From Logs to Learning: Applying Machine Learning
to Instructor Intervention in Cybersecurity Exercises

Aubrey Birdwell Jack Cook
Georgia Institute of Technology The Evergreen State College
aubrey.birdwell@gmail.com cookjackc@gmail.com
Richard Weiss Jens Mache
The Evergreen State College Lewis & Clark College
welssr@evergreen.edu jmache@lclark.edu
Abstract

Hands-on exercises provide students with practical skills and abilities. However, for exercises
to be effective, students may need timely feedback while they are engaged to prevent them
from getting stuck or frustrated. The goal of this project is to use machine learning to help
identify such students such that timely and contextually appropriate hints can be given.

We are building a system that identifies students who are potentially in the most need
of help, and suggests hints that the instructor could provide. The instructor can reject hints
that they do not find appropriate. The hint system will be integrated into the EDURange
cybersecurity education platform and will also be compatible with other platforms.

We are collecting data that will be analyzed to determine the efficacy of the tool, and to
develop new hints and strategies for helping students. This project plans to use our machine
learning system to create, test, and deploy semi-automated hints in a timely manner.

Keywords: Computer Science Education, Cybersecurity, Active Learning, Laboratory Expe-
rience, Learning Environment, Experience Report, Artificial Intelligence, Machine Learning

©2024 American Society for Engineering Education

Introduction

EDURange is an open source computer science education platform. It is a joint effort by students
and faculty at multiple universities. Our primary goal is to develop educational tools for computer
science and cybersecurity education. While the platform itself has been in development for over
a decade, in 2019 we began developing a machine learning system to facilitate instructor-student
interaction by attempting to detect struggling participants. The current version includes an instruc-
tor dashboard and chat that connects students with instructors during the exercise, which is when
students need help the most. Our goal is to develop an early warning system that detects students
who are not making progress and connect them with immediate feedback.

Our research groups have also been actively engaged in research in educational data visualiza-
tion, and machine learning, and user interface design.

Related Work

A systematic survey of 357 articles related to predicting performance in computer science course
work was published by Hellas et al in 2018 [1]. Most of the research surveyed concerned predicting
grades for programming courses. This paper is different. It concerns giving rapid feedback to
students who are engaged in cybersecurity exercises. Beyond the work mentioned in that article,
there have been a few attempts to predict student outcomes specifically for cybersecurity training
and exercises [2, 3, 4]. One of the first examples used the support vector machine to predict whether
a student would complete an exercise based on their success in the beginning of the exercise [5].
Our current work explores a number of machine learning algorithms and compares their accuracy
for determining levels of exercise completion with the hope of identifying participants who are
having difficulties, as well as helping to locate where in the scenario they are struggling.

Research Methods

While developing our machine learning system we worked closely with colleagues from other
institutions who are simultaneously developing their own platform. Building from and extending
some of their practices, we adopted a stratified k-fold nested cross-validation loop to split our
data. We then train eight classifier models using a Logistic Regression classifier for estimation
and feature selection. The classifiers we use are XGBOOST, Random Forest, Decision Tree, K-
Nearest Neighbor, Support Vector Machine (RBF), Support Vector Machine (Linear), Naive Bayes,
and Logistic Regression. The 67 data points we used for this comparison were all from the same
command-line exercise which involved the students completing 13 tasks using bash commands.
Our study involves the early detection of struggling students so that we can identify students who
need intervention or hints. Ideally, the machine learning system will help to determine what a
student is working on and whether they are making progress.

EDURange uses what we call milestones” to tag command-line bash history activity where
students achieve a sub-goal of the scenario. Milestones are compound regular expressions that are

written to match particular objectives that we wish to detect students achieving. A scenario is a
collection of milestones or tasks and can be thought of as a complete exercise. Our objective is to
identify students that complete at least 50% of a scenario and it uses features based on command
line data only. While our current study evaluates the entire dataset, we would like to implement a
system that can identify that a student will reach that 50% threshold given a partial data set. We
would also like to create a multiclass classification system that can detect what task in the scenario
a student is working on either by using discretized percentage thresholds directly or by running
them as individual classifiers in parallel. This is meant to work in concert with our hint delivery
system. We are continuing to explore additional methods to enhance our machine learning such as
reinforcement learning and how we could incorporate LLMs eventually.

Data Collection

Our data is collected during scenario deployment when students are participating in the exercises.
After receiving IRB approval, the students are informed of the data collection and the exercises are
offered both for credit in university level course work, as well as purely outside of the academic
world in workshops. The system for data collection occurs on multiple levels. Most of our exer-
cises take place on the command-line, and we were able to build on top of existing research that
explored monitoring students command-line bash history [6]. In detail, the pure TTY text streams
are captured and formatted into CSV files using automated scripts that clean up the text streams
and use parsing to determine the nature of the log events, marking them for additional processing
and use with machine learning. The answers to questions in the student interface are captured and
stored in a database, as well as interactions between students and instructors. Unique identifiers
combined with system timestamps allow us to integrate the logs from multiple sources.

System Architecture

Our training platform is composed of four major systems: a web application, a control framework
for provisioning virtual environments and collecting data during exercises, a database for storing
and organizing this data, and a post-processing tool chain to analyze this data further. The web
application is a basic portal which allows instructors to create and organize student groups and ex-
ercises. Additionally, students interact with the web application to access tutorials for the exercise
they’re playing, answer assessment questions, and interact with the instructor via a real time chat.
We also provide connection information for the virtual environments and an interactive in-browser
terminal. The control framework for exercise deployment is managed via Terraform to allow in-
structors to deploy pre-designed Docker containers on demand, depending on which exercise they
are running. This also allows designing new exercises to be a very flexible and streamlined pro-
cess, since any Docker image can easily be turned into a new exercise [7]. As a result of using
Docker as our only infrastructure tool, the platform is cloud-agnostic, highly portable, lightweight,
and could even be installed on an instructor’s personal computer.

Our data collection tool chain consists of command-line logging, app interface data, and chat
data collected from student-instructor interactions. Command-line logs are initially collected using
a TTY logger that attaches to the students TTY session and pipes the raw text into a file. Additional

processing is performed using Python scripts that run periodically to filter out control character se-
quences, parse, and organize the input and output streams into several columns of comma separated
data. The polished data is then parsed and relevant milestones or identifiable goals are labelled.
Once the data is labelled, several additional scripts extract features and create a dataframe so the
data can be processed using machine learning. In addition to the command-line logs, we are storing
the chat sessions generated by student-instructor interactions, and the web interface data generated
by students submitting solutions to the app. The latter two data sets have not yet been used for
machine learning but we are working to integrate them.

Results

We chose a basic 50% threshold of completion as a target label because our goal is to demonstrate
that command-line logs are feasible for use in our machine learning auto detection system. In
practice, a parallel system of classifiers, each detecting a different threshold or a multi-class system
would be used. Since we only have collected 67 data points at this time, our system needed to be
stripped down a little while we focused on feature engineering and creating a broad table of results
for comparison. While for this study we employ 8 different classifiers, only one will ultimately be
chosen and we are in the process of developing a reinforcement learning system that may end up
performing better than traditional classifiers. The table below represents the average performance
of 8 classifiers that were trained using a stratified kfold cross validation loop. The features for each
of the underlying models were chosen automatically using a Logistic Regression estimator and
grid search. While we developed our own custom feature and log extraction modules, the code for
setting up the machine learning was adapted from previous work, and is available as open source
for anyone to use [8]. Below is the table representing the average performance of several kinds of
classifiers we have been testing.

Classifier Sensitivity | Specificity | Balanced Accuracy | AUC
XGBoost 0.466 0.925 0.696 0.832
Random Forest 0.500 0.877 0.693 0.884
Decision Tree 0.399 0.794 0.597 0.648
K Nearest Neighbors | 0.666 0.850 0.758 0.860
SVM with RBF 0.933 0.869 0.901 0.955
SVM with linear 0.766 0.850 0.808 0.904
Naive Bayes 0.533 0.780 0.656 0.702
Logistic Regression | 1.0 0.850 0.925 0.973

Table 1: Comparison of performance of 8 classifiers on our 67 data points.

It is presented both as a work in progress and as a proof of concept. For the classification, we
separate the students who complete 50% of the scenario as a minimum threshold for completion.
Our aim is merely to demonstrate that pure command line logs, and features derived from them,
can be used for our machine learning system.

Discussion

Our initial work with machine learning has been successful. It is important to recognize that
the success we have had is not a complete system and that our choices have influenced what
classifiers appear to be performant. For instance, perhaps a different estimator function would
emphasize other classifiers. We have a proof of concept that can facilitate advancing our project
but it needs development. We are able to clearly demonstrate that command-line data can be used
for machine learning and other research teams have used both command-line and web application
data in successful machine learning systems. The system thus far is able to identify how complete
a student’s progress is just based on command line features such as number of commands per
minute, time gaps in commands being issued, and other similarly abstract features. Our system
needs to be able to help us detect exactly where in the scenario a student is and whether they are
making progress on their current task.

Our next steps are to develop a more robust machine learning system incorporating our web app
data and to train models on more complex labels. This will take the form of a multi-class learning
system that will specify what task students are working on and whether they are making progress
or not with that task. This is important since we hope to use classification to inform and trigger
our hint system. The hints will then be supplied to students who are in the process of completing
the exercises. While currently we are exploring a broad spectrum of machine learning algorithms,
it is our hope to narrow this to the best performing features and machine learning techniques.

A second aspect of our research is collecting student-instructor interactions through a custom
chat interface built into our platform. These chats will eventually serve as training data for hint
generation. Currently we have successfully deployed the chat system in the classroom but we have
not collected enough data to effectively use it for training a complete hint system. This will take
more time. The interactions take the form of labelled text interactions which can be matched up
with our command line logs so that the issues in the command line logs may be associated with
the instructor interventions. Our plan is to extract useful tips and hints from the intervention chat
data and automatically apply them via a nudge from our app interface when struggling students are
detected.

Initially, when we conceived of the system, large language model technology was not wide-
spread. We had thought we would use the text from the chats to generate hints using more tra-
ditional natural language processing techniques to extract relevant text snippets. Given the rapid
success of LLMs, we have begun to consider using open source LLMs in the system.

It may be possible to use our chat logs to fine tune an LLM to generate custom hints based
on the models provided by student-instructor interactions, and potentially, to analyze some of the
failed command line behaviors we are able to label using machine learning. With or without the use
of LLMs, combining our early detection system using machine learning with our chat text data, we
hope to develop a complete system to detect participants having difficulties and offer them custom
suggestions.

While the previous two use cases for LLMs might consume a lot of overhead, there is a more
practical manner that LLMs could be used off-line during the scenario design process. Having
scenario designers enumerate all of the potential solutions to command-line exercises can be a
bottleneck for new scenario design. Using LL.Ms to enumerate potential solutions that can be vetted
by experts and encoded in our json format for the parser would speed up scenario deployment.

As a research group we do typically focus on teaching cybersecurity, but it is important to

acknowledge that we feel this system could be used in other domains of computing education and
that we are interested in extending the platform to cover more material.

Conclusion

We have successfully operated our chat in the classroom and students seem to like it. In addition
to the machine learning system, we are continually improving and experimenting with different
presentations of the student interface and chat to improve accessibility and student engagement. We
have demonstrated success using machine learning to classify student progress through a scenario.
These are first steps but also proof of concept that our constituent systems are working. We will
continue to develop and integrate the student interface for chat and receiving hints, and our machine
learning system. Another important goal is improving our ability to accurately localize students
within a scenario, as that is central to our ability to then provide relevant hints.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.
2216485 and 2216492.

References

[1] A. Hellas, P. Ihantola, A. Petersen, V. V. Ajanovski, M. Gutica, T. Hynninen, A. Knutas,
J. Leinonen, C. Messom, and S. N. Liao, “Predicting academic performance: A systematic
literature review,” in Proceedings Companion of the 23rd Annual ACM Conference on
Innovation and Technology in Computer Science Education, ser. ITICSE 2018 Companion.
New York, NY, USA: Association for Computing Machinery, 2018, p. 175-199. [Online].
Available: https://doi.org/10.1145/3293881.3295783

[2] V. Svébensk}’/, R. Weiss, J. Cook, J. Vykopal, P. Celeda, J. Mache, R. Chudovsky, and A. Chat-
topadhyay, “Evaluating two approaches to assessing student progress in cybersecurity exer-

cises,” in Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
(SIGCSE), 2022.

[3] Y. Deng, D. Lu, C.-J. Chung, D. Huang, and Z. Zeng, “Personalized learning in a virtual
hands-on lab platform for computer science education,” in 2018 IEEFE Frontiers in Education
Conference (FIE). New York, NY, USA: IEEE, 10 2018, pp. 1-8.

[4] A. R. Silva, J. T. McClain, B. R. Anderson, K. S. Nauer, R. Abbott, and J. C. Forsythe,
“Factors impacting performance in competitive cyber exercises,” Sandia National Lab, Tech.
Rep., 2014. [Online]. Available: https://www.osti.gov/servlets/purl/1315132

[5] Q. Vinlove, J. Mache, and R. Weiss, “Predicting student success in cybersecurity exercises
with a support vector classifier,” J. Comput. Sci. Coll., vol. 36, no. 1, p. 26-34, 10 2020.
[Online]. Available: https://dl.acm.org/doi/10.5555/3447051.3447055

[6] J. Mirkovic, A. Aggarwal, D. Weinman, P. Lepe, J. Mache, and R. Weiss, “Using terminal
histories to monitor student progress on hands-on exercises,” in Proceedings of Special Interest
Group on Computer Science Education Symposium (SIGCSE), 2020.

[7] J. Cook, R. Weiss, J. Mache, C. G. Moran, and J. Wang, “An authoring process to construct
docker containers to help instructors develop cybersecurity exercises,” Journal of Computing
Sciences in Colleges, vol. 37, no. 10, pp. 3747, 2022.

[8] K. Tkacik, “Predicting student success in cybersecurity training,” https://is.muni.cz/th/dkm2u/,
2023, online.

