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Abstract
Continuous land disturbance could negatively impact microbial community, but

perennial crops can potentially reverse this negativity. The objective of this study was

to evaluate the effects of Kernza (Thinopyrum intermedium) and alfalfa (Medicago
sativa L.) on soil microbial structure and stress condition using the phospholipid fatty

acid profiling. The study was conducted at the Ross Jones Research Farm, University

of Missouri and consisted of four treatments: Kernza fertilized, Kernza unfertilized,

Kernza and alfalfa intercrop, and alfalfa monocrop with four replications. Treatments

were established in September 2021 on 18.3 m × 18.3 m plots. Soils from 0- to

5-cm and 5- to 15-cm depths were sampled in September 2021 (before treatments

were placed) and 2022 and analyzed for microbial communities. All microbial com-

munities increased after 1 year with the perennial crops. Since differences were not

significant among treatments in 2022, this may lead to positive impacts of perennial

crops on microbial communities, irrespective of the crop species and management.

Moreover, community structure modifications were also observed with the peren-

nial crops, irrespective of the species and management, as evidenced with changes

in bacterial community indices in 2022. While fungi/bacteria ratio increased, Gram-

positive/Gram-negative bacteria ratio decreased in 2022, suggesting a reduction in

microbial stress, which can be attributed to ecological functions of the perennial

crops. The study showed improvements in soil microbial biomass and modifications

in microbial community structure after 1 year of Kernza and alfalfa. As the system

matures, relative benefits of management (fertilization and intercropping) and plant

species may be realized.

Abbreviations: AM, alfalfa monocropping; BB, bacterial biomass; CEC, cation exchange capacity; FB, fungi biomass; IWG, intermediate wheatgrass; KA,

Kernza and alfalfa intercrop; KF, Kernza fertilized; KU, Kernza unfertilized; PLFA, phospholipid fatty acid; PLS-PM, partial least square path model; SOC,

soil organic carbon; TMB, total microbial biomass.
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1 INTRODUCTION

Unsustainable agricultural activities are impacting ecosys-

tem services including soil health indicators, water quality,

and land productivity (Al-Kaisi, 2008; Montgomery, 2007;

Udawatta et al., 2019). Global land degradation annual cost

is $231 billion per year (Baumgartner & Cherlet, 2015), and

soil loss rate in the United States is about 2 mm annually

(Thaler et al., 2022). Forty-four rivers and streams and 64%

of lakes reservoirs are impaired and unsuitable for human use

and recreational activities (USEPA, 2017). Thus, the major

cause of water pollution is agriculture, as evidenced with the

previous outcomes. Corn–soybean watersheds annually lose

13–30 kg N ha−1 and 0.29–3.59 kg P ha−1 (Udawatta et al.,

2004, 2006; USDA-NRCS, 2013). If all these nutrients are

retained in their respective areas, hypoxia of Gulf of Mexico

may not occur, fertilizer application rate will decline, and fos-

sil fuel use for fertilizer manufacturing and applicators will

reduce.

Improvements in soil, water, and nutrient conservation can

be achieved by implementation of various conservation prac-

tices, including a continuous living cover. For instance, sheet

and rill erosion on crop lands estimated by the Revised Uni-

versal Soil Loss Equation in the United States was decreased

from 1.7 × 109 t year−1 in 1982 to 960 × 106 t year−1 in

2007, a 43% reduction (USDA, 2011). Soil and nutrient losses

from fields are reduced by the continuous living covers while

improving soil health as soil disturbance is minimized. Other

benefits of perennial species such as the grain Kernza and

alfalfa over annual crops include improvements in soil poros-

ity, infiltration, water storage, nutrient retention, biodiversity,

and reduced erosion (Alagele et al., 2019, 2020; Chamber-

lain et al., 2022; Crews & Brookes, 2014; Crews et al., 2016;

Seobi et al., 2005; Udawatta et al., 2008), which help enhance

soil quality and land productivity. Additionally, soils with a

living cover can serve as a buffer for temperature and water

fluctuations, thus developing more stable and favorable con-

ditions for soil organisms, carbon (C) storage, and soil–water

relations (Adhikari et al., 2014; Mendis et al., 2022).

Perennial grains have been promoted in recent years due to

their multiple benefits like potential to address system diversi-

fication, environmental, and production challenges (Duchene

et al., 2019). Kernza is the trademark name for the grain of

Thinopyrum intermedium, an intermediate wheatgrass (IWG)

being developed at The Land Institute, Kansas (Coyne, 2022),

and it is a promising deep-rooted forage grain crop (DeHaan&

Ismail, 2017). This is the only known perennial grass species

in the whole world that can serve two purposes: forage for

livestock and grains for humans (Coyne, 2022). Since it is

a perennial grain species, annual replanting is not required,

resulting in reduced soil disturbance and erosion (DeHaan

et al., 2023). Continuous living cover, greater C uptake (Duch-

ene et al., 2019), improved soils, and no disturbance can create

Core Ideas
∙ Perennial crops, irrespective of the species,

enhanced phospholipid fatty acid microbial

communities after 1 year of establishment.

∙ Benefits by plant type may not be observed in the

short term.

∙ Long-term Kernza and alfalfa establishments may

favor enhanced soil health.

favorable conditions for soil communities and crop growth.

Therefore, IWG can enhance the structure, abundance, and

the composition of soil microbes. Further, conversion from

annual to perennial grains could potentially store up to 1.7

t SOC ha−1 in year 1 (Crews & Rumsey, 2017), suggesting

the long-term potential of IWG as a carbon sink (Oliveira

et al., 2018). The root systems of perennial crops also support

greater nutrient recycling compared to annual crops. Accord-

ing to Sainju et al. (2017), IWG and other perennial grasses

had 12–16 times greater root mass, carbon, and nitrogen (N)

than annual grain wheat.

Alfalfa is a perennial leguminous forage crop widely grown

in the United States, and the average yield per ha in the US

central Great Plains is 7.6 Mg (Fink et al., 2022). As a legu-

minous crop, it has the potential to fix N with the help of a

nitrogen-fixing symbiont bacteria, and about 1 billion kg of

N per year is fixed by alfalfa, accounting for one-fifth of the

total amount of N fertilizer applied to all crops (Peterson &

Russelle, 1991). Thus, the crop is preferable for rotational

cropping or intercropping with non-nitrogen fixing cereal

crops such as corn and wheat, which usually require N fer-

tilization to give optimal grain yield (Ma et al., 2023). Being

a perennial crop, alfalfa is also recognized for its adaptation

to drought and seasonal weather variabilities.

Among the various soil microbial quantifications, phos-

pholipid fatty acid (PLFA) profiles are strongly related to

soil quality (Bossio et al., 1998). PLFA profiles have dif-

ferentiated microbial communities between crop rotations,

tillage, residue management, cover crops, buffer strips, fer-

tilizer applications, soils, depths, seasons, landscapes, and

system maturity (Alagele et al., 2020; Arcand et al., 2016;

Bossio et al., 1998; Fierer et al., 2007; Hamel et al., 2006;

Mbuthia et al., 2015; Nivelle et al., 2016; Rankoth et al.,

2019). The community ratios such as fungi to bacteria and

Gram-positive/Gram-negative bacteria (GP/GN) have been

widely used to trace microbial communities’ stress condition,

mainly referred to as lack of sufficient moisture or nutrients

(Agnihotri et al., 2023; Cheng et al., 2024). However, PLFA

profiling for microbial communities under Kernza and alfalfa

is limited. The objectives of this study were to (1) evaluate
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F IGURE 1 Location of the study area (A: USA; B: Shelby County [shaded dark] in Missouri State; C: experimental field layout).

soil microbial community structure and ratios and (2) under-

stand the relationships between soil organic carbon (SOC) and

PLFA microbial community profiles under Kernza, alfalfa,

and Kernza and alfalfa intercrop treatments.

2 MATERIALS AND METHODS

2.1 Study site, management, and
experimental design

The study was conducted at the Ross Jones Research Farm,

northeast Missouri (39˚57′ N and 92˚03′ W; Figure 1). The

experimental site had nearly zero slope. The soil at the site

is Mexico silt loam (fine, smectitic, and mesic Vertic Epi-

aqualfs) and formed in loess over loamy sediments derived

from till (Unklesbay &Vineyard, 1992). The soil parent mate-

rials are glacial till and windblown Peorian loess. These soils

have a claypan subsoil layer, and therefore, drainage is poor

and classified in hydrologic group D. The climatic condition

of the study area is presented in Figure 2. The area received

greater annual precipitation in 2021 (1091 mm) compared

to 2022 (765 mm). The precipitation of 2022 was approx-

imately 20% below the long-term average of 963 mm. On

the other hand, the air temperature pattern remained consis-

tent across both sampling years and aligned with long-term

average values. The average long-term annual air tempera-

ture is approximately 11.7˚C, with an average monthly low of

−6.6˚C in February and an average monthly high of 31.4˚C in

July. The snowfall is about 590 mm year−1 and can stay on the

ground for extended periods (Missouri Climate Center, 2022).

Previously, the site was under alley cropping practice with

a corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] rota-

F IGURE 2 Monthly rainfall (PPT) and mean monthly

temperature (TEMP) for the study years 2021 and 2022, compared with

the long-term (2001–2022) mean monthly rainfall and mean monthly

temperature.

tion until 2017. Eight rows of silver maple (Acer saccharinum
L.) saplings (1-0 bare-root stock) were planted in 1990 to

create 20-m wide crop alleys for the crop rotation, and the

trees were thinned in 1996 (Miller & Pallardy, 2001). Trees

were removed in 2017, and the site was converted to a corn–

soybean rotation until the current project was established in

September 2021. It was under soybean crop in 2021. Before

seeding, soybean stubble was removed, and soil was tilled

with a vertical till for approximately 10-cm depth. Kernza

and alfalfa were seeded at 17.7 and 31.8 kg ha−1 rates,

respectively, on September 9, 2021.

The study design was randomized complete block design

(RCBD) with four blocks, four treatments, two depths, four

replications, and presence or absence of intervention (years:

2021 and 2022). Treatments were Kernza fertilized (KF),
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Kernza unfertilized (KU), Kernza and alfalfa intercrop (KA),

and alfalfa monocropping (AM).

2.2 Soil sampling and analysis

A grid sampling was conducted in September of 2021 (before

treatments were established) and 2022 (after one year with

the treatments). Per plot, sampling was conducted at four ran-

dom grid points. Accordingly, four samples per each depth

(0–5 and 5–15 cm) were collected. These were thoroughly

mixed and put in Ziplock bags, forming one composite sample

per plot per depth. Then, each sample was kept in a coolant

until brought to Soils Lab, University of Missouri Columbia.

About 50 g portion of each sample was kept in refrigera-

tor until sent to Wards Lab (https://www.wardlab.com/) in

Nebraska for PLFA profiling. The remaining portion of each

of the 2021 samples was air-dried, crushed, and removed

off roots for texture and chemical properties. The remaining

portion of each of the 2022 samples was handled similarly

but analyzed only for SOC content. Texture, pHsalt, major

cations (Ca [calcium], Mg [magnesium], and K [potassium],

by ammonium acetate extraction), cation exchange capac-

ity (CEC; Nathan et al., 2012; Woodruff, 1948), and SOC

(loss on ignition method; Ball, 1964) were determined at

the Soil Testing Laboratory, University of Missouri (Nathan

et al., 2012).

2.3 PLFA analysis

Two surface soil depths were analyzed for microbial com-

munities by the PLFA procedure for both sampling years at

Ward Laboratories, Nebraska, according to standard proce-

dures (Ward Laboratories Inc., 2020). This procedure includes

five main steps, such as extraction, lipid-class separation, fatty

acid methyl ester extraction, gas chromatography analysis,

and peak separation/identification. Frozen (2 g) soils were

shaken with dichloromethane (DMC, CH2Cl2):methanol

(MeOH):citrate buffer (1:2:0.8 v/v/v) in test tubes for 1 h at

240 rpm for total soil lipid extraction. Samples were shaken

again with 2.5 mL of DMC and 10 mL saturated KCl solu-

tions, then centrifuged, and organic fraction was pipetted into

vials. These samples were dried in nitrogen, dissolved in

DCM, and stored at −20˚C.
Lipid-class separation was done with Silica gel columns;

samples were loaded onto columns, and vials were washed

twice with small amounts of DCM. Then neutral, glycolipid,

and phospholipid fractions were eluted by sequential leaching

with DCM, acetone, andmethanol, 2mL of each, respectively.

The phospholipid fractions were collected in 4-mL vials after

discarding the neutral and glycolipid fractions. These sam-

ples were dried in nitrogen, dissolved in MeOH, and stored

at −20˚C.

Acid methanolysis was used to extract fatty acid methyl

esters. MeOH/H2SO4 (25:1 v/v) was added to the vials using

a pasteur pipette and placed in an oven at 80˚C for 10 min.

Vials were vortexed for 30 s and left to settle for 5 min after

2 mL of hexane (C6H14) was added at the room temperature.

The lower fraction was discarded, and the rest was dried in

nitrogen at 37˚C in a fume hood. A total of 100 μL of hex-

ane was added and vortexed to prepare for gas chromatograph

(GC) analysis.

Samples were analyzed on GC and MIDI’s Sherlock soft-

ware systems. Agilent 7890A GC (Agilent Technologies)

equipped with a 7693 autosampler and a flame ionization

detector (FID) analyzed samples. The hydrogen was the car-

rier gas at 30 mL min−1, and the column was a 50-m Varian

Capillary Select FAME # cp7420. Two microliter of sample

was injected in 5:1 split mode. FIDwas at 300˚C and the injec-

tor at 250˚C. The initial oven temperature of 190˚C was raised

to 210˚C (2˚C min−1), then to 250˚C (5˚C min−1), and held

for 12 min.

Peaks were differentiated by comparing retention times

of known standards (Supelco Bacterial Acid Methyl Esters

#47080-U, plus MJS Biolynx #MT1208 for 16:1ɷ5). A range

of concentrations of 19:0 FAME standards dissolved in hex-

ane was used to develop standard curves and determine PLFA

quantities. The PLFA amounts were expressed in ng PLFA

g−1 dry soil.

2.4 Data analysis

A three-way analysis of variance (ANOVA) was employed

to understand effects of treatments (KF, KU, AM, and KA),

intervention (before and after intervention: 2021 and 2022),

and soil depth (two: 0–5 cm and 5–15 cm) on each PLFA

microbial community (fungi, actinomycetes, bacteria, etc.)

and community ratios, for example, the GP/GN ratio. It

was conducted in R-studio using the Agricolae package

(Mendiburu & Yaseen, 2022) as RCBD, as described by Steel

et al. (1997). Observations for each variable were checked

for normality using the Shapiro–Wilk’s method (Shapiro &

Wilk, 1965) and validated for the assumptions of ANOVA

using the Bartlett’s test (which assumes data are normally dis-

tributed), before a two-way repeated ANOVA was conducted.

Fisher’s least significance difference (LSD) was used to com-

pare means across treatments, intervention regimes (with and

without perennials), or depth using the “LSD test” function in

the Agricolae package.

Treatment, intervention, and depth were fixed effects.

Random effects were replications. In addition, a principal

component analysis was conducted on microbial commu-

nity data, microbial community ratios, and stress ratios

(saturated/unsaturated fatty acids [Sa/Unsa FAs] andmonoun-

saturated/polyunsaturated fatty acids) to understand how

these parameters alone could capture the variabilities due
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UDAWATTA ET AL. 5 of 14

TABLE 1 Summary (mean ± SD) of soil parameters for the study site in 2021 (before treatments were established).

Depth Parameter AM KA KF KU p value
0–5 cm pH 6.0 ± 0.2 6.0 ± 0.3 6.0 ± 0.2 6.0 ± 0.4 0.855

SOC (%) 2.04 ± 0.16 2.09 ± 0.17 2.02 ± 0.27 2.12 ± 0.25 0.442

P (kg/ha) 60.1 ± 26.4 75.2 ± 31.7 46.6 ± 8.6 57.9 ± 20.4 0.019

Ca (kg/ha) 4531.04 ± 490.04 4573.5 ± 610.9 4468.7 ± 303.0 4591.5 ± 639.8 0.936

Mg (kg/ha) 346.5 ± 38 344.7 ± 41.1 340.2 ± 26.2 338.7 ± 37.8 0.926

K (kg/ha) 430 ± 102.9 521.8 ± 178.1 371.2 ± 30.3 407.1 ± 76.9 0.004

CEC (cmol [+]/kg) 13.5 ± 1.2 13.7 ± 1.2 13.0 ± 0.8 13.7 ± 1.4 0.506

Sand (%) 13.1 ± 3.1 12.2 ± 2.9 13.9 ± 2.2 12.3 ± 3.9 –

Silt (%) 70.2 ± 2.8 70.9 ± 3.4 69.1 ± 2.6 70 ± 3.7 –

Clay (%) 16.7 ± 1.2 16.9 ± 1.7 17 ± 1.4 17.7 ± 2.8 –

5–15 cm pH 6.3 ± 0.3 6.2 ± 0.5 6.3 ± 0.4 6.3 ± 0.5 0.962

SOC (%) 1.54 ± 0.2 1.63 ± 0.15 1.56 ± 0.16 1.69 ± 0.24 0.226

P (kg/ha) 20.9 ± 9.6 35.2 ± 18.2 15.8 ± 5.9 25.1 ± 13.2 0.001

Ca (kg/ha) 4870.1 ± 492.3 4763.2 ± 686.4 4823.2 ± 483.5 4814.3 ± 671.3 0.961

Mg (kg/ha) 311 ± 39.3 304 ± 42 295.6 ± 34.1 291.5 ± 41.9 0.493

K (kg/ha) 244.2 ± 44.9 308.1 ± 102.2 209.4 ± 32.3 257.3 ± 68.9 0.003

CEC (cmol [+]/kg) 13.3 ± 1.0 13.4 ± 1.4 13.1 ± 1.1 13.2 ± 1.2 0.851

Sand (%) 11.6 ± 2.7 11.4 ± 2.9 12.7 ± 4.5 10.9 ± 2.6 –

Silt (%) 70.3 ± 2.2 70.2 ± 3.4 69.2 ± 4.7 69.8 ± 3.8 –

Clay (%) 18.3 ± 1.5 18.4 ± 2.2 18.1 ± 1.7 19.2 ± 2.5 –

Abbreviations: AM, alfalfa monocrop; CEC, cation exchange capacity; KA, Kernza and alfalfa intercrop; KF, Kernza fertilized; KU, Kernza unfertilized; SOC, soil organic

carbon.

to treatment, depth, and management. Furthermore, we also

conducted a partial least square path model (PLS-PM)

to understand the relationships between SOC and micro-

bial community structures using the “plspm” package in R

(Sanchez, 2013).

3 RESULTS AND DISCUSSIONS

3.1 Characteristics of the soils before
treatments established

Soil properties before Kernza or alfalfa were planted are sum-

marized in Table 1. Soils were slightly acidic with a mean pH

of 6.0, which was slightly lower than the dominant soil pH

levels (>6.1) of the Shelby County (Nathan et al., 2007). The

texture was silty loam. Available P ranged from 46.6 ± 8.6 to

75.2± 31.7 kg ha−1 in the topsoil layer, and it was much lower

(up to 80%) in the lower depth. CEC was similar across the

two depths, with values ranging from 12.9 ± 1.2 to 13.4 ± 1.4

cmol kg−1 soil. The mean organic matter content in the top

depth was 3.6% and decreased to less than 3% in the subse-

quent layer, resulting in up to 30% decrease in the 5- to 15-cm

layer compared to the 0- to 5-cm depth. It was only the top 0–

5 cm that had a mean SOC greater than the minimum critical

range, which is ~2% (Loveland&Webb, 2003), suggesting the

overall soil organic matter in the study site was considerably

low.

3.2 Kernza and alfalfa effects on SOC

There was a significant decline in SOC content in the upper

0–5 cm under all the treatments after 1 year with the crops

(Figure 3). The loss was similar for all the treatments, except

KU, which had the greatest SOC content at this depth in 2022.

The decrease was 15% for KU and 20%–25% in the other treat-

ments. The loss can be mainly attributed to the disturbance

due to the tillage carried out before seeding the treatments

(Ogle et al., 2005). It can also be due to the priming effect

of the rhizosphere of the newly introduced plants (Dijkstra

& Cheng, 2007) that may have increased microbial activities,

which in turn may have triggered SOC turnover. A previous

global assessment of SOC changes after the conversion of

annual crops to perennial crops by Ledo et al. (2020) also

revealed the possibility of a temporary decline in SOC con-

tent. A recent meta-analysis by Siddique et al. (2023) further

underscored that short-term changes following such conver-

sions are often a decline rather than an increment, suggesting

it could take up to 5 years with the perennials to see the

 26396696, 2024, 2, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agg2.20509, W

iley O
nline Library on [31/05/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



6 of 14 UDAWATTA ET AL.

F IGURE 3 Post hoc test results showing mean comparisons of

soil organic carbon (SOC) content by depth and year. Bars (mean ± SE)

sharing the same letter do not differ (p > 0.05). AM, alfalfa monocrop;

KA, Kernza and alfalfa intercrop; KF, Kernza fertilized; KU, Kernza

unfertilized.

benefits over the previous annual crops in terms of the soil

carbon storage. However, such impacts may be limited to only

the surface layer (0–5 cm depth).

In contrast the trend in the surface layer, SOC content

increased in the sub-surface layer (5- to 15-cm depth) in year

2022 for each treatment, although the differences were not sig-

nificant among treatments. The mean values in percentage in

the year 2022 were 1.5%, 1.6%, 1.7%, and 1.8%, and the incre-

ment compared to year 2021 was 15%, 14%, 15%, and 9%

for AM, KA, KF, and KU, respectively. Generally, it was low,

irrespective of treatments, depth, or year. It was mostly below

2%, known as the “critical level” (Loveland & Webb, 2003),

below which soils may lack the capacity to support proper

ecosystem functions.

3.3 Effects on microbial community
structure

The results of microbial community are summarized in

Figure 4. Total microbial biomass (TMB), fungi biomass

(FB), and bacterial biomass (BB) significantly increased after

1 year (2022) with the perennials, although differences among

the treatments were not significant (p> 0.05) for all the PLFA

microbial community profiles. Similar patterns were observed

for bacterial and fungi subgroups (Figures S1 and 2). In the

year 2021, before treatments were placed, differences were

observed between depths and among the treatments’ loca-

tions. The results of year 2021 were not related to any effects

of the treatments, and the specified results indicated with each

of the treatments in this year were only to showcase the vari-

abilities in the PLFA profiles among the plots allocated to the

treatments.

The results showed that all treatments performed well in

terms of supporting microbial communties, and the microbial

community was similarly affected. This contrasts with a previ-

ous report by Finney et al. (2017), who found different levels

of impacts of cover crops on soil microbial communities,

indicating some cover crop species greatly favor microbial

communities than some other species. However, these were

not perennials, unlike those in the current study, which may

take years to observe species-level impacts. McKenna et al.

(2020) evaluated effects of annual crops and perennial crops’

(including Kernza) on fungi communities and found that there

was no difference among the different types of perennials,

although greater diversity was observed with the perennials

compared to the annual crops.

The mean TMB ranged from 630 to 1597 ng g−1 of soil in

2021, and TMB was increased by >fivefold (3490–5200 ng

g−1) after 1 year of establishment, regardless of the type

of the treatments applied. Similar trends were observed for

FB and BB, despite BB being generally greater than FB.

It increased by >eightfold for FB and was 14–96 ng g−1

in 2021 and 416–762 ng g−1 in 2022, whereas for BB, it

ranged from 180–539 ng g−1 in 2021 to 1585–2365 ng g−1

in 2022. These results show that the possible shift in soil

microclimate under these perennial crops may have triggered

microbial growth. However, any relative importance or spe-

cific role related to the plant species (alfalfa and Kernza) and

management (e.g., fertilization and non-fertilization) was not

reflected. Although belowground diversity and biomass are

very well correlated with above ground plant species (Eisen-

hauer et al., 2010), the results of the current study did not show

any relationship between belowground microbial biomass and

plant species. The significant growth in microbial abundance

after 1 year with the perennials shows that a shift in soil

microbial structure can be possible in just 1 year. However,

it also suggests that the system needs more time to estab-

lish at the site and species to mature before differences can

be detected between these selected species (Gurmessa et al.,

2021). A previous study by Chamberlain et al. (2022) also

showed a rapid rise in soil microbial biomass under 1-year-

old perennial crops, including a perennial wheat. However,

in contrast to our findings, these authors highlighted mixed
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F IGURE 4 Post hoc test results showing mean comparisons of microbial biomass by treatments, depth, and year. Bars (mean ± SE) sharing

the same letter do not differ (p > 0.05). AM, alfalfa monocrop; KA, Kernza and alfalfa intercrop; KF, Kernza fertilized; KU, Kernza unfertilized;

TBB, total bacterial biomass; TFB, total fungi biomass; TMB, total microbial biomass.

crops’ greater impact in microbial biomass compared to the

monoculture.

3.4 Principal components

Principal component analysis (Figure 5A) revealed that

microbial community compositions and PLFA indices cap-

tured approximately 75.8% of the total variance due to

the treatments, depth, and year with just PC1 (41.4%) and

PC2 (34.4%). Fungi communities and saprophytes greatly

contributed to the variance. Moreover, these variables were

aligned in the same direction to one another, showing the pres-

ence of strong correlations between them. However, there was

a clear clustering between the years (before and after interven-

tion), showing a distinct effect of the management regime on

microbial communities.

Constrained canonical correspondence analyses showed

low effects of treatments, year, and depth on PLFA micro-

bial communities (Figure 5B), although moderate effects

were observed on community structure and stress ratios

(Figure 5C). This suggests that the changes in those PLFA

were due to other factors. This gives an insight about look-

ing at some other specific environmental factors such as
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8 of 14 UDAWATTA ET AL.

F IGURE 5 Principal component analysis (PCA) on microbial community indicators and stress ratios grouped by before and after intervention

(years 2021 and 2022) (A), constrained canonical corresponding analysis (CCA) of microbial communities (B), and community and stress ratios (C).

Variation contribution level of each variable in the PCA was denoted by color heatmap, increasing from blue to yellow. PCA plot shows the first

(PC1) and second (PC2) principal components, whereas both CCA plots show first (CCA1) and second (CCA2) component values. AM, alfalfa

monocrop; AMF, arbuscular mycorrhizal fungi; KA, Kernza and alfalfa intercrop; KF, Kernza fertilized; KU, Kernza unfertilized; GN,

Gram-negative; GP, Gram-positive; GP/GN, Gram-positive/Gram-negative bacteria ratio; TF, total fungi biomass; TBB, total bacterial biomass;

TMB, total microbial biomass; Mono/Poly, monosaccharides/polysaccharides ratio; Sat_to Unsat, saturated to unsaturated polysaccharide ratio;

SOC, soil organic carbon.

moisture and temperature (Feng et al., 2003) or soil carbon

fractions (e.g., labile and recalcitrant) when there is an inter-

est to understand the soil factors that govern PLFA indicators.

The arbuscular mycorrhizal fungi aligned in the direction of

year 2022, indicating it has been benefiting from the peren-

nial crops more than the other microbial groups. Interestingly,

the GP/GN ratio corresponded with year 2021 and the oppo-

site of year 2022, suggesting microbes were more stressed

without than with perennial crops. Thus, the current study

revealed that microbial stress condition may be related to lack

of available carbon rather than drought and heat.

3.5 Community and stress ratios

Like the individual parameters themselves, the ratios of PLFA

microbial community biomass and stress ratios are robust soil

health indicators (Norris et al., 2023). Results of two com-

munity ratios, namely, fungi/bacteria (Fun/Bac) and GP/GN,

and a stress (Sa/Unsa FA) ratio, are presented in Figure 6.

Like for the other PLFA profiles evaluated, effects of perenni-

als cover on these ratios were observed in 2022 compared to

2021, before the plants were seeded. However, there was no

difference among the treatments on these ratios.

The GP/GN ratio significantly decreased in both depths

in year 2022 under every treatment, except AM. It ranged

from 1.3–1.6 in the year 2022 compared to 1.3–6.4 in the

year 2021 (Figure 2). It was interesting that the decline in

the ratio was not because of the decrease in Gram-positive

(GP) bacteria, but rather because of the greater rate of increase

in Gram-negative (GN) bacteria, suggesting the latter were

more favored with the change in the soil environment caused

by those perennial crops. The GP bacteria are more resilient

to changes in the environment compared to GN because of
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F IGURE 6 Post hoc test results showing mean comparisons of microbial community (Fun/Bac, fungi/bacteria; GP/GN,

Gram-positive/Gram-negative) and stress (Sa/Unsa FA, saturated/unsaturated fatty acid) ratios by treatments, depth, and year. Bars (mean ± SE)

sharing the same letter do not differ (p > 0.05). AM, alfalfa monocrop; KA, Kernza and alfalfa intercrop; KF, Kernza fertilized; KU, Kernza

unfertilized.

their ability to produce spores. Thus, reduced GP/GN ratio in

2022 could indicate a decline in microbial stress due to the

perennial crops, suggesting the significance of such crops in

reclaiming soil health by improving availability of labile C

in soils (Fanin et al., 2019). Also, several studies indicated

that GN uses more plant-derived C source that are relatively

labile, while GP uses C sources derived from SOC that are

recalcitrant. They reported that the GP/GN ratio has signif-

icantly increased after removal of vegetation systems. Thus,

the findings of current study imply that establishments of

these perennial systems contributed to reduce the ratio of

GP/GN. According to these results, the ratio of GP/GN may

be considered a good indicator of soil health.

In contrast to GP/GN ratio, Fun/Bac ratio significantly

increased in year 2022. A high Fun/Bac ratio is consis-

tently desirable; the greater the value, the better is the soil

health condition. A Fun/Bac ratio of >0.3 indicates an excel-

lent health condition of a soil. It is also referred to as an

excellent SOC content indicator (Frostegård & Bååth, 1996),

but this is not always true, as also revealed by the current

study. Microbial groups (e.g., fungi and bacteria) may not

be favored by a management similarly (Chen et al., 2020;

Srour et al., 2020). For instance, it is commonly understood

that conventional farming like tillage and overgrazing may

favor bacteria, whereas, contrary to this, no-till and cover

crops may favor fungi more than bacteria. A greater Fun/Bac
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TABLE 2 Partial least square path model (PLSM-PM) paths, path coefficients, and bootstrap (n = 999) validations for soil organic carbon

(SOC) prediction and model validation at 95% confidence interval (CI).

Variable

Original estimates Bootstrap estimates and 95% CI
Estimate p-value Sig. Estimate perc.025 perc.975

0–5 cm

Gram-positive/Gram-negative −0.041 0.714 ns −0.04 −0.41 0.13

Mono/poly FA ratio −0.188 0.211 ns −0.19 −0.60 0.03

Saturated:unsaturated FA 0.538 0.001 ** 0.54 0.22 0.99
Fungi:bacteria −0.175 0.033 * −0.17 −0.31 −0.02
R2 0.24 0.27

5–15 cm

Gram-positive/Gram-negative

ratio

0.157 0.116 ns 0.15 −0.05 0.31

Mono/poly FA 0.615 0.024 * 0.64 0.10 1.31
Saturated/unsaturated FA −0.729 0.009 * −0.77 −1.43 −0.22
Fungi:bacteria 0.139 0.110 ns 0.13 −0.02 0.28

R2 0.14 0.16

Note: The bold CI ranges are non-zero inclusive, and these values validate the signficance of the orginal estimates.

Abbreviations: FA, fatty acid; Mono/poly FA, monounsaturated/polyunsaturated fatty acids; ns, non-signficant (p > 0.05).

Signficance (Sig.) levels: ‘*’, 0.05; ‘**’, 0.01.

ratio is desired, although bacteria are still important in soil

ecosystems, mainly due to the positive associations with the

ecosystem services such as nutrient recycling and carbon

sequestration (Bailey et al., 2002; Malik et al., 2016). The

increase of Fun/Bac ratio from 2021 to 2022 in the current

study was also related to the succession of mycorrhizal FB,

which was improved by the establishment of perennial species

at the site as compared to the corn–soybean rotation in the

previous year.

The pattern of Sa/Unsa FA ratio was like that of GP/GN

ratio, but for AM, a significant effect was found only in

the uppermost soil layer, 0- to 5-cm depth. It decreased

from a mean value of 3.8–19.5 in 2021 to 1.6–2.0 in

2022. This ratio is also a measure of microbial stress (Kaur

et al., 2005). Bacteria maintain their optimal fluidity by

changing their membrane during environmental shocks. An

increase in unsaturated fatty acid, which is a decrease in the

Sa/Unsa FA ratio, could thus mean that some soil micro-

biota groups were under stress condition in 2022, but the

reasons were not well established within the scope of the

current study. However, it could be linked to increased soil

temperature or drop in precipitation, which was lower by

about 61 mm compared to the average rainfall from 1901 to

2000 (Missouri Climate Center, 2022) from August through

September in 2022 (Figure 2). Such seasonal changes in pre-

cipitation could negatively affect soil moisture (Zuo et al.,

2023), which in turn could result in increased competi-

tion for water between microbes and perennial crops in the

rhizosphere.

3.6 PLS-PM coefficient estimates and
model validation

The potential of PLFA variables in predicting SOCwas evalu-

ated using the PLS-PMmodel for depths 0–5 cm and 5–15 cm

separately, and results are shown in Table 2. Separate PLS-PM

were developed for the two depths because the SOC con-

tent pattern remarkably varied under these depths. PLS-PM

was useful to identify some of the PLFA indices that predict

SOC content, but the PLFA ratios were related to SOC differ-

ently in the two depths. The predictive power was greater in

the upper 0–5 cm with R2 = 0.24 compared to R2 = 0.16 in

the lower depth (Table 2). In the upper soil depth, Sa/Unsa

FA and Fun/Bac ratios had positive (β = 0.54, p = 0.001)

and negative (β = −0.175, p = 0.033) relationships with

SOC, respectively; however, this pattern changed in the 5- to

15-cm depth, and mono/poly and Sa/Unsa FAs had positive

(β = 0.615, p = 0.024) and negative (β = −0.729, p = 0.009)

relationships, respectively, with SOC. The change in pattern

was likely linked to the dynamics of SOC content, which was

not similar in the two depths (Figure 2) for the two sampling

periods.

The GP/GN ratio was not useful to predict SOC in the cur-

rent study. However, a previous report showed that it can be

an excellent indicator for C availability for microbes in soil

ecosystems (Fanin et al., 2019), because it is believed that

GN utilize labile plant-derived C while GP rely on recalci-

trant organicmatter. Our findings also appeared to support this

claim, as there was a significant decline in the ratio in 2022,
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which was mainly because of a greater rate of GN bacterial

biomass increment compared to that of GP, and the presence

of Kernza and alfalfamay have supplied plant-derived labile C

that favored GN (Chamberlain et al., 2022; Fanin et al., 2019;

Malik et al., 2016).

4 CONCLUSIONS

Perennial crops could have several benefits that are linked to

their functional roles with their deep roots and the manage-

ment therein. However, there is lack of evidence on short-term

effects of perennial grains on soil microbial communities

and SOC. The current study was aimed at understanding

short-term impacts of shifting lands to perennial cropping

systems on microbial communities and structure. We hypoth-

esized a shift from annual crop to perennial crop land use

shifts microbial communities shortly after 1 year of the

conversion. Perennials positively impacted microbial com-

munities, although microbial structure has changed based on

the conducive environment created with the perennial crops.

Increased Fun/Bac ratio and decreased GP/GN bacterial ratio

after 1 year with the perennials indicated reduced stress in

microbial communities because of improvement in the soil

environment, such as nutrient availability, moisture content,

and temperature stability. Microbial parameters considered in

the current study explained 80% of the total variance. Thus,

these parameters were effective to understand the impacts of

the perennials on soil biological health indicators. Microbial

communities and Fun/Bac ratio greatly increased after 1 year

with the perennial plants, irrespective of the treatment types,

while GP/GN significantly decreased. Significant increments

in Fun/Bac ratio and decline in GP/GN ratio, particularly,

indicate improvements in the soil health. The overall study

results show that both alfalfa and Kernza had positive impacts

on PLFAmicrobial communities, even in short term, although

relative benefits among the treatments were not observed.

This suggests the importance of long-term interventions to

realize relative benefits.
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