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Slim Buttes is a 30 km long by 10 km wide set of buttes containing Paleogene strata in
northwest South Dakota. At Reva Gap in northern Slim Buttes, Eocene-Oligocene
terrestrial strata of Chadron and Brule Formations of the White River Group
unconformably overlie the Paleocene Fort Union Formation. An angular unconformity
separates the White River Group from overlying Oligocene and Miocene strata of the
Arikaree Group. Using detrital zircon U-Pb ages, we determine the provenance of these
rocks as part of a broader synthesis of post-Laramide sedimentation in the Rocky

Mountains and western Great Plains.

The Chadron Formation age spectrum is dominated by Cretaceous and Proterozoic grains
that are interpreted to be locally recycled from the underlying Cretaceous and Paleocene
strata. The Brule Formation has a maximum depositional age of ~34 Ma; Paleogene
zircons dominate the age spectrum, and a wide variety of older zircons are also present.
The Oligocene zircons are interpreted to have been sourced from volcanic systems in the
Great Basin to the southwest, while the subsequent proportions of the zircons were
derived from a variety of source areas in the Nevadaplano and Rocky Mountain areas to
the southwest. Sparse amounts of Archean zircons are thought to represent the burial of
Laramide uplifts throughout Wyoming at the time of Brule deposition, making for a
regional paleotopography with little relief across the western interior of the United
States. The Miocene-age Arikaree Group sand has a maximum depositional age of ~26 Ma
and a multimodal detrital zircon age spectrum. The Arikaree Group provenance likely
represents continued sourcing in the Great Basin volcanic systems and Nevadaplano, the
beginnings of the re-exhumation of Laramide basement uplifts, and subsequent sediment
evacuation out of the western interior and into the Gulf of Mexico to the southeast. Our
findings indicate that the transport process and detrital zircon provenance signatures of
these strata are decoupled, and each have their own independent evolution. The volcanic

signature is primarily transported via aeolian processes (i.e. volcanic ash), and the
recycled detrital zircon signature is primarily transported via fluvial processes.

INTRODUCTION

The Rocky Mountains of North America are character-
ized by the Laramide province: rugged, high-elevation
mountain ranges bounded by flat basins making for a high-
relief landscape from the basin floors to the mountain
peaks. During Cretaceous to Eocene time, the foreland of
the Cordilleran thrust belt (Sevier highlands) was struc-
turally partitioned into many small basins bounded by Pre-
cambrian crystalline rocks. These rocks were uplifted by
high-angle reverse faults in response to Sevier-Laramide
crustal thickening related to subduction of the oceanic Far-
allon plate beneath the North American continent (Fig. 1A)
(e.g. Craddock et al., 2022; Craddock & Malone, 2022; Dick-
inson & Snyder, 1978).

Deposits of the White River Group and correlative strata
are preserved within the post-Laramide lowlands in the
Great Plains in Nebraska, South Dakota, and North Dakota,
as well as intermontane regions of the Rocky Mountains in
Colorado, Wyoming, and Montana (Corradino et al., 2021;
Rowley & Fan, 2016; T. M. Schwartz & Schwartz, 2013;
Sears & Beranek, 2022; Thomson et al., 2022; Fig. 1B).
White River strata are also present in paleovalleys atop
Laramide ranges such as the Bighorn Mountains, Black
Hills, and Washakie Range (Caylor et al., 2023; J. R. Malone
et al., 2022; McKenna & Love, 1972). Miocene strata are
widespread across the Great Plains of North America,
mainly in badlands-type localities like Badlands National
Park or Slim Buttes, SD, based on their association with
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Figure 1. (A) Regional physiographic map, featuring an overview of the different sedimentary basins, thrust
systems, and mountain belts throughout the western U.S. interior. (B) Stratigraphic correlation of Eocene-
Miocene strata in various parts of the western interior. Sample locations are labeled in green (this study), blue (J.
R. Malone et al., 2022), and red (Rowley & Fan, 2016). Modified from J.R. Malone et al. (2022).

White River Group exposures, or in bluffs such as Pine adjacent uplifts were buried by late Eocene-Miocene vol-
Bluffs, NE (Rowley & Fan, 2016). caniclastic sediment up to elevations of ~2700-3000 m

The evolution and extent of post-Laramide basin-fill above sea level (Anderson et al., 2019; Caylor et al., 2023;
sediment and subsequent sediment evacuation remains in  Konstantinou, 2022; McKenna & Love, 1972; Pecha et al.,
question. Previous work suggests that Laramide basins and 2022; Steidtmann & Middleton, 1991) making for subdued
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relief from the Sevier highlands east into the Great Plains.
The provenance of Paleocene-Eocene synorogenic basin
sediments proximal to the Sevier belt are interpreted by
Malone and other (2016) to be derived from recycling of
the Neoproterozoic Brigham Formation uplifted in the Se-
vier Paris thrust sheet, as evidenced by the strong presence
of a Yavapai (~1750 Ma) age component in the detrital zir-
con U-Pb age distributions, however, it is unknown if this
signal of Sevier Belt-derived Yavapai-aged recycled zircons
is present in younger and more distal sediments like the
Oligocene-Miocene White River Group strata preserved in
South Dakota. In this study, we present new detrital zircon
geochronology results on three units of Oligocene-Miocene
strata sampled from Slim Buttes, South Dakota, as part of
an ongoing effort to constrain the timing and pace of sed-
iment fill and evacuation across the Rocky Mountains and
the western Great Plains.

BACKGROUND

Slim Buttes is an outlier of Paleogene strata in north-
western South Dakota, distant from other areas where
equivalent-age strata are well-exposed. Slim Buttes is sur-
rounded at lower elevations by an unconformable contact
with the Paleocene Fort Union Formation (Sawyer &
Fahrenbach, 2011). The White River Group (Chadron and
Brule Formations) at Slim Buttes consists of a variety of
facies, including tuffaceous sandstone, limestone, gypsum,
and conglomerate deposited in fluvial channels, fluvial
floodplains, lacustrine, eolian, and local alluvial fan envi-
ronments (Larson & Evanoff, 1998; McKenna & Love, 1972;
Singler & Picard, 1979). The lower section of the Chadron
Formation consists of a distinct, coarse-grained, and mas-
sive quartz-rich white sandstone (Lillegraven, 1970; Maher
& Persinger, 2023) with thickness of as much as 20 meters.
The top of the Chadron Formation consists of dark brown,
smectite-rich mudstone up to six meters thick. In the
southern area of Slim Buttes, the brown mudstone is miss-
ing locally, likely due to erosion associated with the chan-
nel complex making up the overlying Brule Formation (Ma-
her & Persinger, 2023). The Brule Formation has a basal
conglomerate that is composed of intraclasts and is over-
lain by medium to fine white tuffaceous sandstones with
thin brown mudstone layers.

The Arikaree Group at Slim Buttes consists of brown-
green resistant sandstone greater than 35 meters in thick-
ness. Pink feldspar grains and small granitoid lithics are
consistent with a basement source. In southern Slim
Buttes, finer-grained sandstones similar in appearance to
the underlying Brule Formation are intercalated with the
coarser sandstones (Fig. 2).

The source of zircons in the White River Group at the
Slim Buttes locality may have been first-cycle, eroding from
crystalline basement rocks uplifted during the Laramide
Orogeny or recycling of zircon eroding from uplifted sedi-
mentary rocks to the west. Additionally zircon in the White
River group at the Slim Buttes locality may have been de-
rived from syndepositional active volcanism. The Archean
Wyoming Province consists of 3.2-2.8 Ga gneissic rocks that
are intruded by abundant 2.7-2.5 Ga granites along the

margin of the province (Mogk et al., 2022). The most prox-
imal Archean crust exposed during White River deposition
occurs in the Bighorn Mountains of northern Wyoming.
Here, Archean granite and gneiss range in age from
2960-2850 Ma (J. E. Malone et al., 2019) and were exposed
by early middle Eocene time (Anderson et al., 2018).
Archean zircons may have been recycled from various Neo-
proterozoic-Phanerozoic strata that occur throughout the
region (Craddock et al., 2015; Foreman et al., 2022; May et
al., 2013; Welch et al., 2022; Yonkee et al., 2014). Protero-
zoic zircons may have been derived from exposed Yavapai
Terrane (1.8-1.7) Ga rocks in Colorado (Whitmeyer & Karl-
strom, 2007) Other Proterozoic and Paleozoic zircons may
have been recycled from Neoproterozoic metasedimentary
strata in southeast Idaho (Laskowski et al., 2013; D. H. Mal-
one et al., 2016; J. R. Malone et al., 2022; Yonkee et al.,
2014) in the Sevier-Laramide foreland to the west and their
associated synorogenic strata (May et al., 2013; Malone et
al., 2022).

Mesozoic zircons were likely derived from batholiths in
the Sevier hinterland or southwest Montana (Gaschnig et
al., 2010; Gottlieb et al., 2022; T. Schwartz et al., 2021;
Malone et al., 2022; Thomson et al., 2022). Cenozoic mag-
matism in western North America peaked between 37-22
Ma, with intermittent rhyolitic eruptions between 458 Ma,
both before and after the mid-Cenozoic ignimbrite flareup
(Henry & John, 2013). Calderas associated with the ign-
imbrite flareup have been found in the Great Basin (Best et
al., 2016; Henry & John, 2013).

The Great Basin in eastern Nevada and western Utah was
an active volcanic source from ~36 to 29 Ma producing ~30
calderas (Henry & John, 2013). Great Basin volcanism con-
sisted mostly of felsic pyroclastic eruptions and was ini-
tially rhyolitic in composition from 36 to 31 Ma but evolved
into dacitic compositions after 31 Ma (Larson & Evanoff,
1998). Peak volcanism in the Great Basin occurs at ~28 Ma
(Best et al., 2016).

Calderas in southwestern Montana and northwestern
Wyoming (Feeley & Cosca, 2003; D. H. Malone, Craddock,
Schmitz, et al., 2017), and southern Colorado (Lipman &
McIntosh, 2008) constitute a larger ignimbrite province
throughout western North America during the Paleogene.
Volcanism occurred in northeastern Idaho and southwest-
ern Montana. Eocene-Oligocene volcanic fields included
the Hog Heaven field, Helena field, Bear Paw Mountains
field, Virginia City Field, Gravelly Range, and more (Fritz et
al., 2007).

METHODOLOGY

U-Pb geochronologic analyses were conducted by laser
ablation inductively coupled plasma mass spectrometry
(LA-ICPMS) at the Arizona LaserChron Center. Please refer
to the Element2 methodology at www.laserchron.org for
the details of our analytical techniques. These U-Pb
geochronology methods also have been described by
Gehrels et al. (2008), Gehrels and Pecha (2014), and Sundell
et al. (2021). The details of detrital zircon U-Pb age data are
provided in the supplementary data.
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Figure 2. (A) Localized stratigraphic column of geologic units within the study area. Lithologic descriptions are
modified from field observations, Lillegraven (1970), and Maher and Persinger (2023). (B) Drone photo, taken near
Reva Gap, pointing south. Illustration denotes units and contacts; dipping Brule Fm. in fault-contact with Chadron
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Nomal Faull

Fm. and Slim Buttes Fm., overlain by angular discordance by flat-lying Arikaree Group.
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- Chatron_
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Figure 3. Field photos, (A) Close-up of the Chadron Formation displaying its variety of facies, including the
coarse-grained white sandstones. The gold and pink layers below may belong to the Slim Buttes Fm. (B) Drone
photo of the top of the butte featured in Fig. 2B, displaying dipping Brule Fm. Overlain with angular discordance

by flat-lying Arikaree Group.

The zircon ages from this study, as well as the samples
from J.R. Malone et al. (2022) and Rowley and Fan (2016)
are shown on kernel density estimate plots using DetritalPy
(Fig. 4, Sharman et al., 2018) to compare age populations
from across the extent of the White River Group. The bin
widths are 50 m.y. A multidimensional scaling (MDS) plots
was constructed with DZmds (Fig. 5A; Saylor et al., 2019).
The maximum depositional ages for the Brule Formation
and the Arikaree Group were calculated by taking the
weighted mean average of the youngest zircon populations
(Fig. 5B-C; Dickinson & Gehrels, 2009; Sharman &
Malkowski, 2020).

RESULTS

We report U-Pb geochronological results with measured
age uncertainties of 1-2% (1-o error). Age peaks were vi-

sually selected. The detrital zircon age distribution for the
Chadron Formation shows age peaks at 78 Ma and 1735
Ma with minor age peaks at ~1200 Ma and ~1500 Ma. De-
trital zircon grains with Archean, Paleozoic, and Mesozoic
ages are present in lower quantities. The youngest zircon
analyzed has an age of 70.47%0.65 Ma. Age distributions
for Chadron-equivalent samples in Rowley and Fan (2016)
have fewer Archean and Proterozoic zircons and younger
age peaks at ~36 Ma (Figs. 4, 5). The distributions of older
zircon populations are similar across the Chadron samples
(Fig. 4).

The Brule Formation shows an age prominent peak at 35
Ma with a minimal distribution of older-age zircon grains,
in distinct contrast to the Chadron Formation. The
youngest grain analyzed reveals an age peak at 32.98+0.51
Ma and the MDA using the youngest population of zircon
grains with overlapping error estimates presents an age of
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33.76%0.21 Ma (Fig. 5C). The Brule sample at Slim Buttes
closely matches J.R. Malone et al. (2022) samples taken
from White River sandstone successions filling paleovalleys
in the Big Horn Mountains (Figs. 4, 5A).

In the Arikaree Group, the zircon age distribution plots
display a prominent age peak at 33 Ma, with fewer middle
Proterozoic zircons. The youngest grain analyzed has an
age of 25.72+0.20 Ma and the MDA is 26.80+1.4 Ma (Fig.
5B). The three Arikaree-equivalent samples from Rowley
and Fan (2016) present similar zircon age distributions
(Figs. 4, 5A).

DISCUSSION
Sediment Provenance

The Chadron Formation contains no Paleogene zircons,
which is anomalous for White River or Arikaree strata that
occur throughout the region (Fig. 4; J. R. Malone et al.,
2022; Rowley & Fan, 2016). The Formation overlies Pa-
leogene and Cretaceous units (Fig. 2A; Lillegraven, 1970;
Terry, 1998), which may indicate that these zircons are lo-
cally recycled from these rocks. Alternatively, these zircons
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may have been recycled from distal Paleogene-Cretaceous
strata in the Sevier highlands, or perhaps the Sevier high-
lands continuously supplied sediment from the Cretaceous
through the late Paleogene. We prefer the former inter-
pretation because it is likely that distal source areas were
buried by younger strata and that Laramide ranges would
have been topographic barriers to sediment routing. More-
over, the paucity of younger grains, which must have been
distally derived further supports the local source interpre-
tation. That, or there was no volcanic activity at the time of
the deposition of this sandstone that would have supplied
the younger zircon population.

MDS reveals a tight cluster of White River Group samples
(Fig. 5A; Rowley & Fan, 2016). The occurrence of a variety
of Cretaceous zircon ages (i.e. no well-defined age peak)
indicates possible sources in the Idaho batholith. Chadron
zircons younger than 90 Ma may have been derived from
the more proximal Boulder, Tobacco Root, or Pioneer
batholiths in southwest Montana (Gaschnig et al., 2010), or
recycled from the underlying Fort Union Formation (Welch
et al., 2022).

The Brule Formation and Arikaree Group ages are con-
sistent with other data included in this study (Figs. 4, 5;
J. R. Malone et al., 2022; Rowley & Fan, 2016). The Brule
sample plots closely to sample FO2 from ]J.R. Malone et al.
(2022) on multidimensional scaling (Fig. 5A) indicating sta-
tistical similarity to valley-fill White River Formation atop
the Bighorn Range. There is a significant lack of Archean
age zircons, or anything much older than the Cenozoic in
the Brule Formation, though a slight increase in the popu-
lation of Precambrian zircons is seen in the Arikaree Group
(Fig. 4). The Oligocene zircons are distally transported by
pyroclastic plumes from Utah and Nevada (Fig. 6B; Larson
& Evanoff, 1998). Other potential Oligocene sources in-
clude the Hog Heaven Volcanic Field (30.8—-36 Ma; Lange
et al., 1994), the San Juan province (35-20 Ma; Roy et al.,
2004), the Dillion volcanic field (49-17 Ma; Fritz et al.,
2007) and many of the active calderas in the Great Basin
(~37-26 Ma; Henry et al., 2012; Henry & John, 2013). Po-
tential calderas within the Great Basin contributing vol-
caniclastic sediment to the White River Group could have
been, but are not limited to, the Thomas Range (~37-32
Ma), Indian Peak (~32-27 Ma), Marysvale Volcanic Province
(~27-19 Ma; Maybeck et al., 2022; Holliday et al., 2023),
and the Central Nevada Volcanic Field (~36-18.4 Ma) (Best
et al., 2016; Henry et al., 2012; Henry & John, 2013). Zir-
cons grains with ages between ~51-43 Ma are sourced from
either the Challis or Absaroka volcanic fields in Wyoming,
Montana, and Idaho (Feeley & Cosca, 2003; D. H. Malone,
Craddock, Schmitz, et al., 2017). All samples except for
SBH1 and FO3 from J.R. Malone et al. (2022) have a Yava-
pai-age (~1750 Ma) component. The 1750-1600 Ma zircons
in more westerly samples may have been recycled from the
Neoproterozoic Brigham Group in Idaho (D. H. Malone et
al., 2016) or the Sevier-Laramide synorogenic rocks shed
from Brigham Group strata in the upper plate of Paris
thrust sheet (D. H. Malone et al., 2022; T. Schwartz et al.,
2021; T. M. Schwartz et al., 2019; Thomson et al., 2022; Fig.
6C). MDS indicates samples with a high Archean age pop-

ulation are statistically distinct from Slim Buttes samples
(Fig. 5A).

Basin Evolution and Paleogeography

The provenance evolution of late Paleogene strata at
Slim Buttes reveal major changes to drainage organization
and sediment routing. The detrital zircon age spectra in-
clude both first cycle volcanically-derived zircons from dis-
tal sources transported by eolian processes and primary and
recycled zircons derived from more proximal sources and
transported via fluvial processes. Erosion rates and basin
fill kept pace or caught up with uplift of Laramide struc-
tures, such that there was little relief between Laramide
ranges and the adjacent basins (J. R. Malone et al., 2022;
Rowley & Fan, 2016; Steidtmann & Middleton, 1991). The
presence of White River and Arikaree Group strata atop the
Bighorn Mountains and Wind River Ranges suggests the
Laramide basins were filled up to ~2700-3000 meters above
present-day sea level during the Oligocene, fed by east-
flowing fluvial systems from the Sevier highlands to the
west, making for a regional paleogeography containing lit-
tle relief (Caylor et al., 2023; Pecha et al., 2022; Steidtmann
& Middleton, 1991; Zhu & Fan, 2018). To the southwest
was the Nevadaplano, a high plateau reaching elevations up
to 3500 m in the late Oligocene, which would eventually
form the Basin and Range province during crustal extension
in the later Cenozoic (Henry et al., 2012). Thermochrono-
logical data from Caylor et al. (2023) suggests burial of
Laramide ranges and basins was maintained between ~40
Ma through ~10 Ma.

During the Paleocene and Eocene, paleodrainage sys-
tems routed sediment to the north into Montana until ~50
Ma, when the local provenance shifted to proximal vol-
canics such as Absaroka and Challis Volcanic Fields, and
with the Idaho river system becoming the dominant
drainage vector (Pecha et al., 2022; Welch et al., 2022).
During the Oligocene, east-flowing fluvial systems carried
sediment from the Sevier highlands at least as far as the
Bighorn Basin and atop the Bighorn Range (D. H. Malone
et al., 2016). By the Miocene, paleodrainage systems routed
sediment from the southern Rocky Mountains into the Gulf
of Mexico, with the Bell River system moving northeast-
ward (Blum et al., 2017; Pecha et al., 2022; Zhu & Fan,
2018; Corradino et al., 2022; Fig. 6A). The divide between
these two systems was north of Slim Buttes near the pre-
sent-day U.S.-Canada border.

Chadron Formation deposition was earlier in the lifes-
pan of the ignimbrite flare-up, and extensive Eocene sedi-
ment with a significant direct or air-transport volcanic in-
put may have been absent in this drainage basin. The
east-flowing paleodrainage system reported by Malone et
al. (2016) may be contributing sediment off the Paris thrust
sheet of the Sevier belt until the drainage shifted north and
east as in Welch et al. (2022).

The Brule Formation has a high concentration of
Oligocene zircons and almost complete absence of Precam-
brian through Mesozoic age zircons despite multiple nearby
Laramide uplifts that would otherwise serve as source ar-
eas. The almost complete absence of Precambrian through
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Figure 6. Source characterization of each unit in map view, showing sedimentary basins, thrust systems,
mountain belts, and matching magmatic source areas for A: Chadron Fm.; B: Brule Fm.; C: Arikaree Group
Dashed lines and arrows indicate sediment transport direction.
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Mesozoic grains may be attributed to dilution from a high
zircon fertility source. These sources may be contributing
sediment, but the signal is just not as detectable at the
number of grains analyzed for that sample. Age spectra of
the samples of valley-filling White River Formation from
J.R. Malone et al. (2022) plot closely to the Brule Formation
ages (Fig. 5A). This statistical similarity suggests that both
the White River Formation atop the Bighorn Range as well
as the Brule Formation at Slim Buttes were a part of the
same basin-filling sediment and show relief reduction be-
tween Laramide basins and ranges, with a steady, gradual
decline in regional elevation from west to east.

The dominance of zircons sourced from volcanic
provinces in the Great Basin (Fig. 6B; Larson & Evanoff,
1998) suggests consideration of two transport mechanisms.
It is possible that northeastward-flowing fluvial systems
carried sediment from Utah and Nevada to South Dakota
and Wyoming. A large-scale regionally integrated fluvial
system would be a complicated process and would require a
system on the scale of something such as the modern Mis-
sissippi River drainage system routing from southwest to
northeast.

The alternative is primarily eolian deposition into the
Great Plains in general, and the Slim Buttes locality in par-
ticular, from sources in Nevada and Utah as ash fall. Decou-
pling of fluvial and eolian detrital zircon signatures was re-
vealed Holocene strata in Argentina (Capaldi et al., 2019).
Long distance (>1000 km) eolian transport of detrital zir-
cons is documented in the Ordovician Bighorn Dolomite
in Wyoming (D. H. Malone, Craddock, McLaughlin, et al.,
2017). This is more plausible, given their explosivity, and
given the pervasive tuffaceous lithologies present in the
Brule Formation and other equivalent White River Group
Members (Lillegraven, 1970; Maher & Persinger, 2023). Zhu
and Fan (2018) found that intense late Eocene-Oligocene
regional volcanism supplied abundant air fall zircons into
the latest Eocene-Oligocene sedimentary systems in Col-
orado. Larson and Evanoff (1998) interpreted the source of
ashes in the Douglass and Flagstaff Rim areas of Wyoming
as originating from volcanism in Utah and Nevada; this
sourcing characteristic may be the case across a wide extent
of the White River Group and other correlative units in the
region. The consistency of Brule Formation sandstones and
facies with their significant volcanic content on a scale that
spans states, along with their lack of older zircons, indi-
cates a landscape buried in reworked ignimbrite ash fall.
Sediment source areas shifted from west, to west-south-
west, to southwest over the course of deposition of the
three units (Fig. 6). We suggest a depositional mechanism
with ash carried from the southwest by eolian processes and
then fed into and recycled by a semi-regional fluvial sys-
tem in northwest South Dakota. Given the areal extent and
intensity of volcanism in each respective region through
the middle Cenozoic, an eolian transport mechanism would
not require constant and rearrangement of fluvial drainage
with time. Windswept sediment off the Colorado Rockies
could contribute to the minor Proterozoic signature. In any
case, the transition from the Chadron to Brule Formation
sediment provenance indicates a major turning point in pa-

leogrography and drainage basin evolution. This is consis-
tent with the development of the northeast-flowing Bell
River system and immense southern expansion of the head-
waters of the White River drainage system to the south due
to the development of high-standing volcanic topography
(Mayback et al., 2022)

The Arikaree Group presents a resurgence in older zircon
populations that are absent in the underlying Brule For-
mation, including the presence of Archean and Proterozoic
grains. Following the same logic used in consideration of
the Brule Formation, this implies the Eocene and Oligocene
burial of the Laramide ranges were beginning to be incised
by ~20 Ma. This is about 10 m.y. earlier than determined
by Caylor et al. (2023) in their study of the more distal
Bighorn and Wind River uplifts. One scenario is that the pa-
leodrainage system established during Brule Formation de-
position began eroding the proximal Black Hills Laramide
uplift. This would account for the distinctly coarser grain
size and presence of feldspar grains, and the presence of
larger fluvial bedforms in the Arikaree Group sandstones of
Slim Buttes. If these interpretations of the Arikaree Group
provenance are correct, Neogene re-incision may have be-
gun earlier in the eastern Laramide province and migrated
west during the Miocene (Caylor et al., 2023). Alternatively,
sediment may also have been contributed from the highest
areas of the Wyoming Laramide uplifts which were never
buried during the Eocene-Oligocene, negating the need for
an earlier, eastern incision.

CONCLUSIONS

The provenance of strata at Slim Buttes records a dy-
namic depositional setting and paleogeographic evolution
through the middle Cenozoic. Considering the composition,
structure, and geochronology of the Paleogene strata at
the Slim Buttes, we conclude the source of sediment for
the Northern Great Plain was primarily controlled by the
aeolian input of volcanic-derived sediment from explosive
volcanic centers located in the southwest with a subordi-
nate contribution of sediment from fluvial systems eroding
the high topography to the west in the Cordilleran thrust
belt. Early in the Oligocene, local sourcing of zircons oc-
curred. Later in the Oligocene, large volumes of ash were
transported into the Slim Buttes locality, over the top of
buried Laramide ranges, into a local fluvial system, deposit-
ing tuffaceous sandstones and related interbedded fluvial
lithologies. Arikaree Group deposition occurred during the
early Neogene re-exhumation of the Laramide uplifts and
their environs. These sediments were transported to and
deposited in continental margin depositional systems to
the north and south.
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