, posts even provide direct excerpts
from the relevant documentation, which can be valuable for
understanding and addressing the problem.

The example in Figure 25 illustrates a scenario where a
developer faced a challenge due to insufficient documenta-
tion. This challenge prevented the developer from success-
fully setting up the QWebChannel JavaScript API for use in
QWebEngineView. In addition, the developer is confused
about the <script> tag usage of QWebChannel on the
HTML page. To tackle this issue, the developer was offered

How to setup QWebChannel JS API for use in a QWebEngineView?

Answer: ... Using runJavaScript() to execute the code in Qt's
QWebChannel JS API: ...<code snippet>...
Sources: - QT QWebEnginePage::setWebChannel() transport object
 - How do I include a JavaScript file in another JavaScript file?
 - How to use Qt WebEngine and QWebChannel?
 - http://doc.qt.io/qt-5/qtwebchannel-javascript.html

Question: ... As Qt's documentation is far from complete, which are the
ways to setup QWebChannel and are there different ones from adding a
<script> tag in your HTML page like recommended in documentation?

Fig. 25: An example illustrating that external references and
code example can provide useful information for developers
to overcome documentation insufficiency [36].
How can I convert Python dictionary to JavaScript hash table?

Answer: Python and javascript both have different ideas about how to
represent a dictionary, which means that you need an intermediate
representation to pass data between them. The most common way to do
this is JSON, which is a simple lightweight data-interchange format.

Use the python json library to convert (or dump) your python dict
into a JSON string. Then in the javascript parse the JSON string into a
javascript dict. (If you are using JQuery, then use jQuery.parseJSON)

Question: I have passed to template regular Python dictionary and I need
to inside $(document).ready(function() {.. } to convert that Python
dictionary to JavaScript dictionary. I tried like var js_dict={{parameters}};
but I got errors (' instead of ' and all strings start with u'). How can I
convert Python dictionary to JavaScript hash table?

Fig. 26: An example illustrating that there is a common
way for the dictionary conversion between Python and
JavaScript, which is using JSON [40].

some alternative sources to resolve the problem with Qt’s
QWebChannel JavaScript API and the confusion around the
usage of the <script> tag. In essence, the developer can
explore alternative sources on this Q&A platform (i.e., SO)
or other forums where developers discuss such issues.

Solution 2: The accepted answers to the analyzed posts
indicate that code examples were sometimes provided,
which helped developers immediately comprehend how to
solve their problems.

As depicted in Figure 25, in addition to the alternative
sources, the developer was also given a code example that
illustrates how to set up the QWebChannel JavaScript API
using a <script> tag in the web page, which helped them
solve the issue. In sum, developers may find it helpful to
seek out code examples when facing challenges related to
insufficient documentation.
To address the challenge of Insufficient Documentation in the
Build issues category, the suggested solutions involved providing
alternative sources such as external links or code examples that
can offer relevant information.

4.4.2 Error-Prone Data Conversion Challenge
We found three generic solutions for the challenge with
the error-proneness of data conversion underlying the Data
format issues.

Solution 1: Based on the accepted answers, it was found
that incorrect usage of data conversion functions can cause
issues for questioners. Developers need to verify whether
the function being used is appropriate and check for poten-
tial issues such as function call parameter mismatch.

One example of this challenge is shown in post [48],
where a developer encountered difficulties in converting a
PHP array to a JavaScript object. The attempted conversion

14

using the implode() function resulted in a syntactic error.
The suggested solution was to use the json_encode()
function instead. Therefore, developers should carefully
check the functions they use for data conversion.

Solution 2: When dealing with two languages, devel-
opers can utilize foreign functions, such as those found
in SWIG and ctypes, to facilitate data type conversion. It
is crucial for developers to search for specialized foreign
functions that are suitable for accurate data conversion
across the different languages being used.

One example of such a challenge is shown in the post
[49], where the developer encountered an issue while con-
verting data types from jobject to jstring using JNI
code. The unsuccessful conversion led to a compile-time
error. To resolve this issue, the accepted answer suggested
using the correct foreign function and modifying the pa-
rameters as required. Therefore, developers should carefully
choose and utilize dedicated foreign functions for data
conversion to avoid errors.

Solution 3: Multi-language projects that rely on net-
work transmission often use language-independent data-
interchange formats such as JSON or XML for data con-
version. These formats have good compatibility with many
languages, making data conversion simple and efficient
while reducing the likelihood of conversion-related issues.

As depicted in Figure 26, a developer faced a challenge
when attempting to convert a Python dictionary to its equiv-
alent JavaScript dictionary. The direct conversion failed due
to the difference in data types between the two languages.
To overcome this issue, the recommended solution was to
use JSON, a language-independent data-interchange format,
to transmit data between Python and JavaScript. By doing
so, data conversion problems can be avoided while achiev-
ing simplicity and efficiency. In summary, using a data-
interchange format that is independent of specific languages
is a viable solution to data-conversion challenges.

For the challenge of Data Conversion in the context of Data For-
mat/Compatibility issues, we observed that solutions included
verifying the correctness of conversion function calls (such
as foreign functions for that purpose) and utilizing language-
independent data-interchange formats.

4.4.3 Memory-Access-Mechanism Discrepancy Challenge

Two generic solutions were identified for the memory-
access-mechanism discrepancy challenge underlying the In-
teroperability issue category.

Solution 1: When dealing with complex memory man-
agement in a multilingual environment, developers can try
to avoid using pointers across languages or minimize the
usage of data types that require manual memory allocation
and deallocation.

Figure 27 illustrates a situation where storing C++ point-
ers in C# can pose a challenge for developers. The developer
was concerned about the stability and safety of storing
pointer addresses from C++ code in C# units since C++
programming requires the pointer address to remain un-
changed. To address this problem, the suggested solution
was to use strings in p/invoke and convert them to C-
style char* using the MarshalAs() function. In sum, the

solution was to avoid using the pointers in C# to keep the
pointer address unchanged in C++.

Is it safe to keep C++ pointers in C#?

Answer: In C#, you don't need to use a pointer here, you can just use a
plain C# string. ...This works because the default behavior of strings in p/
invoke is to use MarshalAs(UnmanagedType.LPStr), which converts to a
C-style char*. ...You can p/invoke basically anything without requiring
pointers at all (and thus without requiring unsafe code, which requires
privileged execution in some environments).

Question: I'm currently working on some C#/C++ code which makes use
of invoke. In the C++ side there is a std::vector full of pointers each
identified by index from the C# code, for example a function declaration
would look like this: void SetName(char* name, int idx)

But now I'm thinking since I'm working with pointers couldn't I sent
to C#...Would the pointer address be guaranteed to stay constant in C++
such that I can safely store its address in C# or would this be too unstable
or dangerous for some reason?

Fig. 27: An example illustrating that it is not necessary to
use the pointer date type in C#; instead, the string date type
may be used to solve the problem [50].

Solution 2: Improper memory allocation and release
is another frequent cause of memory issues [51]. Due to
the differing memory management mechanisms of vari-
ous languages, developers often encounter errors when
attempting to allocate or release memory across languages.
For instance, when memory is allocated in one language
and released from another, limited memory access across
languages caused by permission issues may lead to errors.

In Figure 28, the developer faced an issue where the
application exits without throwing any exceptions while
calling a DLL from C#, and the developer believed that
the DLL file was not the issue. Upon investigation, it
was determined that the problem was related to memory
management. The developer attempted to release memory
using the C# function CoTaskMemFree(), but because of
the stricter memory manager in Vista and Windows 7, C#
was unable to release the memory that was allocated in the
C++ DLL. To address this problem, the suggested solution
was to prevent the marshaller from attempting to release the
string. Thus, it is important to avoid releasing memory from
another language to prevent memory-related issues caused
by different memory management mechanisms.

Application exits (no Exception) when referencing 64bit dll from C#

Answer: No stack trace but I can guess, you see CoTaskMemFree() on
there somewhere. Which is what the pinvoke marshaller calls to release
the string buffer that was returned by the function. Problem is, that
string buffer wasn't allocated by CoTaskMemAlloc(). Vista and Windows
7 have a much stricter memory manager, they don't allow a program to
release memory it didn't allocate. It works on XP, it simply ignores the
bad buffer pointer. C functions that return strings are a memory
management problem. It is however likely to work in this specific case, it
probably returns a string literal that doesn't need to be released. ...

Question: I've compiled lzo2.dll 64 bit and now looking to use it in a C#
program. … I've had a look at this but still can't ascertain even a hint of
the problem. I believe its complaining about the symbols even tho the
stack trace looks like it does have names and thus provide some
meaning. Can someone hint at what might be the issue or point in the
direction to head next? ...

Fig. 28: An example illustrating that C# code cannot release
the memory allocated by C++ code using the function
CoTaskMemFree() [52].

15

For the Memory-Access-Mechanism Discrepancy challenge un-
derlying the Interoperability issue category, the current main
solutions were to exercise caution when dealing with pointers
and to minimize or even entirely eliminate memory operations
across language boundaries.

4.4.4 Language (Interfacing) Unfamiliarity Challenge

We have identified from accepted answers a generic solution
for the challenge of not being familiar enough with individ-
ual languages and/or language interfacing mechanisms in
the Interfacing choice category of issues.

Calling C functions in Python

Answer: You should call C from Python by writing a ctypes wrapper.
Cython is for making python-like code run faster, ctypes is for making C
functions callable from python. What you need to do is the following: ...

Question: I have a bunch of functions that I've written in C and I'd like
some code I've written in Python to be able to access those functions. ...
One question recommends ctypes and another recommends cython. I've
read a bit of the documentation for both, and I'm completely unclear
about which one will work better for me. ... I don't know if it will be
easier for me to call the Python from C or vice versa.

Fig. 29: An example illustrating that the ctypes interfacing
mechanism is recommended to questioners, and some usage
steps are provided [28].

Solution 1: For developers who are not familiar with the
interaction of different languages, it is recommended that
they refer to official documentation or alternative references
such as developer discussion or Q&A forums. This helps in
understanding the characteristics of individual languages
used and the availability and pros/cons of different lan-
guage interfacing mechanisms.

As illustrated in Figure 29, a developer faced the chal-
lenge of choosing between Cython and ctypes when
attempting to write Python code to access C functions. After
consulting some documentation, the developer became con-
fused and sought advice on how to make the appropriate
choice. The suggested solution was to compare the pros
and cons of ctypes and Cython and determine which
was better suited to the specific project requirements. Thus,
by seeking appropriate references, developers can make
informed decisions on selecting the appropriate interfacing
mechanism.
For the Language/Language-Interaction Unfamiliarity challenge
underlying the Interfacing Choice issues, the solution was to
look for documentation or alternative references about features of
individual languages and/or interfaces across languages.

4.4.5 Threading-Induced Complication Challenge

We have identified two general solutions for addressing the
challenges posed by threading-induced complications that
underlie the Explicit interfacing issue.

Solution 1: In the context of multithreading, it is impor-
tant to note that the threading mechanism can differ across
programming languages. For simpler multi-threaded inter-
actions that involve calling functions without data exchange
or mutual exclusion between threads, it is recommended
that developers manage threads within the same language

and avoid managing the same thread across different lan-
guages. This includes avoiding the creation of a thread in
one language from another language, whenever possible.

The developer in Figure 30 faced a challenge regarding
calling a foreign function (written in Java) from multiple
native threads (created in C) and concluded that it was not
possible or that it would require the JVM to create multiple
(Java) threads accordingly. This challenge arose due to the
developer’s unfamiliarity with Java’s native threading mech-
anisms, which involve threading in native code via JNI.

The recommended solution was to use JNI and
Java’s native threading [53] mechanisms. The solution in-
volves executing concurrent calls in the native threads
(not Java/JVM threads) without requiring the JVM to
create its own threads. JNI also allows for manag-
ing these native threads by wrapping them in Java
thread objects or attaching/detaching them using rel-
evant APIs such as AttachCurrentThread() and
DetachCurrentThread().

Solution 2: Multilingual projects that use threads may
encounter more complex thread activities [55], [56], such
as mutual exclusion between threads, leading to challenges
with explicit cross-language interfacing. If threading man-
agement across languages is necessary, developers can use
mutex, a language-specific thread synchronization mech-
anism, such as Python’s global interpreter lock (GIL), to
properly manage the threads across the involved languages.

As an example, the post [57] describes a situation where
a developer faced challenges in multithreading between
C++ and Python. Specifically, the developer encountered an
issue where the Python thread would stop working when
returning to the main thread of the C++ program. This was
due to the lack of proper thread synchronization, such as
the use of GIL, to manage these threads across languages.

The suggested solution was for the main thread to ac-
quire GIL and for the developer to use it to properly manage
each thread. In summary, using GIL can assist the developer
in managing threads between C++ and Python.

To address the challenge of Threading-Induced Complication
that underlies the Explicit Interfacing issues, there were two
suggested solutions. The first solution was to avoid managing
threads across languages. If it is inevitable to manage threads
across languages, the second solution was to use a mutex (for
thread synchronization).

What happens if I call a java function from multiple threads from C with JNI?

Answer: The jvm does not have to create its own threads, the method
calls are executed on the native threads that make them. The
AttachCurrentThread and Detach- CurrentThread will take care of any
necessary jvm internal state management, for example creating java
Thread objects wrapping the native threads.

Question: ... I don't see how that is possible, is the embedded JVM going
to start its own threads automatically? Or queue the JNI calls? How else
could there be multiple calls to the same virtual machine. which I haven't
instructed to do any threading? Any way I can imagine that to work is, if
the java code will simply be executed in the same calling thread as the c
code. Is that correct? That would mean that I don't have to do any
threading in Java.

Fig. 30: An example illustrates that the JVM can use its own
thread mechanism to handle multi-threading in JNI. [54]

16

4.4.6 Complex Message-Passing Configuration Challenge

We found two generic solutions for challenges with complex
message-passing configurations that often led to Implicit
Interfacing issues.

Solution 1: Developers often encounter challenges when
sending requests, such as HTTP requests, in implicit inter-
facing. To avoid related errors, developers should pay close
attention to the configurations at both the client and server
sides, including HTTP request headers from the client side,
and follow appropriate configuration approaches. Relevant
documentation can be consulted for guidance in this regard.

In Figure 31, the developer attempted to configure the
header “content transfer encoding: Base64” to make the
server-side PHP automatically decode the base64 data. How-
ever, this did not work because the header “content transfer
encoding” is only used if the value does not conform to
the default encoding, which is “7BIT”. To resolve this issue,
it is recommended that the developer consult the relevant
documentation for proper header configuration. In this case,
the documentation would indicate that the header is not
appropriate for this situation. Therefore, it is important
for developers to check the usage of headers in relevant
documentation to avoid similar errors.

Content-Transfer-Encoding in file uploading request

Answer: … Section 4.3 elaborates on this:
While the HTTP protocol can transport arbitrary binary data, the

default for mail transport is the 7BIT encoding. The value supplied for a
part may need to be encoded and the "content-transfer-encoding"
header supplied if the value does not conform to the default encoding. …

Question: I'm trying to upload file, using XMLHTTPRequest, and sending
this headers: … Content-Transfer-Encoding: base64 …

But on server side PHP ignore header "Content-Transfer-Encoding:
base64" and write base64 undecoded data directly into the file! Is there
any way to fix it?

Fig. 31: An example illustrating developers misunderstand-
ing usage of the header “content transfer encoding”. [46]

Solution 2: Message-passing can pose a risk of errors
when it comes to receiving data. To mitigate this risk,
developers should take the necessary steps to identify the
appropriate data format and transfer approach for accurate
data reception. Additionally, it is important to thoroughly
scrutinize the received data to detect and rectify any errors
in the data format. Furthermore, it is imperative to ensure
that function calls in response to the received data are made
correctly to avoid any incorrect usage.

For instance, as illustrated in Figure 32, a devel-
oper sends a post request to a Flask URL to retrieve
a JSON data dictionary. Despite the post request suc-
cessfully contacting the appropriate route2, the function
request.get_json() returns a None value. The sug-
gested solution was that the developer should change the
function used for retrieving the data since the correct func-
tion request.json will return the desired data (i.e., the
JSON directory). In summary, developers must carefully
check the data format and function used to retrieve the data
to avoid errors in message passing.

2. In the Flask framework, routing is used to map an URL to function
handling the task associated with the URL.

Flask request.get_json() returning None when valid json data sent via post…

Answer: It's request.json it will return a dictionary of the JSON data. To
get a value you use request.json.get('value_name'). …

def test():
data = request.json
print("data is " + format(data)) …

Question: … The js collects the information from the row, uses
JSON.stringify() to convert to json object and the issues the post request
to the relevant flask url.

Logging the value of the jsonified object to the browser console
from js file shows it is correctly formed. The post request contacts the
correct route however the request.get_json() function returns a value of
None in the method of that route. …

Fig. 32: An example illustrates the developer misusing the
function to return and receive the data. [57]

To address the Complex Message-Passing Configuration chal-
lenge underlying the Implicit Interfacing issues, developers
should ensure that the data configurations are correct on both
the server and client sides. They should also use the appropriate
approach to transferring data between the server and the client.

Note that none of the solutions presented for RQ4 were
provided by the authors themselves. Rather, these solutions
were provided by developers in a specific manner. When
extracting common solutions, we attempted to make them
as specific as necessary to be actionable. Additionally, the
identified solutions were found to address challenges in
different language combinations. Each solution was summa-
rized from a number of posts, which often involved various
language combinations, making the solutions applicable to a
wide range of scenarios. Although the illustrating/example
posts provided in the paper typically involved only one
language combination, the solutions identified were rarely
tied to a few specific language combinations.

5 DISCUSSION

5.1 Implications of our findings
5.1.1 Actionable Suggestions for Developers
The results of our investigation indicate that there are
significant risks and challenges associated with multi-
lingual software development. Developers should take
these factors into consideration when making decisions
about their projects. In RQ2, our study identified common
issues faced by developers in multilingual development, in-
cluding challenges related to interfacing, data handling, and
building a cohesive multi-language system. We also found
that certain types of issues were more prevalent in specific
language combinations, such as 72% of Embedding issues
being mainly encountered in PHP-JavaScript projects.
In RQ3, we revealed the root causes of these challenges
for multilingual development. We found that issues with
data handling and interfacing across different languages
were caused by incompatibilities in data type systems. Fur-
thermore, we identified difficulties in memory management
and multi-threading operations as additional challenges for
developers working with multiple languages.

The findings from RQ2 and RQ3 highlight the potential
risks and challenges involved in multilingual development,
and provide valuable insights for developers to make in-
formed decisions based on their specific context. For in-

17

stance, developers should consider these risks and chal-
lenges when deciding whether to adopt a single-language
or multilingual development approach, and if they choose
the latter, which languages to use and how to design the
system across languages to mitigate potential risks. Addi-
tionally, certain issues are more commonly associated with
specific language combinations, and developers should take
this into account when selecting languages based on their
system design and requirements.

Our findings offer practical guidelines to address the
challenges in multilingual development. In RQ4, we dis-
tilled the solutions proposed in SO answers to tackle the
common challenges that arise in multilingual development,
particularly with regards to data handling and interfac-
ing across languages. For example, for the two challenges
discussed in RQ4, the current solutions involve managing
threads/pointers/memory within each language unit, as
attempting to do so across languages could potentially cause
issues due to language semantics disparities. As for the
other two challenges, the suggested solutions involve avoid-
ing isolation and instead using a more universal, language-
agnostic data format such as JSON. We advise developers
to keep these common solutions in mind when working on
multilingual projects.

5.1.2 Actionable Suggestions for Researchers
Further research is recommended to explore and develop
methods and tools for detecting conflicts and incom-
patibilities of data types and formats across different
languages. In §4.3.2, we have highlighted that data format
and compatibility issues often result in error-prone data
conversions. Therefore, we encourage future research to
focus on developing techniques and tools for detecting such
issues. One possible direction for projects using strongly-
typed languages is to perform static analysis on all of such
languages to infer the types and formats of converted data
and subsequently detect any conflicts. On the other hand,
detecting conflicts for weakly-typed languages is more chal-
lenging since the type is only determined during runtime. In
this case, one possible approach is to use machine learning
techniques to infer the type based on the surrounding code,
as has been explored in prior studies [58], [59].

It is common for developers to face challenges when
utilizing or selecting suitable APIs for handling data
across different languages. To address this issue, further
research is needed to enhance the provision of guidance
and support for identifying and implementing appropri-
ate APIs and their corresponding usage. In §4.3.3, it was
observed that lack of familiarity with multilingual APIs and
erroneous API selection [60] poses a significant challenge.
To address this, a potential solution is the development
of an API recommender system for multilingual projects.
However, current research on API recommendations is not
adequately tailored for multilingual development scenarios.
Most of the existing state-of-the-art approaches rely heavily
on machine learning algorithms and training data [61],
[62], while a dearth of multilingual code corpus hinders
progress [63]. Therefore, future studies should focus on
creating a multilingual project dataset and train the API
recommendation model accordingly, building on the ap-
proaches used in previous studies [61], [64].

It is recommended that future research endeavors to
create tools that facilitate the development of multilin-
gual projects. As highlighted in §4.3.1, the absence of tool
support for building multilingual code poses a significant
challenge. Current building tools are unable to adequately
support the diverse build environments and configurations
of different languages, making it difficult to build multilin-
gual projects. This is particularly problematic in the DevOps
environment, where all build and deployment processes
need to be automated and continuous [65]. The lack of
adequate build tools may have impeded the DevOps work-
flow. Therefore, we recommend that future research should
focus on developing multilingual software-compatible build
solutions that incorporate more comprehensive multilin-
gual build support tools. Additionally, integrating data
type/format incompatibility/conflict detection and cross-
language API misuse detection tools into such build support
would further enhance the utility of the toolset.

Developers frequently encounter difficulties in select-
ing the most suitable interfacing mechanism. To mitigate
this challenge, future research could explore different
interfacing mechanisms and develop a tool capable of
recommending optimal options to developers based on
their specific requirements. As discussed in §4.4.4, our
research findings indicate that developers working on mul-
tilingual projects often encounter challenges in selecting
an appropriate interfacing mechanism. The wide range of
available options can make it difficult for developers to
have a comprehensive understanding of each mechanism.
Furthermore, the lack of research in this area exacerbates the
problem. Therefore, it is imperative to conduct a thorough
analysis and evaluation of the unique characteristics of
each interfacing mechanism [63]. Based on these insights,
researchers could develop a tool capable of recommend-
ing the most suitable interfacing mechanism for a given
scenario, taking into account various factors such as cross-
language compatibility and code size based on the project
requirements and language selection [3].

5.2 Threat to validity

Threats to internal validity. Our study heavily relied on
manual analysis, which raises concerns regarding potential
human bias in the labeling process. To address this issue,
two authors independently examined each post and labeled
the corresponding challenge and solution. Any discrepan-
cies were discussed until a consensus was reached. In RQ2,
we utilized the LDA model to filter out irrelevant posts,
thereby reducing the number of posts requiring manual
labeling. While this approach may have resulted in some
relevant posts being missed, our approach achieved a 95%
recall rate, indicating that we covered the majority of rel-
evant posts. Additionally, we filtered out posts with fewer
votes, which may have caused us to overlook some useful
posts and introduced bias to our results. However, we
believe that posts with low votes tend to have lower value
and relevance, justifying our decision to exclude them.

Threats to external validity. Our study relied solely
on analyzing posts from Stack Overflow (SO), which raises
concerns about the generalizability of our findings to other
programming-related Q&A websites. This limitation poses

18

a validity threat to our study as it questions the extent
to which SO accurately reflects the challenges multilingual
developers face in the field.

However, SO is currently the most accessible and widely
used data source for our study. It is a well-known repository
where developers post questions and receive answers, and
has been frequently utilized in prior software engineering
studies [25], [66], [67]. We thus assume that SO reason-
ably reflects the issues and challenges faced by develop-
ers, including those related to multilingual development.
Nevertheless, this assumption introduces a validity threat.
Therefore, we recommend that future research investigate
this problem through other forms and platforms, such as
surveys or GitHub issues.

Threats to construct validity. As described in §3.2, the
language-choice-based filter we used during data collection
in this study was applied to make the study more manage-
able, as the manual effort required would have been much
greater without this filter. However, this filter may have
limited the comprehensiveness of our taxonomy. To address
this, future research could consider dropping this filter and
collecting data on a wider range of languages. It should be
noted that our current language choices were based on the
popularity of the languages, as they are commonly listed
among the most popular languages in various rankings,
including one from Stack Overflow itself. However, it is pos-
sible that making alternative or different choices may have
resulted in a different taxonomy. Therefore, the language-
choice-based filter constitutes a construct validity threat to
our study.

Given the manual nature of our study, we could not track
the evolution of developers’ discussion on multilingual de-
velopment over time. Analyzing the over 500 posts took
over a year, and focusing on yearly evolution would limit
us to about 50 posts annually if we keep the same our study
scale overall, which is insufficient for us to draw reasonably
useful and valid conclusions. On the other hand, examining
over 500 posts per year manually while covering multiple
years would be too tedious and costly to be practical.
Nonetheless, from a holistic perspective, future studies may
benefit from tracing the evolution of challenges and issues
in multilingual development across different years. Such an
approach would offer insights that more accurately mirror
the actual landscape, particularly in light of the evolving
nature of multilingual software and the changing trends in
its development practices.

6 RELATED WORK

6.1 Studies on Multilingual Software Development

A number of studies have been conducted on the subject
of multi-language software development, as evidenced by
the presence of relevant prior works [1], [2], [3], [10], [11],
[13], [68], [69], [70], [71]. Einarsson and Gentleman [71]
were the first to introduce the concept of mixed language
programming, which is now known as multi-language soft-
ware development. Abidi et al. [2] surveyed 93 developers
to assess the impact of multi-language design practices on
software quality, while we analyzed Stack Overflow posts
to investigate the same issue.

Mayer et al. [13] mined 1,150 open-source projects on
GitHub and found that multilingual programming is preva-
lent in such projects. They also identified cross-language
links as a common issue that can cause problems for de-
velopers [1]. Our analysis of Stack Overflow posts also
revealed similar issues, such as difficulties in data handling
and interfacing across different languages.

In contrast to previous studies that focused on under-
standing the practice of multi-language software develop-
ment by analyzing open-source projects and conducting sur-
veys, our approach involves examining issues, challenges,
and solutions by analyzing real-world problems and solu-
tions discussed in Stack Overflow posts.

6.2 Studies on Software Development Issues using
Stack Overflow
Stack Overflow has been used as a data source in sev-
eral studies that investigated developers’ challenges across
various domains [22], [23], [24], [66], [67], [72]. For exam-
ple, Abdalkareem et al. analyzed the impact of reusing
code from Stack Overflow on Android development and
observed that code reuse often leads to development is-
sues [22]. Similarly, Meng et al. manually examined Stack
Overflow posts to identify security risks associated with
using code snippets from the platform and to assess the gap
between specification and implementation of secure coding
practices [23]. Yang et al. explored the trends and evolution
of security-related topics by analyzing Stack Overflow posts
over time [66]. Wang et al. studied the challenges faced
in developing big data applications by analyzing Stack
Overflow posts related to Apache Spark [67]. In contrast,
our study investigates a novel topic: the challenges, issues,
and solutions related to multilingual software development.

6.3 Comparing with Preliminary Study
In the preliminary investigation [27], we undertook the
task of characterizing 586 posts and manually analyzing
the issues, challenges, and solutions highlighted in these
posts. The present paper represents a significant expansion
of that study in several respects. Firstly, we have intro-
duced and examined a new research question that provides
more comprehensive support for our motivation to explore
multilingual development by demonstrating its prevalence.
Secondly, we have provided a more detailed account of
the LDA filter employed in the data collection, including
the assessment of alternative keyword sets as the filtering
condition to improve recall in post relevancy identification.
Thirdly, to better understand the help developers received
for various kinds of issues, we added an analysis on the
difficulty level of each issue category in terms of the ratio of
posts having received an accepted answer in each category.
Fourth, to provide further inspiration for researchers and
developers, this paper includes investigations and results on
one additional challenge underlying Build issues and two
key challenges underlying each of two additionally exam-
ined categories of issues (Interfacing Choice and Implicit In-
terfacing issues), as well as (a total of 3) main solutions to the
primary challenge underlying each of the two additionally
examined issue categories. Finally, we propose an additional
set of actionable insights for researchers, namely, to develop

19

a recommendation tool for interfacing mechanisms that can
assist developers in selecting the most appropriate mech-
anism based on their specific requirements. In accordance
with these additional results, the entire paper has been
thoroughly updated to reflect the new holistic study.

7 CONCLUSION

While previous research has examined multilingual devel-
opment, there has been a lack of comprehensive studies on
the challenges that developers encounter during this process
and existing solutions available to them. In this paper, we
conduct a manual analysis of developer discussions on
Stack Overflow to investigate the issues, challenges, and
solutions encountered in multilingual software develop-
ment. Through our analysis, we identify and categorize the
various challenges faced by developers during multilingual
development. We then summarize and present the primary
solutions to each dominant issue’s root cause. Our study
provides actionable insights and recommendations to re-
searchers and developers of multilingual software through
the consolidation of empirical findings.

8 DATA AVAILABILITY

Open science. Source code and datasets are all available in
our artifact package and has been made publicly accessible.

ACKNOWLEDGMENT

We thank the reviewers for their constructive comments
which helped us improve our original manuscript. This
research was supported by National Science Foundation
(NSF) under Grant CCF-2146233 and Office of Naval Re-
search (ONR) under Grant N000142212111.

REFERENCES

[1] P. Mayer, M. Kirsch, and M. A. Le, “On multi-language software
development, cross-language links and accompanying tools: A
survey of professional software developers,” Journal of Software
Engineering Research and Development, vol. 5, pp. 1–33, 2017.

[2] M. Abidi, M. Grichi, and F. Khomh, “Behind the scenes: Devel-
opers’ perception of multi-language practices,” in Proceedings of
the 29th Annual International Conference on Computer Science and
Software Engineering, 2019, pp. 72–81.

[3] W. Li, N. Meng, L. Li, and H. Cai, “Understanding language
selection in multi-language software projects on GitHub,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Companion Proceedings, 2021, pp. 256–257.

[4] W. Li, A. Marino, H. Yang, N. Meng, L. Li, and H. Cai, “How
are multilingual systems constructed: Characterizing language use
and selection in open-source multilingual software,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 2023.

[5] F. Tomassetti and M. Torchiano, “An empirical assessment of
polyglot-ism in GitHub,” in Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering,
2014, pp. 1–4.

[6] C. Jones, Software engineering best practices: Lessons from successful
projects in the top companies. McGraw-Hill Education, 2010.

[7] D. P. Delorey, C. D. Knutson, and C. Giraud-Carrier, “Program-
ming language trends in open source development: An evaluation
using data from all production phase sourceforge projects,” in
Second International Workshop on Public Data about Software Develop-
ment, 2007.

[8] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of
multiple programming languages and code quality,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering, vol. 1, 2016, pp. 563–573.

[9] K. Kontogiannis, P. Linos, and K. Wong, “Comprehension and
maintenance of large-scale multi-language software applications,”
in 2006 22nd IEEE International Conference on Software Maintenance,
2006, pp. 497–500.

[10] M. Abidi, M. S. Rahman, M. Openja, and F. Khomh, “Are multi-
language design smells fault-prone? An empirical study,” ACM
Transactions on Software Engineering and Methodology, vol. 30, no. 3,
pp. 1–56, 2021.

[11] M. Grichi, E. E. Eghan, and B. Adams, “On the impact of multi-
language development in machine learning frameworks,” in 2020
IEEE International Conference on Software Maintenance and Evolution,
2020, pp. 546–556.

[12] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale
study of programming languages and code quality in GitHub,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2014, pp. 155–165.

[13] P. Mayer and A. Bauer, “An empirical analysis of the utilization
of multiple programming languages in open source projects,” in
Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, 2015, pp. 1–10.

[14] P. Mayer, “A taxonomy of cross-language linking mechanisms in
open source frameworks,” Computing, vol. 99, no. 7, pp. 701–724,
2017.

[15] M. Grichi, M. Abidi, F. Jaafar, E. E. Eghan, and B. Adams, “On the
impact of interlanguage dependencies in multilanguage systems
empirical case study on Java native interface applications (JNI),”
IEEE Transactions on Reliability, vol. 70, no. 1, pp. 428–440, 2020.

[16] H. Yang, W. Li, and H. Cai, “Language-agnostic dynamic analysis
of multilingual code: Promises, pitfalls, and prospects,” in ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE), Ideas,
Visions and Reflections, 2022, pp. 1621–1626.

[17] W. Li, M. Jiang, X. Luo, and H. Cai, “PolyCruise: A cross-language
dynamic information flow analysis,” in 31st USENIX Security
Symposium, 2022, pp. 2513–2530.

[18] W. Li, L. Li, and H. Cai, “On the vulnerability proneness of
multilingual code,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2022, pp. 847–859.

[19] W. Li, J. Ruan, G. Yi, L. Cheng, X. Luo, and H. Cai, “PolyFuzz:
Holistic greybox fuzzing of multi-language systems,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023.

[20] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillère, “Pop-
ularity, interoperability, and impact of programming languages in
100,000 open source projects,” in 2013 IEEE 37th annual computer
software and applications conference, 2013, pp. 303–312.

[21] “Stack Overflow,” 2008 Accesssed: 2022-3-17. [Online]. Available:
https://stackoverflow.com/

[22] R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from
StackOverflow: An exploratory study on android apps,” Informa-
tion and Software Technology, vol. 88, pp. 148–158, 2017.

[23] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure
coding practices in Java: Challenges and vulnerabilities,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
2018, pp. 372–383.

[24] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? An analysis of topics and trends in Stack Overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[25] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do develop-
ers utilize source code from Stack Overflow?” Empirical Software
Engineering, vol. 24, no. 2, pp. 637–673, 2019.

[26] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing,
“What do developers search for on the web?” Empirical Software
Engineering, vol. 22, no. 6, pp. 3149–3185.

[27] H. Yang, W. Lian, S. Wang, and H. Cai, “Demystifying issues,
challenges, and solutions for multilingual software development,”
in 2023 IEEE/ACM 45th International Conference on Software Engi-
neering (ICSE). IEEE, 2023, pp. 1840–1852.

[28] “Calling C functions in Python,” 2013. [Online]. Avail-
able: https://stackoverflow.com/questions/16647186/calling-c-
functions-in-python

[29] V. Puzhevich, “Top programming languages to use in 2020,”
2020. [Online]. Available: https://scand.com/company/blog/
top-programming-languages-to-use-in-2020/

[30] S. Wang, T.-H. Chen, and A. E. Hassan, “Understanding the factors
for fast answers in technical Q&A websites,” Empirical Software
Engineering, vol. 23, no. 3, pp. 1552–1593, 2018.

20

[31] A. Bhatia, S. Wang, M. Asaduzzaman, and A. E. Hassan, “A
study of bug management using the Stack Exchange question and
answering platform,” IEEE Transactions on Software Engineering,
vol. 48, no. 2, pp. 502–518, 2020.

[32] “Scrapy,” Accesssed: 2022-3-17. [Online]. Available: https:
//scrapy.org

[33] D. M. Blei, “Probabilistic topic models,” Communications of the
ACM, vol. 55, no. 4, pp. 77–84, 2012.

[34] E. R. Morrissey, “Sources of error in the coding of questionnaire
data,” Sociological methods & research, vol. 3, no. 2, pp. 209–232,
1974.

[35] N. Gantayat, P. Dhoolia, R. Padhye, S. Mani, and V. S. Sinha,
“The synergy between voting and acceptance of answers on
StackOverflow-or the lack thereof,” in 2015 IEEE/ACM 12th Work-
ing Conference on Mining Software Repositories, 2015, pp. 406–409.

[36] “How to setup QWebChannel JS API for use
in a QWebEngineView?” 2016. [Online]. Avail-
able: https://stackoverflow.com/questions/39649807/how-to-
setup-qwebchannel-js-api-for-use-in-a-qwebengineview

[37] “With pybind11, how to split my code
into multiple modules/files?” 2018. [Online].
Available: https://stackoverflow.com/questions/53762552/with-
pybind11-how-to-split-my-code-into-multiple-modules-files

[38] “How do I remove unnecessary resources
from my project?” 2009. [Online]. Avail-
able: https://stackoverflow.com/questions/1496731/how-do-i-
remove-unnecessary-resources-from-my-project

[39] “Hello world with boost Python and Python 3.2,” 2011. [Online].
Available: https://stackoverflow.com/questions/7195959/hello-
world-with-boost-python-and-python-3-2

[40] “How can I convert Python dictionary to
JavaScript hash table?” 2012. [Online]. Avail-
able: https://stackoverflow.com/questions/10073564/how-can-
i-convert-python-dictionary-to-javascript-hash-table

[41] “Encrypt AES with C# to match Java encryption,”
2014. [Online]. Available: https://stackoverflow.com/questions/
21890805/encrypt-aes-with-c-sharp-to-match-java-encryption

[42] “Memory leak using JNI to retrieve string’s
value from Java code,” 2009. [Online]. Avail-
able: https://stackoverflow.com/questions/915790/memory-
leak-using-jni-to-retrieve-strings-value-from-java-code

[43] “C# calling native C++ all functions:
What types to use?” 2011. [Online]. Avail-
able: https://stackoverflow.com/questions/5368720/c-sharp-
calling-native-c-all-functions-what-types-to-use

[44] “Wrapping a C library in Python: C, Cython or ctypes?”
2009. [Online]. Available: https://stackoverflow.com/questions/
1942298/wrapping-a-c-library-in-python-c-cython-or-ctypes

[45] “Does managed languages lock flush and reload
variables of native libraries?” 2019. [Online]. Available:
https://stackoverflow.com/questions/56787106/does-managed-
languages-lock-flush-and-reload-variables-of-native-libraries

[46] “Content-transfer-encoding in file uploading request,”
2011. [Online]. Available: https://stackoverflow.com/questions/
5169434/content-transfer-encoding-in-file-uploading-request

[47] “Krajee bootstrap file input, catching AJAX
success response,” 2015. [Online]. Avail-
able: https://stackoverflow.com/questions/29626410/krajee-
bootstrap-file-input-catching-ajax-success-response

[48] “Convert PHP associative array into JavaScript object,”
2014. [Online]. Available: https://stackoverflow.com/questions/
21153805/convert-php-associative-array-into-javascript-object

[49] “How to convert JObject to JString,” 2012. [Online].
Available: https://stackoverflow.com/questions/14036004/how-
to-convert-jobject-to-jstring

[50] “Is it safe to keep C++ pointers in C#?” 2011. [Online].
Available: https://stackoverflow.com/questions/7057022/is-it-
safe-to-keep-c-pointers-in-c

[51] W. Li, H. Cai, Y. Sui, and D. Manz, “PCA: Memory leak detection
using partial call-path analysis,” in ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2020, pp. 1621–1625.

[52] “Application exits (no exception) when referencing
64bit DLL from C#,” 2011. [Online]. Available:

https://stackoverflow.com/questions/8241732/application-
exits-no-exception-when-referencing-64bit-dll-from-c-sharp

[53] IBM, “Understanding Java and native thread details,”
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=
threads-understanding-java-native-thread-details, 2019.

[54] “Multithreading with Python and C API,” 2015. [On-
line]. Available: https://stackoverflow.com/questions/29595222/
multithreading-with-python-and-c-api

[55] X. Fu, H. Cai, W. Li, and L. LI, “Seads: Scalable and cost-effective
dynamic dependence analysis of distributed systems via rein-
forcement learning,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 1, pp. 1–45, 2020.

[56] H. Cai and X. Fu, “D2Abs: A framework for dynamic dependence
analysis of distributed programs,” IEEE Transactions on Software
Engineering, vol. 48, no. 12, pp. 4733–4761, 2021.

[57] “What happens if I call a Java function from multiple
threads from C with JNI?” 2011. [Online]. Available:
https://stackoverflow.com/questions/8654519/what-happens-
if-i-call-a-java-function-from-multiple-threads-from-c-with-jni

[58] A. M. Mir, E. Latoškinas, S. Proksch, and G. Gousios, “Type4Py:
Practical deep similarity learning-based type inference for
Python,” in Proceedings of the 44th International Conference on Soft-
ware Engineering, 2022, pp. 2241–2252.

[59] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python probabilistic
type inference with natural language support,” in Proceedings of
the 2016 24th ACM SIGSOFT international symposium on foundations
of software engineering, 2016, pp. 607–618.

[60] J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated
python library apis are (not) handled,” in ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2020, pp. 233–244.

[61] C. Chen, X. Peng, Z. Xing, J. Sun, X. Wang, Y. Zhao, and W. Zhao,
“Holistic combination of structural and textual code information
for context based API recommendation,” IEEE Transactions on
Software Engineering, vol. 48, no. 8, pp. 2987–3009, 2021.

[62] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, 2016, pp. 631–642.

[63] W. Li, L. Li, and H. Cai, “PolyFax: A toolkit for characterizing
multi-language software,” in ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2022, pp. 1662–1666.

[64] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, vol. 1, 2015, pp. 858–868.

[65] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,”
IEEE Software, vol. 33, no. 3, pp. 94–100, 2016.

[66] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What secu-
rity questions do developers ask? A large-scale study of Stack
Overflow posts,” Journal of Computer Science and Technology, vol. 31,
no. 5, pp. 910–924, 2016.

[67] Z. Wang, T.-H. P. Chen, H. Zhang, and S. Wang, “An empirical
study on the challenges that developers encounter when devel-
oping Apache Spark applications,” Journal of Systems and Software,
vol. 194, p. 111488, 2022.

[68] M. Grichi, “Towards understanding modern multi-language soft-
ware systems,” Ph.D. dissertation, Ecole Polytechnique, Montreal
(Canada), 2020.

[69] M. Lopes and A. Hora, “How and why we end up with complex
methods: A multi-language study,” Empirical Software Engineering,
vol. 27, no. 5, pp. 1–42, 2022.

[70] S. Buro, R. L. Crole, and I. Mastroeni, “On multi-language ab-
straction: Towards a static analysis of multi-language programs,”
in Static Analysis: 27th International Symposium, SAS 2020, Virtual
Event, 2020, pp. 310–332.

[71] B. Einarsson and W. M. Gentleman, “Mixed language program-
ming,” Software: Practice and Experience, vol. 14, no. 4, pp. 383–395,
1984.

[72] M. Bagherzadeh and R. Khatchadourian, “Going big: A large-scale
study on what big data developers ask,” in Proceedings of the 2019
27th ACM joint meeting on european software engineering conference
and symposium on the foundations of software engineering, 2019, pp.
432–442.

21

