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Abstract

Heterogeneous networks contain multiple types of nodes and links,

with some link types encapsulating hierarchical structure over en-

tities. Hierarchical relationships can codify information such as

subcategories or one entity being subsumed by another and are of-

ten used for organizing conceptual knowledge into a tree-structured

graph. Hyperbolic embedding models learn node representations in

a hyperbolic space suitable for preserving the hierarchical structure.

Unfortunately, current hyperbolic embedding models only implic-

itly capture the hierarchical structure, failing to distinguish between

node types, and they only assume a single tree. In practice, many

networks contain a mixture of hierarchical and non-hierarchical

structures, and the hierarchical relations may be represented as mul-

tiple trees with complex structures, such as sharing certain entities.

In this work, we propose a new hyperbolic representation learning

model that can handle complex hierarchical structures and also

learn the representation of both hierarchical and non-hierarchic

structures. We evaluate our model on several datasets, including

identifying relevant articles for a systematic review, which is an

essential tool for evidence-driven medicine and node classi�cation.
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1 Introduction

Graphs are popular data structures that describe entities (or nodes)

and their relationships (edges). Most real-world graphs are a mix-

ture of hierarchical and non-hierarchical structures. Humans nat-

urally use hierarchies to organize entity categories, for example,

social networks, sentences in natural language, and evolutionary re-

lationships in phylogenetics [20]. Typical hierarchical structures are

denoted as a directed acyclic tree (e.g., an is-a relationship between

abstractions such as “Elephant” is-a “Ungulate” and “Ungulate” is-a

“Mammal”). As amotivating example, consider the articles published

through ACM. Articles can cite each other (article-article link) and

form a non-hierarchical structure. Each article is also associated

with one or more ACM Computing Classi�cation System (CCS)

concepts, which consist of multiple trees of di�erent depths. Thus,

modeling the ACM graph necessitates handling both hierarchical

and non-hierarchical structures.

Graph representation learning seeks to encode nodes as low-

dimensional distributed vectors that can succinctly summarize the

graph structure [11, 16, 17, 21, 23]. However, most graph repre-

sentation learning approaches focus on modeling non-hierarchical

structures by ignoring the hierarchical structures or considering the

hierarchical (i.e., directed) links as an undirected form. One impor-

tant characteristic of hierarchical structures is that the number of

leaf nodes increases exponentially as the number of levels increases

and can cause distortion issues when embedding such graphs [22].

Hyperbolic space has been proposed for representing latent hierar-

chical structures in graph-structured data [1, 4, 19, 20, 28, 29] as the

volume grows exponentially with the radius and thus can naturally

model the growth in leaf nodes.

Poincaré embedding model [19] is a popular embedding model

in hyperbolic space. The learned node representations are de�ned

within the n-dimensional Poincaré ball such that parallel points

along two lines grow exponentially as the points get near the sur-

face of the ball. The model implicitly learns the representations of

the hierarchy such that root nodes generally lie at the origin while

nodes at lower levels of the hierarchywill reside closer to the surface

of the ball. Yet there are several limitations to existing models. First,

they assume a hierarchical structure with a single root node and

may not yield reasonable representations in the presence of multi-

ple root nodes (e.g., multiple trees within CCS). Figure 1(a) shows

an example of multiple root nodes that are depicted as a red circle.

Second, when there is a poly-hierarchical structure (i.e., a child can
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(a) Toy example with mixed

structures
(b) Root Regularization

(c) Distance-based Child

Regularization

(d) Non-hierarchical Structure

Embedding

Figure 1: An example of the embedding results for the toy example (a) after applying each component. The circle nodes are

from the hierarchical structure, and the star and square nodes are non-hierarchical structures. Some edges are not illustrated in

(a) for simplicity. Note that non-hierarchical structures are not shown in (b) and (c). (d) shows the embedding results of using a

hyperbolic entailment cone, and the shadowed area shows the region in the nodes in the non-hierarchical structure can reside.

have multiple parents from di�erent trees), the implicit modeling of

the hierarchy can result in representations where the child resides

closer to the origin than the parent. Third, limited work considers

graphs with mixed hierarchical and non-hierarchical structures [9].

Unfortunately, it relies on the product manifold of multiple hyper-

bolic, sphere, and Euclidean components, which leads to higher

dimension sizes and increased computational costs. Last, recent

works [5, 13, 14, 17] have focused on the semi-supervised or super-

vised setting, partly due to the advantages of graph neural networks.

However, this often assumes labels and computational resources

necessary to �ne-tune are available.

To address the above limitations, we propose HypMix, an un-

supervised Hyperbolic representation learning model for graphs

withMixed hierarchical and non-hierarchical structures. HypMix

only relies on a single hyperbolic manifold. For graphs with hier-

archical structures that contain multiple root nodes, we propose a

regularization term to embed the root nodes close to the origin of

the Poincaré ball. To tackle challenges related to poly-hierarchical

structures, we propose two regularizations: (1) a distance-based

restriction to embed parent nodes closer to the origin than their

children and (2) using the hyperbolic entailment cone [7] to ensure

two children reside in a similar Poincaré region. We also introduce

the use of the hyperbolic entailment cone to the non-hierarchical

structures to better embed these nodes in the Poincaré ball. We con-

duct extensive experiments across two evaluation tasks and three

real-world datasets to demonstrate the e�ectiveness of HypMix

over existing baselines. We also perform an ablation study to better

understand the bene�ts of the three components of our model.

2 HypMix

HypMix adopts Poincaré embedding [19], which learns the repre-

sentation of hierarchical structure into a hyperbolic space or an

n-dimensional Poincaré ball. However, the basic Poincaré embed-

ding model does not always learn the representation that preserves

the hierarchical structure. For example, Poincaré embedding model

cannot handle multiple root nodes which leads the root nodes to

be placed in the outer part of the hyperbolic space than their child

nodes. Also, because of the poly-hierarchical structures, some par-

ent nodes are located further from the origin than their child nodes.

Another limitation of Poincaré embedding is that it is a model only

for hierarchical structures, which makes it challenging to learn the

representation with non-hierarchical structures. To resolve these

limitations, we use two regularizations to learn a better representa-

tion of the hierarchy structure and use hyperbolic entailment cone

[7] also to learn the representation of non-hierarchical structures.

2.1 Root Regularization

One limitation of existing Poincaré-based models is the implicit de-

sign for a hierarchical structure with a limited number of roots (i.e.,

a small number of trees). However, some hierarchical taxonomies

may have multiple categories or concepts that can be further sepa-

rated into subcategories. For example, ACM CCS contains 13 root

nodes (e.g., Networks, Theory of computation, Security and Privacy,

etc.). Unfortunately, when the hierarchical structure encompasses

multiple trees, the root embeddings of the tree may reside closer to

the surface of the Poincaré ball. This restricts the embedding space

to learn the hierarchical structure of subsequent children nodes

and thus may result in suboptimal leaf embeddings.

To address this limitation for hierarchical structures with mul-

tiple root nodes, we propose a regularization term to encourage

the root node to reside closer to the origin. In this manner, the

subtree has su�cient space and more �exibility to better preserve

deeper trees. Let the distance between two nodes, D, E ∈ �3 where

� = {G ∈ R3 , | |G | | < 1} is the open d-dimensional unit ball and

| | · | | denotes the Euclidean norm [19] be de�ned as:

3 (D, E) = 0A22>Bℎ(1 +
2| |D − E | |2

(1 − ||D | |2) (1 − ||E | |2)
) (1)

Then, given a root node, =A>>C , we denote the distance to the origin,

>A868= as 3 (>A868=, =A>>C ) and impose the following condition:

3 (>A868=, =A>>C ) < X, (2)

where X is a user-speci�ed parameter (shown in Figure 1(b)).

2.2 Child Regularizations

Another limitation of the Poincaré embedding model is that it only

implicitly captures the hierarchical structure by modeling undi-

rected edges. As such, it may not be able to distinguish which node

is a child or parent and place child nodes closer to the origin than

their parents. This is particularly di�cult for a poly-hierarchical

structure where a node may have parents from di�erent trees. For
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example, ACM CCS is a poly-hierarchical ontology where concepts

can belong to multiple categories. In this scenario, the ideal rep-

resentation is the parent embedding, which resides closer to the

origin than the child to re�ect the hierarchical structure.

2.2.1 Distance-based Child Regularization. We �rst introduce a

regularization term that restricts a parent from being further in

distance from the origin than its child. Given two nodes, ? and �

where ? is the parent node and� are the children nodes of ? . We en-

force HypMix to learn a representation using the distance between

the two nodes, Eq. (1), that satis�es the following condition:

3 (>A868=, ?) < 3 (>A868=, 28 ), ∀28 ∈ � (1 ≤ 8 ≤ |� |). (3)

Note that |C| denotes the number of children nodes of the parent

node ? . Figure 1(c) demonstrates the learned embedding after the

child regularization is applied. We brie�y note that the root regu-

larization is not applied in this scenario. As shown in the �gure,

the child node resides further from the origin than its parent node

and explicitly preserves the hierarchical structure where nodes at

lower levels will be closer to the surface of the ball.

2.2.2 Hyperbolic Entailment Cone Regularization. The distance-

based child regularization (Equation (3)) can help preserve the

relationship between one parent and one child, yet two children

of the same parent may not reside in a “similar” Poincaré region.

Moreover, under the Poincaré embedding model, most points col-

lapse on the border of the Poincaré ball. As such, we posit that a

partial ordering where each subtree naturally de�nes the Poincaré

region can further improve the learned embedding of the nodes

within the tree. The idea is that a parent node will de�ne a cone in

the Poincaré space for which its children can reside and enable bet-

ter di�erentiation of the node embeddings between multiple trees.

Thus, if a child shares two parents, then it can only be nested in the

intersection of the two cones de�ned by the parents. To achieve

this, we leverage the hyperbolic entailment cone [7] to place the

children nodes within the hyperbolic cones de�ned by the parent.

Hyperbolic entailment cones are inspired by the generalized idea

of order embedding [25]. The idea is to use geodesically convex

entailment cones to induce the partial ordering relation in the em-

bedding space. The cones exhibit 4 intuitive properties that include

axial symmetry, rotation invariance, continuous cone aperture func-

tions, and transitivity of nested angular cones. Let �G denote the

Poincaré entailment cone at apex G ∈ �3 and be de�ned as:

�G =

{

~ ∈ �3 | ∠G~ ≤ sin
−1 ( 

1 − ||G | |2

| |G | |
)
}

, (4)

where ∠G~ denotes the angle between the half-lines connecting x

and y as well as the origin and x, and  ∈ ' is a hyperparameter.

Our entailment cone regularization then requires the following:

28 ∈ �? ,∀28 ∈ � (1 ≤ 8 ≤ |� |). (5)

In other words, each child must belong to the angular cone de�ned

by the parent. Figure 1(d) demonstrates the hyperbolic entailment

cone in a hierarchical structure as illustrated by the circle nodes.

2.3 Non-hierarchical Structure Embedding

Across many real-world graphs, nodes may capture both hierarchi-

cal and non-hierarchical structures. The above regularizations (root,

distance-based child, and hyperbolic entailment cone) can preserve

the hierarchical structures, yet do not account for links to nodes

that may not have a non-hierarchical structure. As a motivating

example, consider articles published at the various ACM confer-

ences. Each article can be tagged with multiple CCS categories

(which exhibit a hierarchical structure), yet the articles themselves

do not have a hierarchical structure. As such, the natural question

is how to leverage the hierarchical structure to better embed the

non-hierarchical nodes in the hyperbolic space.

Suppose we have two node types, � = {ℎ1, ℎ2, ..., ℎ=} and + =

{E1, E2, ..., E<}, where there is a hierarchical relationship between

the nodes in � while the nodes in + have non-hierarchical struc-

ture (i.e., can be linked to each other but not as a parent-child

relationship), and there are also non-hierarchical links between �

and + . Note that any nodes in + can have multiple relations with

the nodes in � , and linked nodes in � can be located at any level in

the tree. In this scenario, the hierarchical structure of � can serve

as a guideline for learning the representation of the nodes in + .

Our idea is that any node E8 that is linked to a node in ℎ 9 should

then naturally reside in the same angular cone region de�ned by

the node through the hyperbolic entailment cone:

E8 ∈ �ℎ Ġ
, ∀E8 ∈ + 0=3 (E8 , ℎ 9 ) (6)

where �ℎ Ġ
is the entailment cone region de�ned using Eq. (4), and

(E8 , ℎ 9 ) denotes that the nodes E8 and ℎ 9 are linked. Thus, nodes in

a non-hierarchical structure should also be embedded within the

hyperbolic entailment cone of the associated hierarchical nodes. In

this manner, hierarchical nodes that are indirectly linked together

through a non-hierarchical node will reside in similar Poincaré

space as the non-hierarchical must reside in the intersection. The

blue area in Figure 1(d) is the region where the nodes in non-

hierarchical structures can be located.

3 Experiment Settings

3.1 Evaluation Tasks

We use two evaluation tasks, systematic reviews (SRs) and node

classi�cation (NC). In health research, SRs are crucial for bridging

the research-to-practice gap and serve as the basis for evidence-

based practice [2, 3, 8]. Each article can be associated with multiple

MeSH terms and the associated MeSH terms can be within the

same MeSH hierarchy or tree (i.e., terms that are supported by a

broader MeSH term) or can be in a di�erent MeSH tree. We use

the PGB benchmark dataset [18], and follow their experimental

setting for evaluating the embedding model using three di�erent

SR datasets: Cohen [6], SWIFT-Review [12], and CLEF-TAR [15],

where the goal is to predict whether the article passes the abstract

screening process. Note that Cohen contains 15 SR topics, whereas

the SWIFT-Review and CLEF-TAR both contain 3 SR topics each.

For the SR task, we use 2 node types, Paper and MeSH terms, and

3 edge types, P-P, P-M, and M-M. Only the edge type, M-M, has a

hierarchical structure, while the others are non-hierarchical.

For the NC task, we construct two datasets of real-world net-

works, DBLP1 and YELP2 with explicit hierarchical structure. For

the DBLP dataset, we use the topic taxonomy from the ACM CCS

1https://dblp.uni-trier.de/xml/
2https://www.yelp.com/dataset
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Table 1: AUC performance for the SR and NC tasks. The best

score is bolded and the second highest is underlined. The SR

topics follow the same order as the PGB results [18].

Dataset LINE GS Poincaré HSHNE ' �ℎ � HypMix

ACE 0.544 0.546 0.524 0.586 0.534 0.532 0.556 0.589
ADHD 0.533 0.537 0.522 0.540 0.523 0.533 0.539 0.552
AH 0.541 0.543 0.518 0.547 0.514 0.534 0.547 0.567
AAP 0.547 0.547 0.522 0.555 0.523 0.534 0.552 0.561
BB 0.564 0.568 0.554 0.584 0.551 0.555 0.579 0.59
CCB 0.566 0.57 0.549 0.597 0.555 0.559 0.581 0.599
Estrogens 0.534 0.536 0.53 0.543 0.529 0.534 0.539 0.548
NSAIDS 0.549 0.553 0.536 0.578 0.535 0.54 0.568 0.588
Opioids 0.557 0.561 0.544 0.604 0.539 0.546 0.583 0.606
OH 0.509 0.508 0.502 0.530 0.502 0.504 0.51 0.535
PPI 0.558 0.56 0.523 0.586 0.527 0.533 0.585 0.61
SKM 0.562 0.565 0.534 0.582 0.532 0.542 0.581 0.612
Statins 0.549 0.551 0.534 0.573 0.543 0.542 0.558 0.577
Triptans 0.551 0.554 0.53 0.592 0.534 0.544 0.565 0.596
UTI 0.556 0.559 0.537 0.572 0.542 0.543 0.569 0.609

TG 0.579 0.584 0.566 0.643 0.579 0.577 0.632 0.645
PFOS-PFOA 0.582 0.584 0.572 0.630 0.581 0.573 0.622 0.641
BPA 0.546 0.545 0.518 0.561 0.524 0.523 0.552 0.57

CD012661 0.547 0.552 0.532 0.590 0.54 0.538 0.576 0.598
CD008803 0.552 0.561 0.544 0.590 0.554 0.552 0.579 0.604
CD005139 0.573 0.583 0.556 0.605 0.566 0.561 0.596 0.627

DBLP 0.581 0.583 0.578 0.643 0.576 0.579 0.632 0.657
YELP 0.555 0.556 0.545 0.598 0.545 0.546 0.589 0.602

codes, and the mapped information of authors and CCS codes are

provided by Yang et al. [27]. We de�ne a binary classi�cation prob-

lem of whether the author has a link to one of the four selected CCS

codes, “machine learning”, “arti�cial intelligence”, “information sys-

tems applications”, and “information retrieval” or not. The dataset

has 2 node types, Author and CCS codes, and 3 edge types, A-A,

A-C, and C-C where the only edge type C-C has the hierarchical

structure, and others are non-hierarchical. For the YELP dataset,

we follow the same setting as TAXOGAN [27], which generates

the business network based on the customers’ reviews with the

category of the business. We set it as a binary classi�cation problem

by setting two classes, stars > 3 and stars ≤ 3. The dataset has 2

node types, Business and Category, and 3 edge types, B-B, B-C, and

C-C. From the edge types, C-C has a hierarchical structure, and

other edge types are non-hierarchical. We randomly split the data

into 3 train-test trials of 70%-30%, respectively.

3.2 Baseline Models

We benchmark HypMix with 4 baseline models. We also analyze

three of the components that we propose. As HypMix is an unsuper-

vised model, we compare it with an unsupervised network embed-

ding models that use Euclidean space, LINE [24], and GraphSAGE

(GS) [10], and hyperbolic space, Poincaré Embedding [19], and Hy-

perbolic Space Heterogeneous Network Embedding (HSHNE) [26].

We also compare three proposed components which are HypMix'
('), HypMix�ℎ (�ℎ), and HypMix� (�). HypMix' only applies the

root regularization technique or Equation (2) and HypMix�ℎ only

applies the child regularization technique, Equation (3). In addition

to all the regularization techniques (root and child regularization),

HypMix� uses the hyperbolic entailment cone to embed the hierar-

chical structure, Equation (5) but does not use it for non-hierarchical

structures. We use a softmax layer to train the classi�er. For the

Euclidean space models, we use the dimension size 256 (3 = 256)

for both SR and NC tasks. For the hyperbolic space models, we use

3 = 50 for the SR task, and 3 = 30 for the NC task due to the smaller

size of the hierarchical structure. All the baselines are trained using

a single g4dn AWS instance with NVIDIA T4 GPU.

4 Evaluations

The average AUC score on the three splits is reported in Table 1.

Note that the �rst 21 datasets from the table are the SR tasks: Cohen,

SWIFT-Review, and CLEF-TAR, respectively.

For the SR task, we observe that HypMix outperforms all other

baselines from 0.002 to 0.037 by comparing with the second-best

AUC score. This indicates the importance of e�ectively modeling

both the hierarchical and non-hierarchical structures. Moreover, it

demonstrates the e�ectiveness of HypMix in the SR task. Between

the original Poincaré embedding model and HypMix, the results

show that HypMix signi�cantly outperforms the former and high-

lights the e�ectiveness of the components that we propose. It also

shows that the original model cannot handle multiple trees and

mixed node types. By comparing the results with LINE and GS (Eu-

clidean space), HypMix outperforms both models, which illustrates

the importance of using the hyperbolic space appropriately to em-

bed hierarchical relations. Even if we use a larger dimension for

both LINE and GS (3 = 256), they still fail to outperform HypMix.

HSHNE outperforms Euclidean space models as HSHNE is a model

to embed heterogeneous networks into a hyperbolic space which

shows the e�ectiveness of the hyperbolic space.

For the NC task, we observe similar performance trends as the

SR tasks in which HypMix� (�) and HypMix o�er the best per-

formance. We also observe that LINE and GS perform similarly

to the Poincaré embedding results, potentially due to the smaller

dimension size (3 = 30). This demonstrates the limitations of em-

bedding hierarchical and non-hierarchical structures in Euclidean

space. Since DBLP and YELP contain more tree-like hierarchical

structures than the MeSH hierarchy, HSHNE and HypMix yield

higher results compared to the SR task.

5 Conclusion

In this paper, we propose HypMix, an unsupervised hyperbolic rep-

resentation learning for graphs with mixed hierarchical and non-

hierarchical structures. We resolve the limitations of the Poincaré

embedding model regarding handling multiple roots and poly-

hierarchical structure. We propose root regularization to learn the

representations of the root nodes to reside closer to the origin of the

hyperbolic space. We also introduce two child regularizations so

that the parent node is embedded closer to the origin than its child

nodes and de�ne the angular region, or entailment cone, for its

children. Also, to learn the representation of the non-hierarchical

structure, we adopt the hierarchical structure entailment cone to

de�ne the region of the non-hierarchical nodes. The extensive ex-

periments on 21 real-world SR tasks and 2 real-world NC tasks

show that the HypMix outperforms existing unsupervised graph

representation learning models.
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