REGULARITY OF HELE-SHAW FLOW WITH SOURCE
AND DRIFT
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ABSTRACT. In this paper we study the regularity property of Hele-Shaw
flow, where source and drift are present in the evolution. More specif-
ically we consider Hélder continuous source and Lipschitz continuous
drift. We show that if the free boundary of the solution is locally close
to a Lipschitz graph, then it is indeed Lipschitz, given that the Lips-
chitz constant is small. When there is no drift, our result establishes
C'7 regularity of the free boundary by combining our result with the
obstacle problem theory. In general, when the source and drift are both
smooth, we prove that the solution is non-degenerate, indicating higher
regularity of the free boundary.

1. INTRODUCTION

Let b : — R? be a Lipschitz continuous vector field, and f : R —
[0,00) be a non-negative Holder continuous function. We consider u =
( t) >0 olvmg the Hele-Shaw type problem:

(1.1)

—Au=f in {u > 0},
= |Vul?> +b- Vu on 0{u > 0}.

We refer to 0{u > 0} as the free boundary of u. The second equation is the
level set formulation of the velocity law

V=(=Vu—0)-v=|Vu|—b-von d{u> 0},
where V' denotes the velocity of the set {u > 0} along the outward spatial

normal v = IVvun at the given free boundary point (z,t) € 9{u > 0}.

When f and b are both zero, (1.1) corresponds to the classical Hele-Shaw
flow describing the motion of incompressible viscous fluid, which occupies
part of the space between two parallel, nearby plates, [Shad8, Ric72, ES97].
The general equation (1.1) can be also written as the continuity equation
pt — V- (Vu+ 5) ) = fp, with the density variable p = X{u>0} and growth

term f =f-V. b. In other words, p is transported by the velocity field
—(Vu+ b) and with the growth term f. In this context, u can be understood
as the pressure variable, and is generated by the incompressibility constraint
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p < 1to transport density that intends to move with drift —band growth rate
f. Due to this interpretation of the model, (1.1) has been actively studied in
the recent literature, for instance in the context of tumor growth where cells
evolve with contact inhibition, [PQV14, DS21, JKT22] and in the context of
congested population dynamics [MRCS10, CKY18]. somewhere we need to
cite Muskat problem literature, such as Sijue Wu’s and Hongji’s.

We are interested in the free boundary regularity for viscosity solutions of
(1.1). When f and b are zero, the regularity property of the flow is by now
well-understood in both global and local setting. In the global setting, posed
with the presence of a fixed boundary with constant source, it is known that
initially Lipschitz free boundary with a small Lipschitz constant immediately
regularizes and become smooth for small positive times [CJK07], and for all
a.e. times if d < 4 [FROS20]. In the local setting it is also known that free
boundaries that are uniformly close to a Lipschitz graph is smooth, if the
Lipschitz constant is small [CJK09|.

For our inhomogeneous problem, zooming in at a single point (xg,tp) €
O{u > 0} with the hyperbolic scale @, (x,t) := r~tu(r(x — x9),r(t — to)),
one formally sees that the source term tends to zero and the drift becomes
a constant vector field as r tends to zero. Thus it seems plausible that
similar regularity theory as for the classical Hele-Shaw flow holds. This
heuristics however is difficult to quantify. Indeed there are examples of log-
Lipschitz continuous function f with b = 0 that describes tumor growth
with nutrients, for which numerical experiments reveal immediate dendrite-
like growth on the free boundary [Kit97, PTV14, MRCS14]. The dynamics
behind the generation of such irregularities remain mysterious. We will show
in this paper that such irregularities must originate from large-scale influx
of oscillations. Roughly speaking, we show that “flat boundaries that looks
Lipschitz in large scale are indeed Lipschitz and non-degenerate”, as long as
the Lipschitz constant is small:

Main theorem: When the solution is close to a cone-monotone profile at
each time in a local space-time neighborhood, then the solution is fully cone-
monotone with Lipschitz free boundary in a smaller neighborhood, given that
the angle of the cone is large. In addition, z'fg is zero, the free boundary is
CY7 for some 0 < v < 1. Lastly, if f and b are at least C3, the solution
is also non-degenerate, namely it features faster-than-linear growth near the
free boundary.

Some remarks on the assumption is in order. Our assumption considers
solutions which look like cone-monotone solutions up to small scale, which is
more general than plane-like profiles. For instance our assumption is satisfied
by those who starts from an initially Lipschitz graph with small Lipschitz
constant: see Corollary 4.3. [CJKO07|. Our proof relies on the local spatially
Lipschitz solutions that were constructed in [CJKO07], [CJK09] and also in [?],
as well as the properties of superharmonic functions given in section 4. For
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non-homogeneous problem the same example applies, see Corollary 77. This
assumption is also motivated from the well-known waiting time phenomena,
where the initial free boundary does not move for a finite amount of time. For
the classical Hele-Shaw problem with f = b= 0, it is well-known that there
is a waiting time phenomena with a cone-monotone initial data (King-Lacey-
Vazquez), where the angle of the cone is small. The same remains true in the
presence of the source term f € L*°: see Example 7?7 where the vertex of the
cone does not move for a unit amount of time and the profile of the solution
stays close to a cone-monotone profile in a unit neighborhood of the vertex.
The presence of the drift of course does not change this phenomena either.
Hence our requirement on the size of angle is necessary for regularization of
the free boundary.

See the next section for the full statements. Our result extends the cel-
ebrated free boundary regularity theory introduced by Caffarelli [Caf89,
Caf87, ACS98, ACS96, Sav09, DSFS21] as well as the corresponding ver-
sion for the classical Hele-Shaw flow [CJK09]. In particular our work serves
as the first attempt to understand the effect of source and drift on the regu-
larization mechanism of the free boundary evolution. As we will see below,
the presence of a nonzero f alone necessitates some significant changes in
the standard arguments.

In general, the Lipschitz regularity of the free boundary and the non-
degeneracy of the solutions are the two ingredients of further regularity anal-
ysis in aforementioned references. We thus suspect that the free boundary
in our statement is in fact C™7 in space and time, when f and b are smooth.
Given the technical nature of these arguments, we do not pursue this next
step, to lay out the main arguments to achieve the basic regularity results
as clearly as possible.

Let us briefly discuss the optimality of assumptions on f and b. It is
not hard to see that the condition is optimal for the drift term: when b is
not Lipschitz continuous, one can construct an example where the solution
starting with a cone as its positive set maintains the cone shape as its positive
set, even developing a cusp at the vertex of the cone (see Example 3.8). On
the other hand it is less clear whether the regularity of f is sharp for the
theorem. The Holder regularity of f appears to be close to the optimal
condition for the “flat implies Lipschitz” result. We will show an example
(see Example 3.10) where this result is false with merely bounded f. We
also refer to a counterexample in [Bla01] for the obstacle problem, the time
integrated version of our problem, with a continuous f that is not Dini-
continuous. For the non-degeneracy, it remains unclear whether smoothness
is required for f and b: see more discussions on this in Section 7.

o Regularization mechanism and new ingredients: In (1.1) the support of
the pressure variable u moves along the velocity field —(Vu + b). Due to
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the elliptic equation u solves in its support, Vu acts as the regularizing force
in the flow. We largely follow the outline of [Caf89] and [CJKO07| for our
analysis, which quantitatively and iteratively estimates the regularization
effect of the pressure gradient, in the form of its directional monotonicity.
We will show that the small-scale monotonicity property improves in the
interior of the positive set, and then propagates its improvement from the
interior of the positive set to the near boundary region over time. The
comparison principle of the flow (Lemma 2.5), viewed as the “ellipticity” of
the problem, is a key ingredient of this approach.

There are significant differences in our analysis from the existing liter-
ature, necessitated due to the presence of the source and the drift terms
that competes with the propagation of directional monotonicity driven by
the pressure gradient. Let us briefly discuss some of the highlights. First
we point out Proposition 4.1, which compares superharmonic functions in
a long strip domain with Lipschitz boundary. This boundary Harnack-type
result enables us to compare our solutions to a localized harmonic function,
ignoring the effect coming from the far-away regions. Its role in our anal-
ysis is indispensable to rule out the effect of external factors in the local
regularization process. This result can be viewed as a generalized version of
Dahlberg’s lemma for harmonic functions, which was crucial for instance in
showing that the interior improvement of the monotonicity.

Another important element of our analysis is the estimate on the growth
rate of solutions near the free boundary (Lemmas 3.3 and 3.4). Heuristically
speaking, such growth rate translates into a strong elliptic effect, competing
against the oscillations caused by the source and drift terms. At more tech-
nical level, it is used to modify the standard perturbation argument used
to show the propagation of the monotonicity (Lemma 6.1 and Proposition
6.2). It is also used to show that the positive set of the solution expands
relatively to streamlines. In particular we are able to quantify the expan-
sion rate (Proposition 6.6), which is important to show the non-degeneracy
result.

1.1. Statement of results and Outline of the paper. For r > 0, we
denote Q, := B, x (—r,7). Let us state first the “flat to Lipschitz” result.

Theorem A. Let b be a Lipschitz continuous vector field, and f be a non-
negative §-Holder continuous function with 4 € (0,1), and for some ¢ €
(0,1), let ac = 0if f is constant and a. := € for some small & > 0 otherwise.
Suppose that u is a continuous viscosity solution to (1.1) in Qg satisfying

® u is (g, a.)-monotone with respect to Wy, for some 6 € (0, 3) and

pe S

o m := infyc_g 9y u(—p,t) > 0.
If § —0 and ¢ are small enough, then u is non-decreasing along all directions
of Wy, , for some 6 € (0,6) in Q;. In particular, the free boundary T',(¢t)N B
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for each t € (—1,1) is a Lipschitz continuous graph. Here o only depends
on 7, and 6 and 6" only depend on 4 and the dimension, and ¢ also on m,
1wl Loo (0s) 6|1 and || f]|¢s. In addition, when b is zero, and when u solves
(1.1) in RY x (=2, 2), then the free boundary is C17 in Q1 for some 7 € (0, 1).

We refer to Corollary 6.3 and Remark thereafter for further discussion on
the case of b = 0.

The definition of the (g, a)-monotonicity will be given in Definition 2.7.
The (e, 0)-monotonicity corresponds to the usual e-monotonicity, which quan-
tifies the scale at which the solution is monotone along a direction. The ad-
ditional parameter a adds a growth condition at the same scale €. This is to
ensure that away from the boundary the solution is directionally monotone
even with smaller scales. While e-monotonicity is sufficient to guanrantee
such “interior improvement” for harmonic functions, it is not the case for the
general f: see Remark 2.8 for further discussions. Our condition is also natu-
ral. In Lemma 4.6 we show that if the free boundary is known to be Lipschitz
continuous, then the solution is monotone and satisfies (g, a)-monotonicity
near the free boundary for any small € and a.

For general setting, we state our non-degeneracy result.

Theorem B. Under the assumption of Theorem A and further assuming
that f is Lipschitz continuous, and

o U > b-Vu— Cu in Qs in the viscosity sense,

o« Ol < % < C for all t € (—2,2) for some C > 0,

then if § — 6 and ¢ are small enough, u is non-degenerate in its positive set
Q1. In other words, |Vu| is uniformly positive up to the free boundary. Here
6 only depends on 4 and the dimension, and ¢ and the lower bound of |Vul|

also on Cym, [|ul[Loe (s, [[bllcr and [ fller.

Our assumption ensures that v does not decrease too fast in the direction
of the streamline generated by b. This assumption holds for solutions of
(1.1) posed in R% x (0, 00) when f and b are smooth, see Corollary 6.6 and
Theorem 2.1 in [Chu22].

Remark 1.1. Our results apply to time-dependent f and b as well, even
though we have only considered stationary ones for simplicity. With f =
f(x,t) and b = b(z,t), Theorem A continues to hold with straightforward
modifications in the proof if f and b are continuous in time. The same is
true for Theorem B if f and b are Lipschitz continuous in time.

Here is a brief outline of the paper. In Section 2, we introduce notations
and preliminary properties. In Section 3, we prove several tools that will
be used, including interior monotonicity and polynomial growth of super-
harmonic functions near the free boundary, and demonstrate some examples
discussing the optimality of our conditions and the formation of cusps on a



6 INWON KIM AND YUMING PAUL ZHANG

Lipschitz free boundary. Section 4 is about superharmonic functions in Lip-
schitz domains. Section 5 introduces the sup-convolution and its properties.
Finally, we give the proof of Theorem A and Theorem B, respectively, in
Section 6 and Section 7.

2. PRELIMINARIES
For a space-time function u : R? x [0, 00) — [0, 00), we write
Qy =A{u(-,-) >0}, Q) :={u(-,t) >0},

and

Tu(t) == 0u(t), Tu:=|JTu(t) x {t}.

Similarly, for a function w : RY — [0, 00), we define
Q, :={w(-) >0} and T, :=0Q,.

Let us recall the notions of viscosity sub- and supersolutions to (1.1) from
[Kim03|, with trivial modifications due to the drift and source terms and
reduced to continuous functions. Consider the domain ¥ := D x (0,7") with
T > 0 and D C R? open and bounded.

Definition 2.1. A non-negative continuous function u defined in X is a
viscosity subsolution of (1.1) if for every ¢ € Ci’tl(z) such that u — ¢ has a

local maximum in Q, N {t <t} N at (zo,t), then
—(Aqb + f)(xo,to) <0 if u(l’o, to) >0
(6r — IVQ]> = b V) (z0,t0) <0 if (z0,t0) € Ty and — (A¢ + f)(o,t0) > 0.

The reason for the intersection of the set Q,, in the definition is for the sim-
ple fact that there are no globally smooth function that crosses the solution
from above at a free boundary point.

Definition 2.2. A non-negative continuous function u defined in X is a
viscosity supersolution of (1.1) if for every ¢ € Citl(E) such that u — ¢ has
a local minimum in {t <tp} N ¥ at (zg, tp), then

—(A¢ + f)(zo,t0) =0 if u(zo,t0) >0
(¢r — Vo> —b- V) (zo,t0) =0 if (z0,t0) € Tu, [Vd(20,t0)| # 0 and — (Ad + ) (o, to)

Definition 2.3. We say that a continuous non-negative function w is a
viscosity solution of (1.1) if u is both a viscosity subsolution and a viscosity
supersolution of (1.1).

To state the comparison principle, we need the following definition:

Definition 2.4. We say that a pair of functions wug,vg : D — [0,00) are
strictly separated (denoted by ug < vg) in D if ug(z) < vo(x) in Qy, N D.
This says that the supports of the two functions are separated and in the
support of the smaller function, the two functions are strictly ordered.

< 0.
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Below we recall the comparison principle [Kim06, CJKO07].

Lemma 2.5. Let u,v be respectively viscosity sub- and supersolutions in
¥ = D x (0,T) with initial data ug < vo in D. In addition suppose that
limsup;_,o+ Qu(t) = Quy- If u < v on 0D x (0,T) and u < v on (0D x
(0,7)) N Qu, then u(-,t) < v(-,t) in D for allt € [0,T).

Parallel argument as in Lemma 2.5 [Kim06| yields that the requirement
at the free boundary in Definition 2.1 can be simplified for testing against
functions with nonzero gradient.

Lemma 2.6. Let u be a continuous viscosity subsolution of (1.1) in 3, and
(xo,t0) €Ty NXE. Let ¢ € Ci;(Z) such that w — ¢ has a local mazimum in
QuN{t <to} NI at (z0,t0) and |Dp(z0,t0)| # 0. Then

(61 — |Vo|> = b V) (w0, to) < 0.

2.1. Monotonicity assumption. For two vectors v, u € R%\ {0}, the angle
between them is denoted as

(2.1) (v, 1) = arccos (IZI'\LL\) e [0, 7).

We denote a spacial cone to direction p € S¥~! with opening 26 for 0 € [0, 3]
as

(2.2) Wy, = {p eR: (p,p) < 9} :

Our basic hypothesis will be a monotonicity with respect to the cone Wy ,.
For a space-time function u : R? x [0, 00) — [0, 00), we write

Qu = {u,) > 0}, Qu(t) == {u(-t) > 0},

and

Tu(t) == 0u(t), Tu:=|JTult) x {t}.

Similarly, for a function w : R? — [0, 00), we define
Q, :={w(-) >0} and T, :=00,.

Definition 2.7. Let Q CR%, 0 € [0,5], p € S, e €[0,1) and a > 0. We
say that a continuous function w : Q — R is (&, a)-monotone with respect to
a cone Wy , in D C Q if for every e > ¢ and x € D we have
. /
(14 ae)w(x) < yeri :Eg(x)mﬂw(y + ')

Here we need to assume that the solution also grows slightly in the mono-
tone direction, which amounts to (e,e%)-monotonicity, to reach the same
conclusion (which is proved in Lemma 3.1 and its remark): see Example 3.9,
where the interior monotonicity fails with just e-monotonicity. In Lemma
4.6, we show that if the free boundary is known to be Lipschitz continuous,
then the solution is monotone and satisfying the (&, a)-monotonicity for some
a > 0 and for any small € > 0 near the free boundary.
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Remark 2.8. 1. It is by now a well-known fact that the (&, 0)-monotonicity
of a positive harmonic function leads to full monotonicity in a smaller neigh-
borhood, see for instance [CS05, Corollary 11.16]. This fact is essential in
the regularity analysis for solutions of (1.1) with f = 0, since the stronger
monotonicity in the positive set propagates to the free boundary so that
its small-scale oscillation diminishes in unit time scale. However when f is
present and f is not a constant, this is not true. Indeed, in such cases, V,w
does not necessarily have a sign even if € is small compared to the C™ norm
of f for any n > 1, see Example 3.9. Thus the assumption of a # 0 is
sharp when f is not a constant. With (g, a) monotonicity, the interior full
monotonicity is shown in Lemma 3.1 and its remark.

2. If f is a non-negative constant, our results hold even if @« = co. We
refer readers to the remarks after Lemma 3.1 for the detailed discussion.

Below for any 4-Hoélder continuous function (with ¥ € (0,1)) g : 2 — R
with @ € R? an open set, we denote its J-Holder seminorm and 7-Holder
norm, respectively, as

2) —
lgllcos(@) == sup M

and  ||glcv) == l9lLe @)+ 9llcor @)
0 ey lgllcv) = 9l e )+ lgllcos @)

When there is no ambiguity regarding the domain, we will drop 2 from the
notations of C%7(2) and C7(92), and we will simply write ||glloo := |9l (0
and the Lipschitz constant | g|rip == ||g]/co.1.

2.2. Properties of harmonic and superharmonic functions. First we
recall the well-known Dahlberg lemma.

Lemma 2.9. ([Dah79]) Let wy,wy be two non-negative harmonic functions
in a domain D C R? of the form

{(;U’,:Ud) eRTIXR : 2] <2, |zq| < 2M, 24 < g(w')}

with g: R — R a Lipschitz function with Lipschitz constant less than M
and g(0) = 0. Assume further that w1 = wa = 0 along the graph of g. Then,

there exists C' > 1 depending only on d, M such that
1 _wi@’za) wa(0, M)

c~ w2(x/7$d) wl(ovM)
in {(2/,xq) : 2] <1, |wa| < M, zq < g(2')}.

<C

The following lemma follows from Dahlberg’s Lemma and the explicit form
of harmonic functions in a cone domain. While the proof is basic, we present
it here given the importance of the constant 63 in our analysis ( /B will only
be used in Lemma 4.6).

Lemma 2.10. For given 0 € (0,7), u € ST, consider a harmonic function
w in We,, 0 By such that supyy, ~p w =1 andw =0 on OWy N By. Then

there exists ¢ € (0,1) such that for any B € (1,2), there are 05,9’5 € (0,%)
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(which are continuous and monotonely decreasing in B € (1,2), and converge
to 5 as B — 1) such that we have

(2.3) w(sp) >cs®  forall s € (0,1) if 0 > 6
and
(2.4) wlsp) < s> PJe forallse (0,1) if 0 <m— 0s.

Proof. This result is a direct consequence of [Ancl2, Theorem 1.1]. The
theorem proves the existence of a harmonic function in Wjy , such that it
vanishes on the boundary of Wj ,. Moreover, the harmonic function is of
the following form
h(rd) = crP o)

where ¢,7 > 0, ¥ € ¥y with Xy := S 1n Wp ., and ¢ is a positive function
in ¥y vanishing on 9%y. The constant 5y > 0 is given by

—d+2+/(d—2)2 +4) (Zp)
Bo = 5
where A;(Xy) denotes the first eigenvalue of the opposite of the Dirichlet
Laplacian in Yy, i.e.

A1(Xg) = inf {/ |Vul*do = u € CH(Zy), /
§d—1

Sd-

lu|?do > 1} ,
1

with o the standard Riemannian spherical measure in S~!. It is not hard
to see that By is non-increasing in 6, and Bg =1 (since h = z-puis a
positive harmonic function in Wz ). We refer readers to [BCG83] for several
bounds of A\1(3g). Since A1(Xy) and Sy depend continuously on 6, Sy can

be arbitrarily close to 1 if 0 is large (close to %). The conclusions follow

immediately from Harnack’s inequality and Dahlberg’s lemma. U

Remark 2.11. When d = 2 the formula can be written as

T T
9 = — d 9/ = a Il 0 .
8=55 an 3 mx[w 22— 5) }
In particular one can deduce that 65 > 02 > 7 when d > 2, by comparison
principle for harmonic functions.
Next we show some properties of superharmonic functions.

Lemma 2.12. Let f : RY — [0,00) be continuous, let r > 0 and let w :
Bar — [0,00), w € C%(Bay,) be a classical solution to

—Aw = f, in BQT-.

Then there exists a constant C > 0, depending only on the dimension, such
that for all x € By,

w(@) < Cw(0) + Cr?(|flloe(Byys  [Vw(@)] < Crlw(0) + C7||fll Lo (s,
Moreover if V,w > 0 for some i € S in By,, then for all x € B,,
Vuw(z) < CVuw(0) + Cr| fl Lo (By,)-
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Proof. Set &(z) := w(rz), and so —AQ = f in By with f(z) := r2f(rz). Let
G be the Green’s function of Laplacian in Bs. Then, we have the represen-
tation formula (see e.g., [Eval0])

(25) @) =- /8  80)0.Gla o) + [ FwGlad

where n denotes the outward pointing unit normal to dB;. Notice that there
exists C' = C(d) > 0 such that

(2.6) sup ( . G(:U,z)dz+/

z€B; By

|V.G(z, z)|dz> <C,

and 0 < —0,G(x,y) < —C9,G(0,y) for (x,y) € By x 0By. Therefore, also
using that w > 0 and (2.5) with z = 0, we get for z € B; that

B(x) < —C | &(y)0G(0,y)do(y) +C |  Fy)GO,y)dy+ (C+ 1)sup || fll (s / G(-,y)dy
0B B B1 B

< C@(0) + C(C+ 1) fll oo (my)

By rewriting this estimate for w and f, this yields the first inequality of the
conclusion after enlarging C'.

Next since |V9,,G(z,y)| < —C0,G(0,y) for any (x,y) € By X Bs, taking
derivatives on both sides of (2.5) yields

|Va(r)| < -C @(y)0nG(0,y)do(y) +
0B>

: F@)VaGla,y)dy| < Co(0) + C|| fll o (py)

where in the last inequality we used (2.5) with = 0 and (2.6). This then
implies the second inequality, again, by using the definition of & and f .

For the last claim, without loss of generality, we assume that w is C? in a
neighbourhood of Bs,. Taking derivatives on both sides of (2.5) and using
Vyuw > 0 yield

Vuo(z) <= | Vub(y)onG(x,y)do(y) + | F(y)|IVG(x,y)|dy
0B2 B
<=C | 9,00)8,6(0.9)dow) + CIlFl =3 < CVu50) + Cl ez
2
which implies the last inequality. ([

3. MONOTONICITY PROPERTIES, STREAMLINES, AND EXAMPLES

In this section, we prove several tools that will be used to prove the main
theorems, and we discuss by examples the optimality of our monotonicity
assumptions and the formation of cusps on the free boundary.
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3.1. Interior monotonicity. The goal of this section is to show that if a
superharmonic function is (g, £%)-monotone, then under some assumptions
it is fully monotone in the interior.

The corresponding result with f = 0, b = 0, and (€, 0)-monotonicity is
proved in the book of Caffarelli and Salsa [CS05, Corollary 11.16]. Here
we need €% to be positive to compensate the possible loss of monotonicity
caused the source function f. One important ingredient of the proof in
[CS05, Corollary 11.16] is the Harnack inequality, which is applied to h :=
w(z) — w(x — ep). However when f # 0, h solves a Poisson equation with
the source term f(x — eu) — f(2z) which can be negative at some points,
and in such cases the Harnack inequality might fail (because for example,
h := 2% solves —Ah = —2 and h(x) > 0 with equality holds if and only if
x = 0). To overcome the problem, we estimate carefully the “error” from
the source term in the lemma below. We will later combine this lemma with
Lemma 3.3, which provides a lower bound for w, to conclude the interior
monotonicity. Below we use the convention that ¢* = 0 for € € (0,1).

Lemma 3.1. Let f > 0 be y-Hélder continuous on By for some 7 € (0,1),
and o € [0,00] and €,k1 € (0,1). There exists C = C(d) > 0 such that the
following holds for all € small enough (depending only on d,a, k). If w is
a non-negative solution to —Aw = f in Ba-x,, and w is (g,e*)-monotone
with respect to Wy, for u € S then

Vw(z) > (1 — Ce™)w(z) — Cet T | fllcos(m,) forall x € B..
Proof. Let us denote 6 := ¢**! < 1. We will only show the conclusion for
x = 0, and the general case of = € B. follows the same. For s € [e, 2¢], define
(3.1) hs(z) == w(x + sp) — (1 4+ 6)w(x),

and it follows from the (g, e%)-monotonicity assumption that hs > 0. Using
the monotonicity again yields for s € [e, 2¢],

(3.2)
2

D (1+6) " he(z +iep) = (1+6) w(x + 3ep) — (14 6)w(x)
=0

> (1+0)tw(x + sp) — (14 8w(z) > (1 +0) thy(z) — dw(z).

1
Note that —Ahs = (1+9)f(-) — f(- + su) and

(L +0)f() = FC+sm)] < 0l flloo + 7] fllcosr-
Hence hy > 0 and Lemma 2.12 (after shifting 0 to any y € Bsc) yield for
some C' > 0 (if  is small) and any s € [g, 2¢] that
(3.3)  hg(x) < Chys(y) + C2||flloo + Ce* || fllcos  for all z,y € Bs..
This and (3.2) with = 0 yield
2

he(0) < C Y he(iep) + Cow(0) + C%6| flloo + C>7 fll o
=0
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< Che(0) + C6w(0) 4+ C%5|| flloo + C*|| f]l o5

Next, by Lemma 2.12 again, for s € [e,2¢] and r := %61_"1 with k1 € (0,1),
we get

[Vhs(0)] < Cr™'hys(0) + Crd| flloe + Cre | fllcos
< Cr7 he(0) 4+ Crt6w(0) 4+ Crd|| flloo + Cre7|| £l o7 -
Now we estimate h-(0). We obtain from (3.1) and (3.3) with s = ¢ that
he(0) < Cle(2eps) — (14 B)em)) + o g,

where c. ;1= Ce%8|| f||oo + Ce** 7| f]|cos. Since V,hs(0) = V,w(sp) — (1 +
9)V,w(0), this implies
(3.5)

he(0) < C<

(3.4)

2e
Vw(sp)ds — 5w(5u)> +ce

<c </2 Vhs (0)]ds + £(1 + 8)V,1u(0) — (1 + 5)5w(0)> e,

where we also used w(ep) > (1+0)w(0). Then by (3.4) with r = 2171 and
the definitions of ¢, ; and ¢, we obtain for some C' = C(d) > 0,

ha(0) < O ho(0) + CM1590w(0) + O(1 + 6) (£V,0(0) — 80(0)) + C>T 1 (] fllow + || Fllo)-
Using he > 0, the above estimate yields for all € > 0 small enough,

(36)  Vuw(0) > e*(1 — Ce")w(0) — C(L+ )77 | fll o

This yields the conclusion for x = 0. U

Remark 3.2. 1. It is clear that (¢,¢®)-monotonicity with respect to Wp ,
for some # > 0 and p € S ! implies (5,5“,)—monotonicity with respect to
Wo,u forall 0 < a < o

2. Let w be from Lemma 3.1. If either @ # oo or f is constant, and € > 0
is small enough such that e%w(-) > 2Ce*7%1|f||co» and Ce® < 1, then
w(sp) is non-decreasing in s for all s € (—¢,¢).

3. Furthermore, if e%w(-) > Cel™77251|| f||co5 in By.1-x,, then for some
larger C' > 0 and any j € (0,1), w is (je,e%(1 — Ce"))-monotone with
respect to Wo , in B« .

3.2. Polynomial growth near the free boundary. The goal of this sec-
tion is to show that a superharmonic function which has cone monotonicity
up to e-scale has a polynomial growth bound up to the same scale. The
growth rate lower bound will be used in competition to the irregularity of
the source term, to show that the regularity propagates to the boundary over
time (see Lemma 6.1, Proposition 6.2 and Theorem 7.3). This bound can be
improved to a linear rate once we obtain full monotonicity, later in Section
7.

Next lemma provides a lower bound for the growth rate of (&, 0)-monotone
superharmonic functions.
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Lemma 3.3. Let u € S, and let w > 0 be a continuous function in By
such that

—Aw>0inQ,NBy, 0€T,=00,, wu) >1,

and w is (,0)-monotone with respect to Wy ,, in By for some € small enough.
Then for some dimensional constant ¢ > 0 and for any 5 € (1,2), if 0 > 6g
(with O3 given in Lemma 2.10) we have

w(x) > ed(z,T,,)"
for all x € By NQ,, satisfying d(x,T,,) > 2.

Proof. For each x € By N, satisfying d(x,T,) > 2¢, there is xg € T, N By
such that © = z¢ + sp with s > d(x,T,,) > 2. Note that it follows from
the monotonicity assumption and {0,z9} C Iy, that w > 0 in ((zo + ep +
Wo,u) U (ep + W) N Ba. Thus Harnack’s inequality and w(p) > 1 yield
w(x + £p) > ¢ for some dimensional constant ¢ > 0. Then by comparing
w with a non-negative harmonic function whose support is xg + cu + Wy
Lemma 2.9 and Lemma 2.10 yield for some dimensional ¢’ > 0 we have

wx)>d(s—e) >47d(x,T,)® whenever § > 05.

)

O

For the next lemma the growth rate bound is obtained excluding only a
small portion of the original domain Bj, with the expanse of restricting to
the near boundary region.

Lemma 3.4. Under the assumptions of Lemma 3.8 except that w is only
assumed to be (g,0)-monotone with respect to Wy, in By (instead of Bz),
then for some ¢ = ¢(d) > 0 and for any B € (1,2), if 6 > 03 we have

w(x) > ed(z,T,,)"
for all x € By__1/2 N €Y, satisfying d(z,T',,) € [28,6%].

Proof. For any x € B__1/2 N Y, satisfying d(z,T,) € [26,6%], there exists
xg € I'y, N By such that o = zg 4+ sp with s > 2¢. Note that this is not true
if d(x,T,,) >> ¢'/2. With this 29 € T, N By, we can conclude the proof the
same as in Lemma 3.3. O

3.3. Streamlines. Here we introduce streamlines associated with the drift
term, which yields an important monotonicity property for our flow. They
are defined as the unique solution X (t;z¢) of the ODE
57) 0 X (t;x0) = —b(X (t;0)), tER,
. X (0;z9) = o.

We write X (t) := X (¢;0). In order to analyze the solution along one stream-
line that passes through (0,0), we define

(3.8) u(z,t) == u(z + X(¢),1).
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Then u satisfies
{—Aa = fo(x,t) in {u > 0},

(3.9) B - - -
ur = |Vl + bo(z,t) - Vau on d{u > 0},

where
(3.10) folm,t) == flz+ X)), bo(z,t):=b(z+ X (t)) — b(X(t)).

It was shown in [KPW19, Lemma 3.5] for the drift porous medium equa-
tion that {u > 0} =: Q,, is non-decreasing along the streamlines. The same
holds in our case.

Lemma 3.5. If (xg,tg) € Qu, then (X (t;20),t+ tg) € Qy for all t > 0.

Proof. Let us assume (xq,t9) = (0,0). By continuity of the solution, suppose
that for some z € B; we have u(t,z) > ¢ > 0 for all ¢t € [0,7) with some
small 7 > 0. Let Dy be any strict open subset of ,(0) N By, and then for
€ (0,7) define
D; = {X(t,x) T T € Do} N Bj.
We can assume that z € Dy for ¢ € [0,7]. Let v(-,t) be the largest subhar-
monic function in D;\{z} such that v(-,t) =0 on 0D; and v(t,z) = c. It is
clear that v < w at t =0 and v < w on (,(t) N9By) U{z} for t € (0, 7).

We claim that that v is a viscosity subsolution to (1.1) in (B1\{z}) %
(0, 7). Let us only verify the free boundary condition. Suppose for a smooth
function ¢ € Cgtl such that v — ¢ has a local maximum in €, N {t < to}
that equals to 0 at (xo,tp) € I'y, and zy ¢ 0B;. Note that by the definition
of Dy, ¢(xo,tg) < d(X(—¢;x0),tg — €) for all e sufficiently small. Therefore
¢ <b-V at (z0,t0), and thus we can conclude with the claim.

Then the comparison principle (Lemma 2.5) yields v < u. Note that
{(z,t) : * € Dy,t € [0,7)} is non-decreasing along streamlines and Dy can
be arbitrarily close to €2,(0) N B;. So €, is non-decreasing along streamlines
for t € (0,7), and then the same holds for all positive time. O

3.4. Lipschitz space-time neighborhood of the free boundary. In
this subsection we show that if the solution u to (1.1) is (&, 0)-monotone
in space, then there exists a Lipschitz space-time neighborhood of the free
boundary of u. The interesting feature lies in the time variable component
of the Lemma: for the space variable it can be derived from a geometric
argument, for instance see Proposition 11.14 in [CS05|. This Lipschitz set
will be used as the region where we do comparison later. For simplicity of
discussions, we take p := —eg below.

Lemma 3.6. Suppose u, f,g satisfy (1.1), and they are uniformly bounded
by L in Qy = By x (—2,2) for some L > 1. If u is (¢,0)-monotone with
respect to W_, g for some 6 € (0,3) in Qa, then for any r € [4e, ] there
exists a Lipschitz continuous function ®, : R4 — R such that

Fu(t) N 33/2 - {(JJ/,CCd) S B3/2 : |¢r($l,t) - l’d| < ’I"}
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for all t € (—2,2). Moreover, ®, is cot-Lipschitz continuous in space and
C'/r-Lipschitz continuous in time for some C = C(L,0) > 0.

Proof. From the (e, 0)-monotonicity assumption, it follows from Proposition
11.14 [CS05] that for each t € (—2,2), I',(t) is contained in a (1 — sinf)e-
neighborhood of the graph of a Lipschitz function, with Lipschitz constant
cot#. Therefore we can find a Lipschitz function ¢! : R~ — R with the
same Lipschitz constant such that

(3.11) Tu(t) N By C{(2',24) € By : |pe(2) — 4| < €}

Claim. If r € (0, 1] and u(-,to) = 0 in By(xq) for some (xo,to) € Bja X
(=2,2), then u(xg,to +1t) =0 for all t < er? for some ¢ = ¢(L) > 0.

Proof of claim. We use a barrier argument to prove the claim for d > 3
(the proof for d = 2 is similar). Also suppose, without loss of generality, that
to = 0 and zg = 0. For some A > 1 to be determined, let

w(z,t) = a;—2 ' L|z)?—b|z>~? in X :={(z,t) : z € Bio\By,, t € [0,72/(24)]}

where

8+ L —A4Lr?
L -1 d—2 P e i
ap:=14+8 L4524 b := 87“t2_d _9d+1’

re=r — Ar~t.
Then it is straightforward to verify that for ¢ € [0, (24)717r2], —Aw(-,t) =
dL, w(-,t) =1 on B, /5 and w(-,t) = 0 on dB,,. Moreover for these t,

|Vw(x,t)| < Llz| + (d — 2)bt]x|1_d <C/r forz € By)\By,,

as 1/2 < 1/r, with C' > 0 only depending on d, L. Therefore, using that
%7} = —Ar~! and by picking A := C + L, we get that w is a supersolution
o (1.1). So the assumptions and the comparison principle yield u < w in 3.
Since w(-,t) = 0 on dB,, for all t € [0, (24)~ 2], we proved the claim with
c:=(24)"L

Now for each 2’ € R~ satisfying |2/| < %, since u((2', p¢(2') +€),t) = 0,
the (g, 0)-monotonicity yields u(-,t) = 0 in Bgng((2', ¢t(z') + 17 +¢)) for all
r > . Hence the above claim implies

u (2, ¢e(a") +7+e),t+5)=0 forallsel0, cor?]
where cg := csinf. This yields
(3.12) brrs(x)) < dp(2)) +1r4+2¢  forall s € [0, cor?).

On the other hand, since (2, is non-decreasing along streamlines and ]g] <L,
we obtain

(3.13) Grrs(x') > dp(2)) — cgLr® — 2 for all s € [0, cor?].

Let r € [g, i] and we use ¢; to construct a Lipschitz space-time function
®,. Let tg := —2, and define iteratively for k € N that t; := to + kcgr?,
and @, (z',t;) := ¢, (2'). Then we extend ®,(z',-) to all t € (—2,2) by
linear interpolation. We see that ®, is cot #-Lipstchiz continuous in space
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and 2(cgr)~1-Lipschitz continuous in time. Finally, (3.11), (3.12) and (3.13)
yield that
Fu(t) N B3/2 g {(iﬂl,l‘d) € 33/2 : ’(I)r($/,t) — $d| <r+4 38}
which finishes the proof with r + 3¢ in place of r. O

3.5. Examples: Waiting time, Formation of cusps and discussion of
optimality for the monotonicity assumption. First let us show that
the theorem is false when the angle is small.

Example 3.7. We only consider space dimension 2 and we use the polar
coordinates r, 0 such that (x1,x2) = (rcos,rsinf). Let us consider f =1,
b =0 and consider the initial data ug(r,8) =u(

In the following first example, we show that the free boundary of solutions
starting with a cone as its positive set develops a cusp at the vertex of the
cone if the vector field is only Hoélder continuous.

Example 3.8. We only consider space dimension 2 and we use the polar

coordinates 7,6 such that (x1,x2) = (rcosf,rsinf). In the example we
take f = 0, and b to be of the form b = (Cplaa|*~1,0) with Cp > 1 and
Y € (1,2).

First we show that the support of the solution is contained in a shrinking
cone when Cj is large. For t € [0, 1], let
™ 7r T
I, :={l0] =6,} where 6; := (1 — t)27fy0 - t?},l € (0, 5) and y1 > 0.
The opening of the cones {|6| < 6;} shrinks from 6y to 6; for ¢t € [0, 1]. For
each t, let o' = 77 (cos(v,0))+ with 7 := g5~ > 1. It is easy to see that
Ap! =0 in {¢' > 0} = {|0] < 6;}, and

IVt| = r%_l\/cos2(%9) + 742 sin?(y,0) ol =y on |0 =6,
Ut

By direct computations, the outer normal direction of '} is v, = (— sin 6, & cos 6;),
and the normal velocity of I', at (r, £:60;) equals to V' (r, £0;) = —(55- — T
We obtain on I'; N By,

VI — |V - b- v, = —(L — i)r — L 4 Cp|r cos ;|70 sin 6,

2% 2m

which is non-negative if Cy is large enough, due to 79 < 7. So ¢! is a
supersolution to (1.1) in By x (0, 1).

Next let u be a solution with initial data < ¢" and with boundary value
< ¢ on @By x {t > 0}, then the origin is on ', by Lemma 3.5 and b(0) = 0.
We claim that the comparison principle (Lemma 2.5) yields u < ¢! and
so Q,(t) is contained in {¢* > 0} = {|0| < 6;}. To justify the use of the
comparison principle, by the choice of l;, we first compare u with ¢! (z1+6, x2)
for § > 0 (the two functions are strictly separated) and then passing § — 0
yields the desired inequality u < ¢'.
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Now we start with ¢ = 1 and a solution u such that (,(1) N By) C
{|0] < 01}, and show the formation of cusps. Assume y; > 2 and o : % €
(o —1,1). For t € (1,2), define

[y :={x1 = g(z2,t)} where g(x2,t) := |z2| cot 61 + (t — 1)|z2|.

=

So a cusp develops at the vertex of the set {z; > g(x2,t)} when t > 1.
For each t € (1,2), let ¢' be a harmonic function in {z; > g(xo,t)} with
0 boundary condition and ¢'(3,0) = 1. If we can show that ¢'(21,z2) is
a supersolution for ¢t € (1,2), then after further assuming u to be smaller
on 0B; and by the comparison principle (which can be justified similarly as
before), the support of u is contained in cusps for ¢ € (1,2), which shows the
formation of cusps.

To show that ¢! is a supersolution, it suffices to verify the free boundary
condition on 'y N B;. Note that the curvature of Ty at point (g(x2,t),x2)
satisfies

| 29(:{:2, )| -
(1 + 10z, g (w2, 1)[)3/2 ™ 2]

For any fixed (y1,y2) € T't, let us consider (;;t(:cl7 x2) := ¢! (|yo|z1+y1, |y2| T2+
y2). Then the free boundary of qgt is a graph of finite curvature in a unit
neighbourhood of the origin. Thus it follows from Lemma 2.9 (by comparing
with radially symmetric harmonic functions, see also [JK05]|) that for some
c>0,

uniformly for all |z2] < 1 and ¢ € (1,2).

V3 (0,0)] < ¢4 (0, —y2/[y2])-
After scaling back, we get
Vo' (21, 22)| < ¢! (21,0)|/|a2| < cal'/|z2|  on TN Bi.

In the last inequality we used ¢'(z1,0) < ¢!(21,0) < 27*, which is due to
the support of ¢' is contained in {|f] < 61} and Lemma 2.10. Moreover, by
direct computation,

(=1, £(cot Oy + o(t = 1)]x]771)) —Cplag|r01
V14 (cotfy +o(t—D]aa|o 12  \/1+ (t — 1)2|zg[202
where 14 denotes the unit normal direction on I';. The normal velocity of
I'yNByis

by = (Colaa 71, 0)-

(=1, £(cot Oy + o(t = 1)]a]7" 1)) —|xa|@ S —|ag[r0~t
V1t (cotfy +o(t— D)o 12 /14 (¢ —1)2|z9292 ™ /1 + (t — 1)2|zg[22

where the last inequality is due to o > vy — 1.
It remains to show that, if Cj is large enough, then

(3.14) V>b-V 4|V onlynBi.

If (t — 1)|z2|°~! > 1, then (¢t — 1)|22|° ~ x1 on I';. Due to 79 — o < 1 and
~yio = 2, we have for t € (1,2),

Vbt & Colaa[ 77/t = 1) 2 Colas| and  [V¢'| S (t=1)" |27 < o).

V= (|z2]7,0)-
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While if (t — 1)|z2|°~! < 1, then |z2| ~ 21 on Iy, and so, by 1 < vy < 71,
V-b~ Colzo|™t and  |Voy| < |ao| 71 < |ag0 L
These imply (3.14), and we conclude with the formation of cusps.

Finally, we show that (e, 0)-monotonicity with respect to Wy, in a large
neighborhood does not imply that the solution is monotone along the direc-
tion p in smaller neighborhood. Here € > 0 can be large and the source term
f is smooth.

Example 3.9. Fix a small § > 0, and any 6 € (0,5) and n € N. Take a
smooth function f > 0 such that f is radially decreasing, f is supported in
Bys, and f = 6™ in Bs. Then we can assume that f is uniformly bounded in
C™ norm regardless of the choice 6. Now let ¢; : R? D By — R solve

—A¢; = fin By and ¢ =0 on 0B;.

Note that ¢;(x) = f325 5= In|z — y|f(y)dy. Hence by direct computations,

(3.15) sup |Vei| > 6" /C and ¢y € (0,C6" 2| 1Iné|) in By
Bas

for some C > 0 independent of §. Moreover, take
(3.16) o(x) := ¢1(x) + 2 + 8"y /(20),

which is strictly positive, and satisfies ¢, < 0 at some points in Bas by
(3.15) and the fact that ¢; is radial. We claim that, with ¢ := 52 and &
sufficiently small, ¢ is (e, 0)-monotone with respect to Wy, with p being the
positive xi-direction. Indeed, for any z,y € By and y € Be)-(v + i),
(3.16) and the second inequality in (3.15) yield
$(y)—d(x) > 6" (y1—21)/(20) =1 (z) > (1=sinB)ed" ! /(2C)~C6"?|Iné| > 0,
after taking 6 = €2 to be small enough. Thus this yields the claim.

Finally (still in dimension 2), we show that (e,%)-monotonicity with re-
spect to Wy, in a large neighborhood does not imply that the solution is

monotone along the direction p in smaller neighborhood. The source term
f is bounded, the constant « € (0,1), and the solution can be >> ¢.

Example 3.10. Let o > 0 be fixed, and let min{0,1 —a} < k < 1 and
§ := el@tr+t1/2  Then take C, 60, f and ¢, from the previous example with
n = 0. We define

d(x) := ¢1(x) + 0(x1 +1)/2C + 7.
By (3.15) with n = 0, we have for sufficiently small ¢ that
(3.17) " < ¢ < C8?|Inéd| +0/C 4+ < 2"  in By.

From the previous example, ¢, does not have a sign in B;. We now show
that ¢ is (e,e%)-monotone with respect to W , with u denoting the positive



REGULARITY OF DRIFT-HELE-SHAW FLOW 19

ri-direction. Indeed, for z,y € By and y € Bgyg)-(v + i), we get from
(3.15) and (3.17) that

d(y) — (L+e*Hg(a) > 6y — 1)/ (20) — ¢1(x) — 2T o(x)
> (1 —sinf)ed/(2C) — C6?Ind| — 2e* T+,

This is non-negative when ¢ is sufficiently small, due to ™ << § << € by
the choice of the parameters.

Note that, later in Proposition 6.2, we will apply the improved interior
monotonicity of the solution w in the region that is e"-away (with v < 1
but close to 1) from the free boundary and it is possible that u € (¢1/7, )
for some o < 1 in the region. Thus the above example indeed indicates that
merely bounded source function is not sufficient for the purpose.

4. SUPERHARMONIC FUNCTIONS IN LIPSCHITZ DOMAINS

In this section, motivated by Lemma 3.6 we begin with studying superhar-
monic functions in Lipschitz domains, starting with an important localization
result (Proposition 4.1). Building on this we achieve an important growth
estimate for (g,£“) superharmonic functions, up to a small distance away
from the free boundary (Lemma 4.5). The challenge lies in the potential
oscillation of the source term f, which could affect the distribution of Vw in
small scale.

Throughout the section we denote ¢ : R¥~! — R to be a Lipschitz con-
tinuous function with Lipschitz constant ¢, > 0 such that g(0) = 0. For any
L > 2, define a strip with width 1 below the graph of g in B, as

Li=Brn{z=(a",zq) : g(z') -1 <zqg < g(a')},
and denote the bottom part of the boundary as
WY =B N{z = (2',24) : x4 = g(z) — 1}.
We consider two non-negative functions wy ; and ws 1, such that

—Awl,L = 0, —AwQ,L =1in 2/ 3

wip, =1, war=0o0n Y); wir=wsr =0 on the rest of 93 .

Below we will show that the two functions are comparable, uniformly
with respect to the width parameter L. Such result allows us to study our
solutions using the well-known properties of harmonic functions in Lipschitz
domains. While such result appears to be of classical nature, we were unable
to find a relevant version in the literature. It does not appear to be directly
verifiable from the Green’s function presentation for each functions.

Proposition 4.1. For wy , w2 and g given as above, let L > 2 and ¢y <
cot 02, where 0y is from (2.3). Then

way < Cwyy in X4 for some C = C(d,cy).
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Let us remark that if ¢, > cot 63 the proposition is false. This is because
near the vertex (at which wy 1, = 0) of a cone with small opening, wy 1, grows
much slower than quadratic, while wq ;, has a quadratic growth.

Proof. 1. First we claim that ws r, is bounded in ¥, with the bound de-
pending only on d and c,. If this is not true, then we have a sequence of
Lipschitz functions g,, and the corresponding wy ; ~such that wy ; (@) =
maX,esy, Wy, () — 0o as n — oco. Due to the classical regularity results
for harmonic functions in Lipschitz domains (see e.g., [JK82]), wy, (- +
zn)/wy 1, (2) are uniformly continuous with bounds that only depends on
d and c4. By taking a locally uniform convergent subsequence of wy L+
Tn)/wy p (%5), we can easily obtain a contradiction because the limiting
function is harmonic in some Lipschitz domain whose dirichlet boundary is
a unit distance away from the origin, and it assumes its maximum value 1
at the origin, which is not possible. So we can conclude.

2. We now simplify what we need to prove. First, by Dahlberg’s lemma
(Lemma 2.9), there is no loss of generality to assume that w;; = 1 on
WY U (0B, N'Y}). Next we claim that if we can prove the conclusion
for L = 2, then the general case follows. Indeed since wsqy, for all L > 2
are uniformly bounded (denote the bound as C.), wa < Ciwiz on the
boundary of ¥} N By. This implies that wy ;, < Cywi 2 + we 2 on X} N Bs.
Then by the assumption that the conclusion of the lemma holds for L = 2
and by Dahlberg’s lemma, we obtain

wy,r, < Chwr g +wap < C'wip < C"wyyr,  on ¥ N By
The same holds on X7, by shifting the functions.

3. Now we set L = 2 and change the variable

v =a', ya:=xza—g(@) (writey:=(y',ya)).
Under the transformation, the Lipschitz boundary x4 = g(z’) becomes a flat
hyperplane y4 = 0. The operator —A changes to

(4.1) L:=L,=-V ((Dy)' DyV)

where Dy denotes the Jacobian matrix of the transformation. The opera-
tor remains uniformly elliptic since (Dy)? Dy is bounded, measurable and
uniformly positive definite.

Working with the new coordinates, let us consider the following two non-
negative functions
(4.2)

—Lw) =0, —Lwh =1 on {|2'| <2, x4 € (-1,0)} = T,

wll :1’ w/2:0 on {|1:/| §2a I’d:—l},

w) =0, why = 0, on {(|2'| =2, zq € (—=1,0)) or (|2'| <2, 24 =0)},
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It suffices to show that

(4.3) wh < Cwy on T'.

3. We would like to further reduce the problem to periodic domains. Let
us denote T¢~! as the (d — 1) dimensional torus, and consider

—Lw} =0, —Lwl = on T ={2' € T, 24 € (—=1,0)},
(4.4) wy =1, why =0 on {2’ € ’]I‘d_l, xg = —1},
w’f =0, wg =0, on {x’ e ’I[‘d_l, xq = 0}.

We claim that to show (4.3) it suffices to show w) < Cw} on T. To
prove the claim, we can construct a Lipschitz function § : 4T%"! — R with
Lipschitz constant ¢, such that § = g on {2’ € R¢"! : |a/| < 2}. Then the
corresponding operator Lz agrees with £ on the same region. Let us still
call solutions from (4.4) with £5 and 4T¢! in place of £ and T4 as w{
and wj. Then Lemma 2.9 in pre-transformation coordinates and uniform
continuity of wi,w/ yield w{ < Cw} on T’, and the comparison principle
yields wy < wf. Hence wf < Cw{ implies (4.3), which shows the claim after
rescaling.

4. Now we proceed to show w§ < Cwf in the periodic domain 7 for w{, wy
from (4.4). We will proceed with induction, to approach the boundary of
zq = 0. Let us denote

Trh={zeT :zqe(—27% 0}

Since w{ > 0 is uniformly bounded away from 0 when z4 € (—1, —%] and w§
is uniformly bounded, there exists C; > 0 such that w) < Ciw{ in T\Ti.
Suppose wh < Cpw! in T\T for some k > 1 and Cy > 0. Let ¢ be the

unique solution to

¢ =0 on 0T.

Then by considering 4*¢(27%2) in 2¥T;, the bound in Step 1. in pre-
transformation coordinates yields that ¢ < C.47% for some C, > 0 in-
dependent of k. Since wy < Crw{ on 0T, we obtain

{E¢k =1 inTy,

why < Crwl + ép < Cpwl +C4™"  in T.

Since ¢y < cotflg < cotfy for some f < 2, Lemma 3.3 yields that w{ >
Clzg|®. Thus, using that w/ > C2-*+D8 in T\ 7,1, there exists C' =
C'(Cy) > 0 such that

C’w’{ > o~ (k+1)B > 2(275)’6(4*’9(}*) in T\ Tk41-
We then obtain

why < Crpw] i T\Tr ={z €T : zqg€(-1,-27"1]}.
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with Cjy1 := Cp + C'208=2F Because €’ is independent of k and 8 < 2, we
have

lim C) < o0,

k>0
and therefore w§ < Cw{ in T for some C' > 0 which finishes the proof. [

Later, instead of applying Proposition 4.1 directly, we are going to use
the following corollary. In it, we use X5 which recales the previous ¥/ to
unit length but with § width (so § ~ 1/L). For any § € (0, 3), consider the
domain

(4.5) 85 := BiN{xg € (g(z') = 5,9(2")}, OpXs := BiN{xg = g(a') —d}.

Corollary 4.2. Let g be as in Proposition 4.1 with ¢, < 0 for some 3 €
(1,2). Let f : R? — [0,00) be continuous, and let w be a non-negative
function solving

—Aw=fin BoN{zg < g(z)}, w=0o0nByN{zg=g(@)}w(—eq) > 0.

Consider w1 and wy each solving

—Aw; =0, —Awe = f in X,

w] = w, wo =0 on JpXs,

wp =wy =0 on the rest of 0%s.

Then there exists C = C(d, B) such that
6P 2wy < C 1£lloe wy in Bi_sgNXs.
w(—eq)
Moreover, in the same domain we have
w <w < C(1+ 52*5)mw1.

w(—eq)

Proof. First, for m := w(—eq), Lemma 2.10 yields that w > emdP on 9T
for some ¢ > 0. So that w1 (z) := m~ ' Pw;(6x) is harmonic in ¥5/6 and
w1 > ¢ on (0yX5)/5. Note that we(z) := 6 2wo(dx) satisfies

—Awy < ||flloo in X5/d and  we =0 on (9pXs)/d.

Thus, applying the comparison principle and Proposition 4.1 with || f|| o w2
(when || f]lec > 0) and w; in place of wy and w; yield for some C' > 0,

md? 2wy < C||f|leowr  in Xg N By_s.

For the second claim, note that v := w — wy > 0 is a harmonic function
in X5, w1 = w = v on OpXs and wy < v on 0X5. Hence the comparison
principle yields w; < v in ¥s5. And by Dahlberg’s lemma (Lemma 2.9), we
have

(4.6) (w1 S) v<Cw; In 25/2 N 31,5/2

for some C' = C(d) > 1. Since w; and v are harmonic, v — w; = 0 on
B1 N opXs, and 0 < v —wy < (C — 1wy on Bi_g/5 N 9252 by (4.6), we
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apply Lemma 2.9 again to have v —w; < C'wy in By_5N (X5\Ys/2) for some
C" = C'(d). Hence we have (4.6) holds (with possibly a different C' = C(d))
in B1_5 N s, which finishes the proof by the established first claim. O

Corollary 4.3. Letu solve (1.1) withb = 0 and f € L>®(R?) in B1(0)x[0,1],
with a locally Lipschitz domain Qo. In particular we have {u(x,0) > 0} =
{zn < g(2’)} in B1(0), where g is as given in Proposition 4.1. If the Lipschitz
constant of Uy is small, Then for any € > 0 there exists h > 0 depending
on € such that u(-,t) is he-monotone for the cone Wy, in Bp(0) for t €

- h
[0ty == u(—hen,O)]'
this is only a sketch of the proof, we will see if it makes sense first.

Proof. If we use the same initial data and solve the homogeneous problem
(HS) , Theorem 5.7 in [CJKO07| in particular states that the corresponding
solution v has spatially Lipchitz free boundary which is monotone in the
cone W(6,v) for t € [0,tg], where ¢y only depends on €. Now we construct
the barriers for our problem as follows: we solve —Aw(-,t) = f on I'y, and
solve for the harmonic function w; in the §-strip of I';, with inner boundary
data the same as wy. Then by Corollary 4.2, w1 < w < (14 Cd)w, and so
|Dw| ~ |Dwi| up to O(d) error. In particular we know that w is a subsolution
and w(-, (1 4+ C6)t) is a supersolution for our original solution u. So we can
use the information on w; from [CJKO07] to bound the free boundary of w.
though we have to be careful here since I am assuming here that I have the
fixed boundary data from w satisfies w < (1 + Cé)w(-, (1 + CH)t). But I
suppose that this is true as long as f has bounded time derivative. We also
need to choose § so that the resulting gap between the barriers, which is dty,
is about he. The (he,0)-monotonicity I believe follows from comparing u
with w and from using Lemma 4.6. (]

The next two lemmas connect w and Vw in terms of its distance from
the free boundary. These were proved in [CS05, Lemma 11.11] for the case
f = 0. A crucial element in the proof is Harnack inequality for the directional
derivative of harmonic functions. In our case Proposition 4.1 is applied to
avoid differentiating the source function.

Lemma 4.4. Let w and g be as in Corollary 4.2, and in addition suppose
that wy, < 0. Then there exists C' > 0 such that for all sufficiently small §
we have

Cd(x,{ya = 9(y') Hw—a,(2) = w(x)
holds for all x € 35N By_s, where X5 is given in (4.5).

Proof. Let us fix a point (v, 9(y’)) € B1_s. For simplicity, we may assume
that 4/ = 0 and g(y') = 0. For r > 0 define z, := g(y') — req. Then for
wy given in Corollary 4.2 the following is true due to the boundary Harnack
principle [CS05, Theorem 11.5] and the remarks (a)(b) in its proof (see also
the proof of [CS05, Lemma 11.11]): There exist C, o > 0 such that we have

(4.7) wi(72r) < C1%w1(2,) for any r € (0,8/2),7 € (0,1).
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Next if 6272 flloe < w(—eq), then w; < w < Cw; for some C' > 1 in
s N Bi_s by Corollary 4.2. Thus by taking 7 > 0 to be small enough
(independent of r and y'), we obtain from (4.7) that w(7z,) < w(z.). This
implies

(4.8) %w(zr) < / o (—sed)ds (< w(z).

r

Now since w,, < 0, by applying the last claim of Lemma 2.12 for possibly
multiple times, we get for all s € (7r,r) that

wog,(—s€q) < Cw_z,(zr) + C7| fl Lo (5y)
with C' > 0 depending on 7 and an upper bound of ¢,. So (4.8) yields
(4.9) Crw_g,(z:) > w(z) — Cr?|| £l o-
For # := arccot ¢, (> 0 with § € (1,2)), we get
rsind < d(zr, {ya=g(y)}) <.

Also using w(z,) > CrPw(—eq) by Lemma 2.10 and the above, we get from
(4.9) that for some positive constants C,C’ depending on 6, w(—eq) and

£ lloo>
Cd(zr,{ya = g(y/)})w—xd (2r) > w(zr) — CrszHoo
1

> —w(z) 4+ Crlw(—eq) — C'r’w(—eq) > %w(zr)

O |

if r < § is small enough. O

We now relax the previous assumption and consider (e,&®)-monotone
funcitons. Note that the cone of monotonicity needs to be wider as the
regularity of f decreases.

Lemma 4.5. Let f € C7(R?) for some 7 € (0,1] be non-negative, and let
w >0 solve —Aw = f in Bo N, with 0 € Ty, and w(—eq) > 0. Suppose

that o € (0,3) and k2 € (£, 1) if f is not a constant. Otherwise take o = 0o

and any ko € (0, %) if f is a constant.

In addition suppose that w is (¢,e“)-monotone with respect to W_,_ g in
By with 0 > 014~. Then there exists C = C(0,w(—eq), || flloc) > 0 such that:
for all € sufficiently small,

(4.10)
C|\Vw(z)|d(z,T,) > w(x) in B,_ap0{z: Cet™" < d(z,T,,) < /21N,

Proof. 1. Let 29 € B,__1/2 N, satisfying 0o := d(z0,T) € [2e1772,£1/2).
Below we write ag := w(zp). Denoting x = (2, 24), we consider the domain
Dy = {a: 2 — (mo)] < 816, lxg — (x0)d| < 250} .

Let us also define

N.:={x € By_.12NQ, : d(z,T,) >}
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By Lemma 3.4 with some 8 € (1,1+ %) and the assumption, for some ¢ > 0
we have

(4.11) w(z) > cw(—eg)et 28 in N..

Note that when f is not a constant, we have e(1=r2)8+a >~ gl+7-r2 5pq
et/? > &l7 due to § € (1,1+7) and kg € (£,3). So it follows from the
second remark of Remark 3.2 that

(4.12)
w(-) is fully monotone non-decreasing along all directions in W_., 4 in Ne.

By our assumption of (g, e*)-monotonicity and the fact that 6 > 7, it follows
that the set {w(-) = ag} N Dy is at least e!~*2-away from T, N Dy, and
therefore {w(-) — ap = s} for any s > 0 are Lipschitz hypersurfaces in D.

2. Now let wi(-) and w/(-) be, respectively, the harmonic functions in
Do N8, with wy = w on 9(DyNEY,) and in Dy with w} = w on dDy. From
(4.11) and classical regularity results of elliptic operators, we get for some
c=c(d) >0,

w) (zo) > w1 (z0) > cw(—ed)ég.
Since wy 1= w — w; satisfies —Awg = f and wy = 0 on (Do N §,), we get
wy < O8] f]loo for some C' > 0 in Dy N Q. Therefore, using the fact that
wa(z0) < €8 Pwi(0) with C" := C||f ]|/ (cw(—ea)), we have
(4.13) ag < (1+ C'6F P yw! (xo).

Next, similarly as done in the proof of Lemma 5.6 [CS05], let h* (with z €
Dy) be the harmonic measure in Dy. By the (g, e%)-monotonicity assumption
and 0 € I',,, we have

|0DoN{w} = 0}| = |0DgN{w = 0}| > ¢|@Dy| for some ¢ = ¢(d,0) € (0,1).
Hence Lemma 11.9 [CS05| implies that

W (o) = /8 ()™ (o) < (1= ) e

for some ¢ = /(d,0) € (0,1). Thus by taking dy (and so €) to be small
enough and applying (4.13), we obtain

ao < (1-¢'/2) max w.

Therefore there exists x1 € 0Dy such that for Cy := ﬁ > 1,

(4.14) wy(x1) = w(z1) > Coap > ap.

3. Let us consider the domain
Dy = {z : |2’ — (z0)]| < 87160, =300 < xq — (z0)g, w(z) > ao}

From the full monotonicity (4.12) that the level sets {w — ap = s} N D; for
s > 0 are Lipschitz graphs. Since z1 € Dq, the set {w > Cpap} N Dy is at
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most Cdp-away from I',, N Dy. Since —A(w — ag)™ = f in D; and w,, < 0,
we can apply Lemma 4.4 to (w — ag)™ to obtain
(w(z) —ap)™ < C|Vw(z)|d(x1,{w > ap}) < C'|Vw(z)|d(z1,T,)
for all z € D; when ¢ is sufficiently small. While we also know from (4.14)
that
w—ag>(1-— C&l)w in {w > Chap} N D;y.

Thus the inequality (4.10) holds for € {w > Cpag} N D;. Since ¢ is an
arbitrary point that is e!=*2-away from T,,, by shifting xo, {w > Coao} N Dy

contains all points € By__1/2 such that d(z,T,,) € [0517“2,5%]. We finished
the proof. O

4.1. Lipschitz free boundary implies cone monotonicity. Here we
show that if the boundary is Lipschitz continuous, then the solutions to
—Aw = f with 0 boundary data are cone-monotone when sufficiently close
to the boundary.

Let g be a Lipschitz function as given in the beginning of Section 4.

Lemma 4.6. Let D, := B, N{zq < g(z')} for v > 0 and let w > 0 be a
solution to —Aw = f in Dy such that w =0 on g(z') = 0 and w(—3eq) = 1.
Then if ¢y < min{cot 0, cot 03} for some B € (1,2) (where 03,0} are from
Lemma 2.10), then there are ¢,r > 0 such that w_g, > cw in D,.

Proof. For some ¢ € (0,1) to be determined, let
ws(x) :=aw(dr) with a:=1/w(—deyq/2).

Then w; satisfies ws(—eq/2) = 1 and —Aws = f5 with fs(z) := ad®f(dz).
By the assumption on ¢4, Lemma 2.10 and Corollary 4.2 yield that

(4.15) C71° <a<C8* P, ws(—bey) < C3>7P.

Now let Ay, hg be two harmonic functions in D{ := By N {6xq < g(02)}
such that

hi =ws, ha =1 OnaBlﬂF‘f
hi=hy=0 on By N{dzxq = g(62')}.
For y := —dey, Corollary 4.2 and (4.15) yield

ws(y) = hi(y) < Ol fsllochi(y) < Ol fsloows(y) < €502,

Next, it follows from the last two lines of the proof of Lemma 11.12 [CS05]
that if J is sufficiently small depending only on ¢, and d,

V_zsh1(y) = ¢V _z,ha(y) > cha(y)/o.
where c is a dimensional constant. By Lemma 2.10 again,
(4.16) V_ o hi(y) > ¢t
In view of Lemma 2.12 and |fs| < C§45,
Va5 — ) (@) < C3 ws(y) — b () + Coll fslloo < C5"22.
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Thus (4.16) and § < 2 yield for all § sufficiently small that V_,,ws(y) > 0.
This implies that V_,,w(—6%e4) > 0 for all § sufficiently small. Finally the
proof is finished after applying Lemma 4.4. ([l

5. SUP-CONVOLUTION

In this section we prove several properties of sup-convolutions, first intro-
duced by Caffarelli (see e.g. [Caf87]). They will be used in the constructions
of barriers in the next section.

For non-negative functions u in C(B1 x (0,7)) and ¢ € C’i’tl(Bl x (0,7))
with 0 < ¢ < 1/2, define
(5.1) v(x,t) ;= sup wu(y,t) in By x (0,7T).
Bap(x,t)(x)
The following lemma says that if u is (¢, 0)-monotone, then the level surfaces
of v are Lipschitz graphs whenever /¢ and V¢ are not too big.

Lemma 5.1. (Lemma 5.4 [CS05]) Let v be as given in (5.1). Suppose that

u(-,t) is (¢,0)-monotone with respect to Wy ,, for some 6 € (0, 5] in By, and
s

for some x € By/; and 0 € (0,5) we have

_ ecos? @
2 ng<-——— (sing— "7 _\Vyo(x, 1)) .
(5:2) sl < g o) (Sm 2oty Vel ”)

Then v(-,t) is non-decreasing along all directions in Ws,, at x.

The following lemma estimates Av. The proof is similar to those in [Caf87,
KZ21, CJKO7].

Lemma 5.2. Suppose —Au = f > 0 in Q, with continuous f : R — R. Let
v be given by (5.1), then v(x,t) = u(y(z,t),t) for some y(x,t) € Bz (7).
Then there are dimensional constants Ag, A1 > 1 such that if ¢ satisfies
Ao|V|?
]
then v satisfies (in the viscosity sense)

—Av < (1+ Ail[Velloe)f oy in Qy N [By 2 x (0,T)].

Proof. Since t stays fixed in the proof, we will omit its dependence from the
notations of u,v,¢ and y. We follow the idea of Lemma 9 in [Caf87] and
compute

(5.3) Ap > in By x (0,7T),

Av(0) = lim,_, <][rv(x)—v(0)dw>, where][ o(z)dz ::“;T’ | @

Let zo € ByjaN{v(:,t) > 0}, which may be set to be the origin. If y(0) is
a local supremum of u, then there is nothing to prove since Av(0) = 0. Oth-
erwise y(0) € 9B (0)(0), by choosing an appropriate system of coordinates,
we can assume for some 1,72 € R that

(5-4) v(0) = u(p(0)eq) and  V(0) = y1e1 + 72¢a.
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Recall that
v(z) = sup u(x + p(z)v) > 0.

lv|<1
Let us estimate v(z) from below by taking v(z) := ;’;Eg% where
Y221 — N T
(5.5) vi(x) == eq+ i S . ( x-e-)
©(0) pO)\ = "t

and 3 € R satisfies

(5.6) (1+7)? = (14+12)° + 4.
With this choice of v, we define y(x) := 2 + ¢(z)v(x) and so y(0) = ¢(0)eq.
Then direct computations yield (also see [Caf87])
(5.7 y(x) = Yal2) + p(0)ea + o[z
where Y, (x) denotes the first-order term that is
d—1
(5.8)  Yi(z) =2+ (m171 +Y2Tn)eq + (V221 — 12n)e1 + 3 Z Ti€;.
=2
Hence Y (z) is a rigid rotation plus a dilation, and (5.4) and (5.6) imply
D(Yi(z) —x)

(5.9) o

< ClVelloo-

Then we have

f v(m)—vm)dxzf u(y(®)) — u(y(0))de
B B,
> 7[ u<y<x>>—u<Y*<:c>+y<o>>dx+f u(Y. () + 5(0)) — u(y(0))d.

Using (5.3) and following the computations done in Lemma 9 [Caf87], we
find that the first integration in the above > 0. Since u is C? near y(0) by
the assumption,

2
tim =5 f o)+ 9000 — oo = (| 252 ) swion
Using (5.9) and Au(y(0)) <0, we get
(5.10)
ligl_)i(glf 712 ]ér v(z) —v(0)dz > ll_r}(l) %2 ]{BT uw(Yi(x) +y(0)) — u(y(0))dx

> — (14 C[|Velle) f(y(0)).

Finally to show the conclusion, suppose ¢ is a smooth function such that
¢ touches v from above at 0. If » > 0 is small enough, we have ¢(z) > v(x)
for x € B,, and thus

A¢(0) = lim 12]{9 o(x) — ¢(0)dx > hrfjélp :2][ v(z) —v(0)dz.

T
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This and (5.10) shows

Ap(0) = —(1+ Cf[Velleo) f(y(0))
which finishes the proof. ([

Below we show that if u satisfies the free boundary condition in (1.1), then
v satisfies some appropriate free boundary condition as well.

Lemma 5.3. Let u,v be as given in Lemma 5.2, where p € Cﬁ;tl satisfies
pen [Velsen —12<p<e
In addition, if u is a viscosity subsolution of (1.1) in By x (0,T), and if
€1, €9, |es| are small enough, then v is a viscosity subsolution of
—Av < (14 A1||Ve|leo)foy in Qy N (B2 x (0,T)),
vy < (14 269)%|Vu|?+b - Vo + (51||v5||00 + 2(g1 4 €2)||b]|oo + €3 + |53\/2) Vo)
on I'y 0 (Byy2 x (0,7)).
Proof. Suppose that for a smooth test function ¢, v—¢ has a local maximum
at (wo,t0) € I'y in Qy N Byjp x {0 <t < tp}. We would like to verify the

subsolution property for ¢.

As done before, suppose zop = 0 and (5.4) holds, and let v.(z) be from
(5.5), and v(z) := ‘Z:g% Then v(0,tg) = u(yo, to) = 0 with yo := (0, t9)eq,

v(0) = eq, and |Vv| < 1. We now define
h(z,t) .=z + o(z,t)v(z) (then h(0,ty) = yo)-

If ¢ has sufficiently small C!' norm, h is invertible and h~' is Ci:g In
particular 1 (y, t) := ¢(h~1(y,t),t) is Citl in a neighborhood of (yo, to). Since
v(z,t) > u(h(x,t),t) and v(0,t0) = u(yo,to) = 0, u—1) has a local maximum
in Q, N {t < to} at (y(),to).

First, suppose that —(Av + f)(0,t9) > 0. Since u is a subsolution,
satisfies

(5.11) b0, to) < [V (yo, to)|* + b(wo) - Vab(vo, to)

in the classical sense. By taking 1,2 to be small enough, we get
IV (o, to) — Vé(0,t0)] < sup [[D(h™(z,t0)) — Lall[Ve(0, to)]
(5.12) 2€B1 /2
< 2(e1 + €2)[Ve(0, 10)|
Next we estimate ¢:(0, zg). To do this, we first show that Vi (yo, o) is to
the direction of e4. Let us consider the set

D:={z : |x —yo| < p(z,t0)},
and then we have 0 € D by yo € T, (to). Since (-, %) is C? and V(0, ) =
y1e1 +y2eq by (5.4), dD is C' and the inner normal direction at 0 equals to

vie1 + (1 + v2)eq. Note that v > 0 in D by the definition of v and 0 € T,.
Thus we get ¢(-,t9) > ¢(0,%0) in D N B, (0) for some r > 0, which implies
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that V(0,%0) is pointing to the direction of yie; + (1 4+ y2)eq. In view of
(5.7) and (5.8), we have

L+ N
143
Dh(07 tO) =
I+73
M L+
This and

Y1€1 + (1 + ")/2)€d B B |
'y% + (1+72)2 IVo(0,t0)] = Vo(0,to) = V(yo, to) - DR(0,tg)

yield that Vb(yo,to) = [V (yo, to)|ea-
Now, since py < e3, (5.12) shows that if 9 is sufficiently small,

(5.13)
$:(0,20) = ¥t(yo, to) + Vi (o, to) - ht(0,20) < ¥t(yo,to) + [V (3o, to) - ¥(0)] (0, to)

< We(yo, to) + (g3 + 27 e )|V (0, to)].
Then (5.11), (5.12) and (5.13) yield at (0, o),

b1 < (1+ 222 IVo + B(yo) - V6 + (25 + 27 |es| + 22l1Bl ) IV 6.

Also using |b(yo) — b(0)| < 1||Vb|| in the above inequality and rearranging
the terms, we obtain
(5.14)

¢ < (14269)%| V> +b(0)- Vo + (53 +27 e + 1| Vb]loo + 2g2uz§um) V).

Finally, if —(Ay + £)(0,t9) < 0, it follows from the proof of Lemma 5.2
with 1, ¢ in place of u,v that (note that ¢(x,ty) = ¥ (z + ¢(z,to)v(x),to)
and we only used v(x) > u(z + ¢(z)v(x)) in the proof before)

—A¢(0) < (14 Cl[Vello) f (o)
which finishes the proof. U

Remark 5.4. The conclusion of Lemma 5.2 holds the same if f = f(z,t)
(then we replace f(y(z,t)) by f(y(z,t),t)). Similarly Lemma 5.3 holds the
same if b = b(x,t) (in this case we don’t need any regularity of b in ). The
proofs are identical.

Lastly, we describe a family of smooth functions ¢,, which will be used in
the next section. The proof is parallel to that of Lemma 10.10 in [CS05] with
« := 4k. In the referenced lemma, the domain is assumed to be uniformly
Lipschitz continuous in time. However if we replace L; (the graph’s Lipschitz
constant in time) by C/r = Ce™ 7| the same arguments apply to yield the
desired estimates for our setting.

Lemma 5.5. Let A1 > 1 be the dimensional constant from Lemma 5.2, and
let 1,72,k € (0,1) such that y1 — 2 > 4k. Take r := " and T > 4&* with
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e > 0 sufficiently small. Suppose that ®(x,t) is Lipschitz continuous with
constant C' in space and with constant C/r in time. Then for

Ser = {(z,t) € By x (=T,T) : |®(z',t) — zq4] < 2r},

there is Ay = Ag(A1,C) > 1 such that for any n € [0,1], there exists a C?
function @y(x,t) in X1 such that

(1) 0 < ¢ <y <1+mnin X, for some universal constant ¢,

(2) oAy > A1V py|? holds in 3,7,

(3) on <1 outside {(z,t) € Spp : t > =T + &', d(z,0B1) > 3"},

(4) on > 1+n(1—Ae™) in {(x,t) € Spp : t > =T +2e, d(x,0By) >
ef},

(5) |Vy| < A1 and 0 < Oppy < Age™ 7 in X, 7.

In the next section, we will choose ®,. to be the Lipschitz function from
Lemma 3.6, whose graph approximates the free boundary of u up to order
.

6. FLAT FREE BOUNDARIES ARE LIPSCHITZ

In this section we will show by iteration that flat free boundaries are Lips-
chitz. Similar to [CS05] and [CJKO07], the proof is based on the construction
of a family of subsolution, building on Section 5. These are constructed as
a small perturbation of w of (1.1) in a local domain By(0) x (—1,1).

The family of subsolutions will represent the regularization mechanism
of the flow, by the varying size of regularization given as a radius of the
sub-convolution we apply to the solution. Due to the presence of the source
and drift term with minimal regularity, and their competition with the reg-
ularization mechanism, there are additional terms to the perturbation: this
makes the construction of barrier function rather versatile and technical. In
an effort to make the construction more accessible for interested readers, we
list the family of parameters in the next subsection. Readers may also choose
to skip to our iterative statement, Proposition 6.2, and the proof of our main
theorem thereafter.

6.1. Parameters and Assumptions. Our barrier construction involves
many parameters, which we put together here for the reader’s convenience.
First we choose the minimal angle for the cone of monotonicity, from which
we will apply our iteration arguments. In light of Lemma 4.5 we will assume
that
feC(RY and Be(1,1+7).
Let 63 be as in (2.3), and let ©g € (0, 5) be such that

(6.1) sinfls < sin O — cos® Og/e

with ¢ from Lemma 5.5. We will work with the cone angle § € (©g,7/2) in
this section.
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Throughout this section we assume that u satisfies the following for some
T e(0,1]:
(H-a) u(-,t) is (e,e”)-monotone with respect to Wy _., in B; for some
0 € (©g,m/2) for all t € (—T,T), and with « satisfying
¥ a0 -73) 1-%°
2’ 8 7 16

(6.2) 0<a< min{

when f is not a constant.
(H-b) (0,0) € Ty and m := infyc(_p 1y u(—eq,t) > 0.
Note that if T' < 1, a simple rescaling argument can reduce the problem to

the case of T'=1. So, for simplicity of notations, let us assume 7' =1 from
now on.

Let us proceed with the next set of parameters, to be used in the next

subsection for the construction of barrier functions. For k := %, we choose

~1 and ¢ such that v and ¢ are respectively close to 1 and 4k, and S+t < 2v;.
More specifically we choose
(6.3)

3 0 5 5
’yl::max{4+§,1—;}<l, LI:5K,:1—§ and g 1= y1—¢,

and so 1 — 72 > 4k. With this choice of x,v1 and 72, let ¢, be from Lemma
5.5, with some 7 € (0,1).

We also define 0 < a7 < ag < 1 so that
(6.4) l-m<a<1—=(B4+1)/2, a<min{l —¢,7}.

Note that this is possible since § 4 ¢ < 2y; and max{¢,1 — 3} < 71.

Lastly we define universal constants: in this section C' or ¢ denotes con-
stants that only depend on d, a, 8, m, 7, [[u|| oo (B, (0)x (=1,1))» || fllo0s Hf”COﬂ(BQ)a
and Hb”cl(BQ).

6.2. Construction of the base barrier v. Let us define r := 7. We will
construct our subsolution in the domain

Y1 ={(z,t) € Q1 : |®,(2',t) — zyq| < 2r},
where @, is as given in Lemma 3.6 that approximates I';, in r-scale.
For a given o € [§,¢], define

(6.5) v(x,t) == sup  u(y,t).

Bmpn(a:,t) (LIJ)

It then follows from (6.1), Lemma 5.1 and Lemma 5.5 that v(-,¢) is non-
decreasing along all directions of Wy, ., when ¢ is sufficiently small. With
this choice of v, we define the domains

YT i=5000, ST i={r: (z,t) €T}, Ta@):={z: (z,t) € X1}
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and the bottom boundary of Xt (¢) as
X (t) := (0%,1(t) N Q) \OBs.

Due to the presence of f, we need to adjust v and the adjustments are
superharmonic functions.

For each t € (—1,1), let us define w! and w} by:
(1) —Aw! =0 in ¥ (t) with w! = v(-,t) on 9,37 (¢) and zero elsewhere
on the boundary.
(2) —Awh =1+ ||f]loo in XF(¢) with zero boundary condition.

Consider a non-negative harmonic function ¢ in the annulus (B1\ By 2+ )N
¥F(t). Since e® << 7, if ¢ > v on BXH(t) N (Bi_ex2\B1-2:x), then
Dahlberg’s lemma yields a dimensional constant ¢, such that

(6.6) ccwi < ¢ on XT(t)NOB_ox

With this choice of ¢,, we finally define our barrier function by
(6.7) o(-,t) = (1 + (-, t) — 2w + coe® !,
where oy, ap are given in (6.4).

Lemma 6.1. For sufficiently small € > 0, v given by (6.7) satisfies the
following in the viscosity sense: For any e € B,

—Av < f(z —ee) in TN (Bi_er x (—1,1)),
o < |Vo]> + b(z — ge) - Vo on Ty N (Bi_es X (—1,1)).
Proof. Since o|Vi,| < Ase!™* by Lemma 5.5, k < 1 and o < ¢, the proof of
Lemma 5.2 yields for small ¢,

(6.8) — Av(z,t) < (14 A1 Ae’™)  sup  f(y).
Ba«pn(m,t)(z)

Using || f||co.s < C and ¢, < 2, the right-hand side of the above
< (14 Ay A’ (f(z — ge) + C&T)
<(1+ A1A261_L)f($ —ce) + CeV.

From (6.7) and the fact that as < min{l — ¢,7}, we obtain for all £ > 0
sufficiently small that

—AT — f(z —ce) < —(1+&*HAv — 2 — f(z — ce)
<Cel i f(x —ee) +CeY — 2 <0 in X7 (¢t) N By.

It remains to show the appropriate free boundary condition. By Lemma
5.1 and the choice of Oy, for each t € (—1,1), I',(¢) is a Lipschitz graph with
Lipschitz constant less than cot #3 when ¢ is small. Then, using u(—egq,t) >
m, Corollary 4.2 with § := " < & yields for some C' > 0,

CeMC= Ayl > wh  in D) N By_ex.
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Thus we have, for € sufficiently small,

(6.9) cxe™wl >> e wh >> 2wl in BT (1) N By_ex.

Next, —Av < 1+ || f|leo by (6.8) for small ¢, the construction of w! and w},
and Dahlberg’s Lemma imply for some C' > 1,

(6.10) Cwh +wh >v(-,t) in ()N By_cx.

So for all € small enough, as > g, (6.7), (6.9) and (6.10) show (for ¢; :=
¢/ (4C) > 0)

7> (142 — (692 + ¢,/ (20))wh + cae™wh /2 + coe® v/ (20)
> (14 2c16™)v — C'e® wh + coe®wt /2
> (1421w in 1) N By _ex.

We then show that v has a linear growth near the free boundary. For
xg € I'g(to) N Bi—er and typ < 1, since xg € I'y(tg) = T'y(to), there ex-
ists yo € T'w(to) N Boy, (x0,t0)(T0). By the definition of sup-convolution,
By, (z0,t0)(¥0) € Qu(to). This means that I'y(to) satisfies the interior ball
property at xg:

Baeyo(y') €Qy and o € OB y2(y') NTu(to)

for some y'. Thus v > %wi (which easily holds for sufficiently small £ by
Corollary 4.2) implies that v grows at least linearly at (z¢, tg). Moreover, we
use u(—eq,t) > 0 and Lemma 3.4 to obtain that

C max w'io > max v(-,tg) > ceP

B3e(z0) Bse (o)

for some universal ¢ > 0. It then follows from the interior ball property, and
Dahlberg’s Lemma that
(6.12)
|V3(z0,t0)| > [Vl (z9)] > ce’~!  with possibly different universal ¢ > 0.

Now we check the viscosity subsolution property for v at the free bound-
ary. Suppose that a test function ¢ crosses v from above at (zg,%p). The
linear growth of v yields |V¢(zo,%0)| # 0. Due to (6.11) and the fact that
v(xo,t0) = v(xo,t0) = 0, (1 4 2¢16™)v — ¢ has a local maximum at (zo, %)
as well. Using Lemma 2.6, Lemma 5.3 and Lemma 5.5 yields that ¢ satisfies

dr < (1+Ce™)2(142¢16™) V> +b(-—ce)-Vo+Ce V|  at (z0, to)
for some C' = C(Ag, ||bl|c1). Since 1 — ¢ > ay, we get for small £ > 0,
(6.13) ¢ < (1 —c16™)| Vo> +b(- —ce) - Vo + C' 7| Vo|  at (x0,t0).

Next, since e*2w} < v and ¥ — ¢ obtains a local maximum in Q,N{t < to}
at (zo,1p), then c,e®w! — ¢ has a local maximum in the same domain at
(x0,t0) as well. Combining this with (6.12) shows

IVp(z0,t0)| > ceeP o,



REGULARITY OF DRIFT-HELE-SHAW FLOW 35

So |V (xg,to)| >> el since B+ 2a1 + ¢ < 2 by (6.4). From this and
(6.13), we obtain

ot < VoI +b(- —<ce)- Vo at (z0,t0),
and thus the subsolution property is verified. O

6.3. Flat free boundary is Lipschitz. Now we can prove the following
main inductive proposition.

Proposition 6.2. Under the assumptions (H-a)(H-b) and for any fized k €
(0, #), there exist C > 0 and j, 0,73 € (0,1) such that if e > 0 is sufficiently
small, u is (je, e (1—Ce®))-monotone with respect to Wo—_cers,—e, 1 Bi_gr X
(=14 2e%1).
Proof. First we choose o and n in the definition of the sup-convolution in
(6.5). Since € > ©¢ > 7/4, we can take j € (0,1) so that

o:=¢(sinf — (1 — 7)) € (¢/2,¢).
Define

-1
(6.14) 3 = min {041-1-;1’72} .

Observe that 3 € (0,1) by (6.4) and y3+1—~; € (0,a1). Choose n =n. >0
such that

(6.15) (1+mn)(sinf — (1 —j)) =jsinh — .
By taking € > 0 to be small enough, we have
(jsinﬁ — (sinf — (1 —j)) jsinf — (sinf — (1 —j))>
2(sinf — (1 —j)) sinf — (1 —7) ’
It follows from Lemma 5.5 (4), (6.14) and (6.15) that ¢, in (6.5) then satisfies

(6.16)
ooy > o(14n(1—Aze™)) > e(jsin0—Ce™) in X,.1N{t > —1+2%, d(z,0B;) > £~}

for some C' = C(A2) > 1, and by Lemma 5.5 (3),

(6.17) on <1 inX.N{t<—1+e* d(z,0B;) < e"/2}.
With above choice of ¢ and 7, we claim that
(6.18) 0 < :=u(r —jeeg,t) in (Byi_x x (=1,1))N Xt

Before showing this claim, we first discuss its consequence. It follows from
(6.9) and (6.16) that for (z,t) € (Bi—er % (=1 +2¢%,1)) N 2T,
A+ sup ulyt) < 0(ot) < u(e — jeeat)
Ba(js‘m97Ce'y3) T
which yields the conclusion for those (z,t). Next for (z,t) € (By_ex X (—1+
2e4% 1))\X T, we have d(z, T, (t)) > €7, and thus Lemma 3.4 and the (g, e%)-
monotonicity yield that u(z,t) > ce¥.
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Recall the choice of the parameters: B € (1,14+7%9), % and (6.3).

Therefore by taking i := M € (0, 3) and using (6.2), we have 1—x; >
kand 18+ a <1475 —2kK;. Then for small g,

eu(x,t) > ceMPre > 728 i (B e x (=1 +2e%, 1)) n BT,

and so the third remark of Lemma 3.1 concludes the proof of Proposition 6.2
with § := k1.

It remains to prove (6.18). To do this, we claim that it suffices to show
that for each t € (—1,1),

(6.19) 50 t) < (1) on (9B1_ex NI () U (ST () N By_er).

u(-

Indeed, by (6.17) and (H-a), when ¢t < —1 + ¢%*, we have ¥ (t) = (Qs(¢) N
Yot )) C {a(-,t) > 0}. Then (6.19) and the comparison principle for Lapla-
cian yield o < 4 in ¥, 1 N By—cx X {t < =T +&%}. This and (6.19) show that
v and u are ordered on the parabolic boundary of 3, ;. In view of Lemma
6.1 with e := jeq, and the equation that @ satisfies, we want to apply the
comparison principle to conclude with (6.18). To do this rigorously, we re-
place 0 by a slightly smaller 6" at the beginning of the proof, the supports
of v and @ are then separated (because if z € I'y, then the definitions of v
and v, and (H-a) yield z € Q). The strict order of v and @ in one of their
support follows easily from the proof below. Then the comparison principle
Lemma 2.5 can now yield (6.18) after passing 8 — 6.

Now we show (6.19). For any ¢t € (—1,1) and = € 95T (t) N By_.x /5, since
x is at least e"-away from I',(¢), Lemma 2.12 and Lemma 3.4 yield that
infycp, (z) w(y,t) ~ u(z,t) > ce”B. Also note that by (6.2) and (6.3) (when
[ is not a constant), there exists rz such that & < kg < min{3,1 — v }.
Thus by Lemma 4.5 and (6.15), we have

v(z, ) < sup u(y,t) < sup  wu(y,t) — (jesinb — (1+n)o) inf - [Vu(y, )]

B(1+n)o.(£l?) BjssinQ(x) yijEsinG(x
< sup u(y,t)— Certl-m inf u(y,t) < (1— Certl- M)a(z,t).
Bjssine(m) yijssin9($)

The last inequality is due to the full monotonicity of u in the interior (the
second remark after Lemma 3.1) since y15 + o < 1 + 74 — k1. Next using
wi(z) < v(x,t), it follows that

o(x,t) < (14T + e )v(x, t)

(6.20) < (14 Ce™)(1 — Ce™H"M)g(x,t) < a(x,t)

when ¢ is sufficiently small.
Now we consider (z,t) € (0B1_ex x (—1,1))NXt. We define the following
region that contains x:

Xt (t) == (B1\Bi_2:¢) N XT(2).
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The construction of ¢, yields that ¢,(-t) < 1 in §;XF(¢). Since B, (x +
jeeq) € Besing(x + €eq) by the definition of o, the (g,e%)-monotonicity
assumption yields that

(6.21)  a(-,t) > (14 sup u(y, t) > (14 (1) on X (¢).
Due to Lemma 6.1 and Aw! =0, @ — (1 + 1) + e®2wl > 0 is superhar-
monic. Note that (6.20) implies

el = ey <@ — (142 + 22w}

on OyX+(t) N (By_ex j2\B1-2:x). Therefore, the choice of ¢, and (6.6) yield
ceewi(z) < ue, t) — (14 )o(z, 1) + *2wh(z).

We obtain o(z,t) < @(z,t) again. Overall, we showed (6.19) which implies
(6.18) and finishes the proof.
O

Proof of of Theorem A: Let us fix (xg,ty) € I, which we may assume
to be the origin. Applying Lemma 3.6 with some r > 0, the free boundary
at any time t € (—=T,T) is contained in a (r + CT/r)-neighborhood of a
cot 6-Lipschitz graph. Thus it can not move too far away from ¢ = 0 when
r and then T are sufficiently small. Then by the assumption, after rescaling
and rotating, we can assume that the conditions of Proposition 6.2 hold.

Iterating Proposition 6.2, we generate a sequence of domains

QF := Bg, x (=T, 1)

where Ty, = 1 —2%F_, (j%e)*, Ry, := 1—XF_ (j"¢)", in which u is (j*e, ay)-
monotone with respect to the cone Wy, _., where

O =0 — CTi_ ("), g = e%(1 = CZh_, (%))

We claim that for each iteration, the constants C| j, 3, can be chosen the
same. Indeed, by taking € to be further small enough and 6 > ©q, we have
for all k > 1,

Ty >1/2, Rp>1/2, 0 >00, o >e"/2.

The claim follows from the proof of Proposition 6.2.

Finally we obtain that u is monotone non-decreasing in all directions of
Wey,—e, in Byjp X (—3,1). The last statement of the theorem follows from
Corollary 6.3 below. The proof is then completed.

d

6.4. C free boundary when b= 0. In the zero-drift case, the support
of u increase over time. Using this fact, it is well-known that we can obtain
an obstacle problem by integrating u over time (for instance see [EJ81]| for
the classical setting). We will utilize this fact to derive further regularity
result.
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Corollary 6.3. For f > 0 and b = 0, let u be a viscosity solution to (1.1)
in RY x (—=2,2) with bounded support. Suppose the assumptions of Theorem
A hold in Qz. Then there exists 0 < v < 1 such that T'y(t) is C1V in By for
each t € (—1,1).

Proof. Since b = 0, €, is non-decreasing in time. and define w(z) :=
fo u(z, s)ds. Since the positive set of u expands over time, we have §,,(t) =

Q. (t) for each t > —2, so it suffices to show that ,,(¢) is C*7 in B; and for
each t € (—1,1).

Since our solution is coming from a globally defined solution, it follows
from [KPW19, Theorem 1.1] and [DS21] that the viscosity solution coincides
with the weak solution of the divergence form equation

(Xus0})t — Au = fX{u=0p in RY x (—2,2).

From this weak formulation one can then check that w(-,t) solves the
obstacle problem:

[1 — F(z,1)]X{w>0y — Aw =0 in RY.

for each t > —2, where F(z,t) := (t — T'(z)) f(x) and the hitting time T :
R¢ — [0, 00] is given by

T(z) :=inf{t > -2 : u(z,t) > 0}.

Theorem A and Proposition 6.6 yields that 7'(x) is Holder continuous
in By near I',(t), and thus so is F'(x,t). Since we already know that the
free boundary of w has no cusp singularity, we can conclude from [Bla01,
Theorem 7.1] that I',,(t) N By is C%7 for each t € (—1,1) for some 7. O

Remark 6.4. We expect the corollary to hold for local solutions uw in Qs
in general, but the corresponding proof requires coincidence of the notions
used in weak and viscosity sense in bounded domains with fixed boundary
data. We do not pursue it here.

6.5. Strict expansion along the streamline. We finish the section by
establishing a uniform, yet sublinear, rate of expansion for the positive set
Q, along the streamline (so for general Lipschitz b).

Definition 6.5. We say that the set , is strictly expanding relatively to
the streamlines in Q,., if for all small ¢ > 0 there exists r; > 0 such that for
any (xo,t0) € I'y N Q, we have

Brt (X(t; xO)) N Qr - Qu(tO + t)'
Note that this property is stronger than the conclusion of Lemma 3.5, but

is weaker than non-degeneracy.

If the free boundary is Lipschitz continuous, we can quantify the amount
of expansion of the free boundary relatively to streamlines based on Lemma
3.3.
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Proposition 6.6. Suppose that in Q1, u(-,t) is non-decreasing with respect
to Wy, e, for some 0 € (0g,%) and B € (1,2), and

(6.22) (0,0) ey, and inf wu(—eq,t) > 0.

te(—1,1)
Then ), expands strictly relatively to the streamlines in Qo with ry =
et/ 2=8) for some ¢ > 0.

Proof. Let us only prove the lemma for d > 3 and the proof for d = 1,2
is similar. Let (zo,%0) € I'y, and after shifting, we assume (zo,t) = (0,0).
Next we define @ from (3.8) which solves (3.9). Lemma 3.5 yields that
0 € {u(-,t) > 0} for all ¢ > 0. Thus, the monotonicity assumption yields

Wp,—e, N B1 C {a(-,t) > 0} for t > 0.

—eq

Since 6 > g, this, (6.22) and Lemma 3.3 imply that there exists ¢ > 0 such
that

(6.23) a(-,t) > er®  in By, (—3req) for all r € (0,1).
Now take P := —3rey for some r > 0, and for ¢ from (6.23) define
o(x,t) = cr 2B (|lz— P> 4—R(t)*"?)  with R(t) := (clrd_2+ﬂt+(2r)d)é

with ¢; := 2c¢d(d—2). Then for each t > 0, (-, t) is a non-negative harmonic
function in Br()(P)\By(P) such that ¢(-,t) = 0 on dBg()(P) and o(-,1) <
cr? in Bgy(P)\Br(P). Thus, in view of (6.23), we obtain

(6.24)

o(x,t) <a(z,t) in (B (P)\B.(P))x{0}U{(z,t) : t € (0,1),2 € 9B,(P)}.

Note that R(t.) = 4r with t, := (49 — 29278 /c; < 1 when r is small.
So by the definition of ¢, if we can show ¢ < @ for all ¢ € [0,¢,] and
T € Br)(P)\B(P), then B,.(0) C Q4(t«) which concludes the proof.

To do this, in view of (6.24), fo > 0 and the comparison principle, it

remains to show that ¢ satisfies the appropriate boundary condition on |z| =
R(t). Indeed, direct computation yields

R(t) = c;rd PR /d,  |Vo(x,t)| = e(d — 2)rd= 28|z — P14,

Also, by |bo(z,t)| < ||Vb|ls|z| and the choice of ¢;, we obtain for z €
OBp)(P) and t € [0, 1] that

R'(t) — |V(z,t)] — |bo(z,t)| < c(d — 2)r¢ 2 PR(#) 4 — Cr < C'rP~1 — Cr
which is non-positive if r > 0 is sufficiently small. This shows that ¢ is a

subsolution to (3.9), with Dirichlet boundary condition on 0B, (P) x [0, t.],
in (R B,(P)) x [0,t]. Now we can conclude. O
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7. NON-DEGENERACY

The goal of the section is to show non-degeneracy result under additional
assumptions. Let us illustrate the outline of the proof, in the setting where
there is no drift, namely when b = 0. Due to the cone-monotonicity proven in
the previous section, the free boundary of u is a Lipschitz graph with respect
to eq direction, and w is non-decreasing with respect to a cone W_., o:

(7.1)

sup u(y+eeq,t) < u(z,t+Ce) with r = sinf and a uniform constant C.
ly—z|<re
Our claim is that, if the above inequality is true in a unit space-time neigh-
borhood of a free boundary point xy , then by the time t = ¢(eq) the free
boundary reaches the point zp + e4, the constant r in (7.1) increases to a
constant strictly larger than 1 near the free boundary. In heuristic terms the
claim states that the monotonicity of the solution propagates and improves
over time in both space and time variable, as the positive set expands out
toward ey direction. Observe that the claim implies that for some ' > 0 we
have

sup  u(y,t) <u(x,t+ Ce) in a small neighborhood of (zo + eq, t(eq)),
ly—z|<r’e
providing uniform linear rate of expansion of the positive set of u, which
then yields the non-degeneracy of u due to the velocity law V' = |Vu].

Our claim above is proved in [CJKO07] for the case f = b = 0. For the proof
u was compared with a subsolution of the form supy,_;|<,(z)s u(y,t), where
¢(x) is a chosen radius function first introduced by Caffrelli [Caf89]. The
radius function ¢ will be small on the boundary of the unit neighborhood
but is larger near the point xg+ €4, which yields the desired result. Of course
to elaborate this idea the precise subsolution is more involved than stated, to
accomodate a sizable perturbation by the radius function. For our problem
we employ this idea but with significant modifications due to the presence
of both f ad g, as we will see below (the barrier construction is given in the
proof of Theorem 7.3).

Let us now proceed with the assumptions for this section. For any § €
(1,3), let 65 be given in Lemma 2.10 so that (2.3) holds. We will assume
that u is a solution to (1.1) in By x (—1,1) with the following properties in
Q1 := By x (—1,1):

(H-a’) u(-,t) is non-decreasing with respect to Wy __., for some 6 € (03, 5)
and 8 € (1, %),
(H-b) (0,0) € T'y and m := infyc(_; 1y u(—eq,t) > 0;

(H-c) u¢ > b-Vu— Cou for some Cp > 0 (in the viscosity sense).

Note that (H-a’) is obtained from the previous sections, in particular from
Theorem A . (H-b) defines m as a parameter, since it is proportional to
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the rate the positivity set of u expands over time. The last condition (H-
c) states that u almost increases along the streamline. While we showed
the monotonicity along the streamline for the positive set in Lemma 3.5, it
remains open whether this property holds for the solution w: the difficulty
lies in the fact that, if we were to compare u(z,t) with u(X(¢;x),t), the
corresponding elliptic operator involves higher order derivatives of the drift
g, and thus one cannot directly compare the two functions based on the order
of their support, unless b is identically zero, or a constant vector field. In
the global setting, (H-c) can be derived for the initial value problem with
smooth b and smooth positive f ([Chu22]).

7.1. Some properties of the expansion of positive sets. Recall Defi-
nition 6.5 about the expansion of €2,,. We observe that such property prop-
agates backward in time.

Lemma 7.1. Let ¢ := ¢ IVble, If for some t,r, € (0,1) sufficiently small,
By, (X (t;z0)) C Quto+t)  for all (xg,t0) € TN O,
then
Ber (X (—t;20)) € Qu(to — 1) for all (zo,t0) € Ty N Qy /5.

Proof. Denoting x1 := X(—t;z0) with (20,t9) € T'y N Qy/9, Lemma 3.5
yields that x1 € Q,(to — ¢)° N By. Suppose for contraction that there exists
x9 € Ber, (1) such that xo € Ty (tg —1t). If t,r € (0,1) are sufficiently small,
then (zg,tg —t) € Q1. By the assumption, we have

(7.2) B (X (t;22)) C Qu(to).
Next since, for all s € (0, 1),

d -
751X (s321) = X(s5522)] < [[Vblloo| X (5;21) — X (5522)],

Gronwall’s inequality yields
zo — X (t;20)| = | X (& 21) — X (8 20)| < el Voot — 1] < e”vg”‘x’crt =1
However this contradicts with (7.2) and xg € T',(to). O

Next we introduce a lemma that says characterizing the movement of the
free boundary backward in time is the same as characterizing the growth of
solutions forward in time.

Lemma 7.2. Let ri,r9 € (0,1). Then the following is true for sufficiently
small € > 0: Suppose that there is T > 0 such that

(7.3)  Bp(X(—7e;x) — rogeq) C Qu(t — 7¢)¢ for all (x,t) € T,y N Q.
Then, for some universal C' > 0,

u(X(re;x) + roceq, t + 7€) > 0 in Q1_ce.



42 INWON KIM AND YUMING PAUL ZHANG

Proof. Let us fix (xg,t9) € I'y N Q1_ce. Suppose for contradiction that
u(X (1e;x0) + r2geq, to + 1) = 0.
Then, using (H-a’) and (X (7e;20),t0 + 7€) € £, by Proposition 6.6, there
exists h € (0,72) such that (X (7e;x0) + heeg, to+7e) € T'yNQy if C is large
enough. So (7.3) with t = to + 7¢ and x = X (7&;x0) + heeqy yields that
(7.4) By (X (—7e; X(1e;20) + heeq) — raceq) € y(to)°.
For s € [—7¢,0], set

Y (s) := X(s; X(7e;20) + heeq) — X (s; X (7€; 20)).

It is clear that Y (0) = heegy. Using (3.7) yields for all s € [—7¢,0],

0
Y <het [ IVBlly (7
S
Thus, Gronwall’s inequality yields

Y (s)] < heell VBlleeTe < 2he.

if ¢ is sufficiently small. Since X (—7¢; X(7e;20)) = xo and Y (0) = heeq, we
get

| X (—7¢e; X(7e;20) + heeg) — xo — heeg| = |Y (—71¢) — Y(0)|

0
< / IVBllocl Y (s)[ds < 2h7e?| V1o

—TE

which is less than re/2 if ¢ is sufficiently small. This and (7.4) imply that
B, c/2(z0 — (ra — h)eeq) C Qu(to)”.

However since u is non-decreasing along —ey direction and A < 7y, this
contradicts with (xg,t9) € T'y, which leads to the conclusion. O

7.2. Uniform rate of expansion and non-degeneracy. Now we are
ready to show that the support of our solution strictly expands with re-
spect to streamlines. To show this we apply sup-convolutions as in Section 5
to construct perturbed subsolutions, but our domain is no longer a thin strip
near the free boundary. The construction of the barrier function in a thin
strip domain was enough in Section 6, since there we showed the propagation
of cone monotonicity over time, which came from the interior of the support,
gf-away from the boundary. Here we will show propagation of the interior
non-degeneracy, which only holds unit distance away from the boundary.
This necessitates our construction of the barrier different from the previous
section.

Theorem 7.3. Assume (H-a’)(H-b)(H-c). If f is Lipschitz continuous, then
there exists C1 > 0 such that

u(X(Cre;w)+eeq, t+C1e) >0 for (z,t) € TyNQy o for sufficiently small & > 0.
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Proof. As mentioned earlier in this section, the proof relies on the comparison
between u and v, a sup-convolution of u with a varying radius function. More
precisely we will compare a perturbed version of these functions, U and V.
For the construction of U and V, below we will work with 6 > 63 that is
slightly smaller than the one given in the assumption.

We first choose parameters (t., 7. and o; with i = 1,2,3) to be used in
the proof. By Lemma 7.1 and Proposition 6.6, there exists ¢ > 0 such that
for 0 < t,. < 1/3 we have

_ 1
(7.5)  u(,to—ts) =0 in Bo (X(—ts; x0)) where 7, := et/ P < 3
for any free boundary point (zo,t) € I'y in Qy/3.

Let Ap, A1 > 1 be from Lemma 5.2, Cy from the assumption, and let
My > 1 satisfying (7.15) below which only depends on d, Ap,f. We call
L:= (1+|fllcr + ||b]lc1)?, and define
(7.6)

o1 = A1 My, 09 := L(20M3+2Mo((A1+2) Mo+2)t./7s), 03 = (A1+2)Mo+2.

Note that t2 << r, due to 8 < %, so we can choose t, > 0 to be small enough
that

1 1
(7.7) t, < min{ o1 } .

50’2’ C()O’g7 g3

Let us fix the reference point (xg,ty) € I';, N Qy /3. After translations, we
may assume that tg = ¢, and X (—t.;29) = 0. Then X (¢) := X (¢;0) satisfies

(78)  (X(t)1) = (X(ta: X(—ts:20)). 1) = (00 10) € T
Define @(z, t) := u(x + X (t),t) which solves (3.9) with fo, by satisfying
(7.9) foller IWbolloc, 10ebolloc < L, [bo(,1)| < Lia].

We will work in the cylindrical domain

Y= (B, (21)\Brg o (1)) x[0,t]  where z1 := rieq/5 and 56 := 7, sin 6/10.

o Construction of U and V :

First we perturb @ to define U. Suppose w' satisfies —Aw! = 1 in
By, (1) NQ4(t) and w® = 0 on (B, (z1) N Qa(t))c. Note that, from the cone-
monotonicity assumption on u, it follows that I'z(¢) is a Lipschitz graph with
Lipschitz constant smaller than cot#g. Corollary 4.2 and (H-b) then yield
that

w' < Cr2Pa(,t)  in By, (x1) for some C = C(m).

Since f < 2, after further taking ¢. to be sufficiently small (then r, =
1/(2—=8)
cty

[07t*]7
(7.10) L(Mo + 2)w' < a(-,t) in By, (z1).

is small) depending only on ¢,C, L and My, we have for all ¢ €
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We define
(7.11) U(x,t) == a(z,t) + L(Mg + 2)ew' ().
We claim that U is a supersolution to
—AU = fo(x,t) + L(Mp + 2)e in ¥NQ,
(Fo) { Uy=1-¢)|VUP+by-VU  onXNTy.

By the construction of w!, it is direct to see the inequality in X N Q.

Let us check the supersolution property on the free boundary. Suppose
U — ¢ for some ¢ € Cﬁ,} has a local minimum in {t < sp} at some (yo, o) €
I'yNXE and [Vo(yo, so)| # 0 and

(7.12) — (A¢ + fo + L(Mo + 2)e) (o, s0) < 0.
Because (7.10) yields U < (1 —¢)~ 14 in ¥, we have that @ — (1 — )¢ obtains
a local minimum at (yo, so) € I'z. Note that (7.12) and (7.9) yield
—(A(1 =)o+ fo)(yo, s0) < 0.
So using that @ is a viscosity solution to (3.9), we get
0= (1—2)|Vo* +5o-Vé  at (yo,50),
which proves that U is a supersolution to (Px).

We will use the following ® to construct the radius function for V. Let ®
be the unique solution to

A(@ ) =0 in Bi\Bgng/o
(7.13) D=4 on 0Bging/10

® = (sinh)/2 on 0B
where Ay is chosen sufficiently large so that

(7.14) B (—eq/5) > 3.

We have AD = %}’IQ in B1\Bging/10, and there exists My = Mo(d, Ao, 0) >
1 such that

(7.15) My <® <My, [V®[oo <My in Bi\Bsingjro-
Let ¢(x) := r@(**) where 21 = r.eq/5, and define
(7.16) V(z,t) == (1 —01¢) sup u(y + rvceq, (1 — o3e)t).
yEBe(l—azt)gp(z)(x)
We now prove that V' is a viscosity subsolution of (P:) in ¥. Recall that u
satisfies (3.9), and fy, by given in (3.10) satisfy (7.9). Thus Lemma 5.2 (with
fo,bo in place of f,b) yields

—AV(z,t) < (1 —o018)(1 + A1 Moe) fo(y(x, t) + receq, (1 — o3e)t)
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where y(-,-) satisfies |y(z,t) — x| < (1 — oat)p(z) < roMoe. Using this,
(7.6) and (7.9) yields

(1 —o18)(1 + A1 Moe) fo(y(x, t) + receq, (1 — o3e)t)
< fo(z,t) + Le((1 4+ Mp)rs + ost).
Due to (7.11), —Aw! = 1, r, < 1 and t, < 1/03, we obtain
(7.17) — AV(z,t) < fo(z,t) + Le(Mp+2) in X.

Next to prove that V satisfies the free boundary condition on (yo, o) €
I'sNX, suppose that for a test function ¢ € c>!

z¢+ V —¢ has a local maximum
in Qy N {t < s0} at (yo,s0). So

sup u(y + rceq, t) — oz, (1 — o3e) 1)

YEB. (1 oyt)p(x) () (1 —01¢)

has a local maximum at (yo, (1 — o3¢)s0) in Qy N {t < (1 — o3¢)s0}-
Recall that
Malr* <@ < Myry, |Vo| < M.

It follows from Lemma 5.3 and its remark (with fp, I;Q in place of f, 5, and
€1 := Mor.e,e9 1= Mye, e3 := —oar.e/My) that at (yo, (1 — o3¢)s0),

(1—03e) "ty < (1= 018) 11 +222)2 V| + by - Vb
+ (el VBoll ey + 201 + e2)[Boll ooy — €/2) [V

Using (7.6), (7.9) and (yo,S0) € ¥ C Ba,, x [0,t,] yields for e sufficiently
small,

¢ < (1—)|Vo> + (1 — o3e)bo(yo, (1 — 038)s0) - Vo + (1 — 38) (IMo L — 02/ (2Mp)) 78|V |
< (1= )|V +bo(yo, 50) - Vo + (1 — 03¢) (03 Lts + Lis + IMoLr, — 07,/ (2Mp)) €|V |
< (1= e)[Vo[ + bo(yo. s0) - V9.

o Comparison of V and U: We are going to show next that

(7.18) V<U in3.

By the comparison principle applied to (P)., it is enough to show that V' < U
on the parabolic boundary of the domain. Below we always consider (z,t) €
By, (x1) x [0,t,] =: ¥’ unless otherwise stated.

We claim that V' < @ on the parabolic boundary of 3, which will suffice
due to the fact that u < U by definition. From (7.5) that @(-,0) = u(-,0) =0
in By, (0) 2 By, /5(z1). Because

(1 —oot)p(x)e + 1ve < (1 + Mo)ree < 4ry/5
in ¥ when ¢ is small, we obtain

V(z,0) =0=a(z,0) in By, (z1).
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Moreover, the same holds for small ¢ > 0, and so U and V' cannot cross on
the initial boundary of 3.

Next we consider the inner lateral boundary of . Due to u(0,t,) =
u(X (t+),t+) = 0 and the monotonicity of support along streamlines (Lemma
3.5),

w(0,t) = u(X(t),t) =0 for t € [0,t.].
Then since % is non-decreasing along all directions of Wy _.,, we get & = 0
in B, gno/s (21 + rseqe) X [0,t]. Thus by taking € > 0 to be small enough
such that
(1 —oat)p(x)e < Morse < 1yesinf/10 = rs,
we get
V(-,-) < sup u(- + r«geq, (1 —o3e):) =0(=u) in Bpgo(z1) x [0, 1]
BT&,@

Now it remains to show that V' < @ (< U) on the outer lateral boundary
0B,s(z1) x [0,t5]. To do this, we use both the assumptions (H-a’) and (H-
¢). Indeed, it is not hard to derive from the latter that e“otu(X (t;x),t) is
non-creasing in t. In particular, writing z; := = + X (¢) for (z,t) € ¥/, we
get

U(x,t) = u(we, t) > e~ 0%y (X (—oset; ), t — o3et).
This and the cone-monotonicity then yield
(7.19)  a(x,t) > e 0% sup  w(y + reeeq + X (—o3et; x4),t — o3et).
yeBr*a sin 6

Note that X (0;x¢) = 2y = X(0; X (¢)) + x. Therefore
(7.20)

| X (—oset; ) — X (—oset; X(t)) — x|

= |(X(—ozet;xt) — X(0;2¢) — (X (—o3et; X(t)) — X (0; X(1)))]

0 - -
< [ i) = B (- X(0) s

—o3et

By direct computations, for s € [—oset, 0],
[B(X (=s520)) = B(X (=53 X (0))] < [[VB]loo (|X (=5520) — X (=5 X(1))])
< || VBl|oo 1Bl o [25] < 203 VBl oo Bl sot e
Then, if ¢ is small enough, (7.20) yields
| X (—et; ) — X (—et; X (1) — x| < 2||Vb||so||b]|oct?e? < r4esin /2.
Combining this with (7.19) implies

(7.21) a(z,t) > (1 —o01¢) sup u(y +reeeq+ X (t — oset), t — oset).
yeBr*s sin 9/2("[)

Here we also used e~©073¢¢ > 1—gy¢e for t € [0,t,] by (7.7), and X (—o3et; X (1)) =

X(t - O’36t).
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Take (z,t) on the outer lateral boundary of ¥ (then (z,t) € 0B,, (z1) X
[0,t.]). Since p(x) = ry(sin®)/2, (7.7) yields
(1 —oat)p(x) = (1 — oat)rysinf/2 < ryesinf/2.
Thus (7.21) yields that V < @ on 0By, (1) x [0,t,]. If V(z,t) > 0 for some
(x,t) € OBy, (x1) x [0,t4], it is easy to get V < @ at (x,t) from the above
proof. In addition, the separation of supports follows from the fact that u is
monotone with respect to W_, g, for § < 6. In summary, we conclude that

V <a ondB,, (x1) % [0,t].

Now we will use (7.18) to conclude the theorem.
o Proof of the Theorem: Note that (7.14) yields

©(0) = @ (—eq/5) > 3r,.
Hence we have
B, c/5(—1s€eq) C Bioy./5(0) +1iceq © Boy0)(1—got.) + TxE€CA-

With this, by (7.7) and (7.18), we get
(7.22)
(0, t.) + L(My + 2)ew' (0) = U(0, ) > V(0,t.)
> sup (1 —o1e)u(z — receq, ts — ostie).
|z|<r«e/5
Due to (X (t.),t.) € I'y by (7.8), and the definition of w!*, we get u(0,t,) =
w'(0) = 0. Thus (7.22) yields

u(z + X(—ostse; X(te)) — r4ceq, te — 03tie) =0 forall z € B, /5.
In summary, after translations, we proved for all (z,t) € T',, N Qs /3>
B, /5(X(—0stse; x) — 1igeq/2) C Qu(t — o3tee)”.
The proof is now completed by invoking Lemma 7.2. ([

Proof of Theorem B. We now show the non-degeneracy result, Theorem
B. The proof is a consequence of Theorem 7.3, closely following the argu-
ments given in [CJK07]. We will prove that u grows at least linearly near
the free boundary (Theorem 7.5), which readily delivers the desired result.

Heuristically speaking, the strict expansion of the positive set {2, along
the streamline, along with the velocity law V' = |Vu| — b- v, should provide
a lower bound for |Vu| on the free boundary. One needs to ensure however
that v does not change too much over time, to be able to relate the rate of
expansion of the positive set with the size of the pressure variable. This is
where we need a Carleson-type estimate (see also Lemma 2.5-2.6 in [CJK07]),
and its proof is parallel to that of Corollary 2.2 in [CJKO07].

Let us denote (HS) by the particular case of (1.1) with f,b = 0.
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Lemma 7.4. Suppose that v is a subsolution to (HS) in Qs satisfying C~1 <

;)((::j:é)) < C for some C > 1. Also suppose that I',(t) N B1(0) can be

represented by x, = gi(z') where g, : R¥™1 — R is Lipschitz with ||g||Lip < ca
for some dimensional constant cq > 0. Then there is g > 0 such that the
following holds for 0 < § < d4: for any xg € T',(0) N By, x1 € Q,(0) and
x2 € Q,(0)¢ such that

1)
5 < |33‘1 - 1‘0|, |$2 - .Z'0|, d(xlvrv(o))a d(l‘g,FU(O)) < 57

we have for some M depending on C that
2

v(z1,0)

Now we are ready to prove the non-degeneracy result. Note that Theorem
B follows directly from Theorem 7.5 and Lemma 4.4, since Theorem A yields

(H-a’) in Q;.
Theorem 7.5. Assume the conditions of Theorem 7.3. Moreover, suppose
that @ > arccot cq (with cq from Lemma 7.4) and C~! < Z(( ed’t) < C for all

€ (—1,1) and for some C > 1. Then there exist dy,co > 0 such that for all
d€ (07 50);

(7.23)

< MT(z2), whereT(z):=sup{t>0 : v(x,t)=0}.

u(z — degq,t) > cod  for all (x,t) € Ty N Qy)o.

Proof. We will only show the conclusion for (x,t) = (0,0), which is on T,
by our setting. Let Cy from Theorem 7.3, and choose ¢1 := (2C1)~! . Then
w(z,t) = u(z + X(t) + citeq, t) satisfies

—Au = f'(z,t in {u > 0},
_— @0 {u>0}
uy = |Va|* + b (z,t) - Vu on 9{u > 0},
where
(7.25)

- -

f(2,t) = f(z+X(t)+citeq) and V' (z,t) == b(z+X (t)+crteq)—b(X (t))+c1eq.

For each t € (—1/2,1/2), let wy(-,t) be the unique non-negative harmonic
function in Q5 (¢) N By such that w(-,¢) = 0 on T'(¢), and w1 (-,t) = (-, t) on
Ia(t)NoB;. It follows from Lemma 11.12 [CS05] that any harmonic function
is monotone along the monotonicity direction of its Lipschitz domain, if
sufficiently close to its domain boundary where it assumes zero boundary
data. In particular, we have V_, wq(-,¢) > 0 in B, for some r € (0,1). Let
us fix one such r that also satisfies

r < mln{l a + )(||V Blloc)” } .

Next, for we := @ — ws, it follows from Corollary 4.2 that there exists

Cy > 1 such that we < (Cy — 1)w;. So we get

(726) wy < u < Chwy.
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We claim that Cow; is a subsolution to (H.S) in Q,. Since w; is harmonic
in its support, it suffices to verify the free boundary condition. Suppose there
is a smooth function ¢ € Cztl such that Cow; — ¢ has a local maximum zero
in Qy,, N{t < to} at (zo,t0) € Tw,. By (7.26), 4 — ¢ also obtains a local
maximum in Qz N {t < to} at (29, t0), and therefore (7.24) and Lemma 2.6
yield

(7.27) 1(z0,t0) < [V(wo, to)|* + ' (z0, to) - Vo (o, to)
when |V¢(xo,t9)| # 0. While when V¢(zo,t9) = 0, Lemma 3.5 yields (7.27)
again. Hence, to conclude, it is enough to show that
(7.28) b (z0,t0) - Vo(zo,to) < 0.
By the assumption on r, we have for all (z,t) € Q,,
B(z + X (t) + erteq) — b(X (1)) < r(1+ )|Vl < c1.

So (5’(w,t),ed> < %, where the notation (2.1) is used. By the Wy _,-

monotonicity of @, we get ¢(-,t0) > ¢(xo,to) in xg + Wy e, which im-
plies (Vo(zo,10), —eq) < m/2 — 6. Consequently, also using 6§ > 7 and
' (2,1), eq) < T, we verified (7.28). This concludes that w; is a subsolution
to (HS) in Q,.

Lemma 7.4 now yields that for all § > 0 sufficiently small,

62 Jwi(—deg,0) < Msup{t >0 : wi(deq,t) = 0}.

Thus, (7.26) along with the definition of @ yields
(7.29) 6% Ju(—beq,0) < M sup{t >0 : u(deq + X (t) + citeg, t) = 0}.

Lastly we apply Theorem 7.3 with ¢ := 2§. It follows that if § is sufficiently
small,

u(éed + X(2015) + 2C16c1eq, 2015) = U(X(Cl€) + €eyg, 016) > 0.
Therefore
sup{t > 0 : u(deq + X (t) + c1teq,t) = 0} < 2C14.

From this and (7.29), we obtain u(—deg,0) > 6/(2C1 M), which finishes the
proof. ([l
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