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Abstract. In this paper we study the regularity property of Hele-Shaw
flow, where source and drift are present in the evolution. More specif-
ically we consider Hölder continuous source and Lipschitz continuous
drift. We show that if the free boundary of the solution is locally close
to a Lipschitz graph, then it is indeed Lipschitz, given that the Lips-
chitz constant is small. When there is no drift, our result establishes
C1,� regularity of the free boundary by combining our result with the
obstacle problem theory. In general, when the source and drift are both
smooth, we prove that the solution is non-degenerate, indicating higher
regularity of the free boundary.

1. Introduction

Let ~b : Rd ! Rd be a Lipschitz continuous vector field, and f : Rd !
[0,1) be a non-negative Hölder continuous function. We consider u =
u(x, t) � 0 solving the Hele-Shaw type problem:

(1.1)

(
��u = f in {u > 0},

ut = |ru|2 +~b ·ru on @{u > 0}.

We refer to @{u > 0} as the free boundary of u. The second equation is the
level set formulation of the velocity law

V = (�ru�~b) · ⌫ = |ru|�~b · ⌫ on @{u > 0},
where V denotes the velocity of the set {u > 0} along the outward spatial
normal ⌫ = �ru

|ru| at the given free boundary point (x, t) 2 @{u > 0}.

When f and ~b are both zero, (1.1) corresponds to the classical Hele-Shaw
flow describing the motion of incompressible viscous fluid, which occupies
part of the space between two parallel, nearby plates, [Sha98, Ric72, ES97].
The general equation (1.1) can be also written as the continuity equation
⇢t �r · ((ru+~b)⇢) = f̃⇢, with the density variable ⇢ = �{u>0} and growth
term f̃ := f � r ·~b. In other words, ⇢ is transported by the velocity field
�(ru+~b) and with the growth term f̃ . In this context, u can be understood
as the pressure variable, and is generated by the incompressibility constraint
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⇢  1 to transport density that intends to move with drift �~b and growth rate
f̃ . Due to this interpretation of the model, (1.1) has been actively studied in
the recent literature, for instance in the context of tumor growth where cells
evolve with contact inhibition, [PQV14, DS21, JKT22] and in the context of
congested population dynamics [MRCS10, CKY18]. somewhere we need to
cite Muskat problem literature, such as Sijue Wu’s and Hongji’s.

We are interested in the free boundary regularity for viscosity solutions of
(1.1). When f and ~b are zero, the regularity property of the flow is by now
well-understood in both global and local setting. In the global setting, posed
with the presence of a fixed boundary with constant source, it is known that
initially Lipschitz free boundary with a small Lipschitz constant immediately
regularizes and become smooth for small positive times [CJK07], and for all
a.e. times if d  4 [FROS20]. In the local setting it is also known that free
boundaries that are uniformly close to a Lipschitz graph is smooth, if the
Lipschitz constant is small [CJK09].

For our inhomogeneous problem, zooming in at a single point (x0, t0) 2
@{u > 0} with the hyperbolic scale ũr(x, t) := r�1u(r(x � x0), r(t � t0)),
one formally sees that the source term tends to zero and the drift becomes
a constant vector field as r tends to zero. Thus it seems plausible that
similar regularity theory as for the classical Hele-Shaw flow holds. This
heuristics however is difficult to quantify. Indeed there are examples of log-
Lipschitz continuous function f with ~b = 0 that describes tumor growth
with nutrients, for which numerical experiments reveal immediate dendrite-
like growth on the free boundary [Kit97, PTV14, MRCS14]. The dynamics
behind the generation of such irregularities remain mysterious. We will show
in this paper that such irregularities must originate from large-scale influx
of oscillations. Roughly speaking, we show that “flat boundaries that looks
Lipschitz in large scale are indeed Lipschitz and non-degenerate”, as long as
the Lipschitz constant is small:

Main theorem: When the solution is close to a cone-monotone profile at
each time in a local space-time neighborhood, then the solution is fully cone-
monotone with Lipschitz free boundary in a smaller neighborhood, given that
the angle of the cone is large. In addition, if ~b is zero, the free boundary is
C1,� for some 0 < � < 1. Lastly, if f and ~b are at least C3, the solution
is also non-degenerate, namely it features faster-than-linear growth near the
free boundary.

Some remarks on the assumption is in order. Our assumption considers
solutions which look like cone-monotone solutions up to small scale, which is
more general than plane-like profiles. For instance our assumption is satisfied
by those who starts from an initially Lipschitz graph with small Lipschitz
constant: see Corollary 4.3. [CJK07]. Our proof relies on the local spatially
Lipschitz solutions that were constructed in [CJK07], [CJK09] and also in [?],
as well as the properties of superharmonic functions given in section 4. For
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non-homogeneous problem the same example applies, see Corollary ??. This
assumption is also motivated from the well-known waiting time phenomena,
where the initial free boundary does not move for a finite amount of time. For
the classical Hele-Shaw problem with f = ~b = 0, it is well-known that there
is a waiting time phenomena with a cone-monotone initial data (King-Lacey-
Vazquez), where the angle of the cone is small. The same remains true in the
presence of the source term f 2 L1: see Example ?? where the vertex of the
cone does not move for a unit amount of time and the profile of the solution
stays close to a cone-monotone profile in a unit neighborhood of the vertex.
The presence of the drift of course does not change this phenomena either.
Hence our requirement on the size of angle is necessary for regularization of
the free boundary.

See the next section for the full statements. Our result extends the cel-
ebrated free boundary regularity theory introduced by Caffarelli [Caf89,
Caf87, ACS98, ACS96, Sav09, DSFS21] as well as the corresponding ver-
sion for the classical Hele-Shaw flow [CJK09]. In particular our work serves
as the first attempt to understand the effect of source and drift on the regu-
larization mechanism of the free boundary evolution. As we will see below,
the presence of a nonzero f alone necessitates some significant changes in
the standard arguments.

In general, the Lipschitz regularity of the free boundary and the non-
degeneracy of the solutions are the two ingredients of further regularity anal-
ysis in aforementioned references. We thus suspect that the free boundary
in our statement is in fact C1,� in space and time, when f and ~b are smooth.
Given the technical nature of these arguments, we do not pursue this next
step, to lay out the main arguments to achieve the basic regularity results
as clearly as possible.

Let us briefly discuss the optimality of assumptions on f and ~b. It is
not hard to see that the condition is optimal for the drift term: when ~b is
not Lipschitz continuous, one can construct an example where the solution
starting with a cone as its positive set maintains the cone shape as its positive
set, even developing a cusp at the vertex of the cone (see Example 3.8). On
the other hand it is less clear whether the regularity of f is sharp for the
theorem. The Hölder regularity of f appears to be close to the optimal
condition for the “flat implies Lipschitz” result. We will show an example
(see Example 3.10) where this result is false with merely bounded f . We
also refer to a counterexample in [Bla01] for the obstacle problem, the time
integrated version of our problem, with a continuous f that is not Dini-
continuous. For the non-degeneracy, it remains unclear whether smoothness
is required for f and ~b: see more discussions on this in Section 7.

� Regularization mechanism and new ingredients: In (1.1) the support of
the pressure variable u moves along the velocity field �(ru + ~b). Due to
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the elliptic equation u solves in its support, ru acts as the regularizing force
in the flow. We largely follow the outline of [Caf89] and [CJK07] for our
analysis, which quantitatively and iteratively estimates the regularization
effect of the pressure gradient, in the form of its directional monotonicity.
We will show that the small-scale monotonicity property improves in the
interior of the positive set, and then propagates its improvement from the
interior of the positive set to the near boundary region over time. The
comparison principle of the flow (Lemma 2.5), viewed as the “ellipticity” of
the problem, is a key ingredient of this approach.

There are significant differences in our analysis from the existing liter-
ature, necessitated due to the presence of the source and the drift terms
that competes with the propagation of directional monotonicity driven by
the pressure gradient. Let us briefly discuss some of the highlights. First
we point out Proposition 4.1, which compares superharmonic functions in
a long strip domain with Lipschitz boundary. This boundary Harnack-type
result enables us to compare our solutions to a localized harmonic function,
ignoring the effect coming from the far-away regions. Its role in our anal-
ysis is indispensable to rule out the effect of external factors in the local
regularization process. This result can be viewed as a generalized version of
Dahlberg’s lemma for harmonic functions, which was crucial for instance in
showing that the interior improvement of the monotonicity.

Another important element of our analysis is the estimate on the growth
rate of solutions near the free boundary (Lemmas 3.3 and 3.4). Heuristically
speaking, such growth rate translates into a strong elliptic effect, competing
against the oscillations caused by the source and drift terms. At more tech-
nical level, it is used to modify the standard perturbation argument used
to show the propagation of the monotonicity (Lemma 6.1 and Proposition
6.2). It is also used to show that the positive set of the solution expands
relatively to streamlines. In particular we are able to quantify the expan-
sion rate (Proposition 6.6), which is important to show the non-degeneracy
result.

1.1. Statement of results and Outline of the paper. For r > 0, we
denote Qr := Br ⇥ (�r, r). Let us state first the “flat to Lipschitz” result.

Theorem A. Let ~b be a Lipschitz continuous vector field, and f be a non-
negative �̄-Hölder continuous function with �̄ 2 (0, 1), and for some " 2
(0, 1), let a" ⌘ 0 if f is constant and a" := "↵ for some small ↵ > 0 otherwise.
Suppose that u is a continuous viscosity solution to (1.1) in Q2 satisfying

• u is (", a")-monotone with respect to W✓,µ for some ✓ 2 (0, ⇡2 ) and
µ 2 Sd�1,

• m := inft2(�2,2) u(�µ, t) > 0.
If ⇡

2 �✓ and " are small enough, then u is non-decreasing along all directions
of W✓0,µ for some ✓0 2 (0, ✓) in Q1. In particular, the free boundary �u(t)\B1
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for each t 2 (�1, 1) is a Lipschitz continuous graph. Here ↵0 only depends
on �̄, and ✓ and ✓0 only depend on �̄ and the dimension, and " also on m,
kukL1(Q2), k~bkC1 and kfkC�̄ . In addition, when ~b is zero, and when u solves
(1.1) in Rd⇥(�2, 2), then the free boundary is C1,� in Q1 for some � 2 (0, 1).

We refer to Corollary 6.3 and Remark thereafter for further discussion on
the case of ~b = 0.

The definition of the (", a)-monotonicity will be given in Definition 2.7.
The (", 0)-monotonicity corresponds to the usual "-monotonicity, which quan-
tifies the scale at which the solution is monotone along a direction. The ad-
ditional parameter a adds a growth condition at the same scale ". This is to
ensure that away from the boundary the solution is directionally monotone
even with smaller scales. While "-monotonicity is sufficient to guanrantee
such “interior improvement” for harmonic functions, it is not the case for the
general f : see Remark 2.8 for further discussions. Our condition is also natu-
ral. In Lemma 4.6 we show that if the free boundary is known to be Lipschitz
continuous, then the solution is monotone and satisfies (", a)-monotonicity
near the free boundary for any small " and a.

For general setting, we state our non-degeneracy result.

Theorem B. Under the assumption of Theorem A and further assuming
that f is Lipschitz continuous, and

• ut � ~b ·ru� Cu in Q2 in the viscosity sense,
• C�1  u(�ed,t)

u(�ed,0)
 C for all t 2 (�2, 2) for some C > 0,

then if ⇡
2 � ✓ and " are small enough, u is non-degenerate in its positive set

Q1. In other words, |ru| is uniformly positive up to the free boundary. Here
✓ only depends on �̄ and the dimension, and " and the lower bound of |ru|
also on C,m, kukL1(Q2), k~bkC1 and kfkC1 .

Our assumption ensures that u does not decrease too fast in the direction
of the streamline generated by ~b. This assumption holds for solutions of
(1.1) posed in Rd ⇥ (0,1) when f and ~b are smooth, see Corollary 6.6 and
Theorem 2.1 in [Chu22].

Remark 1.1. Our results apply to time-dependent f and ~b as well, even
though we have only considered stationary ones for simplicity. With f =
f(x, t) and ~b = ~b(x, t), Theorem A continues to hold with straightforward
modifications in the proof if f and ~b are continuous in time. The same is
true for Theorem B if f and ~b are Lipschitz continuous in time.

Here is a brief outline of the paper. In Section 2, we introduce notations
and preliminary properties. In Section 3, we prove several tools that will
be used, including interior monotonicity and polynomial growth of super-
harmonic functions near the free boundary, and demonstrate some examples
discussing the optimality of our conditions and the formation of cusps on a



6 INWON KIM AND YUMING PAUL ZHANG

Lipschitz free boundary. Section 4 is about superharmonic functions in Lip-
schitz domains. Section 5 introduces the sup-convolution and its properties.
Finally, we give the proof of Theorem A and Theorem B, respectively, in
Section 6 and Section 7.

2. Preliminaries

For a space-time function u : Rd ⇥ [0,1) ! [0,1), we write
⌦u := {u(·, ·) > 0}, ⌦u(t) := {u(·, t) > 0},

and
�u(t) := @⌦u(t), �u :=

[

t

�u(t)⇥ {t}.

Similarly, for a function ! : Rd ! [0,1), we define
⌦! := {!(·) > 0} and �! := @⌦!.

Let us recall the notions of viscosity sub- and supersolutions to (1.1) from
[Kim03], with trivial modifications due to the drift and source terms and
reduced to continuous functions. Consider the domain ⌃ := D⇥ (0, T ) with
T > 0 and D ✓ Rd open and bounded.

Definition 2.1. A non-negative continuous function u defined in ⌃ is a
viscosity subsolution of (1.1) if for every � 2 C2,1

x,t (⌃) such that u� � has a
local maximum in ⌦u \ {t  t0} \ ⌃ at (x0, t0), then

�(��+ f)(x0, t0)  0 if u(x0, t0) > 0

(�t � |r�|2 �~b ·r�)(x0, t0)  0 if (x0, t0) 2 �u and � (��+ f)(x0, t0) > 0.

The reason for the intersection of the set ⌦u in the definition is for the sim-
ple fact that there are no globally smooth function that crosses the solution
from above at a free boundary point.

Definition 2.2. A non-negative continuous function u defined in ⌃ is a
viscosity supersolution of (1.1) if for every � 2 C2,1

x,t (⌃) such that u � � has
a local minimum in {t  t0} \ ⌃ at (x0, t0), then

�(��+ f)(x0, t0) � 0 if u(x0, t0) > 0

(�t � |r�|2 �~b ·r�)(x0, t0) � 0 if (x0, t0) 2 �u, |r�(x0, t0)| 6= 0 and � (��+ f)(x0, t0) < 0.

Definition 2.3. We say that a continuous non-negative function u is a
viscosity solution of (1.1) if u is both a viscosity subsolution and a viscosity
supersolution of (1.1).

To state the comparison principle, we need the following definition:

Definition 2.4. We say that a pair of functions u0, v0 : D ! [0,1) are
strictly separated (denoted by u0 � v0) in D if u0(x) < v0(x) in ⌦u0 \ D.
This says that the supports of the two functions are separated and in the
support of the smaller function, the two functions are strictly ordered.
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Below we recall the comparison principle [Kim06, CJK07].

Lemma 2.5. Let u, v be respectively viscosity sub- and supersolutions in
⌃ = D ⇥ (0, T ) with initial data u0 � v0 in D. In addition suppose that
lim supt!0+ ⌦u(t) = ⌦u0 . If u  v on @D ⇥ (0, T ) and u < v on (@D ⇥
(0, T )) \ ⌦u, then u(·, t) � v(·, t) in D for all t 2 [0, T ).

Parallel argument as in Lemma 2.5 [Kim06] yields that the requirement
at the free boundary in Definition 2.1 can be simplified for testing against
functions with nonzero gradient.

Lemma 2.6. Let u be a continuous viscosity subsolution of (1.1) in ⌃, and
(x0, t0) 2 �u \ ⌃. Let � 2 C2,1

x,t (⌃) such that u � � has a local maximum in
⌦u \ {t  t0} \ ⌃ at (x0, t0) and |D�(x0, t0)| 6= 0. Then

(�t � |r�|2 �~b ·r�)(x0, t0)  0.

2.1. Monotonicity assumption. For two vectors ⌫, µ 2 Rd\{0}, the angle
between them is denoted as

(2.1) h⌫, µi := arccos

✓
⌫ · µ
|⌫||µ|

◆
2 [0,⇡].

We denote a spacial cone to direction µ 2 Sd�1 with opening 2✓ for ✓ 2 [0, ⇡2 ]
as

(2.2) W✓,µ :=
n
p 2 Rd : hp, µi  ✓

o
.

Our basic hypothesis will be a monotonicity with respect to the cone W✓,µ.
For a space-time function u : Rd ⇥ [0,1) ! [0,1), we write

⌦u := {u(·, ·) > 0}, ⌦u(t) := {u(·, t) > 0},
and

�u(t) := @⌦u(t), �u :=
[

t

�u(t)⇥ {t}.

Similarly, for a function ! : Rd ! [0,1), we define
⌦! := {!(·) > 0} and �! := @⌦!.

Definition 2.7. Let ⌦ ✓ Rd, ✓ 2 [0, ⇡2 ], µ 2 Sd�1, " 2 [0, 1) and a � 0. We
say that a continuous function ! : ⌦ ! R is (", a)-monotone with respect to
a cone W✓,µ in D ✓ ⌦ if for every "0 � " and x 2 D we have

(1 + a")!(x)  inf
y2B"0 sin ✓(x)\⌦

!(y + "0µ)

Here we need to assume that the solution also grows slightly in the mono-
tone direction, which amounts to (", "↵)-monotonicity, to reach the same
conclusion (which is proved in Lemma 3.1 and its remark): see Example 3.9,
where the interior monotonicity fails with just "-monotonicity. In Lemma
4.6, we show that if the free boundary is known to be Lipschitz continuous,
then the solution is monotone and satisfying the (", a)-monotonicity for some
a > 0 and for any small " > 0 near the free boundary.
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Remark 2.8. 1. It is by now a well-known fact that the (", 0)-monotonicity
of a positive harmonic function leads to full monotonicity in a smaller neigh-
borhood, see for instance [CS05, Corollary 11.16]. This fact is essential in
the regularity analysis for solutions of (1.1) with f = 0, since the stronger
monotonicity in the positive set propagates to the free boundary so that
its small-scale oscillation diminishes in unit time scale. However when f is
present and f is not a constant, this is not true. Indeed, in such cases, rµ!
does not necessarily have a sign even if " is small compared to the Cn norm
of f for any n � 1, see Example 3.9. Thus the assumption of a 6= 0 is
sharp when f is not a constant. With (", a) monotonicity, the interior full
monotonicity is shown in Lemma 3.1 and its remark.

2. If f is a non-negative constant, our results hold even if ↵ = 1. We
refer readers to the remarks after Lemma 3.1 for the detailed discussion.

Below for any �̄-Hölder continuous function (with �̄ 2 (0, 1)) g : ⌦ ! R
with ⌦ ✓ Rd an open set, we denote its �̄-Hölder seminorm and �̄-Hölder
norm, respectively, as

kgkC0,�̄(⌦) := sup
x,y2⌦,x 6=y

|g(x)� g(y)|
|x� y|�̄ and kgkC�̄(⌦) := kgkL1(⌦)+kgkC0,�̄(⌦).

When there is no ambiguity regarding the domain, we will drop ⌦ from the
notations of C0,�̄(⌦) and C �̄(⌦), and we will simply write kgk1 := kgkL1(⌦),
and the Lipschitz constant kgkLip := kgkC0,1 .

2.2. Properties of harmonic and superharmonic functions. First we
recall the well-known Dahlberg lemma.
Lemma 2.9. ([Dah79]) Let !1,!2 be two non-negative harmonic functions
in a domain D ✓ Rd of the form

n
(x0, xd) 2 Rd�1 ⇥ R : |x0| < 2, |xd| < 2M̄, xd < g(x0)

o

with g : Rd�1 ! R a Lipschitz function with Lipschitz constant less than M̄
and g(0) = 0. Assume further that !1 = !2 = 0 along the graph of g. Then,
there exists C > 1 depending only on d, M̄ such that

1

C
 !1(x0, xd)

!2(x0, xd)
· !2(0, M̄)

!1(0, M̄)
 C

in
�
(x0, xd) : |x0| < 1, |xd| < M̄, xd < g(x0)

 
.

The following lemma follows from Dahlberg’s Lemma and the explicit form
of harmonic functions in a cone domain. While the proof is basic, we present
it here given the importance of the constant ✓� in our analysis (✓0� will only
be used in Lemma 4.6).

Lemma 2.10. For given ✓ 2 (0,⇡), µ 2 Sd�1, consider a harmonic function
! in W✓,µ \B2 such that supW✓,µ\B1

! = 1 and ! = 0 on @W✓,µ \B2. Then
there exists c 2 (0, 1) such that for any � 2 (1, 2), there are ✓� , ✓0� 2 (0, ⇡2 )
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(which are continuous and monotonely decreasing in � 2 (1, 2), and converge
to ⇡

2 as � ! 1) such that we have

(2.3) !(sµ) � c s� for all s 2 (0, 1) if ✓ � ✓�

and
(2.4) !(sµ)  s2��/c for all s 2 (0, 1) if ✓  ⇡ � ✓0� .

Proof. This result is a direct consequence of [Anc12, Theorem 1.1]. The
theorem proves the existence of a harmonic function in W✓,µ such that it
vanishes on the boundary of W✓,µ. Moreover, the harmonic function is of
the following form

h(r#) = c r�✓'(#)

where c, r > 0, # 2 ⌃✓ with ⌃✓ := Sd�1 \W✓,µ, and ' is a positive function
in ⌃✓ vanishing on @⌃✓. The constant �✓ > 0 is given by

�✓ :=
�d+ 2 +

p
(d� 2)2 + 4�1(⌃✓)

2
where �1(⌃✓) denotes the first eigenvalue of the opposite of the Dirichlet
Laplacian in ⌃✓, i.e.

�1(⌃✓) = inf

⇢ˆ
Sd�1

|ru|2d� : u 2 C1
c (⌃✓),

ˆ
Sd�1

|u|2d� � 1

�
,

with � the standard Riemannian spherical measure in Sd�1. It is not hard
to see that �✓ is non-increasing in ✓, and �⇡

2
= 1 (since h = x · µ is a

positive harmonic function in W⇡
2 ,µ

). We refer readers to [BCG83] for several
bounds of �1(⌃✓). Since �1(⌃✓) and �✓ depend continuously on ✓, �✓ can
be arbitrarily close to 1 if ✓ is large (close to ⇡

2 ). The conclusions follow
immediately from Harnack’s inequality and Dahlberg’s lemma. ⇤
Remark 2.11. When d = 2 the formula can be written as

✓� =
⇡

2�
and ✓0� = max


⇡ � ⇡

2(2� �)
, 0

�
.

In particular one can deduce that ✓� � ✓2 � ⇡
4 when d � 2, by comparison

principle for harmonic functions.

Next we show some properties of superharmonic functions.

Lemma 2.12. Let f : Rd ! [0,1) be continuous, let r > 0 and let ! :
B2r ! [0,1), ! 2 C2(B2r) be a classical solution to

��! = f, in B2r.

Then there exists a constant C > 0, depending only on the dimension, such
that for all x 2 Br,
!(x)  C!(0) + Cr2kfkL1(B2r), |r!(x)|  Cr�1!(0) + CrkfkL1(B2r).

Moreover if rµ! � 0 for some µ 2 Sd�1 in B2r, then for all x 2 Br,
rµ!(x)  Crµ!(0) + CrkfkL1(B2r).
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Proof. Set !̃(x) := !(rx), and so ��!̃ = f̃ in B2 with f̃(x) := r2f(rx). Let
G be the Green’s function of Laplacian in B2. Then, we have the represen-
tation formula (see e.g., [Eva10])

(2.5) !̃(x) = �
ˆ
@B2

!̃(y)@nG(x, y)d�(y) +

ˆ
B2

f̃(y)G(x, y)dy,

where n denotes the outward pointing unit normal to @B1. Notice that there
exists C = C(d) > 0 such that

(2.6) sup
x2B1

✓ˆ
B2

G(x, z)dz +

ˆ
B2

|rxG(x, z)|dz
◆

 C,

and 0 < �@nG(x, y)  �C@nG(0, y) for (x, y) 2 B1 ⇥ @B2. Therefore, also
using that ! � 0 and (2.5) with x = 0, we get for x 2 B1 that

!̃(x)  �C

ˆ
@B2

!̃(y)@nG(0, y)d�(y) + C

ˆ
B2

f̃(y)G(0, y)dy + (C + 1) sup
B1

kf̃kL1(B1)

ˆ
B2

G(·, y)dy

 C!̃(0) + C(C + 1)kf̃kL1(B2)

By rewriting this estimate for ! and f , this yields the first inequality of the
conclusion after enlarging C.

Next since |r@nG(x, y)|  �C@nG(0, y) for any (x, y) 2 B1⇥@B2, taking
derivatives on both sides of (2.5) yields

|r!̃(x)|  �C

ˆ
@B2

!̃(y)@nG(0, y)d�(y) +

����
ˆ
B2

f̃(y)rxG(x, y)dy

����  C!̃(0) + Ckf̃kL1(B2)

where in the last inequality we used (2.5) with x = 0 and (2.6). This then
implies the second inequality, again, by using the definition of !̃ and f̃ .

For the last claim, without loss of generality, we assume that ! is C2 in a
neighbourhood of B2r. Taking derivatives on both sides of (2.5) and using
rµ! � 0 yield

rµ!̃(x)  �
ˆ
@B2

rµ!̃(y)@nG(x, y)d�(y) +

ˆ
B2

f̃(y)|rG(x, y)|dy

 �C

ˆ
@B2

rµ!̃(y)@nG(0, y)d�(y) + Ckf̃kL1(B2)  Crµ!̃(0) + Ckf̃kL1(B2)

which implies the last inequality. ⇤

3. Monotonicity properties, Streamlines, and Examples

In this section, we prove several tools that will be used to prove the main
theorems, and we discuss by examples the optimality of our monotonicity
assumptions and the formation of cusps on the free boundary.
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3.1. Interior monotonicity. The goal of this section is to show that if a
superharmonic function is (", "↵)-monotone, then under some assumptions
it is fully monotone in the interior.

The corresponding result with f ⌘ 0, ~b ⌘ 0, and (", 0)-monotonicity is
proved in the book of Caffarelli and Salsa [CS05, Corollary 11.16]. Here
we need "↵ to be positive to compensate the possible loss of monotonicity
caused the source function f . One important ingredient of the proof in
[CS05, Corollary 11.16] is the Harnack inequality, which is applied to h :=
!(x) � !(x � "µ). However when f 6= 0, h solves a Poisson equation with
the source term f(x � "µ) � f(x) which can be negative at some points,
and in such cases the Harnack inequality might fail (because for example,
h := x2 solves ��h = �2 and h(x) � 0 with equality holds if and only if
x = 0). To overcome the problem, we estimate carefully the “error” from
the source term in the lemma below. We will later combine this lemma with
Lemma 3.3, which provides a lower bound for !, to conclude the interior
monotonicity. Below we use the convention that "1 = 0 for " 2 (0, 1).

Lemma 3.1. Let f � 0 be �̄-Hölder continuous on B1 for some �̄ 2 (0, 1),
and ↵ 2 [0,1] and ",1 2 (0, 1). There exists C = C(d) > 0 such that the
following holds for all " small enough (depending only on d,↵,1). If ! is
a non-negative solution to ��! = f in B"1�1 , and ! is (", "↵)-monotone
with respect to W0,µ for µ 2 Sd�1, then

rµ!(x) � "↵(1� C"1)!(x)� C"1+�̄�1kfkC0,�̄(B1) for all x 2 B".

Proof. Let us denote � := "↵+1 < 1. We will only show the conclusion for
x = 0, and the general case of x 2 B" follows the same. For s 2 [", 2"], define
(3.1) hs(x) := !(x+ sµ)� (1 + �)!(x),

and it follows from the (", "↵)-monotonicity assumption that hs � 0. Using
the monotonicity again yields for s 2 [", 2"],
(3.2)
2X

i=0

(1 + �)�ih"(x+ i"µ) = (1 + �)�2!(x+ 3"µ)� (1 + �)!(x)

� (1 + �)�1!(x+ sµ)� (1 + �)!(x) � (1 + �)�1hs(x)� �!(x).

Note that ��hs = (1 + �)f(·)� f(·+ sµ) and
|(1 + �)f(·)� f(·+ sµ)|  �kfk1 + s�̄kfkC0,�̄ .

Hence hs � 0 and Lemma 2.12 (after shifting 0 to any y 2 B3") yield for
some C > 0 (if " is small) and any s 2 [", 2"] that
(3.3) hs(x)  Chs(y) + C"2�kfk1 + C"2+�̄kfkC0,�̄ for all x, y 2 B3".

This and (3.2) with x = 0 yield

hs(0)  C
2X

i=0

h"(i"µ) + C�!(0) + C"2�kfk1 + C"2+�̄kfkC0,�̄
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 Ch"(0) + C�!(0) + C"2�kfk1 + C"2+�̄kfkC0,�̄ .

Next, by Lemma 2.12 again, for s 2 [", 2"] and r := 1
2"

1�1 with 1 2 (0, 1),
we get

(3.4)
|rhs(0)|  Cr�1hs(0) + Cr�kfk1 + Cr"�̄kfkC0,�̄

 Cr�1h"(0) + Cr�1�!(0) + Cr�kfk1 + Cr"�̄kfkC0,�̄ .

Now we estimate h"(0). We obtain from (3.1) and (3.3) with s = " that
h"(0)  C(!(2"µ)� (1 + �)!("µ)) + c",f ,

where c",f := C"2�kfk1 +C"2+�̄kfkC0,�̄ . Since rµhs(0) = rµ!(sµ)� (1 +
�)rµ!(0), this implies
(3.5)

h"(0)  C

✓ˆ 2"

"
rµ!(sµ)ds� �!("µ)

◆
+ c",f

 C

✓ˆ 2"

"
|rhs(0)|ds+ "(1 + �)rµ!(0)� (1 + �)�!(0)

◆
+ c",f ,

where we also used !("µ) � (1+ �)!(0). Then by (3.4) with r = 1
2"

1�1 and
the definitions of c",f and �, we obtain for some C = C(d) > 0,

h"(0)  C"1h"(0) + C"1+1+↵!(0) + C(1 + �) ("rµ!(0)� �!(0)) + C"2+�̄�1("↵kfk1 + kfkC0,�̄ ).

Using h" � 0, the above estimate yields for all " > 0 small enough,
(3.6) rµ!(0) � "↵(1� C"1)!(0)� C(1 + "↵)"1+�̄�1kfkC0,�̄ .

This yields the conclusion for x = 0. ⇤
Remark 3.2. 1. It is clear that (", "↵)-monotonicity with respect to W✓,µ

for some ✓ � 0 and µ 2 Sd�1 implies (", "↵
0
)-monotonicity with respect to

W0,µ for all 0  ↵  ↵0.
2. Let ! be from Lemma 3.1. If either ↵ 6= 1 or f is constant, and " > 0

is small enough such that "↵!(·) � 2C"1+�̄�1kfkC0,�̄ and C"1 < 1
2 , then

!(sµ) is non-decreasing in s for all s 2 (�", ").
3. Furthermore, if "↵!(·) � C"1+�̄�21kfkC0,�̄ in B2"1�1 , then for some

larger C > 0 and any j 2 (0, 1), ! is (j", "↵(1 � C"1))-monotone with
respect to W0,µ in B"1�1 .

3.2. Polynomial growth near the free boundary. The goal of this sec-
tion is to show that a superharmonic function which has cone monotonicity
up to "-scale has a polynomial growth bound up to the same scale. The
growth rate lower bound will be used in competition to the irregularity of
the source term, to show that the regularity propagates to the boundary over
time (see Lemma 6.1, Proposition 6.2 and Theorem 7.3). This bound can be
improved to a linear rate once we obtain full monotonicity, later in Section
7.

Next lemma provides a lower bound for the growth rate of (", 0)-monotone
superharmonic functions.
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Lemma 3.3. Let µ 2 Sd�1, and let ! � 0 be a continuous function in B2

such that
��! � 0 in ⌦! \B2, 0 2 �! = @⌦!, !(µ) � 1,

and ! is (", 0)-monotone with respect to W✓,µ in B2 for some " small enough.
Then for some dimensional constant c > 0 and for any � 2 (1, 2), if ✓ � ✓�
(with ✓� given in Lemma 2.10) we have

!(x) � c d(x,�!)
�

for all x 2 B1 \ ⌦! satisfying d(x,�!) � 2".

Proof. For each x 2 B1 \ ⌦! satisfying d(x,�!) � 2", there is x0 2 �! \B2

such that x = x0 + sµ with s � d(x,�!) � 2". Note that it follows from
the monotonicity assumption and {0, x0} ⇢ �! that ! > 0 in ((x0 + "µ +
W✓,µ) [ ("µ + W✓,µ)) \ B2. Thus Harnack’s inequality and !(µ) � 1 yield
!(x + 1

2µ) � c for some dimensional constant c > 0. Then by comparing
! with a non-negative harmonic function whose support is x0 + "µ +W✓,µ,
Lemma 2.9 and Lemma 2.10 yield for some dimensional c0 > 0 we have

!(x) � c0(s� ")� � 4�1c0d(x,�!)
� whenever ✓ � ✓� .

⇤
For the next lemma the growth rate bound is obtained excluding only a

small portion of the original domain B1, with the expanse of restricting to
the near boundary region.

Lemma 3.4. Under the assumptions of Lemma 3.3 except that ! is only
assumed to be (", 0)-monotone with respect to W✓,µ in B1 (instead of B2),
then for some c = c(d) > 0 and for any � 2 (1, 2), if ✓ � ✓� we have

!(x) � c d(x,�!)
�

for all x 2 B1�"1/2 \ ⌦! satisfying d(x,�!) 2 [2", "
1
2 ].

Proof. For any x 2 B1�"1/2 \ ⌦! satisfying d(x,�!) 2 [2", "
1
2 ], there exists

x0 2 �! \B1 such that x = x0 + sµ with s � 2". Note that this is not true
if d(x,�!) >> "1/2. With this x0 2 �! \B1, we can conclude the proof the
same as in Lemma 3.3. ⇤
3.3. Streamlines. Here we introduce streamlines associated with the drift
term, which yields an important monotonicity property for our flow. They
are defined as the unique solution X(t;x0) of the ODE

(3.7)

(
@tX(t;x0) = �~b(X(t;x0)), t 2 R,
X(0;x0) = x0.

We write X(t) := X(t; 0). In order to analyze the solution along one stream-
line that passes through (0, 0), we define
(3.8) ū(x, t) := u(x+X(t), t).



14 INWON KIM AND YUMING PAUL ZHANG

Then ū satisfies

(3.9)

(
��ū = f0(x, t) in {ū > 0},

ūt = |rū|2 +~b0(x, t) ·rū on @{ū > 0},
where
(3.10) f0(x, t) := f(x+X(t)), ~b0(x, t) := ~b(x+X(t))�~b(X(t)).

It was shown in [KPW19, Lemma 3.5] for the drift porous medium equa-
tion that {u > 0} =: ⌦u is non-decreasing along the streamlines. The same
holds in our case.

Lemma 3.5. If (x0, t0) 2 ⌦u, then (X(t;x0), t+ t0) 2 ⌦u for all t > 0.

Proof. Let us assume (x0, t0) = (0, 0). By continuity of the solution, suppose
that for some z 2 B1 we have u(t, z) � c > 0 for all t 2 [0, ⌧) with some
small ⌧ > 0. Let D0 be any strict open subset of ⌦u(0) \ B1, and then for
t 2 (0, ⌧) define

Dt := {X(t;x) : x 2 D0} \B1.

We can assume that z 2 Dt for t 2 [0, ⌧ ]. Let v(·, t) be the largest subhar-
monic function in Dt\{z} such that v(·, t) = 0 on @Dt and v(t, z) = c. It is
clear that v � u at t = 0 and v < u on (⌦u(t) \ @B1) [ {z} for t 2 (0, ⌧).

We claim that that v is a viscosity subsolution to (1.1) in (B1\{z}) ⇥
(0, ⌧). Let us only verify the free boundary condition. Suppose for a smooth
function � 2 C2,1

x,t such that v � � has a local maximum in ⌦v \ {t  t0}
that equals to 0 at (x0, t0) 2 �v and x0 /2 @B1. Note that by the definition
of Dt, �(x0, t0)  �(X(�";x0), t0 � ") for all " sufficiently small. Therefore
�t  ~b ·r� at (x0, t0), and thus we can conclude with the claim.

Then the comparison principle (Lemma 2.5) yields v  u. Note that
{(x, t) : x 2 Dt, t 2 [0, ⌧)} is non-decreasing along streamlines and D0 can
be arbitrarily close to ⌦u(0)\B1. So ⌦u is non-decreasing along streamlines
for t 2 (0, ⌧), and then the same holds for all positive time. ⇤
3.4. Lipschitz space-time neighborhood of the free boundary. In
this subsection we show that if the solution u to (1.1) is (", 0)-monotone
in space, then there exists a Lipschitz space-time neighborhood of the free
boundary of u. The interesting feature lies in the time variable component
of the Lemma: for the space variable it can be derived from a geometric
argument, for instance see Proposition 11.14 in [CS05]. This Lipschitz set
will be used as the region where we do comparison later. For simplicity of
discussions, we take µ := �ed below.

Lemma 3.6. Suppose u, f,~b satisfy (1.1), and they are uniformly bounded
by L in Q2 = B2 ⇥ (�2, 2) for some L � 1. If u is (", 0)-monotone with
respect to W�ed,✓ for some ✓ 2 (0, ⇡2 ) in Q2, then for any r 2 [4", 14 ] there
exists a Lipschitz continuous function �r : Rd ! R such that

�u(t) \B3/2 ✓ {(x0, xd) 2 B3/2 : |�r(x
0, t)� xd| < r}
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for all t 2 (�2, 2). Moreover, �r is cot ✓-Lipschitz continuous in space and
C/r-Lipschitz continuous in time for some C = C(L, ✓) > 0.

Proof. From the (", 0)-monotonicity assumption, it follows from Proposition
11.14 [CS05] that for each t 2 (�2, 2), �u(t) is contained in a (1 � sin ✓)"-
neighborhood of the graph of a Lipschitz function, with Lipschitz constant
cot ✓. Therefore we can find a Lipschitz function �t : Rd�1 ! R with the
same Lipschitz constant such that

(3.11) �u(t) \B2 ✓ {(x0, xd) 2 B2 : |�t(x0)� xd| < "}.
Claim. If r 2 (0, 14 ] and u(·, t0) = 0 in Br(x0) for some (x0, t0) 2 B3/2 ⇥

(�2, 2), then u(x0, t0 + t) = 0 for all t  cr2 for some c = c(L) > 0.
Proof of claim. We use a barrier argument to prove the claim for d � 3

(the proof for d = 2 is similar). Also suppose, without loss of generality, that
t0 = 0 and x0 = 0. For some A � 1 to be determined, let

w(x, t) := at�2�1L|x|2�bt|x|2�d in ⌃ := {(x, t) : x 2 B1/2\Brt , t 2 [0, r2/(2A)]}
where

at := 1 + 8�1L+ bt2
d�2, bt :=

8 + L� 4Lr2t
8r2�d

t � 2d+1
, rt := r �Ar�1t.

Then it is straightforward to verify that for t 2 [0, (2A)�1r2], ��w(·, t) =
dL, w(·, t) = 1 on @B1/2 and w(·, t) = 0 on @Brt . Moreover for these t,

|rw(x, t)|  L|x|+ (d� 2)bt|x|1�d  C/r for x 2 B1/2\Brt ,

as 1/2 < 1/r, with C > 0 only depending on d, L. Therefore, using that
d
dtrt = �Ar�1 and by picking A := C + L, we get that w is a supersolution
to (1.1). So the assumptions and the comparison principle yield u  w in ⌃.
Since w(·, t) = 0 on @Brt for all t 2 [0, (2A)�1r2], we proved the claim with
c := (2A)�1.

Now for each x0 2 Rd�1 satisfying |x0|  3
2 , since u((x0,�t(x0) + "), t) = 0,

the (", 0)-monotonicity yields u(·, t) = 0 in Br sin ✓((x0,�t(x0) + r+ ")) for all
r � ". Hence the above claim implies

u
�
(x0,�t(x

0) + r + "), t+ s
�
= 0 for all s 2 [0, c✓r

2]

where c✓ := c sin ✓. This yields

(3.12) �t+s(x
0)  �t(x

0) + r + 2" for all s 2 [0, c✓r
2].

On the other hand, since ⌦u is non-decreasing along streamlines and |~b|  L,
we obtain

(3.13) �t+s(x
0) � �t(x

0)� c✓Lr
2 � 2" for all s 2 [0, c✓r

2].

Let r 2 [", 14 ] and we use �t to construct a Lipschitz space-time function
�r. Let t0 := �2, and define iteratively for k 2 N that tk := t0 + kc✓r2,
and �r(x0, tk) := �tk(x

0). Then we extend �r(x0, ·) to all t 2 (�2, 2) by
linear interpolation. We see that �r is cot ✓-Lipstchiz continuous in space
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and 2(c✓r)�1-Lipschitz continuous in time. Finally, (3.11), (3.12) and (3.13)
yield that

�u(t) \B3/2 ✓ {(x0, xd) 2 B3/2 : |�r(x
0, t)� xd| < r + 3"}

which finishes the proof with r + 3" in place of r. ⇤
3.5. Examples: Waiting time, Formation of cusps and discussion of
optimality for the monotonicity assumption. First let us show that
the theorem is false when the angle is small.

Example 3.7. We only consider space dimension 2 and we use the polar
coordinates r, ✓ such that (x1, x2) = (r cos ✓, r sin ✓). Let us consider f = 1,
~b ⌘ 0 and consider the initial data u0(r, ✓) =u(

In the following first example, we show that the free boundary of solutions
starting with a cone as its positive set develops a cusp at the vertex of the
cone if the vector field is only Hölder continuous.

Example 3.8. We only consider space dimension 2 and we use the polar
coordinates r, ✓ such that (x1, x2) = (r cos ✓, r sin ✓). In the example we
take f ⌘ 0, and ~b to be of the form ~b = (C0|x2|�0�1, 0) with C0 > 1 and
�0 2 (1, 2).

First we show that the support of the solution is contained in a shrinking
cone when C0 is large. For t 2 [0, 1], let

�0
t := {|✓| = ✓t} where ✓t := (1� t)

⇡

2�0
+ t

⇡

2�1
2 (0,

⇡

2
) and �1 > �0.

The opening of the cones {|✓| < ✓t} shrinks from ✓0 to ✓1 for t 2 [0, 1]. For
each t, let 't = r�t(cos(�t✓))+ with �t := ⇡

2✓t
> 1. It is easy to see that

�'t = 0 in {'t > 0} = {|✓| < ✓t}, and

|r't| = r�t�1
q

cos2(�t✓) + �t2 sin2(�t✓)
���
|✓|=✓t

= �tr
�t�1 on |✓| = ✓t.

By direct computations, the outer normal direction of �0
t is ⌫ 0t = (� sin ✓t,± cos ✓t),

and the normal velocity of �0
t at (r,±✓t) equals to V 0(r,±✓t) = �( ⇡

2�0
� ⇡

2�1
)r.

We obtain on �0
t \B1,

V 0 � |r't|�~b · ⌫ 0t = �(
⇡

2�0
� ⇡

2�1
)r � �tr

�t�1 + C0|r cos ✓t|�0�1 sin ✓t

which is non-negative if C0 is large enough, due to �0  �t. So 't is a
supersolution to (1.1) in B1 ⇥ (0, 1).

Next let u be a solution with initial data  '0 and with boundary value
 't on @B1⇥ {t > 0}, then the origin is on �u by Lemma 3.5 and ~b(0) = 0.
We claim that the comparison principle (Lemma 2.5) yields u  't and
so ⌦u(t) is contained in {'t > 0} = {|✓| < ✓t}. To justify the use of the
comparison principle, by the choice of~b, we first compare u with 't(x1+�, x2)
for � > 0 (the two functions are strictly separated) and then passing � ! 0
yields the desired inequality u  't.
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Now we start with t = 1 and a solution u such that (⌦u(1) \ B1) ✓
{|✓| < ✓1}, and show the formation of cusps. Assume �1 > 2 and � := 2

�1
2

(�0 � 1, 1). For t 2 (1, 2), define

�t := {x1 = g(x2, t)} where g(x2, t) := |x2| cot ✓1 + (t� 1)|x2|�.

So a cusp develops at the vertex of the set {x1 > g(x2, t)} when t > 1.
For each t 2 (1, 2), let �t be a harmonic function in {x1 > g(x2, t)} with
0 boundary condition and �t(12 , 0) = 1. If we can show that �t(x1, x2) is
a supersolution for t 2 (1, 2), then after further assuming u to be smaller
on @B1 and by the comparison principle (which can be justified similarly as
before), the support of u is contained in cusps for t 2 (1, 2), which shows the
formation of cusps.

To show that �t is a supersolution, it suffices to verify the free boundary
condition on �t \ B1. Note that the curvature of �t at point (g(x2, t), x2)
satisfies

|@2x2
g(x2, t)|

(1 + |@x2g(x2, t)|2)3/2
. 1

|x2|
uniformly for all |x2| < 1 and t 2 (1, 2).

For any fixed (y1, y2) 2 �t, let us consider �̃t(x1, x2) := �t(|y2|x1+y1, |y2|x2+
y2). Then the free boundary of �̃t is a graph of finite curvature in a unit
neighbourhood of the origin. Thus it follows from Lemma 2.9 (by comparing
with radially symmetric harmonic functions, see also [JK05]) that for some
c > 0,

|r�̃t(0, 0)|  c �̃t(0,�y2/|y2|).
After scaling back, we get

|r�t(x1, x2)|  c|�t(x1, 0)|/|x2|  cx�11 /|x2| on �t \B1.

In the last inequality we used �t(x1, 0) . '1(x1, 0) . x�11 , which is due to
the support of �t is contained in {|✓| < ✓1} and Lemma 2.10. Moreover, by
direct computation,

~b·⌫t = (C0|x2|�0�1, 0)·(�1,±(cot ✓1 + �(t� 1)|x2|��1))p
1 + (cot ✓1 + �(t� 1)|x2|��1)2

⇡ �C0|x2|�0�1

p
1 + (t� 1)2|x2|2��2

where ⌫t denotes the unit normal direction on �t. The normal velocity of
�t \B1 is

V := (|x2|�, 0)·
(�1,±(cot ✓1 + �(t� 1)|x2|��1))p

1 + (cot ✓1 + �(t� 1)|x2|��1)2
⇡ �|x2|�p

1 + (t� 1)2|x2|2��2
& �|x2|�0�1

p
1 + (t� 1)2|x2|2��2

where the last inequality is due to � > �0 � 1.
It remains to show that, if C0 is large enough, then

(3.14) V � ~b · ⌫ 0 + |r�t| on �t \B1.

If (t � 1)|x2|��1 � 1, then (t � 1)|x2|� ⇡ x1 on �t. Due to �0 � � < 1 and
�1� = 2, we have for t 2 (1, 2),

V�~b·⌫ 0 ⇡ C0|x2|�0��/(t� 1) & C0|x2| and |r�t| . (t�1)�1 |x2|�1��1 . |x2|.
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While if (t� 1)|x2|��1  1, then |x2| ⇡ x1 on �t, and so, by 1 < �0 < �1,

V �~b · ⌫ 0 ⇡ C0|x2|�0�1 and |r�t| . |x2|�1�1 . |x2|�0�1.

These imply (3.14), and we conclude with the formation of cusps.

Finally, we show that (", 0)-monotonicity with respect to W✓,µ in a large
neighborhood does not imply that the solution is monotone along the direc-
tion µ in smaller neighborhood. Here ✓ > 0 can be large and the source term
f is smooth.

Example 3.9. Fix a small � > 0, and any ✓ 2 (0, ⇡2 ) and n 2 N. Take a
smooth function f � 0 such that f is radially decreasing, f is supported in
B2�, and f ⌘ �n in B�. Then we can assume that f is uniformly bounded in
Cn norm regardless of the choice �. Now let �1 : R2 ◆ B1 ! R solve

���1 = f in B1 and �1 = 0 on @B1.

Note that �1(x) =
´
B2�

1
2⇡ ln |x� y|f(y)dy. Hence by direct computations,

(3.15) sup
B2�

|r�1| � �n+1/C and �1 2 (0, C�n+2| ln �|) in B1

for some C > 0 independent of �. Moreover, take

(3.16) �(x) := �1(x) + 2 + �n+1x1/(2C),

which is strictly positive, and satisfies �x1 < 0 at some points in B2� by
(3.15) and the fact that �1 is radial. We claim that, with " := �

1
2 and �

sufficiently small, � is (", 0)-monotone with respect to W✓,µ with µ being the
positive x1-direction. Indeed, for any x, y 2 B1 and y 2 B(sin ✓)"(x + "µ),
(3.16) and the second inequality in (3.15) yield

�(y)��(x) � �n+1(y1�x1)/(2C)��1(x) � (1�sin ✓)"�n+1/(2C)�C�n+2| ln �| � 0,

after taking � = "2 to be small enough. Thus this yields the claim.

Finally (still in dimension 2), we show that (", "↵)-monotonicity with re-
spect to W✓,µ in a large neighborhood does not imply that the solution is
monotone along the direction µ in smaller neighborhood. The source term
f is bounded, the constant ↵ 2 (0, 1), and the solution can be >> ".

Example 3.10. Let ↵ > 0 be fixed, and let min{0, 1 � ↵} <  < 1 and
� := "(↵++1)/2. Then take C, ✓, f and �1 from the previous example with
n = 0. We define

�(x) := �1(x) + �(x1 + 1)/2C + ".

By (3.15) with n = 0, we have for sufficiently small " that

(3.17) "  �  C�2| ln �|+ �/C + "  2" in B1.

From the previous example, �x1 does not have a sign in B1. We now show
that � is (", "↵)-monotone with respect to W✓,µ with µ denoting the positive
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x1-direction. Indeed, for x, y 2 B1 and y 2 B(sin ✓)"(x + "µ), we get from
(3.15) and (3.17) that

�(y)� (1 + "↵+1)�(x) � �(y1 � x1)/(2C)� �1(x)� "↵+1�(x)

� (1� sin ✓)"�/(2C)� C�2| ln �|� 2"↵++1.

This is non-negative when " is sufficiently small, due to "↵+ << � << " by
the choice of the parameters.

Note that, later in Proposition 6.2, we will apply the improved interior
monotonicity of the solution u in the region that is "�1-away (with �1 < 1
but close to 1) from the free boundary and it is possible that u 2 ("1/�, "�)
for some � < 1 in the region. Thus the above example indeed indicates that
merely bounded source function is not sufficient for the purpose.

4. Superharmonic Functions in Lipschitz domains

In this section, motivated by Lemma 3.6 we begin with studying superhar-
monic functions in Lipschitz domains, starting with an important localization
result (Proposition 4.1). Building on this we achieve an important growth
estimate for (", "↵) superharmonic functions, up to a small distance away
from the free boundary (Lemma 4.5). The challenge lies in the potential
oscillation of the source term f , which could affect the distribution of rw in
small scale.

Throughout the section we denote g : Rd�1 ! R to be a Lipschitz con-
tinuous function with Lipschitz constant cg > 0 such that g(0) = 0. For any
L � 2, define a strip with width 1 below the graph of g in BL as

⌃0
L := BL \

�
x = (x0, xd) : g(x0)� 1 < xd < g(x0)

 
,

and denote the bottom part of the boundary as

@b⌃
0
L := BL \ {x = (x0, xd) : xd = g(x0)� 1}.

We consider two non-negative functions w1,L and w2,L such that
8
<

:

��w1,L = 0, ��w2,L = 1 in ⌃0
L;

w1,L = 1, w2,L = 0 on @b⌃0
L; w1,L = w2,L = 0 on the rest of @⌃0

L.

Below we will show that the two functions are comparable, uniformly
with respect to the width parameter L. Such result allows us to study our
solutions using the well-known properties of harmonic functions in Lipschitz
domains. While such result appears to be of classical nature, we were unable
to find a relevant version in the literature. It does not appear to be directly
verifiable from the Green’s function presentation for each functions.

Proposition 4.1. For w1,L, w2,L and g given as above, let L � 2 and cg <
cot ✓2, where ✓2 is from (2.3). Then

w2,L  Cw1,L in ⌃0
L�1 for some C = C(d, cg).
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Let us remark that if cg > cot ✓2 the proposition is false. This is because
near the vertex (at which w1,L = 0) of a cone with small opening, w1,L grows
much slower than quadratic, while w2,L has a quadratic growth.

Proof. 1. First we claim that w2,L is bounded in ⌃0
L, with the bound de-

pending only on d and cg. If this is not true, then we have a sequence of
Lipschitz functions gn and the corresponding wn

2,Ln
such that wn

2,Ln
(xn) =

maxx2⌃0
L
wn
2,Ln

(x) ! 1 as n ! 1. Due to the classical regularity results
for harmonic functions in Lipschitz domains (see e.g., [JK82]), wn

2,Ln
(· +

xn)/wn
2,Ln

(xn) are uniformly continuous with bounds that only depends on
d and cg. By taking a locally uniform convergent subsequence of wn

2,Ln
(· +

xn)/wn
2,Ln

(xn), we can easily obtain a contradiction because the limiting
function is harmonic in some Lipschitz domain whose dirichlet boundary is
a unit distance away from the origin, and it assumes its maximum value 1
at the origin, which is not possible. So we can conclude.

2. We now simplify what we need to prove. First, by Dahlberg’s lemma
(Lemma 2.9), there is no loss of generality to assume that w1,L = 1 on
@b⌃0

L [ (@BL \ ⌃0
L). Next we claim that if we can prove the conclusion

for L = 2, then the general case follows. Indeed since w2,L for all L > 2
are uniformly bounded (denote the bound as C⇤), w2,L  C⇤w1,2 on the
boundary of ⌃0

L \ B2. This implies that w2,L  C⇤w1,2 + w2,2 on ⌃0
L \ B2.

Then by the assumption that the conclusion of the lemma holds for L = 2
and by Dahlberg’s lemma, we obtain

w2,L  C⇤w1,2 + w2,2  C 0w1,2  C 00w1,L on ⌃0
L \B1.

The same holds on ⌃0
L�1 by shifting the functions.

3. Now we set L = 2 and change the variable

y0 := x0, yd := xd � g(x0) (write y := (y0, yd)).

Under the transformation, the Lipschitz boundary xd = g(x0) becomes a flat
hyperplane yd = 0. The operator �� changes to

(4.1) L := Lg = �r · ((Dy)TDyr)

where Dy denotes the Jacobian matrix of the transformation. The opera-
tor remains uniformly elliptic since (Dy)TDy is bounded, measurable and
uniformly positive definite.

Working with the new coordinates, let us consider the following two non-
negative functions
(4.2)8
><

>:

�Lw0
1 = 0, �Lw0

2 = 1 on {|x0| < 2, xd 2 (�1, 0)} =: T 0,

w0
1 = 1, w0

2 = 0 on {|x0|  2, xd = �1},
w0
1 = 0, w0

2 = 0, on {(|x0| = 2, xd 2 (�1, 0)) or (|x0|  2, xd = 0)},
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It suffices to show that

(4.3) w0
2  Cw0

1 on T 0.

3. We would like to further reduce the problem to periodic domains. Let
us denote Td�1 as the (d� 1) dimensional torus, and consider

(4.4)

8
>><

>>:

�Lw00
1 = 0, �Lw00

2 = 1 on T = {x0 2 Td�1, xd 2 (�1, 0)},
w00
1 = 1, w00

2 = 0 on {x0 2 Td�1, xd = �1},
w00
1 = 0, w00

2 = 0, on {x0 2 Td�1, xd = 0}.

We claim that to show (4.3) it suffices to show w00
2  Cw00

1 on T . To
prove the claim, we can construct a Lipschitz function g̃ : 4Td�1 ! R with
Lipschitz constant cg such that g̃ ⌘ g on {x0 2 Rd�1 : |x0| < 2}. Then the
corresponding operator Lg̃ agrees with L on the same region. Let us still
call solutions from (4.4) with Lg̃ and 4Td�1 in place of L and Td�1 as w00

1
and w00

2 . Then Lemma 2.9 in pre-transformation coordinates and uniform
continuity of w0

1, w
00
1 yield w00

1  Cw0
1 on T 0, and the comparison principle

yields w0
2  w00

2 . Hence w00
2  Cw00

1 implies (4.3), which shows the claim after
rescaling.

4. Now we proceed to show w00
2  Cw00

1 in the periodic domain T for w00
1 , w

00
2

from (4.4). We will proceed with induction, to approach the boundary of
xd = 0. Let us denote

Tk := {x 2 T : xd 2 (�2�k, 0)}.

Since w00
1 > 0 is uniformly bounded away from 0 when xd 2 (�1,�1

2 ] and w00
2

is uniformly bounded, there exists C1 > 0 such that w00
2  C1w00

1 in T \T1.
Suppose w00

2  Ckw00
1 in T \Tk for some k � 1 and Ck > 0. Let �k be the

unique solution to ⇢�L�k = 1 in Tk,
�k = 0 on @Tk.

Then by considering 4k�k(2�kx) in 2kTk, the bound in Step 1. in pre-
transformation coordinates yields that �k  C⇤4�k for some C⇤ > 0 in-
dependent of k. Since w00

2  Ckw00
1 on @Tk, we obtain

w00
2  Ckw

00
1 + �k  Ckw

00
1 + C⇤4

�k in T .

Since cg  cot ✓� < cot ✓2 for some � < 2, Lemma 3.3 yields that w00
1 �

C|xd|� . Thus, using that w00
1 � C2�(k+1)� in T \Tk+1, there exists C 0 =

C 0(C⇤) > 0 such that

C 0w00
1 � C 02�(k+1)� � 2(2��)k(4�kC⇤) in T \Tk+1.

We then obtain

w00
2  Ck+1w

00
1 in T \Tk+1 = {x 2 T : xd 2 (�1,�2�k�1]}.
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with Ck+1 := Ck +C 02(��2)k. Because C 0 is independent of k and � < 2, we
have

lim
k�0

Ck < 1,

and therefore w00
2  Cw00

1 in T for some C > 0 which finishes the proof. ⇤
Later, instead of applying Proposition 4.1 directly, we are going to use

the following corollary. In it, we use ⌃� which recales the previous ⌃0
L to

unit length but with � width (so � ⇠ 1/L). For any � 2 (0, 12), consider the
domain

(4.5) ⌃� := B1 \ {xd 2 (g(x0)� �, g(x0))}, @b⌃� := B1 \ {xd = g(x0)� �}.

Corollary 4.2. Let g be as in Proposition 4.1 with cg  ✓� for some � 2
(1, 2). Let f : Rd ! [0,1) be continuous, and let ! be a non-negative
function solving

��! = f in B2 \ {xd < g(x0)}, ! = 0 on B2 \ {xd = g(x0)},!(�ed) > 0.

Consider w1 and w2 each solving
8
<

:

��w1 = 0, ��w2 = f in ⌃�,
w1 = !, w2 = 0 on @b⌃�,
w1 = w2 = 0 on the rest of @⌃�.

Then there exists C = C(d,�) such that

���2w2  C
kfk1
!(�ed)

w1 in B1�� \ ⌃�.

Moreover, in the same domain we have

w1  !  C(1 + �2��)
kfk1
!(�ed)

w1.

Proof. First, for m := !(�ed), Lemma 2.10 yields that ! � cm�� on @b⌃�

for some c > 0. So that w̄1(x) := m�1���w1(�x) is harmonic in ⌃�/� and
w̄1 � c on (@b⌃�)/�. Note that w̄2(x) := ��2w2(�x) satisfies

��w̄2  kfk1 in ⌃�/� and w̄2 = 0 on (@b⌃�)/�.

Thus, applying the comparison principle and Proposition 4.1 with kfk�1
1 w̄2

(when kfk1 > 0) and w̄1 in place of w2 and w1 yield for some C > 0,

m���2w2  Ckfk1w1 in ⌃� \B1��.

For the second claim, note that v := ! � w2 � 0 is a harmonic function
in ⌃�, w1 = ! = v on @b⌃� and w1  v on @⌃�. Hence the comparison
principle yields w1  v in ⌃�. And by Dahlberg’s lemma (Lemma 2.9), we
have

(4.6) (w1 ) v  Cw1 in ⌃�/2 \B1��/2

for some C = C(d) > 1. Since w1 and v are harmonic, v � w1 = 0 on
B1 \ @b⌃�, and 0  v � w1  (C � 1)w1 on B1��/2 \ @b⌃�/2 by (4.6), we
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apply Lemma 2.9 again to have v�w1  C 0w1 in B1�� \ (⌃�\⌃�/2) for some
C 0 = C 0(d). Hence we have (4.6) holds (with possibly a different C = C(d))
in B1�� \ ⌃�, which finishes the proof by the established first claim. ⇤
Corollary 4.3. Let u solve (1.1) with~b = 0 and f 2 L1(Rd) in B1(0)⇥[0, 1],
with a locally Lipschitz domain ⌦0. In particular we have {u(x, 0) > 0} =
{xn < g(x0)} in B1(0), where g is as given in Proposition 4.1. If the Lipschitz
constant of �0 is small, Then for any " > 0 there exists h > 0 depending
on " such that u(·, t) is h"-monotone for the cone W✓,e1 in Bh(0) for t 2
[0, th := h

u(�hen,0)
].

this is only a sketch of the proof, we will see if it makes sense first.

Proof. If we use the same initial data and solve the homogeneous problem
(HS) , Theorem 5.7 in [CJK07] in particular states that the corresponding
solution v has spatially Lipchitz free boundary which is monotone in the
cone W (✓, ⌫) for t 2 [0, t0], where t0 only depends on ⌦0. Now we construct
the barriers for our problem as follows: we solve ��w(·, t) = f on �t, and
solve for the harmonic function w1 in the �-strip of �t, with inner boundary
data the same as w1. Then by Corollary 4.2, w1  w  (1 + C�)w, and so
|Dw| ⇠ |Dw1| up to O(�) error. In particular we know that w is a subsolution
and w(·, (1 + C�)t) is a supersolution for our original solution u. So we can
use the information on w1 from [CJK07] to bound the free boundary of u.
though we have to be careful here since I am assuming here that I have the
fixed boundary data from w satisfies w  (1 + C�)w(·, (1 + C�)t). But I
suppose that this is true as long as f has bounded time derivative. We also
need to choose � so that the resulting gap between the barriers, which is �th,
is about h". The (h", 0)-monotonicity I believe follows from comparing u
with w and from using Lemma 4.6. ⇤

The next two lemmas connect ! and r! in terms of its distance from
the free boundary. These were proved in [CS05, Lemma 11.11] for the case
f = 0. A crucial element in the proof is Harnack inequality for the directional
derivative of harmonic functions. In our case Proposition 4.1 is applied to
avoid differentiating the source function.
Lemma 4.4. Let ! and g be as in Corollary 4.2, and in addition suppose
that !xd  0. Then there exists C > 0 such that for all sufficiently small �
we have

Cd(x, {yd = g(y0)})!�xd(x) � !(x)

holds for all x 2 ⌃� \B1��, where ⌃� is given in (4.5).
Proof. Let us fix a point (y0, g(y0)) 2 B1��. For simplicity, we may assume
that y0 = 0 and g(y0) = 0. For r > 0 define zr := g(y0) � red. Then for
w1 given in Corollary 4.2 the following is true due to the boundary Harnack
principle [CS05, Theorem 11.5] and the remarks (a)(b) in its proof (see also
the proof of [CS05, Lemma 11.11]): There exist C,� > 0 such that we have
(4.7) w1(⌧zr)  C⌧�w1(zr) for any r 2 (0, �/2), ⌧ 2 (0, 1).
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Next if �2��kfk1  !(�ed), then w1  !  Cw1 for some C > 1 in
⌃� \ B1�� by Corollary 4.2. Thus by taking ⌧ > 0 to be small enough
(independent of r and y0), we obtain from (4.7) that !(⌧zr)  1

2!(zr). This
implies

(4.8)
1

2
!(zr) 

ˆ r

⌧r
!�xd(�sed)ds ( !(zr)).

Now since !xd  0, by applying the last claim of Lemma 2.12 for possibly
multiple times, we get for all s 2 (⌧r, r) that

!�xd(�sed)  C!�xd(zr) + CrkfkL1(B1)

with C > 0 depending on ⌧ and an upper bound of cg. So (4.8) yields

(4.9) Cr!�xd(zr) � !(zr)� Cr2kfk1.

For ✓ := arccot cg (� ✓� with � 2 (1, 2)), we get

r sin ✓  d(zr, {yd = g(y0)})  r.

Also using !(zr) � Cr�!(�ed) by Lemma 2.10 and the above, we get from
(4.9) that for some positive constants C,C 0 depending on ✓,!(�ed) and
kfk1,

Cd(zr, {yd = g(y0)})!�xd(zr) � !(zr)� Cr2kfk1

� 1

2
!(zr) + Cr�!(�ed)� C 0r2!(�ed) �

1

2
!(zr)

if r < � is small enough. ⇤
We now relax the previous assumption and consider (", "↵)-monotone

funcitons. Note that the cone of monotonicity needs to be wider as the
regularity of f decreases.

Lemma 4.5. Let f 2 C �̄(Rd) for some �̄ 2 (0, 1] be non-negative, and let
! � 0 solve ��! = f in B2 \ ⌦! with 0 2 �! and !(�ed) > 0. Suppose
that ↵ 2 (0, �̄2 ) and 2 2 (↵�̄ ,

1
2) if f is not a constant. Otherwise take ↵ = 1

and any 2 2 (0, 12) if f is a constant.
In addition suppose that ! is (", "↵)-monotone with respect to W�ed,✓ in

B1 with ✓ > ✓1+�̄. Then there exists C = C(✓,!(�ed), kfk1) > 0 such that:
for all " sufficiently small,
(4.10)
C|r!(x)|d(x,�!) � !(x) in B1�"1/2\{x : C"1�2  d(x,�!)  "1/2}\⌦!.

Proof. 1. Let x0 2 B1�"1/2 \ ⌦! satisfying �0 := d(x0,�!) 2 [2"1�2 , "1/2].
Below we write a0 := !(x0). Denoting x = (x0, xd), we consider the domain

D0 :=
�
x : |x0 � (x0)

0| < 8�1�0, |xd � (x0)d| < 2�0
 
.

Let us also define

N" := {x 2 B1�"1/2 \ ⌦! : d(x,�!) > "1�2}.
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By Lemma 3.4 with some � 2 (1, 1+ �̄) and the assumption, for some c > 0
we have

(4.11) !(x) � c!(�ed)"
(1�2)� in N".

Note that when f is not a constant, we have "(1�2)�+↵ >> "1+�̄�2 and
"1/2 � "1�2 due to � 2 (1, 1 + �̄) and 2 2 (↵�̄ ,

1
2). So it follows from the

second remark of Remark 3.2 that
(4.12)
!(·) is fully monotone non-decreasing along all directions in W�ed,✓ in N".

By our assumption of (", "↵)-monotonicity and the fact that ✓ � ⇡
4 , it follows

that the set {!(·) = a0} \ D0 is at least "1�2-away from �! \ D0, and
therefore {!(·)� a0 = s} for any s > 0 are Lipschitz hypersurfaces in D0.

2. Now let w1(·) and w0
1(·) be, respectively, the harmonic functions in

D0 \⌦! with w1 = ! on @(D0 \⌦!) and in D0 with w0
1 = ! on @D0. From

(4.11) and classical regularity results of elliptic operators, we get for some
c = c(d) > 0,

w0
1(x0) � w1(x0) � c!(�ed)�

�
0 .

Since w2 := ! � w1 satisfies ��w2 = f and w2 = 0 on @(D0 \ ⌦!), we get
w2  C�20kfk1 for some C > 0 in D0 \ ⌦!. Therefore, using the fact that
w2(x0)  C 0�2��

0 w1(x0) with C 0 := Ckfk1/(c!(�ed)), we have

(4.13) a0  (1 + C 0�2��
0 )w0

1(x0).

Next, similarly as done in the proof of Lemma 5.6 [CS05], let hx (with x 2
D0) be the harmonic measure in D0. By the (", "↵)-monotonicity assumption
and 0 2 �!, we have

|@D0\{w0
1 = 0}| = |@D0\{! = 0}| � c|@D0| for some c = c(d, ✓) 2 (0, 1).

Hence Lemma 11.9 [CS05] implies that

w0
1(x0) =

ˆ
@D0

!(�)dhx0(�)  (1� c0)max
@D0

!

for some c0 = c0(d, ✓) 2 (0, 1). Thus by taking �0 (and so ") to be small
enough and applying (4.13), we obtain

a0  (1� c0/2)max
@D0

w1.

Therefore there exists x1 2 @D0 such that for C0 :=
1

1�c0/2 > 1,

(4.14) w1(x1) = !(x1) � C0a0 > a0.

3. Let us consider the domain

D1 :=
�
x : |x0 � (x0)

0| < 8�1�0, �3�0 < xd � (x0)d, !(x) > a0
 
,

From the full monotonicity (4.12) that the level sets {! � a0 = s} \D1 for
s > 0 are Lipschitz graphs. Since x1 2 D1, the set {! > C0a0} \ D1 is at
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most C�0-away from �! \D0. Since ��(! � a0)+ = f in D1 and !ed  0,
we can apply Lemma 4.4 to (! � a0)+ to obtain

(!(x)� a0)
+  C|r!(x)| d(x1, {! > a0})  C 0|r!(x)| d(x1,�!)

for all x 2 D1 when " is sufficiently small. While we also know from (4.14)
that

! � a0 � (1� C�1
0 )! in {! > C0a0} \D1.

Thus the inequality (4.10) holds for x 2 {! > C0a0} \ D1. Since x0 is an
arbitrary point that is "1�2-away from �!, by shifting x0, {! > C0a0}\D1

contains all points x 2 B1�"1/2 such that d(x,�!) 2 [C"1�2 , "
1
2 ]. We finished

the proof. ⇤

4.1. Lipschitz free boundary implies cone monotonicity. Here we
show that if the boundary is Lipschitz continuous, then the solutions to
��! = f with 0 boundary data are cone-monotone when sufficiently close
to the boundary.

Let g be a Lipschitz function as given in the beginning of Section 4.

Lemma 4.6. Let Dr := Br \ {xd < g(x0)} for r > 0 and let ! � 0 be a
solution to ��! = f in D1 such that ! = 0 on g(x0) = 0 and !(�1

2ed) = 1.
Then if cg  min{cot ✓� , cot ✓0�} for some � 2 (1, 2) (where ✓� , ✓0� are from
Lemma 2.10), then there are c, r > 0 such that !�xd � c! in Dr.

Proof. For some � 2 (0, 1) to be determined, let
!�(x) := a!(�x) with a := 1/!(��ed/2).

Then !� satisfies !�(�ed/2) = 1 and ��!� = f� with f�(x) := a�2f(�x).
By the assumption on cg, Lemma 2.10 and Corollary 4.2 yield that

(4.15) C�1��  a  C�2�� , !�(��ed)  C�2�� .

Now let h1, h2 be two harmonic functions in D�
1 := B1 \ {�xd < g(�x0)}

such that
h1 = !�, h2 = 1 on @B1 \D�

1

h1 = h2 = 0 on B1 \ {�xd = g(�x0)}.
For y := ��ed, Corollary 4.2 and (4.15) yield

!�(y)� h1(y)  Ckf�k1h1(y)  Ckf�k1!�(y)  C�6�2� .

Next, it follows from the last two lines of the proof of Lemma 11.12 [CS05]
that if � is sufficiently small depending only on cg and d,

r�xdh1(y) � cr�xdh2(y) � c h2(y)/�.

where c is a dimensional constant. By Lemma 2.10 again,
(4.16) r�xdh1(y) � c ���1.

In view of Lemma 2.12 and |f�|  C�4�� ,

|r�xd(!� � h1)(y)|  C��1(!�(y)� h1(y)) + C�kf�k1  C�5�2� .
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Thus (4.16) and � < 2 yield for all � sufficiently small that r�xd!�(y) � 0.
This implies that r�xd!(��2ed) � 0 for all � sufficiently small. Finally the
proof is finished after applying Lemma 4.4. ⇤

5. Sup-convolution

In this section we prove several properties of sup-convolutions, first intro-
duced by Caffarelli (see e.g. [Caf87]). They will be used in the constructions
of barriers in the next section.

For non-negative functions u in C(B1 ⇥ (0, T )) and ' 2 C2,1
x,t (B1 ⇥ (0, T ))

with 0 < '  1/2, define
(5.1) v(x, t) := sup

B'(x,t)(x)
u(y, t) in B1/2 ⇥ (0, T ).

The following lemma says that if u is (", 0)-monotone, then the level surfaces
of v are Lipschitz graphs whenever "/' and r' are not too big.

Lemma 5.1. (Lemma 5.4 [CS05]) Let v be as given in (5.1). Suppose that
u(·, t) is (", 0)-monotone with respect to W✓,µ for some ✓ 2 (0, ⇡2 ] in B1, and
for some x 2 B1/2 and ✓̄ 2 (0, ⇡2 ) we have

(5.2) sin ✓̄  1

1 + |rx'(x, t)|

✓
sin ✓ � " cos2 ✓

2'(x, t)
� |rx'(x, t)|

◆
.

Then v(·, t) is non-decreasing along all directions in W✓̄,µ at x.

The following lemma estimates �v. The proof is similar to those in [Caf87,
KZ21, CJK07].

Lemma 5.2. Suppose ��u = f � 0 in ⌦u with continuous f : Rd ! R. Let
v be given by (5.1), then v(x, t) = u(y(x, t), t) for some y(x, t) 2 B'(x,t)(x).
Then there are dimensional constants A0, A1 > 1 such that if ' satisfies

(5.3) �' � A0|r'|2

|'| in B1 ⇥ (0, T ),

then v satisfies (in the viscosity sense)
��v  (1 +A1kr'k1)f � y in ⌦v \ [B1/2 ⇥ (0, T )].

Proof. Since t stays fixed in the proof, we will omit its dependence from the
notations of u, v,' and y. We follow the idea of Lemma 9 in [Caf87] and
compute

�v(0) = limr!0

✓ 
Br

v(x)� v(0)dx

◆
, where

 
Br

v(x)dx :=
1

|Br|

ˆ
Br

v(x)dx.

Let x0 2 B1/2 \ {v(·, t) > 0}, which may be set to be the origin. If y(0) is
a local supremum of u, then there is nothing to prove since �v(0) = 0. Oth-
erwise y(0) 2 @B'(0)(0), by choosing an appropriate system of coordinates,
we can assume for some �1, �2 2 R that

v(0) = u('(0)ed) and r'(0) = �1e1 + �2ed.(5.4)
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Recall that
v(x) = sup

|⌫|1
u (x+ '(x)⌫) � 0.

Let us estimate v(x) from below by taking ⌫(x) := ⌫⇤(x)
|⌫⇤(x)| where

(5.5) ⌫⇤(x) := ed +
�2x1 � �1xn

'(0)
e1 +

�3
'(0)

⇣ d�1X

i=2

xi ei
⌘

and �3 2 R satisfies
(5.6) (1 + �3)

2 = (1 + �2)
2 + �21 .

With this choice of ⌫, we define y(x) := x+ '(x)⌫(x) and so y(0) = '(0)ed.
Then direct computations yield (also see [Caf87])

(5.7) y(x) = Y⇤(x) + '(0)ed + o(|x|2)
where Y⇤(x) denotes the first-order term that is

(5.8) Y⇤(x) := x+ (�1x1 + �2xn)ed + (�2x1 � �1xn)e1 + �3

d�1X

i=2

xiei.

Hence Y⇤(x) is a rigid rotation plus a dilation, and (5.4) and (5.6) imply

(5.9)
����
D(Y⇤(x)� x)

Dx

����  Ckr'k1.

Then we have 
Br

v(x)� v(0)dx �
 
Br

u(y(x))� u(y(0))dx

�
 
Br

u(y(x))� u(Y⇤(x) + y(0))dx+

 
Br

u(Y⇤(x) + y(0))� u(y(0))dx.

Using (5.3) and following the computations done in Lemma 9 [Caf87], we
find that the first integration in the above � 0. Since u is C2 near y(0) by
the assumption,

lim
r!0

1

r2

 
Br

u(Y⇤(x) + y(0))� u(y(0))dx =

✓����
DY⇤(x)

Dx

����
x=0

◆2

f(y(0)).

Using (5.9) and �u(y(0))  0, we get
(5.10)

lim inf
r!0

1

r2

 
Br

v(x)� v(0)dx � lim
r!0

1

r2

 
Br

u(Y⇤(x) + y(0))� u(y(0))dx

� �(1 + Ckr'k1)f(y(0)).

Finally to show the conclusion, suppose � is a smooth function such that
� touches v from above at 0. If r > 0 is small enough, we have �(x) � v(x)
for x 2 Br, and thus

��(0) = lim
r!0

1

r2

 
Br

�(x)� �(0)dx � lim sup
r!0

1

r2

 
Br

v(x)� v(0)dx.
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This and (5.10) shows
��(0) � �(1 + Ckr'k1)f(y(0))

which finishes the proof. ⇤
Below we show that if u satisfies the free boundary condition in (1.1), then

v satisfies some appropriate free boundary condition as well.

Lemma 5.3. Let u, v be as given in Lemma 5.2, where ' 2 C2,1
x,t satisfies

'  "1, |r'|  "2, �1/2  't  "3.

In addition, if u is a viscosity subsolution of (1.1) in B1 ⇥ (0, T ), and if
"1, "2, |"3| are small enough, then v is a viscosity subsolution of
8
>><

>>:

��v  (1 +A1kr'k1)f � y in ⌦v \ (B1/2 ⇥ (0, T )),

vt  (1 + 2"2)
2|rv|2+~b ·rv +

⇣
"1kr~bk1 + 2("1 + "2)k~bk1 + "3 + |"3|/2

⌘
|rv|

on �v \ (B1/2 ⇥ (0, T )).

Proof. Suppose that for a smooth test function �, v�� has a local maximum
at (x0, t0) 2 �v in ⌦v \ B1/2 ⇥ {0  t  t0}. We would like to verify the
subsolution property for �.

As done before, suppose x0 = 0 and (5.4) holds, and let ⌫⇤(x) be from
(5.5), and ⌫(x) := ⌫⇤(x)

|⌫⇤(x)| . Then v(0, t0) = u(y0, t0) = 0 with y0 := '(0, t0)ed,
⌫(0) = ed, and |r⌫|  1. We now define

h(x, t) := x+ '(x, t)⌫(x) ( then h(0, t0) = y0).

If ' has sufficiently small C1 norm, h is invertible and h�1 is C2,1
x,t . In

particular  (y, t) := �(h�1(y, t), t) is C2,1
x,t in a neighborhood of (y0, t0). Since

v(x, t) � u(h(x, t), t) and v(0, t0) = u(y0, t0) = 0, u� has a local maximum
in ⌦u \ {t  t0} at (y0, t0).

First, suppose that �(� + f)(0, t0) > 0. Since u is a subsolution,  
satisfies
(5.11)  t(y0, t0)  |r (y0, t0)|2 +~b(y0) ·r (y0, t0)
in the classical sense. By taking "1, "2 to be small enough, we get

(5.12)
|r (y0, t0)�r�(0, t0)|  sup

x2B1/2

kD(h�1(x, t0))� Idk|r�(0, t0)|

 2("1 + "2)|r�(0, t0)|
Next we estimate �t(0, x0). To do this, we first show that r (y0, t0) is to

the direction of ed. Let us consider the set
D := {x : |x� y0| < '(x, t0)},

and then we have 0 2 @D by y0 2 �u(t0). Since '(·, t0) is C2 and r'(0, t0) =
�1e1 + �2ed by (5.4), @D is C1 and the inner normal direction at 0 equals to
�1e1 + (1 + �2)ed. Note that v > 0 in D by the definition of v and 0 2 �v.
Thus we get �(·, t0) > �(0, t0) in D \ Br(0) for some r > 0, which implies



30 INWON KIM AND YUMING PAUL ZHANG

that r�(0, t0) is pointing to the direction of �1e1 + (1 + �2)ed. In view of
(5.7) and (5.8), we have

Dh(0, t0) =

2

66664

1 + �2 ��1
1 + �3

· · ·
1 + �3

�1 1 + �2

3

77775
.

This and
�1e1 + (1 + �2)ed
�21 + (1 + �2)2

|r�(0, t0)| = r�(0, t0) = r (y0, t0) ·Dh(0, t0)

yield that r (y0, t0) = |r (y0, t0)|ed.
Now, since 't  "3, (5.12) shows that if "2 is sufficiently small,

(5.13)
�t(0, t0) =  t(y0, t0) +r (y0, t0) · ht(0, t0)   t(y0, t0) + [r (y0, t0) · ⌫(0)]'t(0, t0)

  t(y0, t0) + ("3 + 2�1|"3|)|r�(0, t0)|.

Then (5.11), (5.12) and (5.13) yield at (0, t0),

�t  (1 + 2"2)
2|r�|2 +~b(y0) ·r�+

⇣
"3 + 2�1|"3|+ 2"2k~bk1

⌘
|r�|.

Also using |~b(y0) �~b(0)|  "1kr~bk in the above inequality and rearranging
the terms, we obtain
(5.14)
�t  (1+2"2)

2|r�|2+~b(0)·r�+
⇣
"3 + 2�1|"3|+ "1kr~bk1 + 2"2k~bk1

⌘
|r�|.

Finally, if �(� + f)(0, t0)  0, it follows from the proof of Lemma 5.2
with  ,� in place of u, v that (note that �(x, t0) =  (x + '(x, t0)⌫(x), t0)
and we only used v(x) � u(x+ '(x)⌫(x)) in the proof before)

���(0)  (1 + Ckr'k1)f(y0)

which finishes the proof. ⇤
Remark 5.4. The conclusion of Lemma 5.2 holds the same if f = f(x, t)
(then we replace f(y(x, t)) by f(y(x, t), t)). Similarly Lemma 5.3 holds the
same if ~b = ~b(x, t) (in this case we don’t need any regularity of ~b in t). The
proofs are identical.

Lastly, we describe a family of smooth functions '⌘, which will be used in
the next section. The proof is parallel to that of Lemma 10.10 in [CS05] with
↵ := 4. In the referenced lemma, the domain is assumed to be uniformly
Lipschitz continuous in time. However if we replace L1 (the graph’s Lipschitz
constant in time) by C/r = C"��1 , the same arguments apply to yield the
desired estimates for our setting.

Lemma 5.5. Let A1 > 1 be the dimensional constant from Lemma 5.2, and
let �1, �2, 2 (0, 1) such that �1��2 > 4. Take r := "�1 and T � 4"4 with
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" > 0 sufficiently small. Suppose that �(x, t) is Lipschitz continuous with
constant C in space and with constant C/r in time. Then for

⌃r,T := {(x, t) 2 B1 ⇥ (�T, T ) : |�(x0, t)� xd| < 2r},
there is A2 = A2(A1, C) � 1 such that for any ⌘ 2 [0, 1], there exists a C2

function '⌘(x, t) in ⌃r,T such that
(1) 0 < c̄  '⌘  1 + ⌘ in ⌃r,T for some universal constant c̄,
(2) '⌘�'⌘ � A1|r'⌘|2 holds in ⌃r,T ,
(3) '⌘  1 outside {(x, t) 2 ⌃r,T : t > �T + "4, d(x, @B1) >

1
2"

},
(4) '⌘ � 1+⌘(1�A2"�2) in {(x, t) 2 ⌃r,T : t > �T +2"4, d(x, @B1) >

"},
(5) |r'⌘|  A2"�2��1 and 0  @t'⌘  A2"�2��1 in ⌃r,T .

In the next section, we will choose �r to be the Lipschitz function from
Lemma 3.6, whose graph approximates the free boundary of u up to order
r.

6. Flat free boundaries are Lipschitz

In this section we will show by iteration that flat free boundaries are Lips-
chitz. Similar to [CS05] and [CJK07], the proof is based on the construction
of a family of subsolution, building on Section 5. These are constructed as
a small perturbation of u of (1.1) in a local domain B2(0)⇥ (�1, 1).

The family of subsolutions will represent the regularization mechanism
of the flow, by the varying size of regularization given as a radius of the
sub-convolution we apply to the solution. Due to the presence of the source
and drift term with minimal regularity, and their competition with the reg-
ularization mechanism, there are additional terms to the perturbation: this
makes the construction of barrier function rather versatile and technical. In
an effort to make the construction more accessible for interested readers, we
list the family of parameters in the next subsection. Readers may also choose
to skip to our iterative statement, Proposition 6.2, and the proof of our main
theorem thereafter.

6.1. Parameters and Assumptions. Our barrier construction involves
many parameters, which we put together here for the reader’s convenience.
First we choose the minimal angle for the cone of monotonicity, from which
we will apply our iteration arguments. In light of Lemma 4.5 we will assume
that

f 2 C �̄(Rd) and � 2 (1, 1 + �̄).

Let ✓� be as in (2.3), and let ⇥0 2 (✓� ,
⇡
2 ) be such that

(6.1) sin ✓� < sin⇥0 � cos2⇥0/c̄

with c̄ from Lemma 5.5. We will work with the cone angle ✓ 2 (⇥0,⇡/2) in
this section.
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Throughout this section we assume that u satisfies the following for some
T 2 (0, 1] :

(H-a) u(·, t) is (", "↵)-monotone with respect to W✓,�ed in B1 for some
✓ 2 (⇥0,⇡/2) for all t 2 (�T, T ), and with ↵ satisfying

(6.2) 0 < ↵ < min

⇢
�̄2

2
,
�̄(1� �̄)

8
,
1� �̄2

16

�

when f is not a constant.
(H-b) (0, 0) 2 �u and m := inft2(�T,T ) u(�ed, t) > 0.

Note that if T < 1, a simple rescaling argument can reduce the problem to
the case of T = 1. So, for simplicity of notations, let us assume T = 1 from
now on.

Let us proceed with the next set of parameters, to be used in the next
subsection for the construction of barrier functions. For  := 2��

8 , we choose
�1 and ◆ such that �1 and ◆ are respectively close to 1 and 4, and �+◆ < 2�1.
More specifically we choose
(6.3)

�1 := max

⇢
3

4
+
�

8
, 1� �̄

2

�
< 1, ◆ := 5 =

5

4
� 5�

8
and �2 := �1�◆,

and so �1��2 > 4. With this choice of , �1 and �2, let '⌘ be from Lemma
5.5, with some ⌘ 2 (0, 1).

We also define 0 < ↵1 < ↵2 < 1 so that

(6.4) 1� �1 < ↵1 < 1� (� + ◆)/2, ↵2 < min{1� ◆, �̄}.

Note that this is possible since � + ◆ < 2�1 and max{◆, 1� �̄} < �1.
Lastly we define universal constants: in this section C or c denotes con-

stants that only depend on d,↵,�,m, �̄, kukL1(B2(0)⇥(�1,1)), kfk1, kfkC0,�̄(B2),
and k~bkC1(B2).

6.2. Construction of the base barrier v̄. Let us define r := "�1 . We will
construct our subsolution in the domain

⌃r,1 = {(x, t) 2 Q1 : |�r(x
0, t)� xd| < 2r},

where �r is as given in Lemma 3.6 that approximates �u in r-scale.

For a given � 2 [ "2 , "], define

(6.5) v(x, t) := sup
B�'⌘(x,t)(x)

u(y, t).

It then follows from (6.1), Lemma 5.1 and Lemma 5.5 that v(·, t) is non-
decreasing along all directions of W✓� ,�ed when " is sufficiently small. With
this choice of v, we define the domains

⌃+ := ⌃r,1\⌦v, ⌃+(t) := {x : (x, t) 2 ⌃+}, ⌃r,1(t) := {x : (x, t) 2 ⌃r,1}.
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and the bottom boundary of ⌃+(t) as

@b⌃
+(t) := (@⌃r,1(t) \ ⌦v) \@B1.

Due to the presence of f , we need to adjust v and the adjustments are
superharmonic functions.

For each t 2 (�1, 1), let us define wt
1 and wt

2 by:
(1) ��wt

1 = 0 in ⌃+(t) with wt
1 = v(·, t) on @b⌃+(t) and zero elsewhere

on the boundary.
(2) ��wt

2 = 1 + kfk1 in ⌃+(t) with zero boundary condition.

Consider a non-negative harmonic function � in the annulus (B1\B1�2")\
⌃+(t). Since " << r, if � � v on @b⌃+(t) \ (B1�"/2\B1�2"), then
Dahlberg’s lemma yields a dimensional constant c⇤ such that

(6.6) c⇤w
t
1  � on ⌃+(t) \ @B1�"

With this choice of c⇤, we finally define our barrier function by

(6.7) v̄(·, t) := (1 + "↵+1)v(·, t)� "↵2wt
2 + c⇤"

↵1wt
1,

where ↵1,↵2 are given in (6.4).

Lemma 6.1. For sufficiently small " > 0, v̄ given by (6.7) satisfies the
following in the viscosity sense: For any e 2 B1,(

��v̄  f(x� "e) in ⌃+ \ (B1�" ⇥ (�1, 1)),

v̄t  |rv̄|2 +~b(x� "e) ·rv̄ on �v̄ \ (B1�" ⇥ (�1, 1)).

Proof. Since �|r'⌘|  A2"1�◆ by Lemma 5.5,  < 1 and �  ", the proof of
Lemma 5.2 yields for small ",

(6.8) ��v(x, t)  (1 +A1A2"
1�◆) sup

B�'⌘(x,t)(x)
f(y).

Using kfkC0,�̄  C and '⌘  2, the right-hand side of the above

 (1 +A1A2"
1�◆)(f(x� "e) + C"�̄)

 (1 +A1A2"
1�◆)f(x� "e) + C"�̄ .

From (6.7) and the fact that ↵2 < min{1 � ◆, �̄}, we obtain for all " > 0
sufficiently small that

��v̄ � f(x� "e)  �(1 + "↵+1)�v � "↵2 � f(x� "e)

 C"1�◆f(x� "e) + C"�̄ � "↵2  0 in ⌃+(t) \B1.

It remains to show the appropriate free boundary condition. By Lemma
5.1 and the choice of ⇥0, for each t 2 (�1, 1), �v(t) is a Lipschitz graph with
Lipschitz constant less than cot ✓� when " is small. Then, using u(�ed, t) �
m, Corollary 4.2 with � := "�1 < " yields for some C > 0,

C"�1(2��)wt
1 � wt

2 in ⌃+(t) \B1�" .
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Thus we have, for " sufficiently small,

(6.9) c⇤"
↵1wt

1 >> "↵1wt
2 >> "↵2wt

2 in ⌃+(t) \B1�" .

Next, ��v  1 + kfk1 by (6.8) for small ", the construction of wt
1 and wt

2,
and Dahlberg’s Lemma imply for some C > 1,

(6.10) Cwt
1 + wt

2 � v(·, t) in ⌃+(t) \B1�" .

So for all " small enough, ↵2 � ↵1, (6.7), (6.9) and (6.10) show (for c1 :=
c⇤/(4C) > 0)
(6.11)

v̄ � (1 + "↵+1)v � ("↵2 + c⇤"
↵1/(2C))wt

2 + c⇤"
↵1wt

1/2 + c⇤"
↵1v/(2C)

� (1 + 2c1"
↵1)v � C 0"↵1wt

2 + c⇤"
↵1wt

1/2

� (1 + 2c1"
↵1)v in ⌃+(t) \B1�" .

We then show that v̄ has a linear growth near the free boundary. For
x0 2 �v̄(t0) \ B1�" and t0  1, since x0 2 �v̄(t0) = �v(t0), there ex-
ists y0 2 �u(t0) \ B�'⌘(x0,t0)(x0). By the definition of sup-convolution,
B�'⌘(x0,t0)(y0) ✓ ⌦v(t0). This means that �v(t0) satisfies the interior ball
property at x0:

Bc̄"/2(y
0) ✓ ⌦v and x0 2 @Bc̄"/2(y

0) \ �v(t0)

for some y0. Thus v̄ � c⇤"↵1

2 wt
1 (which easily holds for sufficiently small " by

Corollary 4.2) implies that v̄ grows at least linearly at (x0, t0). Moreover, we
use u(�ed, t) > 0 and Lemma 3.4 to obtain that

C max
B3"(x0)

wt0
1 � max

B3"(x0)
v(·, t0) � c "�

for some universal c > 0. It then follows from the interior ball property, and
Dahlberg’s Lemma that
(6.12)
|rv̄(x0, t0)| � |rwt0

1 (x0)| � c "��1 with possibly different universal c > 0.

Now we check the viscosity subsolution property for v̄ at the free bound-
ary. Suppose that a test function � crosses v̄ from above at (x0, t0). The
linear growth of v̄ yields |r�(x0, t0)| 6= 0. Due to (6.11) and the fact that
v̄(x0, t0) = v(x0, t0) = 0, (1 + 2c1"↵1)v � � has a local maximum at (x0, t0)
as well. Using Lemma 2.6, Lemma 5.3 and Lemma 5.5 yields that � satisfies

�t  (1+C"1�◆)2(1+2c1"
↵1)�1|r�|2+~b(·�"e)·r�+C"1�◆|r�| at (x0, t0)

for some C = C(A2, k~bkC1). Since 1� ◆ > ↵1, we get for small " > 0,

(6.13) �t  (1� c1"
↵1)|r�|2 +~b(·� "e) ·r�+ C"1�◆|r�| at (x0, t0).

Next, since "↵2wt
2  v and v̄�� obtains a local maximum in ⌦v\{t  t0}

at (x0, t0), then c⇤"↵1wt
1 � � has a local maximum in the same domain at

(x0, t0) as well. Combining this with (6.12) shows

|r�(x0, t0)| � cc⇤"
��1+↵1 .
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So "↵1 |r�(x0, t0)| >> "1�◆ since � + 2↵1 + ◆ < 2 by (6.4). From this and
(6.13), we obtain

�t  |r�|2 +~b(·� "e) ·r� at (x0, t0),

and thus the subsolution property is verified. ⇤

6.3. Flat free boundary is Lipschitz. Now we can prove the following
main inductive proposition.

Proposition 6.2. Under the assumptions (H-a)(H-b) and for any fixed  2
(0, 2��

4 ), there exist C > 0 and j, �, �3 2 (0, 1) such that if " > 0 is sufficiently
small, u is (j", "↵(1�C"�))-monotone with respect to W✓�C"�3 ,�ed in B1�"⇥
(�1 + 2"4, 1).

Proof. First we choose � and ⌘ in the definition of the sup-convolution in
(6.5). Since ✓ > ⇥0 � ⇡/4, we can take j 2 (0, 1) so that

� := "(sin ✓ � (1� j)) 2 ("/2, ").

Define

(6.14) �3 := min

⇢
↵1 + �1 � 1

2
, �2

�
.

Observe that �3 2 (0, 1) by (6.4) and �3+1��1 2 (0,↵1). Choose ⌘ = ⌘" > 0
such that

(6.15) (1 + ⌘) (sin ✓ � (1� j)) = j sin ✓ � "�3 .

By taking " > 0 to be small enough, we have

⌘ 2
✓
j sin ✓ � (sin ✓ � (1� j))

2(sin ✓ � (1� j))
,
j sin ✓ � (sin ✓ � (1� j))

sin ✓ � (1� j)

◆
.

It follows from Lemma 5.5 (4), (6.14) and (6.15) that '⌘ in (6.5) then satisfies
(6.16)
�'⌘ � �(1+⌘(1�A2"

�2)) � "(j sin ✓�C"�3) in ⌃r,1\{t > �1+2"4, d(x, @B1) > "}
for some C = C(A2) � 1, and by Lemma 5.5 (3),

(6.17) '⌘  1 in ⌃r,1 \ {t < �1 + "4, d(x, @B1) < "/2}.
With above choice of � and ⌘, we claim that

(6.18) v̄  ū := u(x� j"ed, t) in (B1�" ⇥ (�1, 1)) \ ⌃+.

Before showing this claim, we first discuss its consequence. It follows from
(6.9) and (6.16) that for (x, t) 2 (B1�" ⇥ (�1 + 2"4, 1)) \ ⌃+,

(1 + "↵+1) sup
B"(j sin ✓�C"�3 )(x)

u(y, t)  v̄(x, t)  u(x� j"ed, t)

which yields the conclusion for those (x, t). Next for (x, t) 2 (B1�" ⇥ (�1+
2"4, 1))\⌃+, we have d(x,�u(t)) � "�1 , and thus Lemma 3.4 and the (", "↵)-
monotonicity yield that u(x, t) � c "�1� .



36 INWON KIM AND YUMING PAUL ZHANG

Recall the choice of the parameters: � 2 (1, 1 + �̄),  = 2��
8 and (6.3).

Therefore by taking 1 := 1+�̄��1�
4 2 (0, 12) and using (6.2), we have 1�1 >

 and �1� + ↵ < 1 + �̄ � 21. Then for small ",

"↵u(x, t) � c "�1�+↵ >> "1+�̄�21 in (B1�" ⇥ (�1 + 2"4, 1)) \ ⌃+,

and so the third remark of Lemma 3.1 concludes the proof of Proposition 6.2
with � := 1.

It remains to prove (6.18). To do this, we claim that it suffices to show
that for each t 2 (�1, 1),

(6.19) v̄(·, t)  ū(·, t) on (@B1�" \ ⌃+(t)) [ (@b⌃
+(t) \B1�").

Indeed, by (6.17) and (H-a), when t < �1 + "4, we have ⌃+(t) = (⌦v̄(t) \
⌃r,1(t)) ✓ {ū(·, t) > 0}. Then (6.19) and the comparison principle for Lapla-
cian yield v̄  ū in ⌃r,1\B1�" ⇥{t < �T +"4}. This and (6.19) show that
v̄ and ū are ordered on the parabolic boundary of ⌃r,1. In view of Lemma
6.1 with e := jed, and the equation that ū satisfies, we want to apply the
comparison principle to conclude with (6.18). To do this rigorously, we re-
place ✓ by a slightly smaller ✓0 at the beginning of the proof, the supports
of v̄ and ū are then separated (because if z 2 �v̄, then the definitions of v
and v̄, and (H-a) yield z 2 ⌦v̄). The strict order of v̄ and ū in one of their
support follows easily from the proof below. Then the comparison principle
Lemma 2.5 can now yield (6.18) after passing ✓0 ! ✓.

Now we show (6.19). For any t 2 (�1, 1) and x 2 @b⌃+(t)\B1�"/2, since
x is at least "�1-away from �v(t), Lemma 2.12 and Lemma 3.4 yield that
infy2B"(x) u(y, t) ⇡ u(x, t) � c "�1� . Also note that by (6.2) and (6.3) (when
f is not a constant), there exists 2 such that ↵

�̄ < 2 < min{1
2 , 1 � �1}.

Thus by Lemma 4.5 and (6.15), we have

v(x, t)  sup
B(1+⌘)�(x)

u(y, t)  sup
Bj" sin ✓(x)

u(y, t)� (j" sin ✓ � (1 + ⌘)�) inf
y2Bj" sin ✓(x)

|ru(y, t)|

 sup
Bj" sin ✓(x)

u(y, t)� C"�3+1��1 inf
y2Bj" sin ✓(x)

u(y, t)  (1� C"�3+1��1)ū(x, t).

The last inequality is due to the full monotonicity of u in the interior (the
second remark after Lemma 3.1) since �1� + ↵ < 1 + �̄ � 1. Next using
wt(x)  v(x, t), it follows that

(6.20)
v̄(x, t)  (1 + "↵+1 + c⇤"

↵1)v(x, t)

 (1 + C"↵1)(1� C"�3+1��1)ū(x, t)  ū(x, t)

when " is sufficiently small.
Now we consider (x, t) 2 (@B1�" ⇥ (�1, 1))\⌃+. We define the following

region that contains x:

@̃l⌃
+(t) := (B1\B1�2") \ ⌃+(t).
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The construction of '⌘ yields that '⌘(·, t)  1 in @̃l⌃+(t). Since B�(x +
j"ed) ✓ B" sin ✓(x + "ed) by the definition of �, the (", "↵)-monotonicity
assumption yields that

(6.21) ū(·, t) � (1 + "↵+1) sup
B�(·)

u(y, t) � (1 + "↵+1)v(·, t) on @̃l⌃+(t).

Due to Lemma 6.1 and �wt
1 = 0, ū� (1 + "↵+1)v + "↵2wt

2 � 0 is superhar-
monic. Note that (6.20) implies

"↵1wt
1 = "↵1v  ū� (1 + "↵+1)v + "↵2wt

2

on @b⌃+(t) \ (B1�"/2\B1�2"). Therefore, the choice of c⇤ and (6.6) yield

c⇤"
↵1wt

1(x)  ū(x, t)� (1 + "↵+1)v(x, t) + "↵2wt
2(x).

We obtain v̄(x, t)  ū(x, t) again. Overall, we showed (6.19) which implies
(6.18) and finishes the proof.

⇤

Proof of of Theorem A: Let us fix (x0, t0) 2 �u, which we may assume
to be the origin. Applying Lemma 3.6 with some r > 0, the free boundary
at any time t 2 (�T, T ) is contained in a (r + CT/r)-neighborhood of a
cot ✓-Lipschitz graph. Thus it can not move too far away from t = 0 when
r and then T are sufficiently small. Then by the assumption, after rescaling
and rotating, we can assume that the conditions of Proposition 6.2 hold.

Iterating Proposition 6.2, we generate a sequence of domains

Qk := BRk ⇥ (�Tk, 1)

where Tk = 1�2⌃k
n=1(j

n")4, Rk := 1�⌃k
n=1(j

n"), in which u is (jk",↵k)-
monotone with respect to the cone W✓k,�ed where

✓k := ✓ � C⌃k
n=1(j

n")�3 , ↵k = "↵(1� C⌃k
n=1(j

n")�).

We claim that for each iteration, the constants C, j, �3, � can be chosen the
same. Indeed, by taking " to be further small enough and ✓ > ⇥0, we have
for all k � 1,

Tk � 1/2, Rk � 1/2, ✓k � ⇥0, ↵k � "↵/2.

The claim follows from the proof of Proposition 6.2.
Finally we obtain that u is monotone non-decreasing in all directions of

W⇥0,�ed in B1/2 ⇥ (�1
2 , 1). The last statement of the theorem follows from

Corollary 6.3 below. The proof is then completed.
⇤

6.4. C1,� free boundary when ~b ⌘ 0. In the zero-drift case, the support
of u increase over time. Using this fact, it is well-known that we can obtain
an obstacle problem by integrating u over time (for instance see [EJ81] for
the classical setting). We will utilize this fact to derive further regularity
result.
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Corollary 6.3. For f � 0 and ~b ⌘ 0, let u be a viscosity solution to (1.1)
in Rd ⇥ (�2, 2) with bounded support. Suppose the assumptions of Theorem
A hold in Q2. Then there exists 0 < � < 1 such that �u(t) is C1,� in B1 for
each t 2 (�1, 1).

Proof. Since ~b ⌘ 0, ⌦u is non-decreasing in time. and define w(x) :=´ t
�2 u(x, s)ds. Since the positive set of u expands over time, we have ⌦w(t) =

⌦u(t) for each t > �2, so it suffices to show that ⌦w(t) is C1,� in B1 and for
each t 2 (�1, 1).

Since our solution is coming from a globally defined solution, it follows
from [KPW19, Theorem 1.1] and [DS21] that the viscosity solution coincides
with the weak solution of the divergence form equation

(�{u>0})t ��u = f�{u>0} in Rd ⇥ (�2, 2).

From this weak formulation one can then check that w(·, t) solves the
obstacle problem:

[1� F (x, t)]�{w>0} ��w = 0 in Rd.

for each t > �2, where F (x, t) := (t � T (x))f(x) and the hitting time T :
Rd ! [0,1] is given by

T (x) := inf {t � �2 : u(x, t) > 0} .
Theorem A and Proposition 6.6 yields that T (x) is Hölder continuous

in B1 near �w(t), and thus so is F (x, t). Since we already know that the
free boundary of w has no cusp singularity, we can conclude from [Bla01,
Theorem 7.1] that �w(t) \B1 is C1,� for each t 2 (�1, 1) for some �. ⇤
Remark 6.4. We expect the corollary to hold for local solutions u in Q2

in general, but the corresponding proof requires coincidence of the notions
used in weak and viscosity sense in bounded domains with fixed boundary
data. We do not pursue it here.

6.5. Strict expansion along the streamline. We finish the section by
establishing a uniform, yet sublinear, rate of expansion for the positive set
⌦u along the streamline (so for general Lipschitz ~b).

Definition 6.5. We say that the set ⌦u is strictly expanding relatively to
the streamlines in Qr, if for all small t > 0 there exists rt > 0 such that for
any (x0, t0) 2 �u \Qr we have

Brt(X(t;x0)) \Qr ✓ ⌦u(t0 + t).

Note that this property is stronger than the conclusion of Lemma 3.5, but
is weaker than non-degeneracy.

If the free boundary is Lipschitz continuous, we can quantify the amount
of expansion of the free boundary relatively to streamlines based on Lemma
3.3.
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Proposition 6.6. Suppose that in Q1, u(·, t) is non-decreasing with respect
to W✓,�ed for some ✓ 2 (✓� ,

⇡
2 ) and � 2 (1, 2), and

(6.22) (0, 0) 2 �u and inf
t2(�1,1)

u(�ed, t) > 0.

Then ⌦u expands strictly relatively to the streamlines in Q1/2 with rt =

ct1/(2��) for some c > 0.

Proof. Let us only prove the lemma for d � 3 and the proof for d = 1, 2
is similar. Let (x0, t0) 2 �u, and after shifting, we assume (x0, t0) = (0, 0).
Next we define ū from (3.8) which solves (3.9). Lemma 3.5 yields that
0 2 {ū(·, t) > 0} for all t > 0. Thus, the monotonicity assumption yields

W✓,�ed \B1 ✓ {ū(·, t) > 0} for t > 0.

Since ✓ � ✓� , this, (6.22) and Lemma 3.3 imply that there exists c > 0 such
that

(6.23) ū(·, t) � cr� in B2r(�3red) for all r 2 (0, 1).

Now take P := �3red for some r > 0, and for c from (6.23) define

'(x, t) := crd�2+�(|x�P |2�d�R(t)2�d) with R(t) := (c1r
d�2+�t+(2r)d)

1
d

with c1 := 2cd(d�2). Then for each t > 0, '(·, t) is a non-negative harmonic
function in BR(t)(P )\Br(P ) such that '(·, t) = 0 on @BR(t)(P ) and '(·, t) 
cr� in BR(t)(P )\Br(P ). Thus, in view of (6.23), we obtain
(6.24)
'(x, t)  ū(x, t) in (B2r(P )\Br(P ))⇥{0}[{(x, t) : t 2 (0, 1), x 2 @Br(P )}.

Note that R(t⇤) = 4r with t⇤ := (4d � 2d)r2��/c1  1 when r is small.
So by the definition of ', if we can show '  ū for all t 2 [0, t⇤] and
x 2 BR(t)(P )\Br(P ), then Br(0) ✓ ⌦ū(t⇤) which concludes the proof.

To do this, in view of (6.24), f0 � 0 and the comparison principle, it
remains to show that ' satisfies the appropriate boundary condition on |x| =
R(t). Indeed, direct computation yields

R0(t) = c1r
d�2+�R(t)1�d/d, |r'(x, t)| = c(d� 2)rd�2+� |x� P |1�d.

Also, by |~b0(x, t)|  kr~bk1|x| and the choice of c1, we obtain for x 2
@BR(t)(P ) and t 2 [0, t⇤] that

R0(t)� |r'(x, t)|� |~b0(x, t)|  c(d� 2)rd�2+�R(t)1�d � Cr  C 0r��1 � Cr

which is non-positive if r > 0 is sufficiently small. This shows that ' is a
subsolution to (3.9), with Dirichlet boundary condition on @Br(P )⇥ [0, t⇤],
in (Rd\Br(P ))⇥ [0, t⇤]. Now we can conclude. ⇤
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7. Non-degeneracy

The goal of the section is to show non-degeneracy result under additional
assumptions. Let us illustrate the outline of the proof, in the setting where
there is no drift, namely when~b = 0. Due to the cone-monotonicity proven in
the previous section, the free boundary of u is a Lipschitz graph with respect
to ed direction, and u is non-decreasing with respect to a cone W�ed,✓:
(7.1)

sup
|y�x|<r"

u(y+"ed, t)  u(x, t+C") with r = sin ✓ and a uniform constant C.

Our claim is that, if the above inequality is true in a unit space-time neigh-
borhood of a free boundary point x0 , then by the time t = t(ed) the free
boundary reaches the point x0 + ed, the constant r in (7.1) increases to a
constant strictly larger than 1 near the free boundary. In heuristic terms the
claim states that the monotonicity of the solution propagates and improves
over time in both space and time variable, as the positive set expands out
toward ed direction. Observe that the claim implies that for some r0 > 0 we
have

sup
|y�x|<r0"

u(y, t)  u(x, t+ C") in a small neighborhood of (x0 + ed, t(ed)),

providing uniform linear rate of expansion of the positive set of u, which
then yields the non-degeneracy of u due to the velocity law V = |ru|.

Our claim above is proved in [CJK07] for the case f = ~b = 0. For the proof
u was compared with a subsolution of the form sup|y�x|'(x)" u(y, t), where
'(x) is a chosen radius function first introduced by Caffrelli [Caf89]. The
radius function ' will be small on the boundary of the unit neighborhood
but is larger near the point x0+ed, which yields the desired result. Of course
to elaborate this idea the precise subsolution is more involved than stated, to
accomodate a sizable perturbation by the radius function. For our problem
we employ this idea but with significant modifications due to the presence
of both f ad ~b, as we will see below (the barrier construction is given in the
proof of Theorem 7.3).

Let us now proceed with the assumptions for this section. For any � 2
(1, 32), let ✓� be given in Lemma 2.10 so that (2.3) holds. We will assume
that u is a solution to (1.1) in B2 ⇥ (�1, 1) with the following properties in
Q1 := B1 ⇥ (�1, 1):
(H-a’) u(·, t) is non-decreasing with respect to W✓,�ed for some ✓ 2 (✓� ,

⇡
2 )

and � 2 (1, 32);
(H-b) (0, 0) 2 �u and m := inft2(�1,1) u(�ed, t) > 0;

(H-c) ut � ~b ·ru� C0u for some C0 > 0 (in the viscosity sense).

Note that (H-a’) is obtained from the previous sections, in particular from
Theorem A . (H-b) defines m as a parameter, since it is proportional to



REGULARITY OF DRIFT-HELE-SHAW FLOW 41

the rate the positivity set of u expands over time. The last condition (H-
c) states that u almost increases along the streamline. While we showed
the monotonicity along the streamline for the positive set in Lemma 3.5, it
remains open whether this property holds for the solution u: the difficulty
lies in the fact that, if we were to compare u(x, t) with u(X(t;x), t), the
corresponding elliptic operator involves higher order derivatives of the drift
~b, and thus one cannot directly compare the two functions based on the order
of their support, unless ~b is identically zero, or a constant vector field. In
the global setting, (H-c) can be derived for the initial value problem with
smooth ~b and smooth positive f ([Chu22]).

7.1. Some properties of the expansion of positive sets. Recall Defi-
nition 6.5 about the expansion of ⌦u. We observe that such property prop-
agates backward in time.

Lemma 7.1. Let c := e�kr~bk1 . If for some t, rt 2 (0, 1) sufficiently small,

Brt(X(t;x0)) ✓ ⌦u(t0 + t) for all (x0, t0) 2 �u \Q1,

then

Bcrt(X(�t;x0)) ✓ ⌦u(t0 � t)c for all (x0, t0) 2 �u \Q1/2.

Proof. Denoting x1 := X(�t;x0) with (x0, t0) 2 �u \ Q1/2, Lemma 3.5
yields that x1 2 ⌦u(t0 � t)c \ B1. Suppose for contraction that there exists
x2 2 Bcrt(x1) such that x2 2 �u(t0� t). If t, rt 2 (0, 1) are sufficiently small,
then (x2, t0 � t) 2 Q1. By the assumption, we have

(7.2) Brt(X(t;x2)) ✓ ⌦u(t0).

Next since, for all s 2 (0, t),
d

ds
|X(s;x1)�X(s;x2)|  kr~bk1|X(s;x1)�X(s;x2)|,

Gronwall’s inequality yields

|x0 �X(t;x2)| = |X(t;x1)�X(t;x2)|  ekr
~bk1t|x1 � x2| < ekr

~bk1crt = rt.

However this contradicts with (7.2) and x0 2 �u(t0). ⇤
Next we introduce a lemma that says characterizing the movement of the

free boundary backward in time is the same as characterizing the growth of
solutions forward in time.

Lemma 7.2. Let r1, r2 2 (0, 1). Then the following is true for sufficiently
small " > 0: Suppose that there is ⌧ > 0 such that

(7.3) Br1"(X(�⌧";x)� r2"ed) ✓ ⌦u(t� ⌧")c for all (x, t) 2 �u \Q1.

Then, for some universal C > 0,

u(X(⌧";x) + r2"ed, t+ ⌧") > 0 in Q1�C".
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Proof. Let us fix (x0, t0) 2 �u \Q1�C". Suppose for contradiction that

u(X(⌧";x0) + r2"ed, t0 + ⌧") = 0.

Then, using (H-a’) and (X(⌧";x0), t0 + ⌧") 2 ⌦u by Proposition 6.6, there
exists h 2 (0, r2) such that (X(⌧";x0)+h"ed, t0+ ⌧") 2 �u\Q1 if C is large
enough. So (7.3) with t = t0 + ⌧" and x = X(⌧";x0) + h"ed yields that

(7.4) Br1"(X(�⌧";X(⌧";x0) + h"ed)� r2"ed) ✓ ⌦u(t0)
c.

For s 2 [�⌧", 0], set

Y (s) := X(s;X(⌧";x0) + h"ed)�X(s;X(⌧";x0)).

It is clear that Y (0) = h"ed. Using (3.7) yields for all s 2 [�⌧", 0],

|Y (s)|  h"+

ˆ 0

s
kr~bk1|Y (⌧)|d⌧.

Thus, Gronwall’s inequality yields

|Y (s)|  h"ekr
~bk1⌧"  2h".

if " is sufficiently small. Since X(�⌧";X(⌧";x0)) = x0 and Y (0) = h"ed, we
get

|X(�⌧";X(⌧";x0) + h"ed)� x0 � h"ed| = |Y (�⌧")� Y (0)|


ˆ 0

�⌧"
kr~bk1|Y (s)|ds  2h⌧"2kr~bk1

which is less than r1"/2 if " is sufficiently small. This and (7.4) imply that

Br1"/2(x0 � (r2 � h)"ed) ✓ ⌦u(t0)
c.

However since u is non-decreasing along �ed direction and h  r2, this
contradicts with (x0, t0) 2 �u, which leads to the conclusion. ⇤

7.2. Uniform rate of expansion and non-degeneracy. Now we are
ready to show that the support of our solution strictly expands with re-
spect to streamlines. To show this we apply sup-convolutions as in Section 5
to construct perturbed subsolutions, but our domain is no longer a thin strip
near the free boundary. The construction of the barrier function in a thin
strip domain was enough in Section 6, since there we showed the propagation
of cone monotonicity over time, which came from the interior of the support,
"-away from the boundary. Here we will show propagation of the interior
non-degeneracy, which only holds unit distance away from the boundary.
This necessitates our construction of the barrier different from the previous
section.

Theorem 7.3. Assume (H-a’)(H-b)(H-c). If f is Lipschitz continuous, then
there exists C1 > 0 such that

u(X(C1";x)+"ed, t+C1") > 0 for (x, t) 2 �u\Q1/2 for sufficiently small " > 0.
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Proof. As mentioned earlier in this section, the proof relies on the comparison
between u and v, a sup-convolution of u with a varying radius function. More
precisely we will compare a perturbed version of these functions, U and V .
For the construction of U and V , below we will work with ✓ > ✓� that is
slightly smaller than the one given in the assumption.

We first choose parameters (t⇤, r⇤ and �i with i = 1, 2, 3) to be used in
the proof. By Lemma 7.1 and Proposition 6.6, there exists c > 0 such that
for 0 < t⇤ < 1/3 we have

(7.5) u(·, t0 � t⇤) = 0 in B2r⇤(X(�t⇤;x0)) where r⇤ := c t1/(2��)
⇤ <

1

3
,

for any free boundary point (x0, t0) 2 �u in Q2/3.

Let A0, A1 � 1 be from Lemma 5.2, C0 from the assumption, and let
M0 � 1 satisfying (7.15) below which only depends on d,A0, ✓. We call
L := (1 + kfkC1 + k~bkC1)2, and define
(7.6)
�1 := A1M0, �2 := L(20M2

0+2M0((A1+2)M0+2)t⇤/r⇤), �3 := (A1+2)M0+2.

Note that t2⇤ << r⇤ due to � < 3
2 , so we can choose t⇤ > 0 to be small enough

that

(7.7) t⇤  min

⇢
1

5�2
,
�1

C0�3
,
1

�3

�
.

Let us fix the reference point (x0, t0) 2 �u \Q2/3. After translations, we
may assume that t0 = t⇤ and X(�t⇤;x0) = 0. Then X(t) := X(t; 0) satisfies

(7.8) (X(t⇤), t⇤) = (X(t⇤;X(�t⇤;x0)), t⇤) = (x0, t0) 2 �u.

Define ū(x, t) := u(x+X(t), t) which solves (3.9) with f0,~b0 satisfying

(7.9) kf0kC1 , kr~b0k1, k@t~b0k1  L, |~b0(x, t)|  L|x|.
We will work in the cylindrical domain

⌃ := (Br⇤(x1)\Br�,✓(x1))⇥[0, t⇤] where x1 := r⇤ed/5 and r�,✓ := r⇤ sin ✓/10.

� Construction of U and V :
First we perturb ū to define U . Suppose wt satisfies ��wt = 1 in

Br⇤(x1)\⌦ū(t) and wt = 0 on (Br⇤(x1) \ ⌦ū(t))c. Note that, from the cone-
monotonicity assumption on u, it follows that �ū(t) is a Lipschitz graph with
Lipschitz constant smaller than cot ✓� . Corollary 4.2 and (H-b) then yield
that

wt  Cr2��
⇤ ū(·, t) in Br⇤(x1) for some C = C(m).

Since � < 2, after further taking t⇤ to be sufficiently small (then r⇤ =

c t1/(2��)
⇤ is small) depending only on c, C, L and M0, we have for all t 2

[0, t⇤],

(7.10) L(M0 + 2)wt  ū(·, t) in Br⇤(x1).



44 INWON KIM AND YUMING PAUL ZHANG

We define

(7.11) U(x, t) := ū(x, t) + L(M0 + 2)"wt(x).

We claim that U is a supersolution to

(P")

(
��U = f0(x, t) + L(M0 + 2)" in ⌃ \ ⌦U ,

Ut = (1� ")|rU |2 +~b0 ·rU on ⌃ \ �U .

By the construction of wt, it is direct to see the inequality in ⌃ \ ⌦U .
Let us check the supersolution property on the free boundary. Suppose

U � � for some � 2 C2,1
x,t has a local minimum in {t  s0} at some (y0, s0) 2

�U \ ⌃ and |r�(y0, s0)| 6= 0 and

(7.12) � (��+ f0 + L(M0 + 2)")(y0, s0) < 0.

Because (7.10) yields U  (1� ")�1ū in ⌃, we have that ū� (1� ")� obtains
a local minimum at (y0, s0) 2 �ū. Note that (7.12) and (7.9) yield

�(�(1� ")�+ f0)(y0, s0) < 0.

So using that ū is a viscosity solution to (3.9), we get

�t � (1� ")|r�|2 +~b0 ·r� at (y0, s0),

which proves that U is a supersolution to (P").

We will use the following � to construct the radius function for V . Let �
be the unique solution to

(7.13)

8
><

>:

�(��A0+1) = 0 in B1\Bsin ✓/10

� = A✓ on @Bsin ✓/10

� = (sin ✓)/2 on @B1

where A✓ is chosen sufficiently large so that

(7.14) � (�ed/5) � 3.

We have �� = A0|r�|2
� in B1\Bsin ✓/10, and there exists M0 = M0(d,A0, ✓) �

1 such that

(7.15) M0
�1  �  M0, kr�k1  M0 in B1\Bsin ✓/10.

Let '(x) := r⇤�(
x�x1
r⇤

) where x1 = r⇤ed/5, and define

(7.16) V (x, t) := (1� �1") sup
y2B"(1��2t)'(x)(x)

ū(y + r⇤"ed, (1� �3")t).

We now prove that V is a viscosity subsolution of (P") in ⌃. Recall that ū
satisfies (3.9), and f0,~b0 given in (3.10) satisfy (7.9). Thus Lemma 5.2 (with
f0,~b0 in place of f,~b) yields

��V (x, t)  (1� �1")(1 +A1M0")f0(y(x, t) + r⇤"ed, (1� �3")t)
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where y(·, ·) satisfies |y(x, t) � x|  "(1 � �2t)'(x)  r⇤M0". Using this,
(7.6) and (7.9) yields

(1� �1")(1 +A1M0")f0(y(x, t) + r⇤"ed, (1� �3")t)

 f0(x, t) + L"((1 +M0)r⇤ + �3t⇤).

Due to (7.11), ��wt = 1, r⇤  1 and t⇤  1/�3, we obtain

(7.17) ��V (x, t)  f0(x, t) + L"(M0 + 2) in ⌃.

Next to prove that V satisfies the free boundary condition on (y0, s0) 2
�v̄\⌃, suppose that for a test function � 2 C2,1

x,t , V �� has a local maximum
in ⌦V \ {t  s0} at (y0, s0). So

sup
y2B"(1��2t)'(x)(x)

ū(y + r⇤"ed, t)�
1

(1� �1")
�(x, (1� �3")

�1t)

has a local maximum at (y0, (1� �3")s0) in ⌦V \ {t  (1� �3")s0}.
Recall that

M�1
0 r⇤  '  M0r⇤, |r'|  M0.

It follows from Lemma 5.3 and its remark (with f0,~b0 in place of f,~b, and
"1 := M0r⇤", "2 := M0", "3 := ��2r⇤"/M0) that at (y0, (1� �3")s0),

(1� �3")
�1�t  (1� �1")

�1(1 + 2"2)
2|r�|2 +~b0 ·r�

+
⇣
"1kr~b0kL1(⌃0) + 2("1 + "2)k~b0kL1(⌃0) � "3/2

⌘
|r�|.

Using (7.6), (7.9) and (y0, s0) 2 ⌃ ✓ B2r⇤ ⇥ [0, t⇤] yields for " sufficiently
small,

�t  (1� ")|r�|2 + (1� �3")~b0(y0, (1� �3")s0) ·r�+ (1� �3") (9M0L� �2/(2M0)) r⇤"|r�|

 (1� ")|r�|2 +~b0(y0, s0) ·r�+ (1� �3") (�3Lt⇤ + Lr⇤ + 9M0Lr⇤ � �2r⇤/(2M0)) "|r�|

 (1� ")|r�|2 +~b0(y0, s0) ·r�.

� Comparison of V and U : We are going to show next that

(7.18) V  U in ⌃.

By the comparison principle applied to (P )", it is enough to show that V � U
on the parabolic boundary of the domain. Below we always consider (x, t) 2
Br⇤(x1)⇥ [0, t⇤] =: ⌃0 unless otherwise stated.

We claim that V � ū on the parabolic boundary of ⌃, which will suffice
due to the fact that ū  U by definition. From (7.5) that ū(·, 0) = u(·, 0) = 0
in B2r⇤(0) ◆ B9r⇤/5(x1). Because

(1� �2t)'(x)"+ r⇤"  (1 +M0)r⇤"  4r⇤/5

in ⌃0 when " is small, we obtain

V (x, 0) = 0 = ū(x, 0) in Br⇤ (x1) .
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Moreover, the same holds for small t > 0, and so U and V cannot cross on
the initial boundary of ⌃.

Next we consider the inner lateral boundary of ⌃. Due to ū(0, t⇤) =
u(X(t⇤), t⇤) = 0 and the monotonicity of support along streamlines (Lemma
3.5),

ū(0, t) = u(X(t), t) = 0 for t 2 [0, t⇤].

Then since ū is non-decreasing along all directions of W✓,�ed , we get ū = 0
in Br⇤ sin ✓/5 (x1 + r⇤ed") ⇥ [0, t⇤]. Thus by taking " > 0 to be small enough
such that

(1� �2t)'(x)"  M0r⇤"  r⇤ sin ✓/10 = r�,✓,

we get

V (·, ·)  sup
Br�,✓

ū(·+ r⇤"ed, (1� �3")·) = 0 (= ū) in Br�,✓(x1)⇥ [0, t⇤].

Now it remains to show that V � ū ( U) on the outer lateral boundary
@Br�(x1) ⇥ [0, t�]. To do this, we use both the assumptions (H-a’) and (H-
c). Indeed, it is not hard to derive from the latter that eC0tu(X(t;x), t) is
non-creasing in t. In particular, writing xt := x + X(t) for (x, t) 2 ⌃0, we
get

ū(x, t) = u(xt, t) � e�C0�3"tu(X(��3"t;xt), t� �3"t).

This and the cone-monotonicity then yield

(7.19) ū(x, t) � e�C0�3"t sup
y2Br⇤" sin ✓

u(y + r⇤"ed +X(��3"t;xt), t� �3"t).

Note that X(0;xt) = xt = X(0;X(t)) + x. Therefore
(7.20)
|X(��3"t;xt)�X(��3"t;X(t))� x|

= |(X(��3"t;xt)�X(0;xt)� (X(��3"t;X(t))�X(0;X(t)))|


ˆ 0

��3"t
|~b(X(�s;xt))�~b(X(�s;X(t)))|ds.

By direct computations, for s 2 [��3"t, 0],

|~b(X(�s;xt))�~b(X(�s;X(t)))|  kr~bk1(|X(�s;xt)�X(�s;X(t))|)

 kr~bk1k~bk1|2s|  2�3kr~bk1k~bk1t⇤".

Then, if " is small enough, (7.20) yields

|X(�"t;xt)�X(�"t;X(t))� x|  2kr~bk1k~bk1t2⇤"
2  r⇤" sin ✓/2.

Combining this with (7.19) implies

(7.21) ū(x, t) � (1��1") sup
y2Br⇤" sin ✓/2(x)

u(y+ r⇤"ed+X(t��3"t), t��3"t).

Here we also used e�C0�3"t � 1��1" for t 2 [0, t⇤] by (7.7), and X(��3"t;X(t)) =
X(t� �3"t).
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Take (x, t) on the outer lateral boundary of ⌃ (then (x, t) 2 @Br⇤(x1) ⇥
[0, t⇤]). Since '(x) = r⇤(sin ✓)/2, (7.7) yields

"(1� �2t)'(x) = "(1� �2t)r⇤ sin ✓/2  r⇤" sin ✓/2.

Thus (7.21) yields that V  ū on @Br⇤(x1)⇥ [0, t⇤]. If V (x, t) > 0 for some
(x, t) 2 @Br⇤(x1) ⇥ [0, t⇤], it is easy to get V < ū at (x, t) from the above
proof. In addition, the separation of supports follows from the fact that u is
monotone with respect to W�ed,✓0 for ✓ < ✓0. In summary, we conclude that

V � ū on @Br⇤(x1)⇥ [0, t⇤].

Now we will use (7.18) to conclude the theorem.
� Proof of the Theorem: Note that (7.14) yields

'(0) = r⇤� (�ed/5) � 3r⇤.

Hence we have

Br⇤"/5(�r⇤"ed) ✓ B12r⇤"/5(0) + r⇤"ed ✓ B"'(0)(1��2t⇤) + r⇤"ed.

With this, by (7.7) and (7.18), we get
(7.22)
ū(0, t⇤) + L(M0 + 2)"wt⇤(0) = U(0, t⇤) � V (0, t⇤)

� sup
|z|r⇤"/5

(1� �1")ū(z � r⇤"ed, t⇤ � �3t⇤").

Due to (X(t⇤), t⇤) 2 �u by (7.8), and the definition of wt⇤ , we get ū(0, t⇤) =
wt⇤(0) = 0. Thus (7.22) yields

u(z +X(��3t⇤";X(t⇤))� r⇤"ed, t⇤ � �3t⇤") = 0 for all z 2 Br⇤"/5.

In summary, after translations, we proved for all (x, t) 2 �u \Q2/3,

Br⇤"/5(X(��3t⇤";x)� r⇤"ed/2) ✓ ⌦u(t� �3t⇤")
c.

The proof is now completed by invoking Lemma 7.2. ⇤

Proof of Theorem B. We now show the non-degeneracy result, Theorem
B. The proof is a consequence of Theorem 7.3, closely following the argu-
ments given in [CJK07]. We will prove that u grows at least linearly near
the free boundary (Theorem 7.5), which readily delivers the desired result.

Heuristically speaking, the strict expansion of the positive set ⌦u along
the streamline, along with the velocity law V = |ru|�~b · ⌫, should provide
a lower bound for |ru| on the free boundary. One needs to ensure however
that u does not change too much over time, to be able to relate the rate of
expansion of the positive set with the size of the pressure variable. This is
where we need a Carleson-type estimate (see also Lemma 2.5-2.6 in [CJK07]),
and its proof is parallel to that of Corollary 2.2 in [CJK07].

Let us denote (HS) by the particular case of (1.1) with f,~b ⌘ 0.
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Lemma 7.4. Suppose that v is a subsolution to (HS) in Q2 satisfying C�1 
v(�ed,t)
v(�ed,0)

 C for some C � 1. Also suppose that �v(t) \ B1(0) can be
represented by xn = gt(x0) where gt : Rd�1 ! R is Lipschitz with kgkLip  cd
for some dimensional constant cd > 0. Then there is �d > 0 such that the
following holds for 0 < � < �d: for any x0 2 �v(0) \ B1, x1 2 ⌦v(0) and
x2 2 ⌦v(0)c such that

�

2
 |x1 � x0|, |x2 � x0|, d(x1,�v(0)), d(x2,�v(0))  �,

we have for some M depending on C that

(7.23)
�2

v(x1, 0)
 M T (x2), where T (x) := sup{t � 0 : v(x, t) = 0}.

Now we are ready to prove the non-degeneracy result. Note that Theorem
B follows directly from Theorem 7.5 and Lemma 4.4, since Theorem A yields
(H-a’) in Q1.

Theorem 7.5. Assume the conditions of Theorem 7.3. Moreover, suppose
that ✓ � arccot cd (with cd from Lemma 7.4) and C�1  u(�ed,t)

u(�ed,0)
 C for all

t 2 (�1, 1) and for some C � 1. Then there exist �0, c0 > 0 such that for all
� 2 (0, �0),

u(x� �ed, t) � c0� for all (x, t) 2 �u \Q1/2.

Proof. We will only show the conclusion for (x, t) = (0, 0), which is on �u

by our setting. Let C1 from Theorem 7.3, and choose c1 := (2C1)�1 . Then
ū(x, t) := u(x+X(t) + c1ted, t) satisfies

(7.24)

(
��ū = f 0(x, t) in {ū > 0},

ūt = |rū|2 +~b0(x, t) ·rū on @{ū > 0},
where
(7.25)
f 0(x, t) := f(x+X(t)+c1ted) and ~b0(x, t) := ~b(x+X(t)+c1ted)�~b(X(t))+c1ed.

For each t 2 (�1/2, 1/2), let w1(·, t) be the unique non-negative harmonic
function in ⌦ū(t)\B1 such that w1(·, t) = 0 on �̄(t), and w1(·, t) = ū(·, t) on
�ū(t)\@B1. It follows from Lemma 11.12 [CS05] that any harmonic function
is monotone along the monotonicity direction of its Lipschitz domain, if
sufficiently close to its domain boundary where it assumes zero boundary
data. In particular, we have r�xdw1(·, t) � 0 in Br for some r 2 (0, 1). Let
us fix one such r that also satisfies

r < min

⇢
1,

c1
(1 + c1)

(kr~bk1)�1

�
.

Next, for w2 := ū � w1, it follows from Corollary 4.2 that there exists
C2 > 1 such that w2  (C2 � 1)w1. So we get
(7.26) w1  ū  C2w1.
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We claim that C2w1 is a subsolution to (HS) in Qr. Since w1 is harmonic
in its support, it suffices to verify the free boundary condition. Suppose there
is a smooth function � 2 C2,1

x,t such that C2w1�� has a local maximum zero
in ⌦w1 \ {t  t0} at (x0, t0) 2 �w1 . By (7.26), ū � � also obtains a local
maximum in ⌦ū \ {t  t0} at (x0, t0), and therefore (7.24) and Lemma 2.6
yield

(7.27) �t(x0, t0)  |r�(x0, t0)|2 +~b0(x0, t0) ·r�(x0, t0)
when |r�(x0, t0)| 6= 0. While when r�(x0, t0) = 0, Lemma 3.5 yields (7.27)
again. Hence, to conclude, it is enough to show that

(7.28) ~b0(x0, t0) ·r�(x0, t0)  0.

By the assumption on r, we have for all (x, t) 2 Qr,

|~b(x+X(t) + c1ted)�~b(X(t))|  r(1 + c1)kr~bk1  c1.

So h~b0(x, t), edi  ⇡
4 , where the notation (2.1) is used. By the W✓,�ed-

monotonicity of ū, we get �(·, t0) � �(x0, t0) in x0 + W✓,�ed which im-
plies hr�(x0, t0),�edi  ⇡/2 � ✓. Consequently, also using ✓ � ⇡

4 and
h~b0(x, t), edi  ⇡

4 , we verified (7.28). This concludes that w1 is a subsolution
to (HS) in Qr.

Lemma 7.4 now yields that for all � > 0 sufficiently small,

�2/w1(��ed, 0)  M sup{t � 0 : w1(�ed, t) = 0}.
Thus, (7.26) along with the definition of ū yields

(7.29) �2/u(��ed, 0)  M sup{t � 0 : u(�ed +X(t) + c1ted, t) = 0}.
Lastly we apply Theorem 7.3 with " := 2�. It follows that if � is sufficiently
small,

u(�ed +X(2C1�) + 2C1�c1ed, 2C1�) = u(X(C1") + "ed, C1") > 0.

Therefore

sup{t � 0 : u(�ed +X(t) + c1ted, t) = 0}  2C1�.

From this and (7.29), we obtain u(��ed, 0) � �/(2C1M), which finishes the
proof. ⇤
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