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Abstract
Linking (aligning) biomedical concepts across diverse data sources
enables various integrative analyses, but it is challenging due to the
discrepancies in concept naming conventions. Various strategies
have been developed to overcome this challenge, such as those
based on string-matching rules, manually crafted thesauri, and ma-
chine learning models. However, these methods are constrained
by limited prior biomedical knowledge and can hardly generalize
beyond the limited amounts of rules, thesauri, or training samples.
Recently, large language models (LLMs) have exhibited impressive
results in diverse biomedical NLP tasks due to their unprecedent-
edly rich prior knowledge and strong zero-shot prediction abilities.
However, LLMs su�er from issues including high costs, limited
context length, and unreliable predictions. In this research, we pro-
pose PromptLink, a novel biomedical concept linking framework
that leverages LLMs. Empirical results on the concept linking task
between two EHR datasets and an external biomedical KG demon-
strate the e�ectiveness of PromptLink. Furthermore, PromptLink is
a generic framework without reliance on additional prior knowl-
edge, context, or training data, making it well-suited for concept
linking across various types of data sources. The source code of this
study is available at https://github.com/constantjxyz/PromptLink.
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• Applied computing → Health care information systems; •
Information systems → Retrieval models and ranking;
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1 Introduction
Biomedical concept linking studies the intricate task of linking
closely related concepts across di�erent data sources by leveraging
their semantic meanings and underlying biomedical knowledge, as
exempli�ed in Figure 1 [29]. This linking process is crucial for en-
abling integrative analyses, as biomedical concepts obtained from
diverse sources o�er multifaceted views of biomedical knowledge
and data [19, 32]. For example, the electronic health record (EHR),
which is regarded as a valuable asset for comprehensive patient
health analysis, contains various digital medical information in-
cluding tabular data, clinical notes, and other types of patient data
[1, 33, 39]. Similarly, the knowledge graph (KG), playing an impor-
tant role in biomedical research, provides structured knowledge,
such as de�nitions of concepts and their interrelationships [21].
However, the cross-source biomedical linking task is challenging
due to discrepancies in the biomedical naming conventions used in
di�erent systems [15]. For example, a KG may mention a disease
as “Ellis-Van Creveld syndrome”, while an EHR may refer to the
same disease as “Chondroectodermal dysplasia”. This inconsistency
presents a strong barrier to cohesive data analysis.

Figure 1: A toy example of biomedical concept linking. Le�:

concepts in the EHR. Right: concepts in the biomedical KG.

The challenge of biomedical concept linking has motivated the
development of various methods. Conventional methods focus
on setting string-matching rules [7, 13] and leveraging constructed

thesauri [3, 9, 27]. However, their reliance on �xed rules and crafted
thesauri limits coverage and generalizability in real-world scenar-
ios [30]. Addressing these limitations,machine learning-based

methods have been widely explored, avoiding the manual design of
rules or thesauri. These methods essentially transform biomedical
concepts from raw text into embeddings (latent vector representa-
tions), which are then used to compute similarity scores via distance
functions (e.g. cosine similarity) or learning-based scoring functions
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(e.g. bilinear attention [14]). Various models have been used to ob-
tain biomedical concept embeddings, including pre-trained language
models (PLMs) [34] that capture �ne-grained semantic relations
through extensive training on biomedical corpora [2, 16, 17, 38],
and graph neural networks (GNNs) [42] that capture both semantics
and relations of biomedical concepts [4, 10, 18]. Despite the notable
achievements of these ML-based linking methods, they are data-
hungry and require signi�cant supervision signals when adapted
into novel downstream applications. They face challenges due to
the costly data annotation and model training processes.

Recently, large language models (LLMs) have exhibited impres-
sive performances in various NLP tasks, due to their unprecedent-
edly rich prior knowledge and language capabilities [31, 35, 43],
enabling various applications in a zero-shot learning setting [19].
Therefore, LLMs provide a promising solution for linking related
concepts across di�erent systems. Meanwhile, LLMs also face chal-
lenges including the design of e�ective and cost-e�cient prompts
within the context length limits [40], and the NIL prediction capa-
bility of reliably rejecting all candidates when correct concepts are
absent, instead of returning relatively close but incorrect ones [23].

In this paper, we propose PromptLink, leveraging LLMs for the
cross-source biomedical concept linking task. Considering LLMs’
high cost and context length constraints, we �rst employ a pre-
trained SAPBERT language model to generate biomedical-aware
concept embeddings and retrieve top candidates based on the co-
sine similarities of these embeddings. We then design a novel two-
stage prompting mechanism for the GPT-4 model to derive reliable
linking predictions. The �rst stage e�ciently �lters out irrelevant
candidates, thereby minimizing the response token numbers re-
quired in the subsequent stage. The second stage generates the
�nal linking results and incorporates a self-veri�cation prompt to
address the NIL prediction challenge, e�ectively rejecting all can-
didates when none are relevant. In the experiments, PromptLink
demonstrates exceptional performance, surpassing various existing
concept linking methods by over 5% in two scenarios of biomedical
concept linking between EHR and external biomedical KG, which
could be attributed to LLM’s intrinsic strong biomedical knowledge.
Moreover, PromptLink works as a zero-shot framework due to the
utilization of pre-trained language models, eliminating the need for
a training process. It is also a versatile framework that performs
well even when only concept names, without concept context or
topological structure, are provided. Given its various advantages,
PromptLink boasts strong generalization capabilities, making it
suitable for a wide range of biomedical research and applications.

2 Biomedical Concept Linking

2.1 Problem De�nition
The biomedical concept linking links biomedical concepts across
sources based on semantic meanings and biomedical knowledge,
using only concept names to cover broader applications. This task
di�ers from existing tasks such as entity linking [30], entity align-
ment [19], and ontology matching [11] that require extra contextual
or topological information. In this study, we link the EHR concepts
to corresponding concepts in a biomedical KG. We de�ne an EHR
database D, a biomedical KG G, and the linking task as follows:
De�nition 1 (EHR). An EHR database D is a relational database
D = (Č,ý,Ē ), with Č being patient identi�ers, ý patient attributes,

Ē ∈ Č ×ý the values of these attributes. Additionally,ĉ represents
multi-token biomedical concepts associated with patient attributes.
De�nition 2 (Biomedical KG). A biomedical KG is a multi-relation
graph G = (ÿ, Ď, ĎĐ ), where ÿ are concepts, Ď are relation names,
and ĎĐ ∈ ÿ × Ď ×ÿ are the relational triples among them.
De�nition 3 (Biomedical Concept Linking). Link identi�ed biomed-
ical concepts from an EHR D to a biomedical KG G based on
semantic meanings and biomedical knowledge, forming linkages
Ĉć = {(ģğ , ę Ġ ) |ģğ ∈ ĉD , ę Ġ ∈ ÿG ∪NIL}. If a conceptģ from Ā is
not in ă , link it to a special “NIL” entity, indicating it is unlinkable.

2.2 PromptLink
We propose PromptLink, a novel LLM-based solution for cross-
source biomedical concept linking, as illustrated in Figure 2. Ad-
dressing LLMs’ high cost and limited input text length, we �rst
employ a biomedical-specialized pre-trained language model to
generate concept embeddings and retrieve top candidates via co-
sine similarities. Subsequently, we employ a two-stage prompting
mechanism with GPT-4 to generate the �nal linking predictions.
Concept representation and candidate generation. After pre-
processing text by lowercasing and removing punctuation, we use
a pre-trained LM (speci�cally SapBERT [17]), to create embeddings

Ğ ∈ R1×Ě for EHR conceptsģ and KG concepts ę , represented as
Ğģ = ČĈĉ (ģ) and Ğę = ČĈĉ (ę), respectively. For concepts that
span multiple tokens, the token-level embeddings are averaged
to create the concept embedding. This model helps to project the
semantic meanings and prior biomedical knowledge into the embed-
ding space. For candidate generation, we compute cosine similarity
ď ∈ [0, 1] between pairs of EHR concept embedding Ğģ and KG
concept embedding Ğę , represented as: ď = ęĥĩ (Ğģ,Ğę ) . Given
each input query EHR conceptģğ , We select the top-ć (ć=10) KG
concepts [ę1, ę2, . . . , ęć ] with the highest similarities as candidates
for further GPT-based linking prediction.

Linking prediction using two-stage prompts. The next step of
our framework is generating linking predictions of queryģğ over
the top-ć candidate [ę1, ę2, . . . , ęć ] using GPT-4 model, leveraging
its text comprehension ability, logical reasoning ability, and prior
biomedical knowledge [5, 31]. In this step, we design a novel two-
stage prompt for our task, as can be seen in Figure 2. Combining the
two prompts utilizes their strengths and mitigates weaknesses. The
�rst stage focuses on concept pairs to �lter out unrelated candidates.
The second stage evaluates all candidates in a broader context to
identify the closest match or reject all unmatch candidates.

In the �rst stage, the LLM is prompted to check if a concept
pair (ģğ , ę Ġ ) should be linked. By de�ning the response structure,
the LLM can return answers in speci�ed formats. To improve the
prompt response quality, we adopt the self-consistency [36] prompt-
ing strategy that repeatedly prompts the same question to the LLM
multiple times. Speci�cally, we prompt each concept pair (ģğ , ę Ġ )
for Ĥ = 5 times, thus obtaining the belief score þğ, Ġ ∈ [0, 1] by:

þğ, Ġ =
number of “yes” responses

Ĥ
.

Considering the belief scores across di�erent candidates, we derive a
comprehensive �lter strategy to exclude irrelevant candidates, using
parameter ă (set as 0.8 × Ĥ). This approach ensures that irrelevant
candidates are not considered in the next stage, optimizing both
e�ciency and e�ectiveness. The approach is described as follows:
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Figure 2: Overview of our proposed PromptLink framework.

• IfģėĮ (þğ,1, · · · , þğ,ć ) g ă , this indicates some candidates closely
align with the query concept. In such cases, candidates with belief
scores of zero will be �ltered out as they are deemed irrelevant
to the query concept and there are closely aligning alternatives.
This removes many irrelevant candidates, thereby optimizing
both e�ciency and e�ectiveness for the subsequent stage.

• Otherwise, the range of di�erent candidates’ belief scores is not
wide enough to justify �ltering. Thus, all ć candidates will be
subjected to double-checking by the second-stage prompt.
In the second stage, the LLM evaluates the ć1 candidates re-

tained from the �rst stage’s �ltering process [ę′
1
, ę′
2
, . . . , ę′

ć1
], where

ć1 f ć , using a compositional prompt that consists of two con-
secutive questions to perform complex reasoning. Speci�cally, the
LLM is asked to (1) label the relationship between the query con-
cept and all candidate concepts as “exact match”, “related to”, or
“di�erent from”; (2) use self-veri�cation prompts to either identify
the closest candidate or dismiss all candidates if none are close,
thus the �nal concept linking result of this prompt is ć2 (usually
ć2 = 1) item from [ę′

1
, . . . , ę′

ć1
] ∪ [NIL]. In this stage, we also use

the self-consistency strategy that prompts one question for the
same Ĥ times. Subsequently, we calculate the occurrence frequency
Ĝğ, Ġ ∈ [0, 1] for answers in [ę′

1
, ę′
2
, . . . ,NIL] and retrieve the �nal

linking result for query EHR conceptģğ as follows:
• If Ĝğ, NIL > 0.5, this indicates a high probability that no candidates
are appropriate. Thus, “NIL” is chosen as the �nal prediction.

• Otherwise, the candidate ę Ġ with the highest frequency Ĝğ, Ġ is de-
cided as the �nal prediction. In case of a tie, the one ę Ġ with higher
embedding similarity ďğ, Ġ to the query conceptģğ is chosen.

3 Experiments & Discussions

3.1 Implementation Details
Datasets. In our experiments, we curate two biomedical concept
linking benchmark datasets: MIID (MIMIC-III-iBKH-Disease) and
CISE (CRADLE-iBKH-Side-E�ect). MIID comprises 1,493 diagnosis
concepts from MIMIC-III [12], which is an EHR dataset includ-
ing over 53,423 patient records, and 18,697 disease concepts from
iBKH [32], which is a KG dataset with 2,384,501 entities. To con-
struct MIID, we �rst remove exact matches between MIMIC-III
diagnosis concepts and iBKH disease concepts. Then, we link the
remaining MIMIC concepts to iBKH using mappings between ICD-
9 [8] and UMLS CUI [28] codes. We use the linked concept pairs
as ground-truth labels only for evaluation purposes. CISE contains

1,500 CRADLE [39] diagnosis concepts and 4,251 iBKH drug side-
e�ect concepts, constructed by using CUI [28] and SNOMED CT [6]
codes. Ground-truth matched pairs are also only used for evaluation
purposes.
Experimental Settings. Following the de�nition in Sec. 2.1 and
recognizing the scarcity of supervision in the biomedical domain,
we mainly focus on the biomedical concept linking under the zero-
shot setting. Additionally, our biomedical concept linking task solely
relies on concept names for broad real-world application coverage.
Given this characteristic of our data, graph-based linking methods,
such as selfKG [18], are not applicable as they need topological in-
formation to establish concept alignment. Similarly, thesauri-based
methods, such as MetaMap [3], are unsuitable as they only estab-
lish links between concepts existing in the pre-de�ned vocabulary.
Therefore, the following baseline methods are compared:
• Conventional methods: Cosine Distance, Jaccard Distance,
LevenshteinDistance [24], Jaro-WinklerDistance [37],BM25

[25]. These methods measure the concept pairs’ string similarity
and relevance and then obtain the linking prediction result.

• Machine learning-based methods: Pre-trained language mod-
els are used to generate concept embedding and linking predic-
tion results (according to embedding cosine similarity). Specif-
ically, we select representative PLMs including BioBERT [16],
BioGPT [20],BioClinicalBERT [2],BioDistilBERT [26],KRISS-
BERT [41], ada002 [22], and SAPBERT [17].

3.2 Concept Linking Experiment Results
Table 1 shows the accuracy of our proposed PromptLink along
with baseline methods, when every method links a query EHR
concept ģğ with their predicted top-1 KG concept ę Ġ . As can be
seen, PromptLink outperforms competing approaches across both
datasets in terms of zero-shot accuracy, underscoring the superi-
ority of our LLM-based concept linking methodology. Among the
compared methods, SAPBERT, a SOTA biomedical entity linking
method, achieves the second-highest performance. Moreover, con-
ventional methods lag behind machine learning methods, which
leverage embeddings from pre-trained language models to e�ec-
tively match conceptually similar but lexically distinct entities like
“Ellis-Van Creveld syndrome” and “Chondroectodermal dysplasia”.

3.3 Ablation Studies

Prompt E�ectiveness and E�ciency. We conduct ablation stud-
ies to reveal the e�ectiveness and cost-e�ciency of the prompt used



SIGIR ’24, July 14–18, 2024, Washington, DC, USA. Yuzhang Xie et al

Table 1: Comparison of the zero-shot accuracy for di�erent

methods on MIID and CISE.

Method Acc-MIID Acc-CISE

Cosine Distance 0.2981 0.2907
Jaccard Distance 0.2123 0.3280

Levenshtein Distance 0.1995 0.3033
Jaro-Winkler Distance 0.3141 0.3693

BM25 0.4722 0.3993

BioBERT 0.3423 0.5280
BioClinicalBERT 0.3007 0.5007

BioGPT 0.3530 0.5093
BioDistilBERT 0.4240 0.5293
KRISSBERT 0.5265 0.5787

ada002 0.5968 0.6773
SAPBERT 0.7213 0.8167

PromptLink 0.7756 0.8880

Table 2: Ablation results with di�erent prompting methods

used by PromptLink on the MIID dataset.

Prompting Methods Acc Token Cost

Before Prompting 0.7213 N/A
First-stage Prompt 0.7595 995,836 ($36.59)

Second-stage Prompt 0.7634 1,681,987 ($88.69)
Two-stage Prompts 0.7756 1,594,996 ($66.25)

in our approach, as shown in Table 2. This comparison uses the same
input data and 10 linking candidates across various prompts. In the
table, the “Before prompting” denotes the performance of using only
embedding similarity obtained from the pre-trained LM, while other
methods use LLM to predict linking results based on LM-generated
candidates. From Table 2, the “Before Prompting” method achieves
the worst accuracy, demonstrating that linking performance could
be improved by using LLM. Notably, PromptLinkwith both two-
stage prompts achieves the best accuracy with the second-highest
cost (∼ 1.7M total tokens, costing approximately $66.25), indicating
that the combined e�ect of the prompts substantially enhances accu-
racy, with the costs being moderated by the �rst stage’s pro�ciency
in eliminating unrelated candidates.

NIL Prediction. Another ablation study examines PromptLink’s
NIL prediction ability. In our built MIID and CISE datasets, each
query EHR conceptģğ is designed to have a ground-truth linking
KG concept ę Ġ . To re�ect the real-world unlinkable scenario, we ex-
tend our MIID dataset into “MIID-NIL” which contains a proportion
(25%) of unlikable EHR conceptģğ . In Figure 3, the overall accuracy
of PromptLink in the MIID-NIL dataset is 0.8145. Speci�cally for the
unlikable concepts, PromptLink outputs the expected “NIL” with
0.9290 accuracy, which validates the NIL prediction ability of our
proposed method. Existing methods highly rely on the hard-coded
threshold. For example, we could threshold SAPBERT’s generated
embeddings’ cosine similarity, then output the KG concept with
the highest similarity above the threshold or “NIL” when none are
above. However, this straightforward idea, requiring a manually
set threshold, is less e�ective than PromptLink. As shown in Figure
3, SAPBERT achieves lower accuracy (maximum value 0.7920) no
matter what the threshold value is, which corresponds to our as-
sumptions. When the threshold value is low, SAPBERT generates
many wrong predictions to unlinkable query concepts; otherwise,
SAPBERT continues to output “NIL” for many linkable concepts.

Figure 3: Accuracy on

MIID-NIL: Traditional ML-
based methods outputting
matching scores have varying
NIL prediction performance
based on the selected thresh-
old, while PromptLink does
not need a threshold yet
consistently performs better.

3.4 Case Studies
In case studies on linking EHR concepts to MIID’s KG disease con-
cepts, three scenarios are presented: (1) concepts assessed by both
ground-truth labels and a clinician; (2) concepts evaluated by a
clinician due to missing ground-truth labels; (3) irrelevant concepts
judged by a clinician. The linking results of PromptLink and SAP-
BERT are presented in Table 3. Overall, PromptLink could link
biomedical concepts more accurately and appropriately. For casse
I-V, PromptLink’s linking results are justi�ed by the ground-truth
label and clinician. Speci�cally, for cases I and II, PromptLink accu-
rately links the EHR concepts to conceptually similar but lexically
distinct KG concepts, while SAPBERT links to lexically similar but
conceptually di�erent KG concepts. This di�erence showcases the
e�ective use of LLM’s biomedical knowledge. SAPBERT also shows
inaccuracies in cases III-IV, and provides a broader prediction in
case V, whereas PromptLink’s predictions are more accurate and
speci�c. For cases VI-IX, where linking ground truth labels are
lacking, PromptLink’s predictions also align more accurately with
EHR concepts than SAPBERT’s, according to a clinician’s review.
In cases VI and VII, PromptLink closely matches the EHR concepts,
while SAPBERT’s predictions are overly speci�c. In cases VIII and
IX, PromptLink correctly and automatically identi�es no match-
ing KG disease concepts, while SAPBERT fails to resolve that NIL
prediction challenge unless manual thresholds are set and adjusted.

Table 3: Analyzed cases.
ID EHR Concept PromptLink’s Prediction SAPBERT’s Prediction

I Chondroectodermal dysplasia Ellis-van Creveld syndrome Cranioectodermal dysplasia

II Dermatophytosis of hand Tinea manuum Hand dermatosis

III Late syphilis, unspeci�ed Tertiary syphilis Secondary syphilis

IV Hypopotassemia Hypokalemia Hypocupremia nos

V Epidemic vertigo Vestibular neuronitis Vertigo

VI Postprocedural fever Postoperative complications Postcardiotomy syndrome

VII Acquired cardiac septal defect Heart septal defect Atrial heart septal defect

VIII Height of bed NIL Binge eating disorder

IX Level one NIL Glaucoma 1 open angle

Note: “ ” indicates this prediction is justi�ed by the clinician. “ ” indicates this prediction is
justi�ed by the ground-truth label.

4 Conclusion
In this study, we introduce PromptLink, a novel framework lever-
aging LLMs and multi-stage prompts for e�ective biomedical con-
cept linking. Compared with previous concept linking methods,
PromptLink achieves better linking accuracy, attributed to LLM’s
intrinsic strong biomedical knowledge. PromptLink further em-
ploys multi-stage prompts to maintain cost-e�ciency and handle
the NIL prediction problem. Moreover, PromptLink functions as
a zero-shot framework, requiring no training and demonstrating
strong �exibility and generalizability across biomedical systems.
Promising future work can focus on further enhancing the prompt
e�ectiveness, reducing costs, and minimizing manual e�orts, aim-
ing to extend PromptLink’s application to broader systems.
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