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ABSTRACT
In many domains, data measurements can naturally be associated with the leaves of a tree, expressing
the relationships among these measurements. For example, companies belong to industries, which in
turn belong to ever coarser divisions such as sectors; microbes are commonly arranged in a taxonomic
hierarchy from species to kingdoms; street blocks belong to neighborhoods, which in turn belong to larger-
scale regions. The problem of tree-based aggregation that we consider in this article asks which of these
tree-defined subgroups of leaves should really be treated as a single entity and which of these entities
should be distinguished from each other. We introduce the false split rate, an error measure that describes
the degree to which subgroups have been split when they should not have been. While expressible as
the false discovery rate in a special case, we show that these measures can be quite different for the
general tree structures common in our setting. We then propose a multiple hypothesis testing algorithm
for tree-based aggregation, which we prove controls this error measure. We focus on two main examples
of tree-based aggregation, one which involves aggregating means and the other hich involves aggregating
regression coefficients. Supplementary materials for this article are available online, including a standardized
description of the materials available for reproducing the work.

ARTICLE HISTORY
Received August 2021
Accepted June 2024

KEYWORDS
False discovery rate;
Hierarchy; Multiple testing;
Rare features

1. Introduction

A common challenge in data modeling is striking the right
balance between models that are sufficiently flexible to ade-
quately describe the phenomenon being studied and those that
are simple enough to be easily interpretable. We consider this
tradeoff within the increasingly common context in which data
measurements can be associated with the leaves of a known tree.
Such data structures arise in myriad domains from business to
science, including the classification of occupations (US OMB
2018), businesses (US OMB 2017), products, geographic areas,
and taxonomies in ecology.

Measurements in low-level branches of the tree may share
a lot in common, and so—in the absence of evidence to
the contrary—a data modeler would favor a simpler (literally
“high-level”) description in which distinctions within low-level
branches would not be made; on the other hand, when there is
evidence of a difference between sibling branches, then mod-
eling them as distinct from each other may be warranted. We
use the term tree-based aggregation to refer to the process of
deciding which branches’ leaves should be treated as the same
(i.e., aggregated) and which should be treated as different from
each other (i.e., split apart).

Tree-based aggregation procedures have been proposed in
various contexts, including regression problems, in which fea-
tures represent counts of rare events (Yan and Bien 2021) or
counts of microbial species (Bien et al. 2021), and in graphical
modeling (Wilms and Bien 2022). These approaches focus on
prediction and estimation but do not address the hypothesis
testing question of whether a particular split should occur.

CONTACT Jacob Bien jbien@usc.edu Marshall School of Business, 3670 Trousdale Parkway, BRI 401W, Los Angeles, CA 90089
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

We formulate the general tree-based aggregation problem as a
multiple testing problem involving a parameter vector θ∗ whose
elements correspond to leaves of a known tree. Our goal is to
partition the leaves based on branches of the tree so that the set
of parameters in each group share the same value. Every non-leaf
node has an associated null hypothesis that states that all of its
leaves have the same parameter value. Type I errors correspond
to splitting up groups unnecessarily; Type II errors correspond
to aggregating groups with different parameter values.

In Section 2, we define an error measure, called the false
split rate (FSR), that corresponds to the fraction of splits made
that were unnecessary. We study the FSR’s relationship to the
false discovery rate (Benjamini and Hochberg 1995), showing
an equivalence in a special case and demonstrating that FDR is
not sufficient in the general situations we care about.

In Section 3, we propose a tree-based aggregation proce-
dure that leverages this connection. Our algorithm proceeds in
a top-down fashion, only testing hypotheses of nodes whose
parents were rejected. Such an approach to hierarchical testing
originates with Yekutieli (2008), which lays the foundation for
the multiple testing problem on trees. Our procedure is closely
related to more recent work by Lynch and Guo (2016), which
increases power using carefully chosen node-specific thresholds
that depend on where the hypothesis is located in the hierar-
chy. This work was in turn further developed in Ramdas et al.
(2019). Other work involving various forms of a multiple testing
problem with tree-structured hypotheses (although not having
to do with aggregation in the sense of this article) include Zhong
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et al. (2004), Hu, Zhao, and Zhou (2010), Heller et al. (2018),
Katsevich and Sabatti (2019), Bogomolov et al. (2021). While
these works focus on FDR control, another line of work uses
hierarchical testing while controlling the family-wise error rate
(Meinshausen 2008; Meijer and Goeman 2015; Guo et al. 2021).
Our motivation of finding the proper “resolution” in a tree-
structured multiple hypothesis testing context is shared by Kat-
sevich, Sabatti, and Bogomolov (2021). They frame the problem
as designing what they call a filter, which simplifies the possibly
redundant set of discoveries while preserving FDR control of the
final result. Our setting differs from theirs in our focus on aggre-
gation hypotheses, which leads us in a different direction, cre-
ating an aggregation-geared error measure and multiple testing
procedure.

In Section 4, we consider two concrete scenarios where tree-
based aggregation is natural. In the first scenario, the parameter
vector θ∗ represents the mean of a scalar signal measured on
the leaves of the tree. In the second scenario, θ∗ is a (potentially
high-dimensional) vector of regression coefficients where fea-
tures are associated with leaves of the tree.

Finally, we demonstrate through simulation studies
(Section 5) and real data experiments (Section 6) the empirical
merits of our framework and algorithm. We consider two
applications, corresponding to the two concrete scenarios
of tree-based aggregation. The first application involves
aggregation of stocks (with respect to the NAICS’s sector-
industry tree) based on mean log-volatility. The second
application aggregates neighborhoods of New York City
(with respect to a geographically based hierarchy) based on
a regression vector for predicting taxi drivers’ monthly total
fares based on the frequency of different starting locations.

Notation. For an integer p, we write [p] = {1, 2, . . . , p}. For
a, b ∈ R, we write a ∧ b and a ∨ b for their minimum and
maximum, respectively. We use ei to denote the ith standard

basis vector. For x ∈ R
p, we define ‖x‖q =

(∑p
j=1 |xj|q

)1/q

for q ≥ 0. For a set S ⊆ [p], xS = (xi)i∈S is the vector obtained
by restricting the vector x to the indices in set S. We use the term
“tree” throughout to denote a rooted directed tree. Given a tree
T with leaf set L, we write Tu for the subtree rooted at u ∈ T
and Lu for its leaf set.

2. Problem Setup

2.1. A Multiple Hypothesis Testing Formulation for
Aggregation

Let T be a known tree with p leaves, each corresponding to
a coordinate of the unobserved parameter vector θ∗ ∈ R

p.
We formulate the tree-aggregation task as a multiple hypothesis
testing problem: To each internal (non-leaf) node u of the tree
we assign a null hypothesis

H0
u : All elements of θ∗

Lu have the same value, (1)

where θ∗
Lu

is the subvector of θ∗ restricted to leaves of the
subtree rooted at u. We observe that our choice of null hypothesis
follows the usual practice that simpler models correspond to the
null. Rejecting the null hypothesis H0

u implies that the leaves

under u should be further split into smaller groups. Given the
way the hypotheses are defined, a logical constraint to impose
on the output of a testing procedure is the following:

Constraint 1. The parent of a rejected node must itself be
rejected.

By Constraint 1, the set of rejected nodes will then form a
subtree Trej of T (sharing the same root as T ), and furthermore
the subtrees rooted at the leaves of Trej represent the aggregated
groups. Our goal is to develop testing procedures that result in
high quality splits of the parameters. In order to measure the
performance of an aggregation (or equivalently a set of splits)
we propose a new criterion as follows.

False Split Rate (FSR). Suppose Ĉ = {Ĉ1, . . ., ĈM} is a splitting
of the leaves [p], and C∗ = {C∗

1 , . . ., C∗
K} is the true splitting. For

each true group C∗
i , i ∈ [K], we count the number of splits of C∗

i
by members of Ĉ, that is,

∑M
j=1 1{C∗

i ∩ Ĉj 
= ∅} − 1. Therefore,
the total number of excessive (false) splits of C∗

i is

K∑
i=1

⎛⎝ M∑
j=1

1{C∗
i ∩ Ĉj 
= ∅} − 1

⎞⎠ =
K∑

i=1

⎛⎝ M∑
j=1

1{C∗
i ∩ Ĉj 
= ∅}

⎞⎠−K ,

while the total number of splits is (M − 1) ∨ 1. We define
the false split proportion (FSP) and true positive proportion
(interchanging C∗ and Ĉ) as

FSP :=
∑K

i=1

(∑M
j=1 1{C∗

i ∩ Ĉj 
= ∅}
)

− K

(M − 1) ∨ 1
,

TPP := 1 −
∑M

i=1

(∑K
j=1 1{C∗

i ∩ Ĉj 
= ∅}
)

− M

K − 1
.

(2)

The false split rate (FSR) and the expected power are defined
as FSR := E(FSP), Power := E(TPP) where the expectation is
with respect to the randomness in Ĉ, which in our context will
depend on the p-values for the hypotheses of the form (1). In the
next section we provide another characterization for FSR in the
tree-aggregation context, and in Section 3 we develop a testing
procedure that controls FSR at a pre-specified level α < 1.

2.2. FSR on a Tree

While the FSR metric can be calculated for a general splitting
of p objects using definition (2), in this section we focus on
splittings that can be expressed as a combination of branches of
T as explained in the previous section. Note that the structure
of the tree T may not be faithful to the true vector θ∗. In that
case, the ground truth C∗ may be very large. We will provide
an equivalent characterization of FSP in this context in terms of
specific structural properties of T .

For a testing procedure satisfying Constraint 1, the rejected
nodes form a subtree Trej of T . We define degT (u) as the (out)
degree of node u on tree T (the number of children of node u);
similarly, degTrej

(u) is the degree of node u on the subtree Trej.
We use F as the set of false rejections in T . Lastly, we define
B∗ as the set of nodes whose leaf sets correspond to the true
aggregation, that is, B∗ is such that C∗ = {Lu | u ∈ B∗}. This
characterization of C∗ stems from the assumption that the true
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Figure 1. An example of T with 2m + n + 2 leaves and 3m + n + 7 nodes in total. The dashed boxes show the true aggregation of the leaves, C∗ , into K = 2m + 1 groups,
with B∗ = {d1, . . . , d2m , b′}. The thicker edges and the nodes they connect form Trej , with �’s marking true rejections and ×’s marking false rejections F . The rejections
correspond to an estimated aggregation with M = 2m + n + 1 groups: {d1}, . . . , {d2m}, {d′

1}, . . . , {d′
n}, {d′

n+1, d′
n+2}.

aggregation is among the partitions allowed by the tree. Figure 1
provides an example showing T , Trej, C∗, B∗, and F .

Our next lemma characterizes the number of false splits
and the total number of splits in terms of the tree T and its
subtree Trej. By virtue of this lemma we have an alternative
characterization of FSP (and FSR), which is more amenable to
analysis.

Lemma 2.1. Define V and R as follows:

V :=
∑
u∈F

(
degT (u) − degTrej

(u)
)

− ∣∣B∗ ∩ F
∣∣ ,

R := max

⎧⎨⎩ ∑
u∈Trej

(
degT (u) − degTrej

(u)
)

− 1, 1

⎫⎬⎭ .
(3)

Then V and R quantify the number of false splits and the total
number of splits, respectively. Consequently, we have FSP =
V/R and FSR = E (V/R) , where FSP and FSR are defined as
in Section 2.1.

The notation of V and R is purposely chosen to match what is
commonly used in defining FDR. Indeed, it is natural to ask how
the FSR relates to the FDR, and, perhaps most crucially, why one
would not simply use the FDR in this situation. The next section
addresses these questions and emphasizes why FSR is necessary.

2.3. Why FSR Is Needed

We begin with developing a better understanding of the rela-
tionship between the FSR and the FDR. The following lemma
establishes that these quantities are in fact identical in the special
case that T is a binary tree.

Lemma 2.2. For a binary tree, the quantities V and R given by
(3) can be simplified as V = |F | and R = ∣∣Trej

∣∣. Therefore,
FSP = |F | / ∣∣Trej

∣∣ and FSR = FDR := E
(|F |/|Trej|

)
.

We defer the proofs for Lemmas 2.1 and 2.2 to Appendix B.
While the above result is conceptually helpful in that it ties the
FSR to preexisting work on the FDR, it focuses on a special case
that does not represent many common situations we care about
in practice. Whether performing aggregation using taxonomic
trees in biology (Bien et al. 2021) or using the standard industrial
classification system in business (US OMB (2017), considered in
Section 6), we are often interested in aggregation on nonbinary
trees. The FSR and FDR can in fact be quite different for general
trees. In such cases, FSR is precisely tied to the error measure

we actually care about in practice, while FDR is not. The key
distinction is apparent in the quantity from (3), degT (u) −
degTrej

(u), which counts the number of additional splits due to
rejectingH0

u. The reason for this difference is that FSR is focused
on the clustering that results from an aggregation procedure
whereas FDR is focused on the decisions made at the internal
nodes of the tree.

To demonstrate how different FSP and FDP can be from each
other, we return to the example given in Figure 1. Since two of
the m + 4 rejected nodes are false rejections, we have FDP =
2/(m+4). By contrast, the rejections correspond to an estimated
aggregation with M = 2m + n + 1 groups, created by R = 2m +
n splits, and V = n of these splits were false splits, meaning
that FSP = n/(2m + n). To understand the practical distinction
between a procedure controlling FDP versus FSP, imagine m =
40 and n = 80. In such a situation, the FDP ≈ 0.045 while the
FSP = 0.5.

This very large FSP accurately reflects the fact that the
estimated aggregation Ĉ with 161 groups is an extreme over-
splitting of the true C∗, which has only 81 groups. In particular,
the rejection of the c′

1 node with its n = 80 children is a serious
error from the standpoint of aggregation accuracy. The FDP, by
contrast, ignores the tree structure and rather considers every
false rejection as equally bad. While in other problems this may
be a sensible assumption, in the aggregation problem considered
in this article it is clearly not. This is because a false split at a high-
degree node can create a large number of false clusters, which
is undesirable in the clustering setting. In Appendix F, we show
that a similar distinction between FSP and FDP can occur on
trees coming from real data applications.

One might ask whether one can avoid using the FSP by
turning a nonbinary tree into a binary one and then simply using
FDR (since by Lemma 2.2 it is the same as FSR relative to this
new tree). To do so, one would need to take each nonbinary node
u and its children and replace this subtree with a binary subtree
having u as root and its children as leaves. However, such an
approach is problematic as there are many possible binary trees
that could be formed, and different choices for this arbitrary
tree structure would lead to very different procedures. (This
is analogous to attempting to test an ANOVA hypothesis with
an arbitrarily-ordered sequence of pairwise t-tests rather than
with the standard F test.) Returning to the Figure 1 example,
the single p-value at c′

1 would have to be replaced with 90 p-
values, and the interpretation of each of these p-values and the
order in which they are tested would depend on the arbitrary
tree structure created. Therefore, we are left with FSR as the
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target error measure to control. In the next section we introduce
a multiple testing procedure for controlling the FSR. In light of
Lemma 2.2, in the special case of a binary tree, where FSR =
FDR, our procedure also controls the FDR, and we compare
our method to other existing methods that control FDR in
Section 3.3.

3. Hierarchical Aggregation Testing with FSR Control

So far we have defined the metric FSR to measure the quality of
a splitting of leaves and proposed an alternate characterization
of it in terms of the structure of the rejected (and false rejected)
nodes as in Lemma 2.1. In this section, we introduce a new mul-
tiple testing procedure to test the null hypotheses H0

u, starting
from the root and proceeding down the tree. The procedure
assumes that each non-leaf node u has a p-value that is super-
uniform under H0

u, that is

P(pu ≤ t) ≤ t for all t ∈ [0, 1] . (4)

Later, in Section 4, we discuss how to construct such p-values for
two statistical applications.

We call our multiple testing procedure HAT, shorthand for
hierarchical aggregation testing, as the parameters in the returned
splits can be aggregated together to improve model interpretabil-
ity and in some cases improve the predictive power of the model.
The HAT procedure controls the FSR both for independent p-
values (Section 3.1) and under arbitrary dependence of the p-
values (Section 3.2).

The hypotheses defined in (1) are indeed intersection
hypotheses, that is,

H0
u holds ⇒ H0

v holds for ∀v ∈ Tu, (5)

where Tu is the subtree rooted at node u. In other words, the
parent of a non-null node must be non-null, and if a node is null
then every child of it is null as well. This property motivates us
to use a top-down sequential testing algorithm on the tree that
honors Constraint 1.

Before describing the HAT algorithm, we establish some
notation. We sometimes write H0

d,u to make it explicit that node
u is at depth d of the tree, where the depth of a node is one plus
the length of the unique path that connects the root to that node
(the root is at depth 1). We also use T d for the set of non-leaf
nodes at depth d of T .

The testing procedure runs as follows. Let α be our target
FSR level. Starting from the root node, at each level d we only
test hypotheses at the nodes whose parents are rejected. The
test levels for hypotheses are determined by a step-up threshold
function so that the test level at each hypothesis H0

d,u depends
on the number of leaves under this node |Lu|, the target level
α, the maximum node degree denoted by �, and the number of
splits made in previous levels, denoted by R1:(d−1). The details
of our HAT procedure are given in Algorithm 1, and depend on
node-specific thresholds αu(r), both explicitly and through the
function

Rd(r) :=
∑

u∈T d

1{pu ≤ αu(r)}(degT (u) − 1). (6)

We next give some intuition for the quantity r∗
d that appears in

Step 2 of Algorithm 1. In the threshold function αu(r), r is a

free parameter; however, we would like for the argument used
in the threshold function to correspond to the actual number
of rejections that have occurred previously. The definition of r∗

d
ensures this interpretation. To further elaborate, observe that
Rd(r) counts the additional splits of the leaves that result due
to the rejected nodes in depth d, assuming that the threshold
level αu(r) is used. In our analysis, we prove the following self-
consistency property: Rd(r∗

d) = r∗
d . In words, using r∗

d to test
the nodes in T d (node u to be tested at level αu(r∗

d)) gives us
r∗

d additional splits of the leaves, and therefore the update rule
for R1:d in line 3 of the algorithm ensures that this quantity
counts the number of splits formed from testing nodes in depth
1, . . . , d.

Algorithm 1 Hierarchical Aggregation Testing (HAT) Algorithm
Require: : FSR level α, Tree T , p-values pu for u ∈ T \ L.
Ensure: : Aggregation of leaves such that the procedure controls

FSR.
initialize T 1

rej = {root}, R1:1 = degT (root) − 1.
1: repeat
2: From depth d = 2 to maximum depth D of the tree T ,

perform hypothesis testing on each node in T d. Compute
r∗

d as

r∗
d = max

{
r ≥ 0 : r ≤ Rd(r)

}
,

where Rd(r) is defined in (6), with threshold function
αu(r) given by (7) (for case of independent p-values) or
(10) (under general dependence among p-values). Reject
the nodes in the set T d

rej = {
u ∈ T d : pu ≤ αu(r∗

d)
}

.
3: Update T 1:d

rej = T 1:(d−1)
rej ∪ T d

rej, and R1:d = R1:(d−1) + r∗
d .

4: until No node in the current depth has a rejected parent or
d = D.

3.1. Testing with Independent p-values

While in general one might expect the p-values in a tree-
structured setting to be dependent, in Section 4.1 we consider
a statistical application where the p-values are independent. For
this reason, and for the sake of simplicity, we start by considering
the case in which the p-values are independent.

Assuming that the node p-values pu are independent, the
threshold function αu(r) used for testing H0

d,u is defined as

αu(r) = 1{parent(u) ∈ T d−1
rej } 1

�

× α|Lu|(R1:(d−1) + r)
p(1 − 1

�2 )h̄d,r + α|Lu|(R1:(d−1) + r)
, (7)

where h̄d,r is the partial harmonic sum given by

h̄d,r = 1 +
p−1−

(∑
u∈T d degT (u)−|T d|−r

)∑
m=R1:(d−1)+r+1

1
m

. (8)

To understand the lower and upper bounds in the summa-
tion that defines h̄d,r , consider the case when r = r∗

d . The
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lower bound corresponds to (one more than) the number of
splits that have occurred so far in the algorithm; likewise, the
upper bound corresponds to the maximal possible increase in
the number of splits at this level. For more on h̄d,r , we refer
the reader to the proof of Proposition A.2 in Section C of the
appendix.

Theorem 3.1. Consider a tree with maximum node degree � and
suppose that for each node u in the tree, under the null hypothe-
sisH0

u, the p-value pu is super-uniform (see (4)). Further, assume
that the p-values for the null nodes are independent from each
other and from the non-null p-values. Then using Algorithm 1
with threshold function (7) to test intersection hypotheses H0

u
controls FSR under the target level α.

The proof of Theorem 3.1 is given in Section A.1 of the
appendix and uses a combination of different ideas. At the core
of the proof is a “leave-one-out” technique to decouple the
quantities V and R. Using this technique together with the self-
consistency property discussed after (6) and intricate probabilis-
tic bounds in terms of structural properties of T , we prove that
FSR is controlled at the pre-assigned level α.

A few remarks are in order regarding the testing threshold
αu(r). From its definition, we have αu(r) = 0 if the parent
hypothesis of u is not rejected. Also note that since the testing
is done in a downward manner, the event {parent(u) ∈ T d−1

rej }
is observed by the time the node u is tested. Also note that as
we reject more hypotheses early on, the burden of proof reduces
for the subsequent hypotheses, because αu(r) is increasing in
R1:(d−1). This trend is similar to FDR control methods (e.g., Ben-
jamini and Hochberg 1995; Javanmard and Montanari 2018b).
We also observe that αu(r) is increasing in |Lu|. For the nodes at
upper levels of the tree, this is crucially useful as R1:(d−1) is small
for these nodes, while |Lu| is large and compensates for it in the
threshold function.

Our next theorem is a generalization of Theorem 3.1 to the
case that the null p-values distribution deviates from a super-
uniform distribution. We will use Theorem 3.2 to control FSR
in Section 4.2 where we aim to aggregate the features in a linear
regression setting. As we will discuss, for this application we
suggest to construct the p-values using a debiasing approach,
which results in p-values that are asymptotically super-uniform
(as the sample size n diverges).

Theorem 3.2. Consider a tree with maximum node degree �

and suppose that for each non-leaf node u in the tree, under
the null hypothesis H0

u, the p-value pu satisfies P(pu ≤ t) ≤
t + ε0 for all t ∈ [0, 1], for a constant ε0 > 0. Further, assume
that the p-values for the null nodes are independent from each
other and from the non-null p-values. Consider running Algo-
rithm 1 to test intersection hypotheses H0

u with the threshold
function

αu(r) = 1{parent(u) ∈ T d−1
rej }

×
{

1
�

α|Lu|(R1:(d−1) + r)
p(1 − 1

�2 )h̄d,r + α|Lu|(R1:(d−1) + r)
− ε0

}
.

(9)

Then, FSR is controlled under the target level α.

3.2. Testing with Arbitrarily Dependent p-values

Theorems 3.1 and 3.2 assume that the null p-values are indepen-
dent from each other and from the non-null p-values. To handle
arbitrarily dependent p-values, we propose a modified threshold
function:

αu(r) = 1{parent(u) ∈ T d−1
rej } α|Lu| · βd(R1:(d−1) + r)

p(� − 1
�

)(D − 1)
, (10)

where βd(·) is a reshaping function of the form

βd(R1:(d−1) + r) = R1:(d−1) + r∑∑
u∈T d degT (u)

k=d(δ−1)
1
k

, (11)

and δ is the minimum node degree in T \L. It is straightforward
to see that the reshaping function is lowering the test thresh-
olds compared to the independent p-values case, making the
testing procedure more conservative to handle general depen-
dence among p-values. In the next theorem, we show that with
the reshaped testing threshold FSR is controlled for arbitrarily
dependent p-values. In addition, we prove the next result in the
more general case in which the p-values may be approximately
super-uniform (as in Theorem 3.2).

Theorem 3.3. Consider a tree with maximum node degree �

and minimum node degree δ, and suppose that for each non-leaf
node u in the tree, under the null hypothesis H0

u, the p-value pu
satisfies P(pu ≤ t) ≤ t + ε0 , for all t ∈ [0, 1] , for a constant
ε0 > 0. The p-values for the nodes can be arbitrarily dependent.
Consider running Algorithm 1 to test the hypotheses H0

u with
threshold function given by

αu(r) = 1{parent(u) ∈ T d−1
rej }

×
{

α|Lu| · βd(R1:(d−1) + r)
p(� − 1

�
)(D − 1)

− ε0

}
, (12)

with the reshaping function βd(·) of (10). Then, FSR is con-
trolled under the target level α.

For the special case of exact super-uniform p-values (i.e.,
ε0 = 0), this theorem can be perceived as a generalization of
Theorem 3.1 to the case of arbitrarily dependent p-values.

The proof of Theorem 3.3 builds upon a lemma from Blan-
chard and Roquain (2008) on dependency control of a pair of
nonnegative random variables. We refer to Section A.3 of the
appendix for further details and the complete proof.

3.3. A Few Remarks on HAT

In Section 2.3 we discussed the relevance of the proposed FSR
metric to assess the quality of an aggregation, compatible with
the given tree structure. We also discussed that for nonbinary
trees, FSR and FDR could be very different measures. Nonethe-
less, for the special case of a binary tree, we showed in Lemma 2.2
that FSR and FDR are equivalent. In this section, we would
like to understand how well HAT performs as an FDR control
method on binary trees. To this end, we compare HAT with a
testing procedure proposed by Lynch and Guo (2016) to control
FDR in the hierarchical testing context. Their method, which we
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refer to as LG, corresponds to Algorithm 1 with some modifica-
tions. First, their thresholds are

αu(r) = α
|Lu(T̃ )|

|Lroot(T̃ )|
mu(T̃ ) + R1:(d−1) + r − 1

mu(T̃ )
, (13)

where T̃ is the tree in which we take T and remove the leaves,
mu(T̃ ) is the number of descendants of node u in T̃ , |Lu(T̃ )|
is the number of leaves in T̃ that descend from u. Also, they
initialize R1:1 = 1 and, instead of (6), they take Rd(r) =∑

u∈T̃ d 1
{

pu ≤ αu(r)
}

.
In our numerical experiment, see Figure 5 (right three pan-

els), we observe that on deep binary trees HAT achieves higher
power than LG, while being more conservative and achieving
lower FDR. This observation can be explained by going over
the details of the proof technique used for showing the FDR
control for the LG method (Lynch and Guo 2016, Theorem 1).
In the proof of this result, it is shown that for each hypothesis
u, E (V(Tu)/R) ≤ α|Lu(T̃ )|/|Lroot(T̃ )| where V(Tu) is the
number of false rejections in Tu, the subtree rooted at node u.
In deriving this bound, a chain of inequalities is used which
becomes tight only if V(Tu) = R(Tu) = |Tu|, that is, all the
hypotheses in the subtree Tu are falsely rejected. Obviously this
becomes a very loose bound for nodes far from the leaves, which
explains why the LG method can be at a disadvantage for deep
trees. In contrast, in the analysis of HAT we use a leave-one-
out technique and for every fixed subtree of Tu we bound the
probability of rejecting that tree, which is tighter than assuming
all nodes of Tu are rejected.

The other remark we would like to make is on the har-
monic term h̄d,r in the expression of thresholds, given by (7).
Its justification is different from that of the common adjustment
factor in FDR control methods, such as Benjamini and Yekutieli
(2001), which accounts for general dependency among p-values.
For HAT, the harmonic term is needed even in the case of
independent p-values. The reason is due to the proof technique,
which we briefly explain here, and we refer to Section A.1 for
more details. In our proof, we write FSR as a summation over
nodes a ∈ B∗. We then treat each of the summands separately
via a leave-one-out technique, where we set the p-values on the
rejected subtree Ta,rej of Ta to zero and to one on Ta\Ta,rej. We
then bound the corresponding summand conditional on Pc

Ta
=

{pu : u /∈ Ta}. When we calculate the expectation with respect
to Pc

Ta
at the last step, we will have dependency between Ta,rej

and R̃Ta,rej (the total number of splits after the leave-one-out
step), since they both depend on the rejections in the previous
levels of the tree. The harmonic term is needed to deal with
this dependency, which exists even in the case of independent
p-values.

4. Two Statistical Applications

Here we consider two statistical applications of tree-based aggre-
gation. In Section 4.1, we study the problem of pruning a fixed
tree based on measurements associated with its leaves. In this
context, nodewise p-values are formed by one-way ANOVA
tests. In Section 4.2, we study how to aggregate features with the
same coefficients in a linear regression setting.

4.1. Testing Equality of Means

In this section, we consider the situation where we are given
a tree T and a vector of measurements yi on its leaves. The
goal is to prune T , using the variability in the yi to guide this
process. The goal of the pruning process is to make the tree
as small as possible by aggregating branches whose yi are not
significantly different from each other. In our setting, the tree
T is thought of as fixed and therefore is not dependent on yi.
This is in contrast to approaches where the data used to form the
tree is also used to perform pruning, which has been considered
both in unsupervised Langfelder, Zhang, and Horvath (2007);
Gao, Bien, and Witten (2022); Ge and Tibshirani (2022) and
supervised settings (Breiman et al. 1984; Neufeld, Gao, and
Witten 2022).

In this application, we imagine that θ∗ is a vector of unknown
means and that at each leaf node i of a tree T there is a noisy
observation of the corresponding mean: yi = θ∗

i + εi, where
the εi ∼ N(0, σ 2) are independent. Given the yi, we want to
aggregate the leaves by testing the equality of their means. For
each node u ∈ T , we construct a p-value based on a one-way
ANOVA test with known σ > 0,

pu = 1 − Fχ2
�u−1

⎛⎝σ−2
∑

v∈child(u)

|Lv|(ȳv − ȳu)
2

⎞⎠ , (14)

where ȳv = |Lv|−1 ∑
i∈Lv yi, and child(u) is the set of children

of u. Also �u := degT (u) = |child(u)| and Fχ2
�u−1

is the cdf of
a χ2

�u−1 random variable. We show in the following lemma that
the above construction gives bona fide p-values for our testing
procedure.

Lemma 4.1. The p-value defined in (14) is uniform under H0
u in

(1). Furthermore, for any two distinct nodes a, b ∈ T \L, pa and
pb are independent.

Recall that the nodewise hypotheses {H0
u}u∈T \L are intersec-

tion hypotheses as in (5), and therefore one can apply Simes’
procedure to form bona fide intersection p-values.

The Simes’ p-value at node a is given by pa,Simes :=
min1≤k≤|Ta\La|

(
p(k) · |Ta \ La|

)
/k, where p(k) is the kth small-

est p-value in Ta \La. As shown by Simes (1986), as the original
p-values are independent (as per Lemma 4.1), the Simes’ p-
values constructed as above are super-uniform, and hence can
be used to test the nodewise hypotheses. However, note that the
Simes’ p-values are not independent anymore, so when applying
the HAT procedure, we need to use the reshaped threshold
function (10).

4.2. Testing Equality of Regression Coefficients

In the regression setting, many authors have considered
approaches for quantifying and controlling the error associated
with variable selection (see, e.g., G’Sell, Hastie, and Tibshirani
2013; Barber and Candès 2015). However, we consider here the
related challenge of aggregating rather than selecting features.
Consider a linear model where the response variables are gen-
erated as y ∼ N(Xθ∗, σ 2In). In many applications the features
are counts data, that is, Xij records the frequency of an event j
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occurring in observation i. Yan and Bien (2021) note that when
events rarely occur, a common practice is to remove the rare
features in a pre-processing step; however, they show that when a
tree is available, rare features can instead be aggregated to create
informative predictors that count the frequency of tree-based
unions of events. While Yan and Bien (2021) focused on predic-
tive performance, here we focus on aggregation recovery itself
by controlling FSR. To do so, we use the point estimator of Yan
and Bien (2021), along with a debiasing approach to construct
the nodewise p-values for our proposed testing procedure.

The Yan and Bien (2021) point estimator is the solution to the
optimization problem,

θ̂ ∈ arg min
θ∈Rp

1
2n

∥∥y − Xθ
∥∥2

2

+ min
γ∈R|T |

λ

⎛⎝ν
∑

u∈T \root
|γu| + (1 − ν)

p∑
j=1

|θj|
⎞⎠ s.t. θ = Aγ ,

(15)

where A ∈ R
p×|T | encodes the tree structure with Aij indicating

whether leaf i is a descendant of node j. The resulting θ̂ tends
to be constant on branches of the tree, leading to aggregated
features.

4.2.1. Constructing p-values for the Null Hypotheses
A challenge in constructing p-values for the null hypotheses
H0

u given in (1) is that the distribution of the estimator θ̂ is
not tractable. Moreover, due to the regularization term, this
estimator is biased. We therefore use a debiasing approach.

The debiasing approach was pioneered in Javanmard and
Montanari (2014), Zhang and Zhang (2014), van de Geer et al.
(2014), and Javanmard and Montanari (2018a) for statistical
inference in high-dimensions where the sample size is much
smaller than the dimension of the features (i.e., n � p).
Regularized estimators such as the lasso (Tibshirani 1996) are
popular point estimators in these regimes however they are
biased. The focus of the debiasing work has been on statistical
inference on individual model parameters, namely constructing
p-values for null hypotheses of the form H0,i : θ∗

i = 0. The
debiasing approach has been extended for inference on linear
functions of model parameters (Cai and Guo 2017; Cai, Cai,
and Guo 2021) and also general functionals of them (Javan-
mard and Lee 2020). The original debiasing method can also
be used to perform inference on a group of model parame-
ters, for example constructing valid p-values for null hypothesis
H0 : θA = 0 where the group size |A| is fixed as n, p →
∞ (see e.g., Javanmard and Montanari 2014, sec. 3.4). More
recently, Guo et al. (2021) have studied the group inference
problem for linear regression model by considering sum-type
statistics. Namely, by considering quadratic form hypotheses,
H0 : θ�

A GθA = 0, for a positive definite matrix G. They
propose a debiasing approach to directly estimate the quadratic
form θ�

A GθA and to provide asymptotically valid p-values for the
corresponding hypotheses. The constructed p-values are valid
for any group size in terms of Type-I error control. This work
also discusses how by a direct application of the methodology
developed in Meinshausen (2008), one can test significance of
multiple groups, where the groups are defined by a tree structure.

The method of Meinshausen (2008) is based on a hierarchical
approach to test variables’ importance. At the core, it constructs
hierarchical adjusted p-values to account for the multiplicity of
testing problems and controls the family wise error rate at the
prespecified level. At every level of the tree, the p-value adjust-
ment is a weighted Bonferroni correction and across different
levels it is a sequential procedure with no correction but with
the constraint that if a parent hypothesis is not rejected then the
procedure does not go further down the tree. By comparison,
our HAT algorithm controls the FSR, a very different criterion
than the family wise error rate. Also HAT does not do any
adjustment to p-values, and instead chooses the threshold levels
in a sequential manner depending on the previous rejections and
the structural properties of the tree.

Here we follow the methodology of Guo et al. (2021) to
construct valid p-values for the HAT procedure, using the point
estimator (15). We write H0

u equivalently as H̃0
u : Qu :=

θ∗�
Lu

Guθ
∗
Lu

= 0, where Gu is the centering matrix and we use the
shorthand θu := θLu . To make inference on the quadratic form
Qu, we first consider the point estimator Q̂u := θ̂

�
u Guθ̂u, where

θ̂ is the estimator given by (15). To debias Q̂u we first decompose
the error term into Q̂u − Qu = θ̂

�
u Guθ̂u − θ∗

u
�Guθ

∗
u =

2̂θ
�
u Gu

(̂
θu − θ∗

u
)− (̂

θu − θ∗
u
)� Gu

(̂
θu − θ∗

u
)

. The dominating
term in this decomposition is 2̂θ

�
u Gu(̂θu − θ∗

u). The approach
in Guo et al. (2021) is to develop an unbiased estimate of this
term and then subtract this estimate from Q̂u. Given a projection
direction b̂, the unbiased estimate is of the form

1
n

b̂�X�(y − Xθ̂) = b̂�
�̂(θ∗ − θ̂) + 1

n
b̂�X�ε,

where �̂ := 1
n X�X. The idea is to find a projection direction b̂

such that b̂�
�̂(̂θ−θ∗) is a good estimate for θ̂

�
u Gu(̂θu−θ∗

u). The
projection direction b̂ is constructed by solving the following
optimization problem:

b̂ = arg min
b

b��̂b s.t. max
ω∈Cu

∣∣∣〈ω, �̂b − [̂θ�
u Gu 0]�〉

∣∣∣ ≤ ‖Guθ̂u‖2λn ,

(16)

where Cu =
{

e1, . . ., ep, 1
‖Guθ̂u‖2

[̂θ�
u Gu 0]�

}
and λn is chosen

to be of order
√

log(p)/n. Finally the debiased estimator for Qu

is constructed as Q̂d
u := θ̂

�
u Guθ̂u + 2

n b̂�X�(y − Xθ̂). Suppose
that the true model θ∗ is s0 sparse (i.e., it has s0 nonzero entries).
As shown in Guo et al. 2021 (Theorem 2) under the condition
s0(log p)/

√
n → 0, and assuming that the initial estimator

θ̂ satisfies ‖̂θ − θ∗‖2 ≤ C
√

s0(log p)/n and ‖̂θ − θ∗‖1 ≤
Cs0

√
(log p)/n for some constant C > 0, then the residual

Q̂d
u − Qu asymptotically admits a Gaussian distribution. More

specifically, Q̂d
u − Qu = Zu + �u where

Zu ∼ N(0, var(Q̂d
u)), var(Q̂d

u) = 4σ 2

n
b̂�

�̂b̂ . (17)

In addition, for any constant c1 > 0, there exists a constant c2 >

0 depending on c1 such that

P

(
|�u| ≥ c1(‖Guθ̂u‖2 + ‖Gu‖2)

s0 log p
n

)
≤ 2pe−c2n . (18)
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Figure 2. (Left) Plot of achieved FSR by HAT and LG on a nonbinary tree with K = 5 and independent p-values. LG does not control FSR under the target levels. (Center and
Right) Plots of achieved FSR and mean power with ANOVA p-values on a 3-regular tree (p = 243, σ = 0.3).

The above bound state that with high probability the bias term
�u is of order s0(log p)/n, while var(Q̂d

u) is of order 1/n. There-
fore, under the condition s0(log p)/

√
n → 0 the noise term Zu

dominates the bias term �u.1
Note that var(Q̂d

u) involves the noise variance σ 2 (which is the
same for all nodes u). Let σ̂ be a consistent estimate of σ . Then
the variance of the debiased estimator Q̂d

u is estimated by

v̂arτ (Q̂d
u) = 4σ̂ 2

n
b̂�

�̂b̂ + τ

n
, (19)

for some positive fixed constant τ . The term τ/n is just to ensure
that the estimated variance is at least of order 1/n (in the case
of b̂�

�̂b̂ = 0), and so it dominates the bias component of Q̂d
u.

The exact choice of τ does not matter in the large sample limit
(n → ∞).

Using this result, we construct the two-sided p-value for the

null hypothesis H̃0
u as follows: pu = 2

[
1 − �

(
|Q̂d

u|√
v̂arτ (Q̂d

u)

)]
,

where � is the cdf of the standard normal distribution.

Proposition 4.2. Consider the asymptotic distributional charac-
terization of Q̂d

u given by (17) and (18). Let σ̂ = σ̂ (y, X) be an
estimator of σ satisfying, for any fixed ε > 0, limn→∞ P

(∣∣∣ σ̂σ −
1
∣∣∣ ≥ ε

)
= 0 . Under the condition s0(log p)/

√
n → 0, for

any fixed arbitrarily small constant ε0 (say 0.001), there exists
n0 > 0 such that for all n > n0, P(pu ≤ t) ≤ t + ε0, for all
t ∈ [0, 1].

We refer to Appendix B.4 for the proof of Proposition 4.2.
By virtue of Proposition 4.2, the constructed p-values satisfy
the assumption of Theorem 3.3 and therefore by running the
HAT procedure we are able to control FSR under the target
level.

5. Simulations

In this section, we conduct simulation studies (using the
simulator R package, Bien 2016) to understand the perfor-
mance of HAT in different settings.

1In Guo et al. (2021), the probability bound pe−c2n was further simplified to
p−c′

since n � log p and assuming n, p → ∞.

5.1. Testing on a Nonbinary Tree with Idealized p-values

The LG algorithm is guaranteed to control FSR due to the
equivalence between FSR and FDR in the special case of a
binary tree (see Lemma 2.2). However, for a nonbinary tree,
the LG algorithm does not have a theoretical guarantee on FSR
control. We generate a tree where the root has degree 5, and
each child of the root is either a non-leaf node with degree
10 or is a leaf node; we vary the number of non-root non-leaf
nodes from 1 to 4, which results in p ranging from 14 to 41.
The number of true groups is fixed at 5, therefore, the root is
the only non-null node. We simulate p-values for the interior
nodes in the same fashion as in Section 5.3: the p-values for null
nodes are simulated independently from Unif([0, 1]) and the
p-values for non-null nodes are simulated independently from
Beta(1, 60). An estimate of FSR is obtained by averaging FSP
over 100 runs. The achieved FSR is shown in the leftmost panel
of Figure 2. As expected, we observe that the HAT procedure
controls FSR under each target α for all values of p, whereas
the LG algorithm does not. Therefore, for aggregating leaves in
general settings where the tree can be beyond binary, only our
algorithm provably controls FSR under the pre-specified level.
This highlights the importance of using our approach, which
has guaranteed FSR control for tree-based aggregation problems
with nonbinary trees.

5.2. Two Statistical Applications

5.2.1. Testing Equality of Means
In this section we apply the HAT procedure to the problem of
testing equality of means. To simulate this setting, we form a
balanced 3-regular tree with p = 243 leaves. For each K, we cut
the tree into K disjoint subtrees, which leads to K nonoverlap-
ping subgroups of leaves. We assign a value to each leaf as yi =
θ∗

k(i) + εi, k(i) ∈ {1, . . ., K}, i ∈ {1, . . ., p}, where k(i) represents
the group of leaf node i and the elements of θ are independently
generated from a Unif(1, 1.5) distribution multiplied by random
signs, and εi’s from a N(0, σ 2) distribution. We simulate 100 runs
by generating 100 independent ε’s with the noise level set to
σ = 0.3. The p-values are calculated as in (14).

By Lemma 4.1, the ANOVA p-values are independent. Thus,
by Theorem 3.1, we can perform HAT using the using threshold
function (7). Alternatively, we can form the bona fide p-value
using Simes’ procedure, and test with the reshaped threshold
function that is designed for arbitrarily dependent p-values.
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We calculate FSR and average power by taking the average of
the FSP and power over 100 runs. The center and right plots of
Figure 2 demonstrate how FSR and average power change with
K. Using Simes’ p-values together with the reshaped thresholds
achieves both lower FSR and higher power, which makes sense
in this context because large effect sizes low in the tree may not
translate to large effect sizes high in the tree.

5.2.2. Testing Equality of Regression Coefficients
We apply HAT to the application of testing equality of regression
coefficients. We assume a high-dimensional linear model as
described in Section 4.2 and generate p coefficients that take
K unique values. This partition comes from leaves of disjoint
subtrees of T . We compute the p-values using the debiased
method on each node as in Section 4.2.1. The details of the data
generating process are described in Section E of the appendix.

For each K, we simulate 100 independent ε’s. The initial
estimator θ̂ that solves the optimization problem (15) is achieved
by using the R package rare Yan and Bien (2018). The tuning
parameters λ and ν are chosen by cross-validation over a 2 × 10
grid. We then follow the steps described in Section 4.2.1 to
compute the p-values at each node. The positive constant τ in
(19) is set to one and the noise level estimate σ̂ is obtained using
the scaled lasso Sun and Zhang (2012) (R package scalreg).
Figure 3 shows the empirical cdf of the p-values, obtained from
the 100 realizations of the noise, at three representative nodes
when K = 57. Among the three nodes, node #110 is a non-null
node, which means θ∗

L110
contains at least two distinct values.

Nodes #13 and #86 are both null nodes but at different depths
on the tree. Node #86 is one of the B∗ nodes and node #13 is
a descendant of node #86. The curve of p-values at node #110
is above the diagonal line, which means the distribution has a

higher density at small values than uniform distribution. On the
contrary, the distribution of p-values at nodes #13 and #86 are
super-uniform. The curve for a deeper level node seems to be
further away from the diagonal line than its ancestor node.

The p-values generated are not necessarily independent, so
we use the reshaped threshold function (10), which we have
shown in theory controls FSR with arbitrarily dependent p-
values. We also test with the threshold function (7), which we
have not proven FSR control when the p-values are dependent.
In Figure 4, we demonstrate the result for both threshold func-
tions, varying K and α. We observe from the plots that testing
with both threshold functions control FSR below each target
level α. The reshaping function makes the threshold more con-
servative, hence, the power of the HAT test with the reshaping
function is generally lower.

5.3. Testing on a Binary Tree with Idealized p-values

As we proved in Lemma 2.2, on binary trees FSR and FDR
metrics become equivalent. In this section, we focus on binary
trees and compare HAT with the testing procedure proposed
by Lynch and Guo (2016), which controls FDR in the hierar-
chical testing context. We generate random trees as follows: We
randomly generate p points from Unif[0, 1] and form a binary
tree structure among them using hierarchical clustering. We let
K = |B∗| be the number of true groups by cutting the tree into
K disjoint subtrees with the R functioncutree. The nodes that
are the roots of the subtrees form B∗. All non-leaf nodes in B∗
and their non-leaf descendants are null nodes, and we generate
their p-values independently from Unif([0, 1]). All ancestors of
B∗ are non-null nodes, with p-values we generate independently
from Beta(1, 60). For each pair of p and K, the set of p-values are

Figure 3. Plots of empirical CDFs of three nodes under the setting n = 100, p = 243, β = 0.6, K = 57, ρ = 0.2, σ = 0.6.

Figure 4. Plots of the achieved FSR and average power on a 3-regular tree (n = 100, p = 243, β = 0.6, ρ = 0.2, σ = 0.6) and p-values generated by the debiasing
procedure.
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Figure 5. Plots of achieved FSR and average power by our algorithm (HAT) and Lynch and Guo’s algorithm (LG), on a binary tree with p = 1000 leaves and independent
p-values. For the right three panels, K = 500.

simulated independently for 100 repetitions as described above.
We calculate FSP and TPP based on the aggregation of leaves
that results and average over the 100 values to estimate FSR and
the mean power.

The left two panels of Figure 5 show how FSR and average
power change with K when p is fixed at 1000. We can see that
both methods control FSR under the target α’s. In terms of
power, when α = 0.1, the LG method enjoys slightly higher
power. For larger α, however, the average power achieved by
our HAT method is higher; the gap in power enlarges as K
increases. When K is large with the tree fixed, meaning that
the B∗ nodes are at deeper levels, LG’s power drops at a faster
rate than ours. Indeed, for these α values, our method shows a
substantial advantage when we have a deep tree and the non-null
nodes appear at deeper levels of the tree.

The right three panels of Figure 5 show how achieved FSR
and average power change with α in the setting where p =
1000, K = 500. We observe again that HAT achieves higher
power than LG when α is above 0.1. From the left panel, we
see that both methods are conservative in that the achieved FSR
is lower than the target level α, but as evident from the right-
most panel, HAT showcases a better tradeoff between FSR and
the mean power.

6. Data Examples

6.1. Application to Stocks Data

The North American Industry Classification System (NAICS;
Compustat Industrial Annual Data 2015–2019) arranges com-
panies in a hierarchy of sectors, subsectors, industry groups,
industries, and national industries. This tree structure provides
a principled and interpretable way of organizing a large num-
ber of companies, and it is natural to ask in what way an
attribute that one can measure across individual companies may
be related to this multi-level classification system. One might
expect companies that are similar to each other according to
NAICS to have similar values of the attribute while those that
are in very different parts of the tree to have different values
of the attribute. Tree-based aggregation provides a convenient
approach to investigating such a question: it identifies branches
of the tree whose companies could be thought of as having
the same value of the attribute (in population). Doing so may
provide an analyst with a simple summary of the association
between the attribute and the tree structure.

To demonstrate, we consider the average daily volatility of
n = 2538 companies’ stock price computed over a five-year
period, using data from the US Stock Database ©2021 Cen-
ter for Research in Security Prices (CRSP), The University of
Chicago Booth School of Business (CRSP Stocks 2015–2019).
(Appendix F provides details on preparation of this dataset.)
It is plausible to imagine that companies in a shared branch
of the NAICS tree may have similar volatility; however, there
is no reason to think that there is a single aggregation level
(such as industry group) that would apply across all companies.
Aggregation provided by HAT is well suited for this goal. The
tree is nonbinary, with more than 20% of nodes having at least
5 children and 10 nodes having more than 30 children, thus,
as described in Section 2.3, using an FDR controlling method
would not be appropriate.

To apply HAT, we first compute a p-value at every interior
node of the tree by performing an F-test (eq. 8.4 of Seber
and Lee 2012), for testing equality of the log-volatilities of all
stocks within the subtree defined by this node. We further apply
Simes’ procedure to the p-values. We use HAT with the reshaped
thresholds and α = 0.05. The aggregated tree that results is
shown in Figure 6 (Table 1 in Appendix F provides an alternate
view). The aggregation represents a substantial simplification of
the information contained in this dataset. To see this, consider
that the full tree contains 702 interior nodes and 2538 leaves
(which is too large to be clearly displayed in a plot). By contrast,
the HAT aggregation delivers to us a great simplification: a tree
with only 40 leaves. Each leaf represents an aggregated cluster
of companies whose volatility is being deemed homogenous.
Looking at the leaves of this aggregation tree provides a multi-
level summary of the main trends of volatility across relevant
sectors: 21 of the leaves are at the sector level, 8 at the subsector
level, 10 at the industry group level, and one is at the company
level. Two sectors are split into further clusters while other
sectors remain undivided.

In looking at such a tree, one might be concerned that some
of these 40 leaves actually should have been aggregated together,
that is their companies appeared to have different volatilities
from each other but in truth they are the same. The fact that
HAT controls FSR tells us that we would only expect at most
39α ≈ 2 false splits like this. By contrast, if we had used a
procedure that controlled the FDR (rather than the FSR), we
could end up with many more clusters that should not have
been separated from each other. The reason, as described in
Section 2.3, is that the FDR does not take into account the effect
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Figure 6. The aggregation tree that results from applying HAT to aggregate n = 2538 companies based on their volatilities, using the NAICS, a hierarchical categorization
of companies based on their sectors. Leaves of this tree represent aggregated clusters (the number of companies within each cluster is given in parentheses after the name
of the cluster).

that a falsely rejected node has on the clustering result. This
point is underscored by a numerical experiment based on the
NAICS tree given in Appendix F.

6.2. Application to New York City (NYC) Taxi Data

We apply our method of aggregating features to the NYC Yel-
low Taxi Trip data,2 restricting attention to taxi trips made in
December 2013. After cleaning the data, we have 13.5 million
trips made by n = 32,704 taxi drivers. We take the total fare
each taxi driver earned as the response variable and take the
number of rides starting from each of p = 194 neighborhood
tabulation areas (NYC Planning 2020) as the features. We form
a tree with NTAs as leaves, by connecting the root to five nodes,
representing the boroughs of NYC. Within each borough, we
apply hierarchical clustering to the NTAs based on their geo-
graphical coordinates. This results in a tree with depth 10. The
availability of taxis is not uniformly distributed across the city
(see Figure 2 of Section G of the appendix) and X is a highly
sparse matrix.

To aggregate neighborhood features, we perform the follow-
ing procedure: with data X and y, as well as the given tree struc-
ture, we first fit the penalized regression (15) to construct an
initial estimate of the coefficients θ̂ . The estimation is achieved
by using the rare package with cross-validation for choosing
the regularization parameters ν and λ across a grid of 5 × 50
values. Next, we carry out the debiasing step by solving the
optimization problem (16), with the R package quadprog.

2Available at data.cityofnewyork.us.

Note that the noise level σ is unknown, which we estimate
by using the scaled lasso ([Sun and Zhang 2012]; R package
scalreg). Moreover, the positive constant τ in (19) is set to
one. After constructing the p-values for each non-leaf node of
the tree, we run HAT with α = 0.05.

6.2.1. Aggregation Results
Our procedure results in 45 aggregated clusters, with the bor-
oughs of Bronx and Staten Island remaining undivided. Brook-
lyn, Queens, and Manhattan are divided into 7, 14, and 22 sub-
groups, respectively. The left panel of Figure 7 shows the coef-
ficients from performing least squares on these 45 aggregated
features. Trips starting from Manhattan and parts of Queens,
especially the airports, have higher coefficient values. Within
Manhattan, Hell’s kitchen, Times Square, and Penn Station have
higher coefficient values. In Section G.1 of the appendix we
show, by taking subsamples of different sizes, that reducing sam-
ple size leads to fewer rejections and therefore fewer aggregated
groups.

6.2.2. Comparing Prediction Performance
To assess prediction performance achieved by our aggregated
features, we hold out a random sample of 20% of the drivers
as the test set, and train with the remaining 80%. We compare
to the following models (each tuned via 10-fold cross vali-
dation): (i) Lasso with the original variables (L1); (ii) Lasso
with only dense features (L1-dense): We drop features with
< 0.5% nonzeros then fit a lasso on the remaining 99 fea-
tures; (iii) Least squares with clusters aggregated to the five

data.cityofnewyork.us
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Figure 7. Left: Map colored with log-transformed least square coefficients from regressing fare on features from HAT’s aggregation of neighborhoods of New York City.
There are 45 aggregated clusters out of the 194 neighborhoods. Darker colors correspond to higher fitted coefficients. Right: Prediction performance of the six methods
with the test dataset.

boroughs (ls-boro); (iv) Lasso with clusters aggregated at
optimized height (L1-agg-h), and we tune (over a grid of 5
values) an extra parameter h that determines the aggregation
height in the tree; (v) Rare regression proposed by Yan and
Bien (2021) (Rare). We compute the mean squared prediction
error (MSPE) of each method on the test set (see right panel of
Figure 7). TheL1 andL1-densemethods are not aggregation-
related and achieve similar performance. Both ls-boro and
L1-agg-h achieve some level of aggregation but the aggrega-
tions are determined at certain heights.L1-agg-h has an addi-
tional tuning parameter and is therefore advantageous. Lastly,
both Rare and our method achieve aggregation in a flexible
way, and the prediction results are comparable. Rare selects
43 aggregation clusters while our method achieves 45 groups in
total. In Section G of the appendix, we perform an additional
experiment with a synthetic response (but with X and T from
this dataset) to measure the FSR and power.

7. Conclusion

In many application domains, ranging from business and e-
commerce, to computer vision and image processing, biology
and ecology, the data measurements are naturally associated
with the leaves of a tree which represents the data structure.
Motivated by these applications, in this work we studied the
problem of splitting the measurements into nonoverlapping sub-
groups which can be expressed as a combination of branches of
the tree. The subgroups ideally express the leaves that should
be aggregated together, and perceived as single entities. We
formulate the task of tree-based aggregation/splitting as a mul-
tiple testing problem and introduced a novel metric called false
split rate which corresponds to the fraction of splits made that
were unnecessary. In addition, we proposed a procedure call
HAT (and a few variants of it) to return a splitting of leaves,
which is guaranteed to control the false split rate under the
target level. In this article we have thought of the tree as given.
However, in some cases one might be interested in learning
the tree from the same data that would be used in inference.
In such a case, one would need to make use of post-selection
inference techniques to account for the data-driven nature of the
hypotheses.

It is worth noting some of the salient distinctions of the setup
considered in this article with classical hierarchical clustering.
First, in hierarchical clustering the tree is cut at a fixed level,
while our framework allows for more flexible summarization of
the tree, with different branches cut at different depths. That is,
our framework yields multi-scale resolution of the data. Second,
clustering is often formulated as an unsupervised problem. In
contrast, our framework can be perceived as a supervised clus-
tering problem where labeled data are used to group the leaves
by combining branches of the tree.

Supplementary Materials

The supplementary material includes all appendices, including proofs of
the theoretical results and additional information about the numerical
experiments.
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