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ABSTRACT

This work presents a novel, black-box software-based countermea-

sure against physical attacks including power side-channel and

fault-injection attacks. The approach uses the concept of random

self-reducibility and self-correctness to add randomness and re-

dundancy in the execution for protection. Our approach is at the

operation level, is not algorithm-specific, and thus, can be applied

for protecting a wide range of algorithms. The countermeasure is

empirically evaluated against attacks over operations like modular

exponentiation, modular multiplication, polynomial multiplication,

and number theoretic transforms. An end-to-end implementation

of this countermeasure is demonstrated for RSA-CRT signature al-

gorithm and Kyber Key Generation public key cryptosystems. The

countermeasure reduced the power side-channel leakage by two

orders of magnitude, to an acceptably secure level in TVLA analy-

sis. For fault injection, the countermeasure reduces the number of

faults to 95.4% in average.

CCS CONCEPTS

· Security and privacy→ Hardware attacks and countermea-

sures; Side-channel analysis and countermeasures; · Software and

its engineering→ Software fault tolerance.
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RandomSelf-Reducibility, Fault InjectionAttacks, Power Side-Channel

Attacks, Countermeasure, NTT, PQC, RSA-CRT

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICCAD ’24, October 27ś31, 2024, New York, NY, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1077-3/24/10
https://doi.org/10.1145/3676536.3689920

ACM Reference Format:

Ferhat Erata, TingHung Chiu, Anthony Etim, Srilalith Nampally, Tejas

Raju, Rajashree Ramu, Ruzica Piskac, Timos Antonopoulos, Wenjie Xiong,

and Jakub Szefer. 2024. Systematic Use of Random Self-Reducibility in

Cryptographic Code against Physical Attacks. In IEEE/ACM International

Conference on Computer-Aided Design (ICCAD ’24), October 27ś31, 2024, New

York, NY, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3676536.3689920

1 INTRODUCTION

Smart devices and IoT devices with sensors, processing capability,

and actuators are becoming ubiquitous today in consumer elec-

tronics, healthcare, manufacturing, etc. These devices often collect

sensitive or security-critical information and need to be protected.

However, when deployed in the field, such devices are vulnerable

to physical attackers who can have direct access to the devices.

Physical attacks can be categorized as passive attacks or active

attacks. In passive attacks, such as Side-Channel Attacks (SCA), the

attackers do not tamper with the execution, but can collect power

traces, electromagnetic (EM) field traces, or traces of acoustic sig-

nals, and analyze the signals to learn information that is processed

on the device. In active attacks, such as Fault Injection (FI) attacks,

the attackers can inject faults through a voltage glitch, clock glitch,

EM field, or laser to cause a malfunction in the processing unit

or memory to tamper with the execution to obtain desired results.

It has been shown that both types of physical attacks have been

able to break cryptography implementations to leak secret keys,

for example [10, 46].

Even though the assumptions on the attacker’s capability are

similar for SCA and FI, the existing mitigation techniques treat

the two types of attacks separately. For side-channel attacks, the

mitigation techniques usually use randomness or noise to decouple

the signal observable by the attacker from the data value [24, 50].

For fault injection attacks, there are typically two solutions: one is

attack detection and one is to have redundancy in the execution

for error correction. The detection will detect when the execution
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has abnormal behavior, and then handle it as an exception. The

error correction uses redundancy in the execution and uses the

redundancy to correct execution error if there is [36]. However,

when we consider both SCA and FI attacks in the same system,

separate mitigation for the two does not protect both attacks effi-

ciently. For example, existing work [14] showed that instruction

duplication as a fault tolerance mechanism amplifies the informa-

tion leakage through side channels. Detection methods such as full,

partial, encrypt-decrypt duplication & comparison of a cipher [28]

produce repetitions of intermediate values that are exploitable by

the side-channel adversary.

In this work, we propose a joint solution for both SCA and FI at-

tacks.With a combination of random obfuscation using the Random

Self-Reducibililty (RSR) property and redundancy for error correc-

tion, our proposed countermeasure is particularly effective against

FI outperforming traditional redundancy-based methods. The ran-

domness disrupts the attacker’s observation of the statistics in fault

attacks, thereby nullifying the effectiveness of statistical analysis

as a tool for security compromise. This aspect is crucial in the face

of increasingly sophisticated FI analysis techniques. In addition to

its effectiveness against FI, the countermeasure also resists SCA,

by rendering power consumption variations less useful to attack-

ers. The countermeasure significantly enhances system security,

particularly in environments where physical attacks are prevalent.

The proposed countermeasure offers significant benefits as a

black box operation-level solution to both SCA and FI attacks, and it

is independent of the implementation of the target algorithm being

protected. This means there is no need for detailed knowledge of the

implementation. The basis for the solution is to implement protection

at low-level of operations such as modular exponentiation, modu-

lar multiplication, polynomial multiplication, and number theoretic

transforms. Also, we assume a generic fault model, and thus, there

is no special fault profiling of a targeted device necessary. There-

fore, the proposed protection techniques can be applied directly

in software without extensive system-specific adjustments. In our

evaluation, we showcase how the proposal protection techniques

can be adopted to protect two different cryptosystems.

Our protection requires a small number of steps to implement.

It can be implemented at C or high-level and is independent of the

compiler or underlying architecture; assuming the compiler. First,

target software is identified. Second, we locate low-level operations

such as modular exponentiation, modular multiplication, polyno-

mial multiplication, or number theoretic transforms. These opera-

tions can be protected with the idea of Random Self-Reducibility

(RSR). Each instance of the low-level operation is replaced with an

equivalent RSR operation. Each RSR operation requires querying

a randomness source and then executing the low-level operations

multiple times with original input values modified with the ran-

dom values. Typically, multiple RSR operations are instantiated

and majority voting is performed on the output of RSR operations.

Because the protection works at the low-level operations such as

modular exponentiation, modular multiplication, polynomial mul-

tiplication, or number theoretic transforms, it is independent of the

higher-level algorithm or application. Since it does not rely on any

hardware tricks, it is independent of the architecture and agnostic

to the underlying compiler.

Our protection can be applied to any program or algorithm that

uses modular exponentiation, modular multiplication, polynomial

multiplication, and number theoretic transforms to process secret

or sensitive information. This encompasses major cryptogrpahic

algorithms from ElGamal [18] and RSA [43] to post-quantum cryp-

tography such as Kyber [5] and Dilithium [17]. In our evaluation,

we show how our protection can be applied to RSA-CRT and Ky-

ber’s Key Generation algorithms. Our contributions are summarized

as follows:

• We propose a new software-based countermeasure against power

side-channel (Section 3.2) and fault injection (Section 3.3) attacks,

by randomizing the intermediate values of the computation using

the notion of random self-reducibility (Section 3).

• We formalize the security of the countermeasure in relation to an

attacker’s fault injection capability, parameterize it, and quantify

its effectiveness against fault-injection attacks (Section 3.4).

• End-to-end implementation of the countermeasure for RSA-CRT

and Kyber’s Key Generation public key cryptosystems (Section 4).

• Emprical evaluation of the countermeasure against power side-

channel and fault-injection attacks over modular exponentiation,

modular multiplication operations, polynomial multiplication,

number theoretic transform (NTT) operations, RSA-CRT, and

Kyber’s Key Generation (Section 5).

2 BACKGROUND AND THREAT MODEL

Computing devices today are vulnerable to physical attacks such as

side-channel and fault injection attacks to leak critical information.

It is a well-known fact that the power consumption during certain

stages of a cryptographic algorithm exhibits a strong correlation

with the Hamming weight of its underlying variables, i.e., Ham-

ming weight leakage model [11, 25]. This phenomenon has been

widely exploited in the cryptographic literature in various attacks

targeting a broad range of schemes, particularly post-quantum cryp-

tographic implementations [3, 20, 22, 47, 51]. Therefore, we use the

Hamming weight leakage model in the evaluation of the robustness

of the countermeasure.

Test Vector Leakage Assessment (TVLA) [21] identifies if two sets

of side channel measurements are distinguishable by computing

the Welch’s t-test for the two sets of measurements. It is being

used in the literature to confirm the presence or absence of side-

channel leakages for power traces, and has become the de facto

standard in the evaluation of side-channel measurements [42, 45].

In side-channel analysis, the recommended thresholds for t-values

are specifically tailored to detect potential information leakage in

cryptographic systems. A t-value threshold of ±4.5 or ±5 is often

considered in side-channel analysis. This threshold corresponds to

a very high confidence level, rejecting the null hypothesis with a

confidence greater than 99.999% for a significantly large number of

measurements. The null hypothesis typically being that all samples

are drawn from the same distribution, a t-value outside this range

indicates distinguishable distributions of the two sets and thus

the existence of side-channel leakage [49]. The choice of these

thresholds is influenced by the need to balance the risk of false

positives (incorrectly identifying information leakage when there

is none) against the risk of false negatives (failing to detect actual

information leakage).
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In the real world, there is a possibility that the devices will mal-

function or be damaged, resulting in generating the error output,

and wemay ignore it. However, if the attacker intentionally induced

the fault during the device operation, e.g., cryptographic calcula-

tion, he or she can recover the secret by analyzing the original

and fault outputs. Most of the classical cryptographic algorithms

can be attacked by fault injection attacks [33, 37]. Even the post-

quantum cryptographic algorithms [39], which can protect against

quantum computing, can be vulnerable to fault attacks. Therefore,

it is necessary to have efficient FI attack protections that can be

easily deployed.

On embedded processors, a fault model in which an attacker can

skip an assembly instruction or equivalently replace it by a nop

has been observed on several architectures and for several fault

injection means [32]. Moro et al. in [31] assume that the effect of

the injected fault on a 32-bit microcontroller leads to an instruc-

tion skip. Moro et al. [32] and Barenghi et al. [7] have proposed

implementations of the Instruction Redundancy technique as a coun-

termeasure against this fault model. Instruction skips correspond

to specific cases of instruction replacements: replacing an instruc-

tion with another one that does not affect any useful register has

the same effect as a nop replacement and so is equivalent to an

instruction skip.

In our threat model, we consider an attacker with physical ac-

cess to a device, capable of injecting faults such as voltage glitches

during the computation of a critical function like the number theo-

retic transform. These faults can corrupt or skip instructions and

happen anywhere multiple times but does not crash the device. Fur-

thermore, the model permits the attacker to perform basic power

side-channel analysis, collecting power trace samples. By correlat-

ing data-dependent power consumption with the Hamming weight

leakage model, the attacker can expose vulnerabilities in crypto-

graphic computations. This underscores the crucial need for robust

defenses against both fault injection and side-channel attacks.

3 OVERVIEW OF THE COUNTERMEASURE

We use the notion of random self-reducibility [8, 44] to develop a

new software-based countermeasure against fault-injection attacks

and simple power side-channel attacks. Therefore, in this section,

we provide the necessary background on random self-reducibility.

Since we apply our countermeasure to number-theoretic opera-

tions, we also provide the necessary background on number theo-

retic transforms.

3.1 Random Self-Reducibility

Informally, a function 𝑓 is random-self-reducible if the evaluation

of 𝑓 at any given instance 𝑥 can be reduced in polynomial time to

the evaluation of 𝑓 at one or more random instances.

Definition 1 (Random Self-Reducibililty (RSR) [8, 44]). Let

𝑥 ∈ D and 𝑐 > 1 be an integer. We say that 𝑓 is 𝑐-random self-

reducible if 𝑓 can be computed at any particular input 𝑥 via:

𝐹 [𝑓 (𝑥), 𝑓 (𝑎1) , . . . , 𝑓 (𝑎𝑘 ) , 𝑎1, . . . , 𝑎𝑘 ] = 0 (1)

where 𝐹 can be computed asymptotically faster than 𝑓 and the 𝑎𝑖 ’s

are uniformly distributed, although not necessarily independent; e.g.,

given the value of𝑎1 it is not necessary that𝑎2 be randomly distributed

in D. This notion of random self-reducibility is somewhat different

than other definitions given by [9, 19], where the requirement on 𝐹 is

that it be computable in polynomial time.

It is shown by Blum et al. [8] that self-correctors exist for any

function that is random self-reducible. A self-corrector for 𝑓 takes a

program 𝑃 that is correct on most inputs and turns it into a program

that is correct on every input with high probability.

We have incorporated the concept of self-correctness to safe-

guard against fault-injection attacks, and the principles of random

self-reducibility and randomly-testable functions to defend against

power side-channel attacks. These notions are investigated and ap-

plied as a countermeasure against physical attacks in the literature.

3.2 RSR against Power Side Channels

At the heart of this method is the generic, randomized Algorithm 1,

which is founded on the principle described in Definition 1. Addi-

tionally, Algorithm 2 boosts the effectiveness of the randomized

Algorithm 1 through majority voting and probability amplifica-

tion [48]. Consider a correct program 𝑃 that has an associated ran-

dom self-reducible property, which takes the form of a functional

equation 𝑝 . This property is deemed satisfied if, in the equation 𝑝 ,

we can substitute 𝑃 for the function 𝑓 and the equation remains true.

Algorithm 1: 𝑐-secure-countermeasure PSCA (𝑃, 𝑥, 𝑐).

Input :Program: 𝑃 , Sensitive input: 𝑥 , Security: 𝑐

Output :𝑃 (𝑥 )

1 Randomly split 𝑎1, . . . , 𝑎𝑐 based on 𝑥 .

2 for 𝑖 = 1, . . . , 𝑐 do

3 𝛼𝑖 ← 𝑃 (𝑎𝑖 )

4 return 𝐹 [𝑥, 𝑎1, . . . , 𝑎𝑐 , 𝛼1, . . . , 𝛼𝑐 ]

Generic 𝑐-secure-countermeasure PSCA (𝑃, 𝑥, 𝑐) defined Algo-

rithm 1 takes a program 𝑃 , a sensitive input 𝑥 , and a security pa-

rameter 𝑐 . The algorithm randomly splits 𝑥 into 𝑐 shares 𝑎1, . . . , 𝑎𝑐
such that 𝑥 = 𝑎1 + · · · + 𝑎𝑐 , and calls 𝑃 on each share 𝑎𝑖 to obtain

𝛼𝑖 = 𝑃 (𝑎𝑖 ). Finally, the algorithm returns the result of the function

𝐹 on 𝑥, 𝑎1, . . . , 𝑎𝑐 , 𝛼1, . . . , 𝛼𝑐 . The function basis 𝐹 is defined based

on the random self-reducible property of the function 𝑓 that 𝑃

implements (cf. Definition 1).

To ensure minimum security, splitting the secret input into two

shares would suffice. However, for enhanced security, the secret in-

put can be divided into additional shares. It’s important to view the

security parameter 𝑐 as an invocation to 𝑃 , especially in the context

of bivariate functions, rather than merely the number of shares.

Masking with Random Self-Reducibility. If a cryptographic

operation has a random self-reducible property, then it is possible

to protect it against power side-channel attacks by masking with

arithmetic secret sharing.

3.3 Self-Correctness against Fault Injections

Fault injection attacks rely on obtaining a faulty output or correlat-

ing the faulty output with the input or secret-dependent interme-

diate values. By introducing redundancy and majority voting, we

can obtain correct results even if some results are incorrect due to

injected faults.
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In Algorithm 2, we show how to apply the fault injection coun-

termeasure approach on top of the power side-channel counter-

measure. To protect a program 𝑃 that implements a function 𝑓

having a random self-reducible property, the algorithm calls 𝑃 ’s

𝑐-secure-countermeasure 𝑛 times and returns the majority of the

answers. The function 𝑐-secure-countermeasure takes a program 𝑃 ,

a sensitive input 𝑥 , and a security parameter 𝑐 .

Algorithm 2: 𝑛-secure countermeasure FIA (𝑃, 𝑥, 𝑛, 𝑐).

Input :Program: 𝑃 , Sensitive input: 𝑥 , Security: 𝑛, 𝑐

Output :𝑃 (𝑥 )

1 for𝑚 = 1, . . . , 𝑛 do

2 answer𝑚 ← call 𝑐-secure-countermeasure(𝑃, 𝑥, 𝑐)

3 return the majority in {answer𝑚 :𝑚 = 1, . . . , 𝑛}

Note that 𝑐 and 𝑛 are independent security parameters. The secu-

rity parameter 𝑐 represents the number of calls to the unprotected

program used in the PSCA countermeasure, whereas 𝑛 signifies

the number of iterations in the FIA countermeasure. The security

parameter 𝑛 is associated with the attacker’s capability to inject

effective faults. Owing to redundancy, an increase in the security

parameter 𝑐 results in a decreased likelihood of the attacker suc-

cessfully injecting a fault.

Algorithm 3: (𝑐 , 𝑛)-secure mod operation (𝑃, 𝑅, 𝑥, 𝑐, 𝑛).

Input :Program: 𝑃 , Sensitive input: 𝑥 , Security: 𝑛, 𝑐

Output :𝑃 (𝑥 )

1 for𝑚 = 1, . . . , 𝑛 do

2 𝑥1, 𝑥2, . . . , 𝑥𝑐 ←$ Random-Split(𝑅2𝑛, 𝑥 )

3 answer𝑚 ← 𝑃 (𝑥1, 𝑅) +𝑅 𝑃 (𝑥2, 𝑅) . . . +𝑅 𝑃 (𝑥𝑐 , 𝑅)

4 return the majority in {answer𝑚 :𝑚 = 1, . . . , 𝑛}

Algorithm 3 presents an example of a combined and configurable

countermeasure, effective against both PSCA and FIA, applied to the

modular multiplication operation. In Line 2, the algorithm divides

the input 𝑥 into 𝑐 shares 𝑥1, 𝑥2, . . . , 𝑥𝑐 , satisfying 𝑥 = 𝑥1+𝑥2+· · ·+𝑥𝑐 .

Self-CorrectnesswithMajority Voting. Fault injection attacks

rely on faulty output. By majority voting, we can obtain correct

results even if some results are incorrect.

3.4 n and attacker’s probability of success

Fault injection occurs at the hardware level and is both challenging

and unpredictable to control. When a successful fault is induced, it

transforms a previously correct victim program into an incorrect

one. Consequently, the essence of a fault injection attack is its

probabilistic nature. This concept is abstracted in terms of the

attacker’s probability of success in our work.

Definition 2 (𝜀-fault tolerance). Let 𝜀 be the upper bound

on the attacker’s probability of injecting a fault successfully at an

unprotected program 𝑃 that correctly implements a function 𝑓 . Say

that the program 𝑃 is 𝜀-fault tolerant for the function 𝑓 provided

𝑃 (𝑥) = 𝑓 (𝑥) for at least 1 − 𝜀 of any input 𝑥 . We assume each fault

injection is independent of the others: Pr𝑓 𝑎𝑢𝑙𝑡 [𝑃 (𝑥) ≠ 𝑓 (𝑥)] < 𝜀.

Algorithm 1 is a randomized algorithm and Algorithm 2 is also

a randomized algorithm that repeats the computation 𝑛 times by

calling Algorithm 1 and uses majority voting to pick the correct

answer. Therefore, we can use Chernoff bounds [48] to show that

the probability of getting the correct answer is at least 1 − 𝛿 .

A simple and common use of Chernoff bounds is for "boosting" of

randomized algorithms. If one has an algorithm that outputs a guess

that is the desired answer with probability 𝑝 > 1/2, then one can get

a higher success rate by running the algorithm𝑛 = log(1/𝛿)2𝑝/(𝑝−

1/2)2 times and outputting a guess that is output by more than

𝑛/2 runs of the algorithm. Assuming that these algorithm runs

are independent, the probability that more than 𝑛/2 of the guesses

is correct is equal to the probability that the sum of independent

Bernoulli random variables 𝑋𝑘 that are 1 with probability 𝑝 is

more than 𝑛/2. This can be shown to be at least 1 − 𝛿 via the

multiplicative Chernoff bound (𝜇 = 𝑛𝑝) [15]: Pr [𝑋 > 𝑛/2] ≥ 1 −

𝑒−𝑛 (𝑝−1/2)
2/(2𝑝 ) ≥ 1 − 𝛿.

Theorem 1 (Derived from Theorem 3.1 in [26]). Suppose that 𝑓

is randomly self-reducible and that 𝑃 is 𝜀-fault tolerant for the function

𝑓 . Consider a 𝑐-secure countermeasure 𝐶 (𝑥) (Line 4 in Algorithm 1):

return 𝐹 [𝑥, 𝑎1, . . . , 𝑎𝑐 , 𝑃 (𝑎1), . . . , 𝑃 (𝑎𝑐 )]

Then, for any 𝑥,𝐶 (𝑥) is equal to 𝑓 (𝑥) with probability at least 1− 𝜀𝑐 .

Proof. Fix an input 𝑥 . Clearly, the probability that 𝐶 (𝑥) is cor-

rect is at least the probability that for each 𝑖, 𝑃 (𝑎𝑖 ) = 𝑓 (𝑎𝑖 ). This

follows since 𝑓 is random self-reducible with respect to the number

of calls to 𝑃 is done. It therefore follows that 𝐶 returns correct

results at least 1 − 𝜀𝑐 of the time. □

In the next sections, we will present a number of examples of

𝑐-secure countermeasures whose security parameter is mostly 𝑐 = 2.

Thus, for these functions, Theorem 1 says that, for 𝜀 equal to 1/100,

the probability that𝐶 returns correct results is at least 0.98. We can

amplify the probability of success by repeating the computation 𝑛

times and using majority voting. In addition, we can select a bigger

𝑛 by adjusting 𝛿 as the confidence parameter:

Lower bound for n. The attacker’s probability of success is

𝜀, and for a 𝑐-secure countermeasure, the lower bound for 𝑛

is defined as: 𝑛 = log(1/𝛿)2(1 − 𝜀𝑐)/(𝜀𝑐/2)2, where 𝛿 is the

confidence parameter.

Algorithm 1 makes calls to a program 𝑃 that implements a func-

tion 𝑓 having a random self-reducible property. However, we do

not need to know the implementation of the function 𝑓 , we just

need to know the mathematical definition of the function 𝑓 to con-

figure the Algorithm 1 and 2. Therefore, one further advantage of

our countermeasure is that it follows łblack-boxž approach. The

fault injection attacks are hardware attacks, and the attacker does

not have access to the software implementation of the function.

Therefore, the attacker can only observe the input and output of

the function. By using the black-box approach, we basically make

the countermeasure robust at the hardware level.

Black-box. If we replace the 𝑓 function with a program 𝑃 that

computes the function 𝑓 , then our countermeasure 𝐶 access 𝑃

as a black-box and computes the function 𝑓 using the random

self-reducible properties of 𝑓 .
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4 END-TO-END IMPLEMENTATIONS

In this section, we introduce implementations of the RSA-CRT

signature algorithm and Kyber’s key generation algorithm, detailing

existing vulnerabilities and how we can protect them against them

using our methods.

4.1 Securing RSA-CRT Algorithm.

RSA is a cryptographic algorithm commonly used in digital sig-

natures and SSL certificates. Due to the security of RSA, which

relies on the difficulty of factoring the product of two large prime

numbers, the calculation of RSA is relatively slow. Therefore, it is

seldom used to encrypt the data directly.

For efficiency,many popular cryptographic libraries (e.g., OpenSSL)

use RSA based on the Chinese remainder theorem (CRT) for encryp-

tion or signing messages. Algorithm 4 is the RSA-CRT signature

generation algorithm. With the private key, we pre-calculate the

values 𝑑𝑝 = 𝑑 mod (𝑝 − 1), 𝑑𝑞 = 𝑑 mod (𝑞 − 1) and 𝑢 = 𝑞−1

mod 𝑝 , then generate the intermediate value 𝑠𝑝 = 𝑚𝑑𝑝 mod 𝑝 ,

𝑠𝑞 = 𝑚𝑑𝑞 mod 𝑞. Finally, combine two intermediate value 𝑠𝑝 , 𝑠𝑞
with the Garner’s algorithm 𝑆 = 𝑠𝑞 + (((𝑠𝑝 −𝑠𝑞) ·𝑢) mod 𝑝) ·𝑞 The

RSA based on CRT is about four times faster then classical RSA.

Algorithm 4: RSA-CRT Signature Generation Algorithm

Input: A message𝑀 to sign, the private key (𝑝,𝑞,𝑑 ) , with 𝑝 > 𝑞,

pre-calculated values 𝑑𝑝 = 𝑑 mod (𝑝 − 1) , 𝑑𝑞 = 𝑑

mod (𝑞 − 1) , and 𝑢 = 𝑞−1 mod 𝑝 .

Output: A valid signature 𝑆 for the message𝑀 .

1 𝑚 ← Encode the message𝑀 in𝑚 ∈ Z𝑁

2 𝑠𝑝 ←𝑚𝑑𝑝 mod 𝑝 ⊲ Protection with Alg. 5

3 𝑠𝑞 ←𝑚𝑑𝑞 mod 𝑞 ⊲ Protection with Alg. 5

4 𝑡 ← 𝑠𝑝 − 𝑠𝑞

5 if 𝑡 < 0 then 𝑡 ← 𝑡 + 𝑝

6 𝑆 ← 𝑠𝑞 + ( (𝑡 · 𝑢 ) mod 𝑝 ) · 𝑞

7 return 𝑆 as a signature for the message𝑀

However, using CRT to improve RSA operation efficiency makes

RSA vulnerable. For instance, in [4], Aumüller et al. provided the

fault-based cryptanalysis method of RSA-CRT that the attacker

can intentionally induce the fault during the computation, which

changes 𝑠𝑝 to faulty ˆ𝑠𝑝 , to obtain the faulty output and factorize 𝑁

by using the equation 𝑞 = 𝑔𝑐𝑑 ( (𝑠′𝑒 −𝑚) mod 𝑁, 𝑁 ) to recover the

secret key. Sung-Ming et al. provided another equation that can

factorize 𝑁 with faulty signature in [53]. There are two scenarios

that the attacker can break the RSA-CRT. If the attacker knows the

value of the message and faulty output, they can factorize 𝑁 with

the previous equation. On the other hand, if the attacker knows the

value of correct and faulty signatures, they can factorize 𝑁 with

the equation 𝑞 = 𝑔𝑐𝑑 ( (𝑠 − 𝑠 ) mod 𝑁, 𝑁 ) .

We protect modular exponentiation at Line 2 and Line 3 of Al-

gorithm 4 using the proposed countermeasure against the attack

introduced in [4]. Its self-correcting program is very simple to code.

The hardest operation to perform is the modular multiplication

𝑃 (𝑎, 𝑥1, 𝑅) ·𝑅 𝑃 (𝑎, 𝑥2, 𝑅).

The self-correcting program can compute this multiplication

directly without using random self-reducible property, however,

Algorithm 5: 2-secure mod. exponentiation (𝑃, 𝑅, 𝑎, 𝑥)

1 𝑥1, 𝑥2 ←$ Random-Split(𝜙 (𝑅)2𝑛, 𝑥 )

2 return← 𝑃 (𝑎, 𝑥1, 𝑅) ·𝑅 𝑃 (𝑎, 𝑥2, 𝑅) ⊲ calls Alg. 6

for extra protection, 2-secure modular multiplication can be used

(cf. Algorithm 6). Let’s consider multiplication of integers mod 𝑅

for a positive number 𝑅. In this case, 𝑓 (𝑥,𝑦, 𝑅) = 𝑥 ·𝑅 𝑦. Suppose

that both 𝑥 and 𝑦 are in the range Z𝑅2𝑛 for some positive integer

𝑛. Algorithm 6 shows a possible implementation for the protected

modular multiplication with a 𝑐 security parameter set to 2.

Algorithm 6: 2-secure mod. multiplication (𝑃, 𝑅, 𝑥,𝑦)

1 𝑥1, 𝑥2 ←$ Random-Split(𝑅 × 2𝑛, 𝑥 )

2 𝑦1, 𝑦2 ←$ Random-Split(𝑅 × 2𝑛, 𝑦)

3 return 𝑃 (𝑥1, 𝑦1, 𝑅) +𝑅 𝑃 (𝑥2, 𝑦1, 𝑅) +𝑅 𝑃 (𝑥1, 𝑦2, 𝑅) + 𝑃 (𝑥2, 𝑦2, 𝑅)

4.2 Securing Kyber Key Generation Algorithm.

The NIST standardization process for post-quantum cryptogra-

phy [34] has finished its third round, and provided a list of new

public key schemes for new standardization [2]. While implementa-

tion performance and theoretical security guarantees served as the

main criteria in the initial rounds, resistance against side-channel

attacks (SCA) and fault injection attacks (FIA) emerged as an im-

portant criterion in the final round, as also clearly stated by NIST

at several instances [40].

Transforms used in signal processing such as the Fast Fourier

Transform (FFT) or Number Theoritic Transform (NTT) or their

inverse can be protected with our countermeasure. NTT over an 𝑛

point sequence is performed using the well-known butterfly net-

work, which operates over several layers/stages. The atomic op-

eration within the NTT computation is denoted as the butterfly

operation. A butterfly operation takes as inputs (𝑎, 𝑏) ∈ Z2𝑞 and a

twiddle constant𝑤 , and produces outputs (𝑐, 𝑑) ∈ Z2𝑞 .

Consider a transformation 𝑇 (𝑥1, . . . , 𝑥𝑛) where the values 𝑥𝑖
are fixed point numbers, i.e., 2-complement’s arithmetic of some

fixed size. This follows since the transformation is linear. Thus,

𝑇 (𝑥1, . . . , 𝑥𝑛) = 𝑇 (𝑥1 + 𝑟1, . . . , 𝑥𝑛 + 𝑟𝑛) −𝑇 (𝑟1, . . . , 𝑟𝑛).

Algorithm 7: 2-secure NTT (𝑃, 𝑥1, . . . , 𝑥𝑛 ∈ Z
2
𝑞 ).

1 Choose 𝑟1, . . . , 𝑟𝑛 ∈U Z
2
𝑞

2 return NTT (𝑥1 + 𝑟1, . . . , 𝑥𝑛 + 𝑟𝑛 ) − NTT (𝑟1, . . . , 𝑟𝑛 )

The key point here is that since fixed-point values are a group

under addition, the value 𝑥𝑖 + 𝑟𝑖 is a uniform random value. The

countermeasure for NTT is given in Algorithm 7.

They typically operate over polynomials in polynomial rings,

and notably, polynomial multiplication is one of the most computa-

tionally intensive operations in practical implementations of these

schemes. Among the several known techniques for polynomial mul-

tiplication such as the schoolbook multiplier, Toom-Cook [52] and
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Algorithm 8: CPA Secure Kyber PKE (CPA.KeyGen)

1 𝑠𝑒𝑒𝑑𝐴 ← Sample𝑈 ( )

2 𝑠𝑒𝑒𝑑𝐵 ← Sample𝑈 ( )

3 𝐴̂← NTT(𝐴)

4 𝑠 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝐵, 𝑐𝑜𝑖𝑛𝑠𝑠 )

5 𝑒 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝐵, 𝑐𝑜𝑖𝑛𝑠𝑒 )

6 𝑠 ← NTT(𝑠) ⊲ Protection with Algorithm 7

7 𝑒 ← NTT(𝑒)

8 𝑡 ← 𝐴̂ ⊙ 𝑠 + 𝑒

9 return 𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴, 𝑡 ), 𝑠𝑘 = (𝑠 )

Karatsuba [23], the Number Theoretic Transform (NTT) based poly-

nomial multiplication [16] is one of the most widely adopted tech-

niques, owing to its superior run-time complexity. Over the years,

there has been a sustained effort by the cryptographic community

to improve the performance of NTT for lattice-based schemes on a

wide-range of hardware and software platforms [1, 13]. As a result,

the use of NTT for polynomial multiplication yields the fastest

implementation for several lattice-based schemes. In particular, the

NTT serves as a critical computational kernel used in Kyber [6]

and Dilithium [29], which were selected as the first candidates for

PQC standardization [41].

A recent fault injection attack [41] that exposes a significant

vulnerability in NTT-based polynomial multiplication, allowing

the zeroization of all twiddle constants through a single targeted

fault. This vulnerability enables practical key/message recovery

attacks on Kyber KEM and forgery attacks on Dilithium. Moreover,

the proposed attacks are also shown to bypass most known fault

countermeasures for lattice-based KEMs and signature schemes.

To safeguard polynomial multiplication, we can protect indi-

vidual NTT operations using Algorithm 7. In this paper, we focus

on securing the NTT operation targeted by Ravi et al.[41] using

Algorithm7. Consequently, we reinforce Line 6 of Algorithm 8 with

our proposed countermeasure against the attack delineated in [41].

5 EVALUATION

We conducted three experimental sets to assess our countermea-

sure’s effectiveness against fault injection and power side-channel

attacks. Initially, we evaluated protected operations individually,

including modular multiplication, modular exponentiation, and

NTT. Subsequently, we assessed our countermeasure’s robustness

within RSA-CRT and Kyber key generation algorithms. Finally, we

examined the latency overhead introduced by our countermeasure.

To capture power traces, for our experimentswe use anATSAM4S-

based target board. SAM4S is a microcontroller based around the

32-bit ARM cortex-m4 processor core, which is commonly used in

embedded systems such as IoT devices. The specific target board

comes with the ChipWhisperer Husky [35], which is the equipment

that we used for power trace collection.

The voltage fault injection test bed is created using Riscure’s VC

Glitcher product1 that generates an arbitrary voltage signal with a

pulse resolution of 2 nanoseconds. We use a General Purpose Input

Output (GPIO) signal to time the attack which allows us to inject

1https://www.riscure.com/products/vc-glitcher/

a glitch at the moment the target is executing the targeted code.

The target’s reset signal is used to reset the target prior to each

experiment to avoid data cross-contamination. All fault injection

experiments are performed targeting an off-the-shelf development

platform built around an STM32F407 MCU, which includes an ARM

Cortex-M4 core running at 168 MHz. This Cortex-M4 based MCU

has an instruction cache, a data cache and a prefetch buffer.

In power side-channel evaluation, we use the Hamming Weight

leakage model and the Test Vector Leakage Assessment (TVLA) [21]

to evaluate the effectiveness of our countermeasure. The instanta-

neous power consumption measurement corresponding to a single

execution of the target algorithm is referred to as power trace. Each

power trace is therefore a vector of power samples, and the t-test

has to be applied sample-wise. The obtained vector is referred to

as t-trace.

To detect Points-of-Interest, we employ the Sum of Squared pair-

wise T-differences (SOST) [12] method, setting the threshold at

20% of the maximum. The t-test window size is uniformly set to

±8 for all operations. We define the power side-channel security

parameter as 𝑐 = 2 in the 𝑐-secure countermeasure in Algorithm 1

applicable to all operations. In the mod operation and modular

multiplication, the entire operation is targeted, while in modular

exponentiation and NTT, attacks are focused on the constant-time

Montgomery ladder [27, 30] modular exponentiation function. For

TVLA analysis, two sets of test vectors were created: one with

random numbers of Hamming weight 12 and another with a Ham-

ming weight of 4, using 1000 random numbers for each. These

vectors were used for evaluating both protected and unprotected

cryptographic operations.

In our study, we also evaluated the distinguishability of total

power consumption in modular operations and modular multipli-

cation. For modular multiplication, we maintained one operand’s

value constant while varying the other operand among numbers

with different HammingWeights. This approach enables a compara-

tive analysis of power consumption patterns in modular operations,

particularly between unprotected and protected versions, offering

insights into how variations in Hamming Weight influence power

consumption in these protected cryptographic operations.

Our evaluation indicates that the RSR countermeasure signifi-

cantly reduced t-test results, bringing them into acceptable regions.

For example, in the mod operation, the maximum t-test result de-

creased from 415.7 to 4.12, and for NTT, it dropped from 417.7 to

7.69. These results, which are detailed in Table 1, demonstrate an

average reduction of two orders of magnitude, highlighting the

effectiveness of the RSR countermeasure in enhancing the security

of cryptographic operations against side-channel attacks.

In the fault injection attack evaluation, we use the model of

injecting faults to cause changes to the desired output, comparing

the desired output to the one of the fault. We set the fault injection

security parameter as 𝑛 = 10 for 𝑛-secure countermeasure 2 for

all operations.

Figure 2 presents the results of our fault attack experiment. We

employed voltage glitches for the fault injection attacks. The Glitch

Offset is the time between when the trigger is observed and when

the glitch is injected. The Glitch Length is the time for which the

Glitch Voltage is set. Glitch Offset and Glitch Length are the two pa-

rameters that we varied to inject faults, they correspond to the start
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Figure 1: Power Side-Channel Attack Evaluation t-tests
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Figure 2: Fault Injection Attack Evaluation Heatmaps
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Table 1: Reduction in Faults for Different Operations

Operation Unprotected Protected Reduction

Mod. exponentiation 165 9 94.55%

Mod. multiplication 168 1 99.4%

NTT 63 5 92.06%

Poly. multiplication 196 14 92.86%

RSA-CRT 168 7 95.83%

Kyber Key. Gen. 172 4 97.67%

time and duration of the glitch, respectively. For each combination

of start time and duration, we executed each target function five

times, resulting in a total of 1280 test data points for each function.

We used heatmaps to illustrate the ratio of faulty to correct outputs.

This experiment yielded three types of outputs: faulty, correct, and

board reset. In the heatmaps, colors closer to red indicate a higher

likelihood of voltage glitches causing faulty outputs (red = 100%),

whereas blue signifies a lower likelihood (blue = 0%). Green indi-

cates instances where all test outputs resulted in the board being

reset. We treated any output that is not the correct output as a

fault, this is very conservative, as some of the outputs may not be

effective faults. From these heatmaps, the unprotected functions

exhibit a significantly higher number of red dots, indicating more

faults. Furthermore, Table 1 demonstrates the reduction of faults

in target functions, with our protection method reducing approxi-

mately 95.4% of faulty outputs in average, up to 99.4% in modular

multiplication. Collectively, these results affirm the effectiveness of

our protection method in safeguarding the functions.

We observed fault injection sometimes breaks memory alloca-

tions (malloc) without causing the target to crash. This is due to the

fact that the target is not designed to handle such faults. We believe

that this is a potential avenue for future work, as it may lead to new

types of attacks. We simply reset the target in such cases, as we

are not interested in the results of these attacks. However, in some

cases, the fault progresses to the next operation silently without

causing a crash and the target continues to operate. We registered

these cases as successful attacks in the heatmaps.

We additionally protected the fault-injection countermeasure

method (Algorithm 2) using classical techniques. After exiting the

loop, the code verifies loop completed successfully. If not, the code

resets the target. This is a simple and effective way to protect the

countermeasure from fault injection attacks. This led to a reduction

in faults 4.56% in average.

6 LIMITATIONS

Our study presents a novel software-based countermeasure against

physical attacks such as power side-channel and fault-injection at-

tacks, utilizing the concept of random self-reducibility and instance

hiding for number theoretic operations. While our approach offers

significant advantages over traditional methods, there are several

inherent limitations. Firstly, the countermeasure’s effectiveness

is intrinsically linked to the random self-reducibility of the func-

tion being protected. This dependency means that our approach

may not be universally applicable to all cryptographic operations.

Secondly, redundancy and randomness inevitably introduce com-

putational overhead. Nevertheless, each call to original function

𝑃 can be easily parallelized in hardware or vectorized software

implementations. This parallelization can potentially increase the

noise, and we identify this as an avenue for future work. Finally,

our approach is not tailored to defend against attacks targeting the

random number generator itself. Nevertheless, there are also simple

duplication based techniques to protect random number generators

from physical attacks. For instance, one such technique involves

comparing two successive random numbers to determine if they

are identical or not, as discussed in the work of Ravi et al. [38].

7 CONCLUSION

In this work, we show that if a cryptographic operation has a ran-

dom self-reducible property, then it is possible to protect it against

physical attacks such as power side-channel and fault-injection

attacks with a configurable security. We have demonstrated the

effectiveness of our method through empirical evaluation across

critical cryptographic operations includingmodular exponentiation,

modular multiplication, polynomial multiplication, and number the-

oretic transforms (NTT). Moreover, we have successfully showcased

end-to-end implementations of our method within two public key

cryptosystems: the RSA-CRT signature algorithm and the Kyber

Key Generation, to show the practicality and effectiveness of our

approach. The countermeasure reduced the power side-channel

leakage by two orders of magnitude, to an acceptably secure level

in TVLA analysis. For fault injection, the countermeasure reduces

the number of faults to 95.4% in average. Although the counter-

measures were introduced as software-based, they can be more

efficiently implemented in hardware, particularly on FPGAs. Each

call to 𝑃 can be parallelized in hardware, potentially increasing the

noise. We identify this as an avenue for future work.
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