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Abstract

Developing effective biomedical retrieval mod-
els is important for excelling at knowledge-
intensive biomedical tasks but still challeng-
ing due to the lack of sufficient publicly an-
notated biomedical data and computational re-
sources. We present BMRETRIEVER, a se-
ries of dense retrievers for enhancing biomed-
ical retrieval via unsupervised pre-training on
large biomedical corpora, followed by instruc-
tion fine-tuning on a combination of labeled
datasets and synthetic pairs. Experiments on
5 biomedical tasks across 11 datasets verify
BMRETRIEVER’s efficacy on various biomed-
ical applications. BMRETRIEVER also ex-
hibits strong parameter efficiency, with the
410M variant outperforming baselines up to
11.7 times larger, and the 2B variant match-
ing the performance of models with over 5B
parameters. The training data and model check-
points are released at https://huggingface.
co/BMRetriever to ensure transparency, repro-
ducibility, and application to new domains.

1 Introduction

In the field of biomedicine, the ability to effectively
retrieve knowledge from external corpora is cru-
cial for large language models (LLMs) to excel at
biomedical NLP tasks (Lewis et al., 2020; Zhang
et al., 2024; Xiong et al., 2024). By tapping into
up-to-date domain knowledge, retrieval-augmented
LLMs have demonstrated promising results in vari-
ous biomedical downstream applications, including
knowledge discovery (Frisoni et al., 2022), ques-
tion answering (Wang et al., 2023; Yu et al., 2024),
and clinical decision-making (Naik et al., 2022; Shi
etal., 2023; Xu et al., 2024).

Several works have designed specialized re-
trieval models for biomedical domains (Mohan
et al., 2017; Liu et al., 2021; Jin et al., 2023; Luo
et al., 2022a; Singh et al., 2023; Zhang et al., 2023).

* Equal contribution.
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Figure 1: The average performance of BMRETRIEVER
on 5 popular biomedical search tasks compared to base-
lines with different parameters. X-axis in log scale.

However, these models are typically built upon
BERT-series models, which have limited represen-
tative power. Besides, they often rely on proprietary
data (e.g., private search logs or patient records),
making it challenging to scale them up to accom-
modate larger models effectively due to privacy
concerns. While recent studies in the general do-
main have improved neural retrieval models via
scaling up model size (Ni et al., 2022; Muennighoff,
2022; Wang et al., 2024) and training data (Izacard
et al., 2022; Wang et al., 2022b; Lin et al., 2023),
adapting such models to the biomedical domain
may lead to suboptimal performance due to the
distribution shift issue (Thakur et al., 2021). Devel-
oping large-scale retrieval models dedicated to the
biomedical domain without requiring massive pro-
prietary datasets remains crucial yet challenging.
In this work, we propose BMRETRIEVER, a
series of dense text retrievers at various scales us-
ing LLMs as backbones to improve biomedical re-
trieval performance. Firstly, we inject biomedical
knowledge into BMRETRIEVER by unsupervised
contrastive pre-training on a large-scale unlabeled
biomedical corpora, which comprises an extensive
and diverse collection of data, with rich biomedi-
cal background knowledge invaluable for domain-
specific understanding (Lala et al., 2023; Xiong
et al., 2024). Besides, unlabeled corpora are read-
ily accessible, overcoming the bottleneck of scarce
annotated data that often plagues specialized do-
mains. Pre-training on them allows us to adapt our
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models to the biomedical domain, equipping them
with necessary linguistic patterns and terminology.

To further boost the embedding quality and align
the retriever with downstream applications, we
conduct instruction fine-tuning with high-quality
labeled datasets. Specifically, we gather various
public human-annotated biomedical retrieval tasks,
such as medical question-answering (QA) and di-
alogue pairs, and create instructions for each to
improve BMRETRIEVER with task-specific under-
standing. Given the relatively small sample size
and limited task types in public biomedical datasets,
we further leverage the powerful GPT models to
generate additional synthetic retrieval tasks under
various scenarios with query and passage pairs to
augment training samples and diversify instruc-
tions. This allows the model to acquire a com-
prehensive understanding of biomedical retrieval
tasks and facilitates its generalization across vari-
ous downstream tasks and input formats.

We conduct extensive experiments across five
tasks on eleven biomedical datasets to demonstrate
the strong performance of BMRETRIEVER. As
shown in Figure 1, BMRETRIEVER outperforms
existing dense retrievers with orders of magnitude
more parameters: with 410M parameters, it sur-
passes the performance of GTR-4.8B (Ni et al.,
2022) and SGPT-2.7B (Muennighoff, 2022), which
have 7x more parameters. At the 7B scale, BM-
RETRIEVER outperforms the recently proposed E5-
Mistral (Wang et al., 2024), which uses extra-large
batch-size and nonpublic data mixture. In addition,
BMRETRIEVER presents a lightweight yet high-
performing domain adaptation solution, with its 1B
variant achieving more than 98% performance of
ES5-Mistral using only 14.3% of parameters. Our
contribution can be summarized as follows:

* We develop a family of BMRETRIEVER models
ranging from 410M to 7B parameters, achieving
efficient scaling via a two-stage framework to
improve biomedical text retrieval performance.

* We assess BMRETRIEVER’s efficacy with an ex-
tensive evaluation against 18 baselines on 5 tasks
across 11 biomedical datasets. Results demon-
strate BMRETRIEVER’s parameter efficiency yet
strong domain adaptation capabilities, achievable
within academic computational budgets.

* BMRETRIEVER ensures transparency, repro-
ducibility, and potential generalization to addi-
tional domain-specific adaptations by providing
a detailed training recipe with public datasets and

Parameters 410M 1B 2B 7B

Backbone Pythia (2023)  Pythia (2023) Gemma (2024) BioMistral (2024)
Model Layers 24 16 18 32
Embedding Dim. 1024 2048 2048 4096

Table 1: An overview of BMRETRIEVER.

accessible model checkpoints.

2 Related Work

Earlier research explores various approaches
for learning representations suitable for text re-
trieval (Deerwester et al., 1990; Huang et al.,
2013). More recently, several studies introduce
dual-encoder architectures based on BERT for
dense retrieval (Karpukhin et al., 2020; Xiong et al.,
2021; Qu et al., 2021; Izacard et al., 2022). With
the advent of LLMs with billions of parameters,
several studies attempt to scale up model size (Ni
et al., 2022; Neelakantan et al., 2022), often fine-
tuned on multi-task instruction data (Asai et al.,
2023; Su et al., 2023; Wang et al., 2024; Lee et al.,
2024). However, the benefit of scaling up is more
pronounced for general domain datasets where mas-
sive annotated data are available.

To design effective retrievers for specialized
domains, several works propose continuously
pre-train the retrieval model on domain-specific
corpora (Yu et al.,, 2022; Zhang et al., 2023)
or fine-tuning the model on proprietary search
datasets (Mohan et al., 2017; Jin et al., 2023). On
the other hand, synthetic data has also been used
to improve the generalization ability of dense re-
trieval model (Ma et al., 2021; Wang et al., 2022a;
Jiang et al., 2023; Wang et al., 2024). Despite these
advancements, how to combine public, open data
to formulate a dataset curation recipe for adapting
LLMs as high-performing biomedical retrievers
remains unresolved. Our method efficiently inte-
grates diverse supervision signals for biomedical
retrieval model training, which achieves better per-
formance than baselines trained with more data.

3 Method

BMRETRIEVER leverages the pre-trained autore-
gressive transformer as the backbone, taking ad-
vantage of the availability of various model sizes
within this model family. This flexibility allows
us to scale up the retrieval model. Specifically, we
utilize the publicly available autoregressive trans-
formers with 410M, 1B, 2B, and 7B parameters (Bi-
derman et al., 2023; Team et al., 2024; Labrak et al.,
2024). Our model details are illustrated in Table 1.

22235



STAGE-II: Multi-Task Instruction Fine-tuning

bioRxlv Wy Publed

medRXlY é @ l g Medical

Synthetic Fine-tuning Data Augmentation with LLMs
® [ Brainstorm a list of potentially useful biomedical text retrieval tasks . ]

i 1
1 1
| 1
| i
1 1
1 1
1 1
| Given a query about a particular mental health disorder, retrieve document N
1 '
1 |
1 1
1 1
| 1
| i
1 1

MS MARCO Textbooks
L ‘ | s that discuss effective therapies ...
Title: Convergent Evolution of Primate testis transcriptomes reflects mati @ [ Your mission is to write one biomedical text retrieval example for this task. ]
@ ng}strategy Q — " . Synthetic Retrieval Data (200 Tasks) ¢
In independent mammalian lineages where females mate with multiple m - - — -
ales (multi-male mating strategies)... % What are the most effective therapies for man B\pglzr dlfsﬂrdher, a condltéonl ctr_\arafctl?nzei EV
. 2al 5 " . N . aging symptoms of bipolar disorder in adults? [EEE S CLUIED QU7 €D CELE AL )
Whole-cell biosensors hold potential in a variety of industrial, medical an eriods of severe ...

@ d environmental applications. QThese biosensors can be constructed thr Similar Sentences Retrieval (4 Tasks)

ough the repurposing of bacterial sensing mechanisms, including the com
mon two-component... MedaueD hresained 'lg‘eergglé‘e\?ma with woolly hair is a group of rel
e i i ir? i
* What is (are) keratoderma with woolly hair? BMRetriever ated conditions that ...
Q Query % Passages Relevant Passages Retrieval (6 Tasks)
HealthcareMagic HealthcareMagic
Title: Convergent Evolution of In independent mammalian lineages whe Throat a bit sore and want to get a good imun During this pandemic. throat pain can be from
Primate testis transcriptomes s——— re females mate with multiple males (mu  \&.200ster, especiallyin .. @stiepithroat>
reflects mating strategy Iti-male mating strategies)...

Inference: Generalization to Various Tasks
Text Retrieval (4 Tasks)

These biosensors can be constructed thr SciFact < SciFact
Whole-cell biosensors hold p ough the repurposing of bacterial sensin Microstructural development of human newb ® E Alterations of the architecture of cerebral whi
RE— orn cerebral white ... I te matter in the ...

otential in a variety of ... g mechanisms, including the common tw
o-component... Sentence Similarity (1 Task)
o BIOSSES BIOSSES
‘ It has recently been shown that Craf is essenti = It has recently become evident that Craf is ess
al for Kras G12D-induced ... ential for the onset of ...
1@ Positive Pairs | Question Answering (3 Tasks)
i Negative Pairs i PubMedQA Q. PubMedQA
L e S B Are group 2 innate lymphoid cells ( ILC2s ) inc Chronic rhinosinusitis (CRS) is a heterogeneo
reased in chronic rhinosin... us disease with an uncertain ...
4 k> Entity Linking (2 Tasks)
’
/ DrugBank
—_ T — gr;xgl:zri‘:e | Chronic rhinosinusitis (CRS) is a heterogeneo
b4 = us disease with an uncertain ...
Paper Recommendation (1 Task)
SciRepEval == SciRepEval
. N . ERK1 and ERK2 are related protein-serine/thr = EK1 and MEK2 regulate distinct functions by s
STAGE-I: Unsupervised Contrastive Pre-training eonine kinases that ... @ orting ERK2 to different ...

Figure 2: The overview of the two-stage pre-training framework in BMRETRIEVER. Stage I performs unsupervised
contrastive pre-training on large-scale biomedical query-passage pairs, while Stage II conducts instruction fine-
tuning using diverse labeled data, including synthetic examples generated by LLMs, to adapt BMRETRIEVER to
various biomedical downstream tasks.

3.1 Background of Dense Text Retrieval 3.2 Unsupervised Contrastive Pre-training

In dense retrieval (Lee et al., 2019; Karpukhin et al., ~ Pre-training Corpus Collection. To provide
2020), the language model E is used to represent ~BMRETRIEVER with an initial understanding of
queries and passages in dense embeddings. Denote ~ biomedical contexts, we collect a diverse range of
the query ¢ and passage p with the corresponding  publicly available biomedical corpora, including
task instruction /; and I, ! the embedding is cal-  biomedical publications (Chen et al., 2021; Xiong
culated as e, = E (I, ® q), e, = E (I, ®p). The etal, 2024; Lo et al., 2020), medical textbooks (Jin
relevance score sim(q, p) is calculated with the dot et al., 2021), as well as general-domain web cor-
product between query and passage embeddings: pus (Bajaj et al., 2016), as detailed in Table 8.
Contrastive Pre-training. We construct positive
and negative query-passage pairs from raw unla-
In this work, where autoregressive LLMs are used  peled corpora to facilitate contrastive pre-training
for E, an <EOS> token is appended to the end of the  of the retrieval model. For positive pairs, we em-
query and passage. The embedding of the <E0S>  ploy two strategies: (1) for corpora with titles, we
token from the final layer of LLM is used as the  reat the title as the query and the corresponding
representation for both queries and passages. abstract as the passage; (2) for untitled corpora, we
To effectively adapt BMRETRIEVER to the randomly sample two disjoint passages from docu-
biomedical domain, a two-stage training procedure  ments, using one as the query and the other as the
is proposed (see Figure 2): (1) an unsupervised  passage (Izacard et al., 2022). To obtain negative
contrastive pre-training stage (§ 3.2) using silver  pairs, we sample in-batch negatives (Gillick et al.,
query-passage pairs from extensive biomedical cor-  2019) where the passages from other pairs in the
pora, and (2) a fine-tuning stage (§ 3.3) using gold  same batch serve as negative examples. With the
labeled data from various tasks. The details of two  collected pairs, we employ contrastive learning to
stages will be introduced in the following sections.  distinguish the relevant query-passage pairs from
the irrelevant ones. For each mini-batch B, we
'The instruction format is in Appendix B. leverage the InfoNCE loss as the pre-training ob-
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jective to rank the positive text pairs {(g;, p;) }1"
higher than in-batch negative passages {p;; };V:l:
osim(q:.pi)/7

Ecpt = — log ZjeB esim(Qi,pJ‘)/T .

2

Contrastive pre-training improves the quality of
representations by better aligning similar text se-
quences while ensuring the uniformity of unre-
lated text sequences, which helps adapt the retrieval
model to biomedical domains (Gururangan et al.,
2020; Yu et al., 2022; Luo et al., 2022b).

3.3 Supervised Instruction Fine-tuning

To further enhance the model’s specialized do-
main knowledge and align the model with down-
stream application tasks, we conduct instruction
fine-tuning, which integrates a diverse collection
of retrieval tasks into the instruction tuning blend.
We present a detailed procedure below.
Instruction Fine-tuning Dataset. To incorpo-
rate the model with a wide range of biomedi-
cal downstream tasks, we leverage a series of
biomedical tasks with varying granularity, in-
cluding both sentence-level medical natural lan-
guage inference (MedNLI) (Shivade, 2017), med-
ical question pairs (McCreery et al., 2020), and
passage-level biomedical QA tasks, including
MedQuad (Ben Abacha et al., 2019), StackEx-
change (Team, 2021), and medical dialogues (Li
et al., 2023b). Besides, we also include several
general-domain retrieval datasets, including MS
MARCO (Bajaj et al., 2016), NQ (Kwiatkowski
et al., 2019), Fever (Thorne et al., 2018), ELI5 (Fan
et al., 2019), and NLI (Bowman et al., 2015), to en-
hance the model’s ability for relevance estimation.
The instruction format and data conversion details
are exhibited in Appendix B.
Synthetic Data Augmentation with LLMs. To
supplement the limited task types and relatively
small sample sizes in labeled biomedical datasets,
we employ a data augmentation approach to gen-
erate synthetic query and passage pairs. Two ap-
proaches are utilized for this generation process.
We leverage GPT-3.5 (gpt-3.5-turbo-1106)
for instance-level augmentation to enrich (query,
passage) pairs resembling standard biomedical in-
formation retrieval (IR) formats. Given a passage
from PubMed and Meadow used in contrastive pre-
training, we prompt GPT-3.5 to generate a relevant
query based on the passage context. This allows
the model to better capture the relevance within
biomedical contexts for effective retrieval.

Beyond relevance signals, task generalization

is also crucial for building a general retriever, as
user intent and input formats vary while public
data captures only a fraction of tasks. To address
this, we perform task-level augmentation, which in-
volves prompting GPT-4 (gpt-4-turbo-1106) to
conceptualize a diverse list of potential scenarios
for biomedical retrieval tasks (Wang et al., 2024).
Subsequently, we prompt GPT-4 again to generate
examples for each scenario, including a query, a
relevant (positive) passage, and a challenging ir-
relevant (hard negative) passage. This approach
allows us to enhance the diversity of instructions.
Hard Negative Mining and Data Filter. In both
labeled instruction fine-tuning datasets and data-
label synthetic datasets, positive pairs are available,
while negative examples are missing. To obtain
the negatives, we randomly select 1 passage from
the top 100 passages retrieved by E5-base (Wang
et al., 2022b) when using the given query to search
the entire corpus of the corresponding dataset. As
the generated synthetic data can be noisy, con-
sistency filtering is adopted to filter low-quality
pairs (Alberti et al., 2019; Dai et al., 2023), where
for each synthetic (query ¢, passage p) pair, we use
the E5-base to predict the most relevant passages
for q. We only retain ¢ when p occurs among the
top three retrieved passages.
Fine-tuning Objectives. After constructing pos-
itive and negative text pairings {(q¢;,p; ,p; )},
where pj and p;” stands for the positive passage
and the hard negative, respectively, we employ the
InfoNCE loss function for each minibatch 1 as

esim(qipl)/7

ﬁft =

)

Besim(qi,p;)/T + esim(qi7p;)/'r

where both in-batch negatives and hard negatives
are utilized to further improve model training.

4 Experimental Results

4.1 Experimental Setups

Tasks and Datasets. We conduct experiments on
eleven datasets across five biomedical retrieval-
oriented tasks, including (1) IR, (2) sentence sim-
ilarity (STS), (3) QA, (4) entity linking, and (5)
paper recommendation. There is no overlap be-
tween the training and test pairs. Task and dataset
details are available in Appendix B.

Baselines. We compare to sparse retrieval models
BM?25 (Robertson et al., 2009) and open-source
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Task

Standard IR | Sent. Sim. |

‘ Scale #PT Pairs #FT Pairs ‘

Avg. Retr.  Avg. All

Model \ | NFCorpus SciFact SciDocs Trec-COVID BIOSSES |

Sparse Retrieval

BM25 (Robertson et al., 2009) ‘ — — — ‘ 0.325 0.665 0.158 0.656 — 0.451 —
Base Size (< 1B)

Contriever (Izacard et al., 2022) 110M 1B 500K 0.328 0.677 0.165 0.596 0.833 0.442 0.520
Dragon (Lin et al., 2023) 110M — 28.5M 0.339 0.679 0.159 0.759 0.819 0.484 0.551
SPECTER 2.0 (Singh et al., 2023) 110M 3.3M — 0.228 0.671 — 0.584 — — —
SciMult (Zhang et al., 2023) 110M 5.5M — 0.308 0.707 — 0.712 — — —
COCO-DR (Yu et al., 2022) 110M 15M 500K 0.355 0.709 0.160 0.789 0.829 0.503 0.567
SGPT-125M (Muennighoff, 2022) 125M  unknown 500K 0.228 0.569 0.122 0.703 0.752 0.406 0.475
MedCPT (Jin et al., 2023) 220M — 255M 0.340 0.724 0.123 0.697 0.837 0.471 0.544
GTR-L (Ni et al., 2022) 335M 2B 662K 0.329 0.639 0.158 0.557 0.849 0.421 0.506
InstructOR-L (Su et al., 2023) 335M — 1.24M 0.341 0.643 0.186 0.581 0.844 0.438 0.519
ES-Large—v2“ (Wang et al., 2022b) 335M 270M IM 0.371 0.726 0.201 0.665 0.836 0.491 0.560
BGE-Large*! (Chen et al., 2024) 335M 1.2B 1.62M 0.345 0.723 0.222 0.753 0.804 0.511 0.569
BMRETRIEVER-410M 410M 10M 1.4M 0.321 0.711 0.167 0.831 0.840 0.508 0.574
Large Size (1B - 5B)

InstructOR-XL (Su et al., 2023) 1.5B — 1.24M 0.360 0.646 0.174 0.713 0.842 0.473 0.547
GTR-XL (Ni et al., 2022) 1.2B 2B 662K 0.343 0.635 0.159 0.584 0.789 0.430 0.502
GTR-XXL (Ni et al., 2022) 4.8B 2B 662K 0.342 0.662 0.161 0.501 0.819 0.417 0.497
SGPT-1.3B (Muennighoft, 2022) 1.3B unknown 500K 0.320 0.682 0.162 0.730 0.830 0.473 0.545
SGPT-2.7B (Muennighoff, 2022) 2.7B  unknown 500K 0.339 0.701 0.166 0.752 0.848 0.489 0.561
BMRETRIEVER-1B 1B 10M 1.4M 0.344 0.760 0.180 0.840 0.858 0.531 0.596
BMRETRIEVER-2B 2B 10M 1.4M 0.351 0.760 0.199 0.863 0.828 0.543 0.600
XL Size (> 5B)

SGPT-5.8B (Muennighoff, 2022) 5.8B  unknown 500K 0.362 0.747 0.199 0.849 0.863 0.539 0.604
LLaRA (Li et al., 2023a) 7B 2IM 500K 0.372 0.757 0.172 0.853 — 0.539 —
RepLLaMA (Ma et al., 2023) B — 500K 0.378 0.756 0.181 0.847 — 0.541 —
LLM2Vec* (BehnamGhader et al., 2024) | 7B 1.2M 1.5M 0.393 0.788 0.225 0.776 0.852 0.545 0.606
ES-Mistral* (Wang et al., 2024) 7B — 1.8M 0.386 0.764 0.162 0.872 0.855 0.546 0.608
CPT-text-XL (Neelakantan et al., 2022) 175B unknown unknown 0.407 0.754 — 0.649 — — —
BMRETRIEVER-7B 7B 10M 1.4M 0.364 0.778 0.201 0.861 0.847 0.551 0.610

Table 2: Main experiments on biomedical text representation tasks in various scales. Bold and underline indicate the
best and second best results on average performance over the four retrieval tasks, and over all five tasks. * denotes
concurrent works (for reference only).  uses reranker distillation. I employs hybrid retrieval. We highlight the
biomedical or scientific domain-specific retrieval models. Notations are consistent across tables. “PT”, “FT”,

CLITS

and “Sent. Sim.” denote “Pre-training”, “Fine-tuning”, and “Sentence Similarity”, respectively.

dense retrieval models with varying model sizes:
Contriever (Izacard et al., 2022), Dragon (Lin
et al.,, 2023), SciMult (Zhang et al., 2023),
SPECTER 2.0 (Singh et al., 2023), COCO-DR (Yu
et al., 2022), SGPT (Muennighoff, 2022), Med-
CPT (Jin et al., 2023), GTR (Ni et al., 2022), In-
structOR (Su et al., 2023), E5-Large-v2 (Wang
et al., 2022b), BGE-Large (Chen et al., 2024),
LLaRA (Li et al., 2023a), RepLLaMA (Ma et al.,
2023), LLM2Vec (BehnamGhader et al., 2024), ES-
Mistral (Wang et al., 2024), and CPT-text (Nee-
lakantan et al., 2022). The details of baselines and
parameter sizes are in Appendix C.

Implementation Details. The backbones used for
BMRETRIEVER are available in Table 1. The learn-
ing rates are set to 5e — 5 for the 410M and 1B
variants, 4e — 5 for the 2B variant, and 2e — 5 for
the 7B variant during pre-training; 5e — 5 for the
410M and 1B variants, 2e — 5 for the 2B variant,
and le — 5 for the 7B variant during fine-tuning.
The global batch size is set to 256 for the 410M
and 1B variants, 128 for the 2B variant, and 64
for 7B variants. To optimize GPU memory con-
sumption, we train our models with LoRA (r = 16,

a = 32) (Hu et al., 2022), brain floating point
(bfloat16) quantization, and DeepSpeed gradient
checkpointing (Rasley et al., 2020). The training is
performed on 4 NVIDIA H100 GPUs for 2 epochs
during pre-training and 1 epoch during fine-tuning,
using a maximum sequence length of 512 tokens.
We use the AdamW optimizer (Loshchilov and Hut-
ter, 2019) with a linear learning rate warm-up for
the first 100 steps. For contrastive learning, we set
7 = 1 without any further tuning.

Evaluation. We use nDCG@10 to measure stan-
dard IR performance and Spearman correlation
for STS based on cosine similarity. To evaluate
the retrieval performance of QA, we report Re-
call@{5,20} and nDCG@20. For entity linking,
we report mean reciprocal rank (MRR)@5 and Re-
call@{1,5}. For paper recommendation, we fol-
low Singh et al. (2023) and report mean average
precision (MAP) and nDCG.

4.2 Results on Text Representation Tasks

Table 2 presents a comprehensive evaluation of
the embedding quality on four standard biomed-
ical IR tasks and an additional task focused on
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Task ‘ Question Answering ‘ Entity Linking ‘ Paper Rec.
Model BioASQ PubMedQA iCliniq DrugBank MeSH RELISH
ode R@5 R@20 nDCG@20 | R@5 R@20 nDCG@20 | R@5 R@20 nDCG@20 | R@1 R@5 MRR@5 | R@1 R@5 MRR@5 | MAP nDCG
Base Size (< I1B)
Dragon (2023) 362 54.6 49.1 ‘ 71.8 740 72.0 50.6  65.2 47.4 ‘ 810 876 833 282 470 348 72.6 80.6
MedCPT (2023) 347 544 452 66.3  71.1 60.4 26.8 42.0 24.9 75.1 88.0 80.6 277 542 374 83.6 89.7
E5-Large-v2! (2022b) | 36.8  54.0 50.4 ‘ 71.6 742 722 576 12.0 55.8 ‘ 81.8 865 815 328 550 413 849 91.0
BMRETRIEVER-410M | 39.9 542 53.1 73.8 74.6 724 60.6 72.8 56.6 814 882 837 315 538 398 852 912
Large Size (1B - 5B)
InstructOR-XL (2023) | 29.9 432 41.8 705 740 69.1 649 78.1 58.3 753 842 803 336 562 457 845 90.6
SGPT-2.7B (2022) 339 474 47.3 683 737 63.2 450 522 41.2 719 770 629 202 397 285 849 90.8
BMRETRIEVER-1B 404 558 53.4 73.6 744 2.7 61.1 737 56.8 84.7 89.1 865 355 60.3 48.8 852 913
BMRETRIEVER-2B 42.5 565 55.7 740 74.6 73.1 70.0 81.2 65.7 82.6 902 858 456 713 595 854 915
XL Size (> 5B)
ES5-Mistral* (2024) 39.6 55.4 52.7 ‘ 72.6 74.2 70.0 56.7 722 51.8 ‘ 785 922 840 479 762 613 852 90.8
BMRETRIEVER-7B 437  60.2 574 742 746 73.8 684  79.7 63.7 847 928 88.0 498 765 61.1 86.7 922

Table 3: Experiments on retrieval-oriented biomedical NLP applications compared with strongest and fair baselines.

biomedical sentence similarity. Across different
scales, BMRETRIEVER outperforms the majority
of baseline methods, achieving either the highest
or second-highest performance in terms of aver-
age scores on the four IR tasks, as well as on the
combined set of all five tasks. It even outperforms
ES5-Large-v2 (Wang et al., 2022b) with additional
supervision signals and matches BGE-Large’s hy-
brid retrieval approach combining dense, lexical,
and multi-vector retrieval (Chen et al., 2024). Here
we focus on scaling up biomedical retrieval mod-
els with mixed data types, leaving the combination
of BMRETRIEVER with other more complex and
larger scale language systems for future work.

A notable aspect of BMRETRIEVER is its effi-
ciency and lightweight nature. Its 410M, 1B, and
2B variants achieve 94.1%, 97.7%, and 98.4% per-
formance using only 5.9%, 14.3%, and 28.6% of
7B variant’s parameters, respectively. Moreover,
BMRETRIEVER-410M outperforms all the base-
lines in large size (1B-5B) with up to 11.7x more
parameters, and BMRETRIEVER-2B matches per-
formance with baselines in XL size (> 5B). Remark-
ably, BMRETRIEVER also provides a reasonable
training setup within an academic budget, requiring
only 10M pre-training data and 1.5M fine-tuning
data, which is significantly less than the data usage
in most baselines, such as GTR (Ni et al., 2022) and
MedCPT (Jin et al., 2023). Yet, BMRETRIEVER
still outperforms these data-intensive methods.

4.3 Results on Retrieval-Oriented Biomedical
Applications

Table 3 evaluates BMRETRIEVER’s performance
on biomedical downstream applications. The re-
sults demonstrate BMRETRIEVER’s efficacy over
most baselines across different tasks and datasets,
justifying the adaptability of our learned represen-

Sent.

Task Standard IR

Sim. | Avg. Avg.
Sci-  Sci- Trec-  BIO- | Retr.  All
Model ‘ ‘ NFC- Fact Does COVID SSES ‘
Contriever (2022) 110M | 0328 0.677 0.165 0274  0.781 | 0.347 0.434
COCO-DR (2022) 110M | 0.243 0.724 0.150 0.483  0.801 | 0.400 0.480
QExt (2022) 110M | 0.303 0.644 0.147  0.535 — 0.407 —
ES5-Large-v2 (2022b) | 335M | 0.337 0.723 0.218 0.618  0.822 | 0474 0.543
LLM2Vec* (2024) 7B 0.271 0.687 0.153  0.557 0.832 | 0417 0.500
BMRETRIEVER 410M | 0.306 0.677 0.180 0.802  0.834 | 0.491 0.560
BMRETRIEVER 1B 0.330 0.744 0.187 0.800 0.833 | 0.515 0.579
BMRETRIEVER 2B 0.342 0.738 0.198  0.848 0.847 | 0.531 0.593
BMRETRIEVER 7B 0.355 0.750 0.208 0.833  0.861 | 0.537 0.601

Table 4: The performance of unsupervised dense re-
trieval models on biomedical representation tasks. Di-
rectly using the backbone model of BMRETRIEVER
(before contrastive pre-training) leads to performance
< 0.03 for all datasets, thus we do not report them.

tations to various retrieval-oriented applications.
Furthermore, our proposed BMRETRIEVER ex-
hibits strong generalization capabilities across di-
verse tasks and input formats, including retriev-
ing long context from short questions (BioASQ,
PubMedQA), retrieving long answers from patient
questions (iCliniq), retrieving definitions from en-
tity names (DrugBank, MeSH), and retrieving rel-
evant abstracts given an abstract (RELISH). No-
tably, BMRETRIEVER performs well on unseen
tasks, such as entity linking and paper recommen-
dation, verifying its ability to generalize to new
tasks unseen in the instruction fine-tuning stage.

4.4 Unsupervised Retrieval Performance

To highlight the effectiveness of our contrastive pre-
training approach, we evaluate the performance of
unsupervised dense retrieval models that only use
unlabeled corpora for pre-training and synthetic
data for finetuning. As shown in Table 4, our model
outperforms existing unsupervised baselines and
even surpasses many fully supervised models re-
ported in Table 2. The strong unsupervised re-
sults have important implications for real-world

22239



I BMRetriever

0 w/o Synthetic FT

B w/o General FT

I w/o Biomedical FT W w/ E5-Mistral Blend B w/ MeDI Blend

0.354
0.304
0.254

NFCorpus SciFact SciDocs Trec-COVID
0.75 020 0.8
0.65 0.157 0.6
410M 1B 410M 1B 410M 1B 410M 1B
BIOSSES DrugBank iCliniq Average
0.85 ]
0.6
0.6
0.75
0.5
0.65- 0.5-
410M 1B 410M 1B 410M 1B 410M 1B

Figure 3: Effect of different fine-tuning data on various datasets. “FI”” denotes “Fine-tuning”.
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Figure 4: Additional results over five tasks in the main
experiments. “CL” stands for “Contrastive Learning”.

biomedical applications, where curating large la-
beled datasets is often prohibitively expensive and
time-consuming. Our approach presents an attrac-
tive alternative, enabling the development of high-
quality retrieval models in a data-efficient manner.

We further investigate the performance of em-
ploying cropping alone as the contrastive pre-
training strategy, which entails randomly selecting
two passages from the corpus as a positive query-
passage pair (Izacard et al., 2022). The results
presented in Table 4(a) demonstrate that utilizing
cropping as the sole contrastive learning objective
yields suboptimal performance.

4.5 Studies on Instruction Fine-tuning

Figure 3 illustrates the impact of different fine-
tuning data sources on model performance across
various datasets>. Among all the utilized data
types, synthetic data contributes the most signif-
icant performance gain, which can be attributed
to its larger volume compared to biomedical data
and its coverage of a more diverse range of task
types. It is particularly beneficial for NFCorpus,
SciFact, and Trec-COVID, as these datasets follow
the standard IR format of short queries and long
passages, aligning with the format of the synthetic
data. Furthermore, synthetic data proves advan-
tageous for the iCliniq dataset, as it potentially

’Removing biomedical data retains the synthetic data.

10%

0.540
0.564

0.562
0.590

50%

0.554
0.575

0.571
0.595

100%

0.560
0.579

0.574
0.596

Volume (—)

BMRETRIEVER-410M
BMRETRIEVER-1B

BMRETRIEVER-410M
BMRETRIEVER-1B

Stage (1)

Pre-training

Fine-tuning

Table 5: Effect of data volume in pre-training and fine-
tuning. Pre-training results do not involve subsequent
fine-tuning. Fine-tuning results are based on the pre-
training checkpoints with full pre-training data.

includes various retrieval scenarios, such as dialog
data. General domain fine-tuning data, consist-
ing of short queries and long passages, generally
enhances relevance estimation capabilities, benefit-
ing standard biomedical IR tasks like Trec-COVID.
However, it may slightly diminish performance
on datasets like iCliniq, which contain conversa-
tional patient-provider data that deviates from tra-
ditional IR formats, potentially introducing distri-
bution shifts. Biomedical fine-tuning data, on the
other hand, demonstrates broad usefulness, particu-
larly for BIOSSES and iCliniq tasks, likely due to
its inclusion of sentence similarity and dialog data
aligning with downstream task formats. Public fine-
tuning data from E5-Mistral (Wang et al., 2024)
and MEDI, used by InstructOR (Su et al., 2023),
achieves relatively poor performance, possibly due
to their focus on the general domain with limited
biomedical knowledge. Additionally, the lack of
publicly available synthetic generated data from
E5-Mistral (Wang et al., 2024) may contribute to
the suboptimal performance observed.

4.6 Additional Studies

Ablation Studies. We inspect different compo-
nents of BMRETRIEVER in Figure 4(b), including
instruction, pre-training, and fine-tuning>. The re-

3Removing instruction solely eliminates the retrieval guid-
ance, while retaining both pre-training and fine-tuning.
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Case Study 1

Dataset / Task  iCliniq / Given a patient query, retrieve its corresponding answer from the community website.

Query My grandmother is having dizziness, vomiting and headache. These problems occur constantly with a gap of five to six months.

BMRETRIEVER From the symptoms that you mentioned it seems your grand mother has migraine which reccurs when she is either exposed to the allergen, which
triggers her migraine, or it can also manifest as a seasonal change. How long has she has been having this problem? During her migraine episodes,
how long does it last? I will recommend the following medicines :- 1) Tablet Crocin pain relief one tablet twice daily after food. 2) Tablet Ondem
(Ondansetron) 4 mg, if there is severe nausea two tablets can be taken at once. Make sure her BP (blood pressure) is under control.

BMRETRIEVER Please provide details regarding your headache and abuse. Also, provide details about your current symptoms and like how they started and how they

w/o Instruction progress over time. What are the medications you are taking currently and for how long? Once I receive this information, I will be able to help you.

MedCPT Since the movement is worsening the symptoms, it must be an inner ear problem. There could be additionally middle ear block or eustachian tube
block as the pressure change worsening it. However, since you have not mentioned the duration, I am mentioning all possible differentials. Recurrent
vertigo lasting under one minute is usually benign paroxysmal positional vertigo. A single episode of vertigo lasting several minutes to hours may be
due to migraine or transient ischemia of the labyrinth or brainstem. - - -

E5-Mistral You are suffering from Episodes of headache with nausea, which are not present every day. also having left eye pain and twisting with tingling,
imbalance while getting up, tingling in throat and over genitals, coldness over forehead ... I would like to suggest to do some routine blood investigation
tests and this symptoms seems like vitamin B12 deficiency or hypothyroidism. Are you Vegetarian?

Case Study 2

Dataset / Task  SciFact / Given a biomedical claim, retrieve biomedical literature to support or refute the claim.

Query Forkhead 0 (fox0) transcription factors are involved in apoptosis.

BMRETRIEVER Cell Stem Cell Review FoxO Transcription Factors and Stem Cell Homeostasis: Insights from the Hematopoietic System The forkhead O (FoxO)
family of transcription factors participates in diverse physiologic processes, including induction of cell-cycle arrest, stress resistance, differentiation,
apoptosis, and metabolism. Several recent studies indicate that FoxO-dependent signaling is required for long-term regenerative potential of the
hematopoietic stem cell (HSC) compartment through regulation of HSC response to physiologic oxidative stress, quiescence, and survival. - - -

MedCPT Forkhead box transcription factor, class O (FOXO) is a mammalian homologue of DAF-16, which is known to regulate the lifespan of Caenorhabditis
elegans and includes subfamilies of forkhead transcription factors such as AFX, FKHRL1, and FKHR. FKHR is phosphorylated on three sites (Thr-24,
Ser-256, and Ser-319) in a phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner, thereby inhibiting death signals. We here documented
dephosphorylation of FKHR following transient forebrain ischemia with its concomitant translocation into the nucleus in neurons in gerbil and mouse
brains. The activation of FKHR preceded delayed neuronal death in the vulnerable hippocampal regions following ischemic brain injury. - - -

ES-Mistral Novel Foxol-dependent transcriptional programs control Treg cell function Regulatory T (Treg) cells, characterized by expression of the transcription

& factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting

BMRETRIEVER differentiation factor controlling Treg cell homeostasis and function, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase

w/o Instruction

and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control
Treg cell homeostasis and function remains largely unexplored. Here we show that Foxol is a pivotal regulator of Treg cell function. - - -

Table 6: A case study with two examples illustrating the quality of retrieved passages from BMRETRIEVER
compared with baseline models. Blue text denotes keywords present in the original query, while green and red

represent relevant and irrelevant keywords, respectively, in the retrieved passages. - -

-” at the end indicates that the

remaining portion of the passage is omitted due to space constraints.

sults indicate that removing any component would
hurt the performance. We also observe that pre-
training is particularly beneficial for smaller mod-
els, as larger models may already possess sufficient
capacity to capture domain knowledge.

Effect of Data Volume. Table 5 evaluates the ef-
fect of data volume during pre-training and fine-
tuning. The results demonstrate the remarkable
efficiency of BMRETRIEVER, achieving compara-
ble performance even when trained on substantially
less data. Notably, using only 10% of the data, the
1B variant of BMRETRIEVER outperforms all base-
lines in either the pre-training or fine-tuning stage,
while the 410M variant also achieves better perfor-
mance than most baselines in fine-tuning.

4.7 Case Study

We present two case studies in Table 6 illustrat-
ing the quality of retrieved passages from BMRE-
TRIEVER compared to strong baselines. The first
example, from the iCliniq dataset, considers a pa-
tient query and retrieves the corresponding answer
from a community website. In the given exam-

ple, BMRETRIEVER retrieves a passage directly
addressing symptoms like headaches and nausea,
recommending medication aligning with the condi-
tion. In contrast, the retrieved passage from Med-
CPT focuses on inner ear problems and vertigo,
not covering the vomiting or the specific period-
icity of the episodes described in the query. The
passage from E5-Mistral talks about symptoms not
mentioned by the patient, such as left eye pain and
tingling. Besides, we also present the result from
BMRETRIEVER without using instructions, which
is also imprecise since it mentions abuse, a topic
not relevant to the query.

The second example involves retrieving biomed-
ical literature to support or refute a claim about
apoptosi. The passage retrieved by BMRE-
TRIEVER specifically mentions that the FoxO fam-
ily of transcription factors participates in apoptosis.
Although the passage retrieved by MedCPT dis-
cusses the role of FoxO transcription factors in
cell death, it is specific to neuronal cells under is-
chemic conditions, rather than general apoptosis.
Furthermore, both E5-Mistral and BMRETRIEVER
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without instructions retrieve an irrelevant passage
about the role of FoxO1 in regulating regulatory T
cells, unrelated to the claim. We further illustrate
the cosine similarity distributions of relevant and
irrelevant (query, passage) pairs in Appendix E.

5 Conclusion

We present BMRETRIEVER, a series of dense re-
trieval models designed for knowledge-intensive
biomedical NLP tasks with various scales. BMRE-
TRIEVER is pre-trained on a large-scale biomedical
corpus and further instruction fine-tuned on diverse,
high-quality biomedical tasks. Through extensive
experimentation, we have demonstrated that BM-
RETRIEVER exhibits state-of-the-art performance
across a range of biomedical applications. Further-
more, BMRETRIEVER demonstrates impressive pa-
rameter efficiency, with its smaller variants achiev-
ing 94-98% of the performance of the 7B model
using only 6-29% as many parameters, while the
410M version surpasses larger baselines (1B-5B)
up to 11.7 times larger. We hope BMRETRIEVER
can be incorporated into a broad suite of biomedi-
cal tasks to advance biomedical NLP research.
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Limitation

Efficiency. One specific caveat for scaling up
model size is the increment in the latency overhead.
We have reported both the passage indexing speed
and retrieval latency in Appendix F, which indi-
cates that our model does not incur much additional
time when compared to models with similar size
(e.g., BMRETRIEVER-2B v.s. InstructOR-1.5B).
One important future work is to explore how to
reduce the inference latency and lower the storage
cost for text embeddings produced by LLMs.

Cost Estimation. Generating synthetic data us-
ing GPT models incurs additional costs. In our
work, the total API cost of BMRETRIEVER is less
than $500%, which remains affordable within an
academic budget. This cost is significantly lower
than recent works (Wang et al., 2024), which have
an estimated cost of more than $6000.

Ethics Consideration

Misinformation. One specific issue for LLM-
generated biomedical text is the potential for mis-
information and hallucination (Pal et al., 2023). It
is important to note that for the generated queries,
the majority are short sentences or phrases without
presenting any scientific facts. Regarding the gen-
erated (query, passage) pairs, to ensure that our gen-
erated synthetic text does not introduce misinfor-
mation or hallucination, we randomly selected 200
examples and asked medical students to evaluate
the factuality of the generated text. The evaluation
results did not reveal misinformation or hallucina-
tion in the randomly selected examples.

Data Contamination. A potential issue is test set
contamination (Sainz et al., 2023), where some
test examples overlap with the training data. This
can be especially problematic for text generated
by LLMs, as they are often pre-trained on massive
corpora spanning various domains. To address this
concern, we follow Wang et al. (2024) to conduct
a string match-based analysis between the test set
and our training set, where we do not observe any
overlap between the train and test queries. While
some of the corpora (e.g., PubMed) are also utlized
in the test tasks, this is a standard practice even in
zero-shot or few-shot evaluation of retrieval mod-
els (Ma et al., 2021; Wang et al., 2022a; Yu et al.,
2022), and it is not considered as contamination.
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A Additional Synthetic Data
Augmentation Details

A.1 Prompt format to Generate Query from
Passage

Listing 1: Prompt Format for synthetic query genera-
tion.

Given the passage in [dataset],
please generate a query that is
relevant to the provided passage.

[dataset]: The dataset from which the pro-
vided passage is selected.

A.2 Prompt Format to Generate Task and
Pairs

Listing 2: Prompt format for synthetic retrieval task
generation.

Brainstorm a list of potentially
useful biomedical text retrieval
tasks.

Here are a few examples for your
reference:

1. Provided a scientific claim as
query, retrieve documents that
help verify or refute the claim.
2. Search for documents that
answers a FAQ-style query on

children's nutrition.

Please adhere to the following
guidelines:

1. Specify what the query is, and
what the desired documents are.
2. Each retrieval task should
cover a wide range of queries,
and should not be too specific.
3. Focus on biomedical related
topics.

Your output should always be a
python list of strings only, with
about 20 elements, and each
element corresponds to a distinct
retrieval task in one sentence.
Do not explain yourself or output
anything else. Be creative!

You have been assigned a
biomedical retrieval task: [task]
Your mission is to write one
biomedical text retrieval example
for this task in JSON format.
The JSON object must contain the
following keys:
1. "user_query": a string, a
random user search query
specified by the retrieval task.
2. "positive_document”: a string,
a relevant document for the user
query.
3. "hard_negative_document”: a
string, a hard negative document
that only appears relevant to the
query .

Please adhere to the following
guidelines:

1. The "user_query"” should be
[query_typel, [query_length],
[clarity], and diverse in topic.
2. All documents should be at
least [num_words] words long.

3. Both the query and documents
should be in English.

4. Both the query and documents
require [difficulty] level
education to understand.

Your output must always be a JSON
object only, do not explain

yourself or output anything else.
Be creative!

Listing 3: Prompt format for synthetic retrieval exam-
ples generation.

[task]: The task names generated from the pre-
vious step.

Cquery_type]: Randomly sampled from ["ex-
tremely long-tail", "long-tail", "common"].

[Cquery_length]: Randomly sampled from
["less than 5 words", "5-10 words", "at least 10
words"]

[clarity]: Randomly sampled from ["clear",
"understandable with some effort", "ambiguous"]

Cnum_words]: Randomly sampled from ["50
words", "50-100 words", "200 words", "300
words", "400 words"]

[difficulty]: Randomly sampled from ["high
school", "college", "PhD"]
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A.3 Case Study

We present a list of generated retrieval scenarios as
examples:

* “Search for articles discussing the latest ad-
vancements in neurology.”

* “Retrieval of articles discussing the symptoms
and treatments of rare diseases given a query
on rare diseases.”

* “Find documents that discuss the impact of
lifestyle changes on a specific medical condi-
tion.”

* “Locate documents that provide information
on the epidemiology of a certain disease in a
specific region.”

Table 7 presents two illustrative examples where
GPT-4 generates corresponding queries, positive
passages, and negative passages for each synthetic
retrieval task. The complete set of task names is
provided in the supplementary materials.

B Task and Dataset Information

B.1 Pre-training Corpus

We publicly release the training recipe used in both
the pre-training and fine-tuning stages to ensure
transparency, reproducibility, and potential applica-
bility to new domains. To equip BMRETRIEVER
with a strong foundation in biomedical contexts,
we compile a diverse corpus of biomedical data
sources. Table 8 summarizes the unlabeled cor-
pora used for contrastive pre-training of our model,
including their sizes and public availability. For
pre-training on BMRETRIEVER-7b, we only use
1M passages due to the efficiency issue.

For queries and passages, the instruction used
in the contrastive pre-training stage is “Given
a query, retrieve passages that are
relevant to the query. Query: {}7,
“Represent this passage. Passage: {}”.

B.2 Fine-tuning Task and Dataset

Real Datasets. Table 9 displays the datasets used
for instruction fine-tuning besides synthetic aug-
mentation, which include a diverse range of tasks at
both the sentence and passage levels across biomed-
ical and general domains. Biomedical datasets
cover biomedical QA (Team 2021, Ben Abacha

et al. 2019), sentence similarity (Shivade 2017, Mc-
Creery et al. 2020), and dialogue (Li et al. 2023b).
General domain datasets tackle long-form QA (Fan
et al. 2019), web search (Bajaj et al., 2016), open-
domain QA (Khashabi et al. 2021, Kwiatkowski
et al. 2019), fact verification (Thorne et al. 2018),
NLI (Bowman et al. 2015), and web search (Ba-
jaj et al. 2016). For MS Marco’ and NQ dataset®,
we use the ground-truth annotations as well as the
provided hard negative to form the fine-tuning data.

For non-retrieval tasks, we convert them into a
retrieval format as follows:

* For standard QA datasets, we directly use the
question as the query and the gold evidence
passages as the ground-truth passages.

» For NLI and sentence similarity tasks, we treat
sentence pairs identified as "entail" or "simi-
lar" as positive examples, while those labeled
as "contradict" or "non-similar" serve as hard
negatives.

* For medical dialogue datasets, we consider the
answer to the user query as the ground-truth
passage for retrieval.

The query instructions are listed in the corre-
sponding tables, while for passages, we use the
same instruction format as the template used in the
pre-training stage: “Represent this passage.
Passage: {}”.

Synthetic Datasets. We leverage LLM-
generated synthetic data to augment the training
set. For the query generation scenario, we generate
500K synthetic queries. After round-trip filtering,
we retain approximately 420K (query, passage)
pairs.  The instructions used for generating
synthetic queries are:

* For the PubMed corpus: “Given a question,
retrieve Pubmed passages that answer
the question.”

* For the Meadow corpus on COVID-19:
“Given a query on COVID-19, retrieve
COVID-19 related articles that answer
the query.”

5ht’cps: //msmarco.z22.web.core.windows.net/
msmarcoranking/triples.train.small.tar.gz

6https: //dl.fbaipublicfiles.com/dpr/data/
retriever/biencoder-ng-adv-hn-train. json.gz
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Synthetic Data Augmentation Example 1

Synthetic Retrieval Task Retrieve documents that discuss the potential health risks associated with obesity

Query Potential health hazards related to obesity

Positive Passage The escalating obesity epidemic is associated with a range of serious health risks and complications. Obesity
is a chronic disease characterized by excessive accumulation and storage of fat in the body, which in turn is
associated with a multitude of adverse health effects. These effects include an increased risk of premature
death, cardiovascular diseases including hypertension, stroke and coronary artery disease, type 2 diabetes,
certain types of cancer, and sleep apnea among others. The psychosocial consequences of obesity are also
significant, with reduced quality of life and depression being common. The pathophysiological basis of
these complications is complex and involves a myriad of interrelated metabolic, inflammatory, and vascular
processes. For instance, the excess adiposity in obesity contributes to systemic inflammation and insulin
resistance, which are central to the development of type 2 diabetes and cardiovascular diseases. The increased
mechanical load of obesity can also lead to degenerative joint diseases, while the increased metabolic demand
can lead to heart failure. Furthermore, the excess adipose tissue can secrete a variety of adipokines and
cytokines that can promote carcinogenesis. Thus, the potential health risks associated with obesity are
multifold, and the prevention and management of obesity should be a public health priority.

Negative Passage Obesity is increasingly recognized as a major health problem worldwide. While it is associated with a
multitude of health risks, the potential benefits of obesity are less well known. Some studies have suggested
that obese individuals may have a lower risk of certain conditions such as osteoporosis, due to their higher
bone mineral density. Furthermore, some obese individuals seem to be *metabolically healthy’, with no
apparent signs of the metabolic abnormalities typically associated with obesity. These findings, however,
do not negate the overall detrimental effects of obesity on health. Rather, they highlight the complexity of
obesity as a disease and the need for personalized approaches in its management. It is also important to note
that the ’obesity paradox’, where obesity seems to confer survival advantages in certain conditions such as
heart failure, remains controversial and is not yet fully understood. Overall, while there may be potential
benefits associated with obesity, these are likely outweighed by the substantial health risks, and efforts should
be focused on preventing and managing obesity to improve health outcomes.

Synthetic Data Augmentation Example 2

Synthetic Retrieval Task Search for documents that provide information on the latest treatments for autoimmune diseases

Query I am looking for scholarly articles or scientific papers that describe the most recent advancements in therapies
for autoimmune diseases, such as rheumatoid arthritis, lupus, celiac disease, or multiple sclerosis.

Positive Passage In recent years, there have been significant advancements in the treatment of autoimmune diseases. One
major development is the use of biologics, which are drugs derived from living organisms. Biologics have
been successfully used in the treatment of rheumatoid arthritis, lupus, and other autoimmune disorders. They
work by targeting specific components of the immune system that cause inflammation and damage. Another
promising treatment is stem cell therapy, which has potential in treating diseases such as multiple sclerosis. In
this procedure, the patient’s immune system is suppressed and then re-established with the patient’s own stem
cells, essentially ’resetting’ the immune system. Moreover, dietary intervention, such as a strict gluten-free
diet, has been proven to manage celiac disease effectively. However, these treatments all have their own risks
and side effects, and research is ongoing to refine these therapies and develop new ones.

Negative Passage Autoimmune disorders are a group of diseases where the body’s immune system attacks its own cells.
There are many types of autoimmune diseases, including Rheumatoid Arthritis, Lupus, Celiac Disease, and
Multiple Sclerosis. Each of these diseases has different symptoms, causes, and requires different treatments.
Some common symptoms of autoimmune diseases are fatigue, joint pain, and swelling, skin problems,
and abdominal pain. The causes of these diseases are not fully understood, but they are thought to be a
combination of genetic and environmental factors. There is currently no cure for autoimmune diseases, but
treatments can help manage the symptoms. Treatments include medication, physical therapy, and in some
cases surgery. In the case of celiac disease, a strict gluten-free diet is necessary. It is important to work with a
healthcare provider to develop a treatment plan that is tailored to the individual’s needs.

Table 7: Synthetic retrieval tasks and examples generated by GPT-4.

We generate 20,000 synthetic tasks and query- Information Retrieval. For passage retrieval
passage pairs using GPT-4. Table 7 presents some  tasks in biomedicine, we select four datasets from
examples of synthetic retrieval tasks and query- the BEIR benchmark (Thakur et al., 2021), each fo-
passage pairs. cusing on biomedical or scientific-related IR tasks
involving complex, terminology-rich documents:
(1) NFCorpus (Boteva et al., 2016) contains 323
queries related to nutrition facts for medical IR,
We conduct a comprehensive evaluation of BMRE-  sourced from 3.6K PubMed documents; (2) Sci-

TRIEVER on eleven datasets (Table 10) across five ~ Fact (Wadden et al., 2020) includes 300 queries,
biomedical tasks, including: aiming to retrieve evidence-containing abstracts
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Dataset Size Line

PubMed (2024) 8M*

https://huggingface.co/
datasets/MedRAG/pubmed

arXiv, MedRxiv, BioRxiv 577K https://huggingface.co/

datasets/mteb/raw_arxiv

Meadow (2020) 460k https://huggingface.
co/datasets/medalpaca/

medical_meadow_cord19

Textbooks (2021) 50K https://huggingface.co/

datasets/MedRAG/textbooks

StatPearls (2024) 54K  https://huggingface.
co/datasets/MedRAG/

statpearls

LitCovid (2021) 70K https://huggingface.co/
datasets/KushT/LitCovid_

BioCreative

S20RC (2020) 600K https://github.com/

allenai/s2orc

MS Marco (2016) 1.2M  https://huggingface.
co/datasets/Tevatron/

msmarco-passage-corpus

Table 8: Biomedical corpora collection for unsupervised
contrastive pre-training. *: We randomly select 8M
corpus from the full collections.

from 5K scientific papers for fact-checking; (3) Sci-
Docs (Cohan et al., 2020) consists of 25K scientific
papers for citation prediction with 1K queries con-
taining article titles; (4) TREC-COVID (Voorhees
et al., 2021) includes 50 queries, with an average
of 493.5 relevant documents per query, specifically
curated for biomedical IR related to COVID-19.

Sentence Similarity. For sentence retrieval
tasks, we evaluate retrieval models on (5)
BIOSSES (Sogancioglu et al., 2017), which com-
prises 100 sentence pairs extracted from PubMed
articles. The similarity of each sentence pair is an-
notated using a 5-point scale, ranging from 0 (no
relation) to 4 (equivalent).

Question-and-Answering. Besides passage and
sentence retrieval tasks, we further evaluate the ef-
fectiveness of retrieval models on several retrieval-
oriented downstream tasks, including biomedical
QA. (6) BioASQ (Tsatsaronis et al., 2015) and
(7) PubMedQA (Jin et al., 2019) are large-scale
biomedical multi-choice QA datasets derived from
PubMed articles. (8) iCliniq (Chen et al., 2020)
contains medical QA pairs from the public health
forum derived from conversations between clini-
cians and patients.

Entity Linking. For additional retrieval-oriented
downstream applications, we conduct two biomed-
ical entity-linking experiments: (9) Drug-

Bank (Wishart et al., 2018) for drug entity match-
ing, and (10) MeSH (Lipscomb, 2000) for biomed-
ical concept linking.

Paper Recommendation. We evaluate the per-
formance of retrieval models on a paper recommen-
dation task using the (11) RELISH dataset (Singh
et al., 2023; Brown et al., 2019). It assigns similar-
ity scores ranging from O (not similar) to 2 (simi-
lar) for locating relevant literature from more than
180K PubMed abstracts.

C Baseline Information

We consider both sparse and dense retrieval models
to provide a comprehensive evaluation of retrieval
models in biomedical applications.

C.1 Baselines for Retrieval Tasks in Main
Experiments

Sparse Retrieval Models. Sparse retrieval mod-
els rely on lexical matching between query and
document terms to calculate similarity scores.

* BM25 (Robertson et al., 2009) is the most com-
monly used sparse retrieval model, employing a
scoring function that calculates the similarity be-
tween two high-dimensional sparse vectors based
on token matching and weighting.

Dense Retrieval Models. Dense retrieval models
utilize dense vector representations to capture se-
mantic similarity between queries and documents.
In our experiments, we consider dense retrieval
models at various scales for a comprehensive eval-
uation: (1) Base Size (<1B parameters), (2) Large
Size (1B-5B), and (3) XL Size (>5B).

e Contriever (Izacard et al., 2022) is a dense re-
trieval model (110M) pre-trained via contrastive
learning on documents sampled from Wikipedia
and CC-Net (Wenzek et al., 2020) corpora.

* Dragon (Lin et al., 2023) is a BERT-base-sized
dense retrieval model (110M) that undergoes pro-
gressive training using a data augmentation ap-
proach, incorporating diverse queries and sources
of supervision.

* SPECTER 2.0 (Singh et al., 2023) is a scien-
tific document representation model (110M) pre-
trained using multi-format representation learn-
ing.
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Dataset Size Task Link Instruction Format

BioMedical Domain

StackExchange 43K QA https://huggingface. Given a biological query from the stack-

(2021) co/datasets/ exchange, retrieve replies most relevant
flax-sentence-embeddings/ to the query
stackexchange_titlebody_best_
voted_answer_jsonl

MedNLI (2017) 4.6K Sentence Similarity https://physionet.org/content/ Given a sentence, retrieve sentences
mednli/1.0.0/ with the same meaning

MQP (2020) 3K Sentence Similarity https://huggingface.co/ Given a sentence, retrieve sentences
datasets/medical_questions_ with the same meaning
pairs

MedQuad (2019) 47K QA https://huggingface.co/ Given a question, retrieve relevant doc-
datasets/lavita/MedQuAD uments that answer the question

HealthcareMagic 30K Dialogue https://huggingface.co/ Given a question with context from on-

(2023b) datasets/medical_dialog line medical forums, retrieve responses

that best answer the question

General Domain

ELIS (2019) 20K* Longform QA https://huggingface.co/ Given a question, retrieve the highest
datasets/elib voted answers on Reddit forum

GooAQ (2021) 100K* QA https://huggingface.co/ Given a question, retrieve relevant pas-
datasets/gooaq sages that answer the question

MS Marco (2016) 500K Web Search https://huggingface.co/ Given a web search query, retrieve rele-
datasets/ms_marco vant passages that answer the query

NQ (2019) 58K QA https://github.com/ Given a question, retrieve Wikipedia
facebookresearch/DPR/blob/ passages that answer the question
main/dpr/data/download_data.py

FEVER (2018) 10K* Fact Verification https://huggingface.co/ Given a claim, retrieve documents that
datasets/BeIR/fever support or refute the claim

NLI (2015) 150K*  Natural Language Inference https://github.com/ Given a premise, retrieve hypotheses

princeton-nlp/SimCSE/blob/
main/data/download_nli.sh

that are entailed by the premise

Table 9: Labeled data collection for instruction fine-tuning with a diverse range of tasks, including both sentence-
level NLI and passage-level QA. *: Only a subset of the original dataset is sampled.

SciMult (Zhang et al., 2023) is a retrieval model
(110M) that employs a multi-task contrastive
learning framework with task-aware specializa-
tion and instruction tuning to enhance perfor-
mance on scientific literature retrieval tasks.

¢ COCO-DR (Yu et al., 2022) is a dense retrieval
model (110M) pre-trained using continuous con-
trastive learning and implicit distributionally ro-
bust optimization on domain-specific corpora, en-
abling adaptation to various downstream tasks.

* QExt (Meng et al., 2022) is a data augmentation
method that trains dense retrieval models by se-
lecting salient spans from the original document,
and generating pseudo queries using transferred
language models.

* SGPT (Muennighoff, 2022) is a dense retrieval
model that employs position-weighted mean
pooling and fine-tunes only bias tensors to learn
effective representations for semantic search.

e MedCPT (Jin et al., 2023) is a biomedical em-
bedding model (220M) specifically designed for
biomedical literature retrieval, leveraging con-
trastive pre-training on medical corpora consist-
ing of 255M user clicks from PubMed search
logs (Fiorini et al., 2018).

* GTR (Ni et al., 2022) is a generalizable dense
retriever that initializes its dual encoders from
TS5 (Raffel et al., 2020). We conduct a compre-
hensive comparison with GTR at varying scales,
including GTR-Large (335M), GTR-XL (1.2B),
and GTR-XXL (4.8B).

¢ InstructOR (Su et al., 2023) is a multitask em-
bedder that generates task- and domain-aware
embeddings for a given text input and its corre-
sponding task instructions, without requiring any
additional training. We evaluate InstructOR at
both base (335M) and large (1.5B) scales.

» E5-Large-v2 (Wang et al., 2022b) adopts a com-
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Dataset Task # Queries # Documents Link Instruction Format
NFCorpus (2016) Biomedical 323 3.6K https://huggingface.co/ Given a question, retrieve rele-
Search datasets/BeIR/nfcorpus vant documents that best answer
the question
SciFact (2020) Fact Verification 300 5K https://huggingface.co/ Given a scientific claim, retrieve
datasets/BeIR/scifact documents that support or refute
the claim
SciDocs (2020) Citation Predic- 1,000 25K https://huggingface.co/ Given a scientific paper title, re-
tion datasets/BeIR/scidocs trieve paper abstracts that are
cited by the given paper
Trec-COVID (2021) Biomedical 50 171K https://huggingface.co/ Given a query on COVID-19, re-
Search datasets/BeIR/trec-covid trieve documents that answer the
query
BIOSSES (2017) Biomedical Sen- 100 — https://huggingface.co/ Given a sentence, retrieve sen-
tence Similarity datasets/biosses tences with the same meaning
BioASQ (2015) Biomedical QA 500 500K http://participants-area. Given a question, retrieve
bioasq.org/datasets/ Pubmed passages that answer
the question
PubMedQA (2019) Biomedical QA 500 211K https://huggingface.co/ Given a question, retrieve
datasets/qiaojin/PubMedQA  Pubmed passages that answer
the question
iCliniq (2020) Biomedical 7.3K 7.3K https://huggingface.co/ Given a question with context
CQA datasets/medical_dialog from online medical forums, re-
trieve responses that best answer
the question
DrugBank (2018) Biomedical En- 4.1K 4.1K https://go.drugbank.com/ Given a drug, retrieve passages
tity Linking for its definition
MeSH (2000) Biomedical En- 29.6K 29.6K https://www.nlm.nih.gov/ Given a concept, retrieve pas-
tity Linking databases/download/mesh. sages for its definition
html
RELISH (2023; 2019) Biomedical Pa- 3.2K 191.2K https://huggingface. Given an article, retrieve Pubmed

per Recommen-
dation

co/datasets/allenai/
scirepeval/viewer/relish

articles that are relevant to this
article

Table 10: Evaluation datasets for biomedical text representation tasks and retrieval-oriented downstream applications.

plex multi-stage training paradigm that first pre-
trains on large-scale weakly-supervised text pairs
and then fine-tunes on several labeled datasets.

BGE-Large (Chen et al., 2024) is a dense re-
trieval model (335M) that uses graph-based em-
bedding techniques and a multi-stage training
paradigm similar to E5 (Wang et al., 2022b).

LLaRA (Lietal., 2023a) is a post-hoc adaptation
of LLMs for dense retrieval (7B) that uses LLM-
generated text embeddings to reconstruct input
sentence tokens and predict next sentence tokens.

RepLLaMA (Ma et al., 2023) is a dense retriever
(7B) that fine-tunes the LLaMA model for effec-
tive representation learning in passage and doc-
ument retrieval using MS MARCO (Bajaj et al.,
2016).

LLM2Vec (BehnamGhader et al., 2024) is an un-
supervised approach that transforms LLMs into
text encoders by enabling bidirectional attention

via masked next token prediction and adopts un-
supervised contrastive learning for sequence rep-
resentation learning.

* ES-Mistral (Wang et al., 2024) is an enhanced
version of the ES (Wang et al., 2022b) that incor-
porates synthetic data generated by LLMs for a
diverse range of text embedding tasks. We con-
sider E5-Mistral (7B) as a concurrent work and
report its performance for reference only.

¢ CPT-text (Neelakantan et al., 2022) is a dense
retrieval model pre-trained on web-scale data.
We only consider its performance as a reference
rather than a fair comparison due to its large size,
as it is initialized from GPT-3 (Brown et al., 2020)
with 175B parameters.

C.2 Baselines for Retrieval-Oriented
Downstream Applications

In experiments for retrieval-oriented downstream
applications, we only compare BMRETRIEVER
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to the strongest, most relevant, and fair baselines,
including: (1) Base Size (<1B): Dragon (Lin
et al., 2023), MedCPT (Jin et al., 2023), and E5-
Large-v2 (Wang et al., 2022b); (2) Large Size
(1B-5B): InstructOR (Su et al., 2023) and SGPT-
2.7B (Muennighoft, 2022); and (3) XL Size (>5B):
ES5-Mistral (Wang et al., 2024).

D Cosine Similarity v.s. Dot Product

We explore different objectives for embedding sim-
ilarity, namely dot product and cosine similarity.
From the experimental results in Figure 5, we em-
pirically observe that the dot product could achieve
a better empirical performance. Thus, we choose to
use dot product by default as our similarity metrics.

B Dot Product
0.60

Cosine Similarity

0.58

S
n
=N

Avg. Performance

4
in
£

410M 1B

Figure 5: Comparison of performance using dot product
and cosine similarity.

E Similarity Score

Figure 6 depicts the distributions of cosine similar-
ity scores for positive and negative embedding pairs
across two datasets. The left side displays the simi-
larity distributions for negative examples, while the
right side shows the distributions for positive exam-
ples. These figures illustrate that BMRETRIEVER
exhibits a larger separation between positive and
negative examples, showing its enhanced ability to
effectively retrieve relevant passages.
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Figure 6: The cosine similarity on positive pair embed-
dings and negative pair embeddings.

F Efficiency

Table 11 exhibits the document encoding speed and
retrieval latency of BMRETRIEVER and baseline

dense retrieval models. While BMRETRIEVER
introduces additional encoding latency compared
to BERT-based retrievers, we do not incorporate
significant overhead when compared to baselines
of similar model size.

Models Size Document Encoding Speed Retrieval Latency

(#docs / s/ GPU) (ms)
MedCPT (2023) 220M 1390.1 11.6
InstructOR (2023)  1.5B 181.2 14.6
SGPT (2022) 2.7B 98.5 355
E5-Mistral® (2024) 7B 51.8 58.6
BMRETRIEVER 410M 471.2 14.6
BMRETRIEVER 1B 194.0 28.6
BMRETRIEVER 2B 166.2 28.6
BMRETRIEVER 7B 51.8 58.6

Table 11: Time complexity of BMRETRIEVER.
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