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in a Networked SEIRS Epidemic Process
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Abstract—Transportation networks play a critical part in the spread
of infectious diseases between populations. In this work, we define a
networked susceptible-exposed-infected-recovered epidemic process
with loss of immunity over time (SEIRS) that explicitly models the flow
of individuals between sub-populations, which serves as the propa-
gating mechanism for infection. We provide sufficient conditions for
local stability and instability of the healthy state of the system and
show that no perturbation of population flows can change the local
stability of any healthy state. We also provide sufficient conditions for
the existence and uniqueness of an endemic state. We then develop
tools and methods for applying our model to real-world data, including
spreading parameter estimation and disease arrival time prediction,
and apply them in a case study using both travel and infection data
from counties in Minnesota during the first year of the COVID-19
pandemic.

Index Terms—Epidemic Spread, Transportation, Network Modeling.

1 INTRODUCTION

With the prevalence of transportation networks that enable
rapid travel between locations globally, understanding
how these transportation networks facilitate the spread of
infectious diseases only continues to grow in importance.
While certainly not the first globally transmitted disease,
the recent COVID-19 pandemic has demonstrated the neg-
ative effect that a highly infectious disease can have on
general health and safety of any population connected via
travel [1]–[6], as well as long-lasting impacts on both local
and global economies [7]–[10]. Given the growing impact
and scale of human mobility as global interconnectivity
continues to increase, as well as the near certainty of
other pandemic-level diseases emerging in the future, it
is critical that we develop a rigorous and sophisticated
understanding of such phenomena in the networked sense.
Thus, in this work, we aim to contribute to a deeper
understanding of how transportation networks may be
used to model and predict the transmission of infectious
diseases over a network of connected populations.

This work builds off the deep body of literature dedi-
cated to modeling epidemic processes using compartmen-
tal models [11]–[15]. Such models separate a population,
or individuals in a population, into distinct compartments
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which represent their infection state. Simple compartmen-
tal models may have as few as two states, such as being
either susceptible to a given disease or infected. For dis-
eases with more complex behavior, more compartments
may be needed to better describe the progression of a
population through the epidemic process of the disease. In
this work, we focus on a four-compartment model which
separates individuals into one of four states, namely:
susceptible, exposed, infected, and recovered. Further, we
allow for a rate at which a population or individual may
lose immunity to the given disease, and therefore may
become susceptible again. This model, abbreviated to the
SEIRS model, allows for the modeling of a disease that
has a period in which an individual may be exposed and
will become infectious, but is not immediately apparent.
Additionally, the recovered state and eventual loss of im-
munity model a disease that can evolve over time, but may
allow for temporary immunity after an initial recovery.
This model is chosen, in part, to better emulate what is
now known of the behavior of COVID-19 and its variants
[16]–[19]. Compartmental models alone, however, do not
account for the transmission of a disease in a networked
environment where a general population can be divided
into subpopulations connected via various transportation
networks [20]–[29]. Thus, an increase in scope is needed
to account for this important behavioral complexity in
disease transmission.

Previous work that incorporates networked population
flows in an epidemic process model includes analysis of
both networked SIS and SIR models with flows [30], [31].
Other work uses travel flows to compute the effective dis-
tance between population centers to predict arrival times
for various epidemics using global and local travel data
[32]–[36]. Additionally, a data-driven approach to model-
ing the effect of population flow on epidemic spreading is
performed in [37], which uses data from lockdowns in Italy
during the initial spreading of COVID-19. Additional work
on epidemic spreading with population flow has been
performed in modeling multi-city epidemics [38]–[41] and
in the modeling of disease spread in metapopulations [42]–
[45]. We contribute to the development of such networked
models by including the exposed state in our model for-
mulation as well as a loss of immunity. In our previous
work, we consider capturing the effect of transportation
on the spread of COVID-19 using a networked discrete-
time SEIR model [46], [47]; however, the key distinction
in this work is that, in addition to being a continuous-
time model, infection propagation over the network is
modeled by the relocation of infected individuals to other
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sub-populations rather than assuming direct contact and
intermingling between sub-populations. Further, we allow
recovered individuals to experience a loss of immunity
over time, which creates the possibility of an endemic state
for the epidemic process.
In this paper, we make the following contributions:

1) We define a networked SEIRS model that incorporates
travel flows as a means of disease propagation.

2) We provide conditions for local stability and instabil-
ity of the healthy state and prove that perturbations
to population flows cannot change the stability of the
healthy state

3) We provide conditions under which a unique endemic
state will exist.

4) We implement methods for estimating the spreading
parameters of our model using both infection and
travel data as well as a method for predicting the ar-
rival time of a disease in the case of multiple outbreak
locations using travel data to compute the effective
distance between uninfected nodes and the infected
group.

5) We demonstrate how these tools can be applied to our
model using real-world mobility data from Minnesota
during the COVID-19 pandemic.

We now provide the necessary definitions of notation and
previous analytical results used in our model construction
and analysis sections, respectively.

2 PRELIMINARIES

We denote the set of real numbers and positive real
numbers as R and R>0, respectively. For any positive
integer n, we have [n] = {1, 2, ..., n}. A diagonal matrix is
denoted as diag(·). The transpose of a vector x ∈ Rn is x>.
We use 0 and 1 to denote the vectors of the appropriate
size whose entries all equal 0 and 1, respectively. We let
G = (V,E,W) denote a weighted directed graph where
V = {v1, v2, ..., vn} is the set of nodes, E ⊆ V × V is the
set of edges, and W : E → R>0 maps to the real valued
edge weights on each edge. We denote the configuration of
edges in a directed graph at time t as G(t) = (V,E(t),W),
where E(t) denotes the set of edges at time t. Furthermore,
we denote ∪t≥0E(t) as the union of all non-zero edge
configurations on a graph for all t ≥ 0. We define a graph
G as being strongly connected if there is a path consisting
of nonzero edge weights from every node to every other
node in the graph.

For a complex number x we use |x| and Re(x) to
denote its magnitude and real part, respectively. For a
real square matrix M , we use ρ(M) to denote its spectral
radius and s(M) to denote the largest real part amongst
its eigenvalues, i.e.,

ρ(M) = max{|λ| : λ ∈ σ(M)},
s(M) = max{Re(λ) : λ ∈ σ(M)},

where σ(M) denotes the spectrum of M .
A real square matrix is called Metzler if its off-diagonal

entries are all non-negative. Thus, any non-negative matrix
is Metzler.

Lemma 1. For any matrix M and any real number φ, if A :=
M − φI , then σ(M) = σ(A) + φ.

The following results from Chapter 2 of [48] for non-
negative matrices, which also hold for Metzler matrices by
Lemma 1, with φ = min{0,m11, . . . ,mnn}, will be used in
the subsequent analysis.

Lemma 2. (Lemma 2.3 in [48]) Suppose that M is an irre-
ducible Metzler matrix. Then, s(M) is a simple eigenvalue ofM
and there exists a unique (up to scalar multiple) vector x � 0
such that Mx = s(M)x.

Proposition 1. Suppose that Λ is a negative diagonal matrix in
Rn×n andN is an irreducible non-negative matrix in Rn×n. Let
M = Λ +N . Then, s(M) < 0 if and only if ρ(−Λ−1N) < 1,
s(M) = 0 if and only if ρ(−Λ−1N) = 1, and s(M) > 0 if
and only if ρ(−Λ−1N) > 1.

Lemma 3. (Levy–Desplanques Theorem) A strictly diagonally
dominant matrix is non-singular. In other words, let A ∈ Cn×n
be a matrix satisfying the property

|aii| >
∑
j 6=i
|aij |, ∀i;

then det(A) 6= 0.

Lemma 4. (Observation 6.3.1 in [49]) Let M ∈ IRn×n be
diagonalizable with M = SΛS−1 and Λ = diag(λ1, . . . , λn)
and let E ∈ IRn×n. If λ̂ is an eigenvalue of M + E, then there
exists some eigenvalue λi of M for which

|λ̂− λi| ≤ ||S||∞||S
−1||∞||E||∞ = κ∞(S)||E||∞,

where κ∞(S) denotes the condition number with respect to the
infinity matrix norm || · ||∞.

3 NETWORK FLOWS MODEL DEFINITION

We now present a networked SEIRS model incorporating
the population flow of individuals between subpopula-
tions. First, consider a group of n sub-populations in a
graph, where each sub-population i ∈ [n] is represented
by a node in the graph G. We use the SEIRS model to
describe how susceptible individuals in sub-population i
become exposed, infected, recover, and gradually lose im-
munity as the result of an infectious disease [50]. We begin
with defining the SEIRS model behavior without graph
connections for each sub-population i ∈ [n]. Let Si, Ei,
Ii, and Ri represent the number of susceptible, exposed,
infected, and recovered individuals in sub-population i,
respectively, and their dynamics evolve as

Ṡi(t) = αiRi(t)− βi
Ii(t)

Ni
Si(t) (1a)

Ėi(t) = βi
Ii(t)

Ni
Si(t)− σiEi(t) (1b)

İi(t) = σiEi(t)− δiIi(t) (1c)

Ṙi(t) = δiIi(t)− αiRi(t), (1d)

where βi is the infection rate, σi is the transition rate from
exposed to infected, δi is the healing rate, and αi is the
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rate of immunity loss. Although the state variables, except
population, will continue to vary with time, we remove
the time-dependence notation for convenience and ease of
reading from this point forward.

To account for the flow of individuals between sub-
populations we expand the model in (1):

Ṡi = −βi
Ii
Ni
Si + αiRi +

∑
j 6=i

(
Fij

Sj
Nj
− Fji

Si
Ni

)
(2a)

Ėi = βi
Ii
Ni
Si − σiEi +

∑
j 6=i

(
Fij

Ej
Nj
− Fji

Ei
Ni

)
(2b)

İi = σiEi − δiIi +
∑
j 6=i

(
Fij

Ij
Nj
− Fji

Ii
Ni

)
(2c)

Ṙi = δiIi − αiRi +
∑
j 6=i

(
Fij

Rj
Nj
− Fji

Ri
Ni

)
, (2d)

where Fij represents the number of individuals flowing
from sub-population j to i, with Fii = 0. By making a sub-
stitution of variables where si = Si/Ni, ei = Ei/Ni, xi =
Ii/Ni, ri = Ri/Ni we can model the proportion of indi-
viduals as follows

ṡi = αiri − βixisi +
1

Ni

∑
j 6=i

(Fijsj − Fjisi) (3a)

ėi = βixisi − σiei +
1

Ni

∑
j 6=i

(Fijej − Fjiei) (3b)

ẋi = σiei − δixi +
1

Ni

∑
j 6=i

(Fijxj − Fjixi) (3c)

ṙi = δixi − αiri +
1

Ni

∑
j 6=i

(Fijrj − Fjiri) , (3d)

where si + ei + xi + ri = 1. Note that both (2) and
(3) assume the subpopulations are well mixed and that
the likelihood of an individual traveling is independent
of their infectious state, that is, whether they are suscep-
tible, exposed, infected, or recovered. We can compute
the number of individuals flowing from sub-population
j to i as Fij = γjwijNj , where γj is the proportion
of the total population flowing out of node j computed
as γj =

∑
i 6=j Fij

Nj
, and wij is the proportion of traveling

individuals flowing from sub-population j to i computed
as wij =

Fij∑
l6=j Flj

, with wii = 0. Thus, we can further
derive the dynamics for the susceptible proportion at sub-
population i as

ṡi = αiri − βixisi +
1

Ni

∑
j 6=i

(Fijsj − Fjisi)

= αiri − βixisi +
1

Ni

∑
j 6=i

(γjwijNjsj − γiwjiNisi)

= αiri − βixisi +
∑
j 6=i

(
Nj
Ni
wijγjsj − wjiγisi

)
.

Using the fact that
∑
j 6=i wji = 1, we have that

ṡi = αiri − (βixi + γi)si +
∑
j 6=i

Nj
Ni
wijγjsj .

By similar derivations we can rewrite (3) as

ṡi = αiri − (βixi + γi)si +
∑
j 6=i

Nj
Ni
wijγjsj (4a)

ėi = βixisi − (σi + γi)ei +
∑
j 6=i

Nj
Ni
wijγjej (4b)

ẋi = σiei − (δi + γi)xi +
∑
j 6=i

Nj
Ni
wijγjxj (4c)

ṙi = δixi − (γi + αi)ri +
∑
j 6=i

Nj
Ni
wijγjrj . (4d)

Note that our model does not allow for state transitions
to occur during travel, i.e., we do not model individuals
becoming infected as a result of their travel. Rather, in-
dividuals will change their state in the epidemic process
at the rate defined at each node. Of course, this may
not always be the case in reality, as some methods of
public transportation may facilitate infection spreading for
those sharing a confined space with inadequate ventila-
tion. Therefore, this study implicitly focuses on more long-
range modes of transportation that transfer individuals
between more distinctly separated populations (such as
travel via flights or long-rage commuting) where traveling
individuals may not be interacting with other travelers, or
where there is a sufficient amount of ventilation such that
the spread of the disease is significantly reduced during
transit [51]. The inclusion of infections occurring on the
edges of transportation networks is left as a direction for
future work.

For the model in (4) to be well-defined, we required the
following assumptions.

Assumption 1. Let
∑
i6=j Fji =

∑
i6=j Fij for all i, j ∈ [n].

This assumption requires that the total flow of individuals
into a given sub-population must be equal to the total flow
out, which naturally follows from the assumption that the
population at each node remains constant. Furthermore,
we impose the following assumption on the model param-
eters and initial conditions.

Assumption 2. Let αi, βi, σi, δi ∈ R>0,
si(t0), ei(t0), xi(t0), ri(t0) ∈ [0, 1], and si(t0) + ei(t0) +
xi(t0) + ri(t0) = 1 for all i ∈ [n] and t0 ∈ R≥0.

Under these assumptions, we can show that the model will
always remain well-defined.

Lemma 5. Let Assumptions 1-2 hold, then
si(t), ei(t), xi(t), ri(t) ∈ [0, 1], and si(t) + ei(t) + xi(t) +
ri(t) = 1 for all i ∈ [n] and for all t ∈ R≥0.

Proof. First, by taking the sum of the system dynamics as
defined in (3) we have

ṡi(t) + ėi(t) + ẋi(t) + ṙi(t) = 0, (5)
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by Assumption 1 at every time t. Thus, by integrating (5)
from t0 to t we have∫ t

t0

ṡi(τ) + ėi(τ) + ẋi(τ) + ṙi(τ)dτ = 0,

=⇒ si(t) + ei(t) + xi(t) + ri(t) = 1, t ∈ R≥0

by Assumption 2. To show that si(t), ei(t), xi(t), ri(t) ∈
[0, 1], we consider the system as each state approaches
zero. Note that limqi(t)→0 q̇i(t) ≥ 0 where qi ∈
{si, ei, xi, ri}. Thus, by the assumption that the initial
states are non-negative, we have that qi(t) ≥ 0, ∀t ≥ 0.
Further, since we have shown that si(t) + ei(t) + xi(t) +
ri(t) = 1 it follows directly that si(t), ei(t), xi(t), ri(t) ∈
[0, 1], ∀t ≥ 0 and ∀i ∈ [n].

For the purpose of the forthcoming analysis, we also ex-
press the system in (4) in matrix form. Let Φ = N−1WΓN ,
where N = diag(Ni), W ∈ Rn×n is the matrix comprised
of the entries wij , and Γ = diag(γi). The vectorized
equations then become

ṡ = Ar − (BX(t) + Γ)s+ Φs (6a)
ė = BX(t)s− (Σ + Γ)e+ Φe (6b)
ẋ = Σe− (D + Γ)x+ Φx (6c)
ṙ = Dx− (A+ Γ)r + Φr, (6d)

where A = diag(αi), B = diag(βi), Σ = diag(σi),
D = diag(δi), X(t) = diag(xi), s = [s1, . . . , sn]>, e =
[e1, . . . , en]>, x = [x1, . . . , xn]>, and r = [r1, . . . , rn]>. We
further construct the matrix−BX(t) − Γ + Φ 0 0 A

BX(t) −Σ − Γ + Φ 0 0
0 Σ −D − Γ + Φ 0
0 0 D −A− Γ + Φ


︸ ︷︷ ︸

H(t)

,

(7)
where

H(t) = −Q(t) +M(t), (8)

with

Q(t) =


BX(t) + Γ

Σ + Γ
D + Γ

A+ Γ

 , (9)

M(t) =


Φ 0 0 A

BX(t) Φ 0 0
0 Σ Φ 0
0 0 D Φ

 , (10)

and let the complete state vector be defined as

z =
[
s> e> x> r>

]>
. (11)

Thus, we can describe the state dynamics as

ż =
(
−Q(t) +M(t)

)
z, (12)

whereQ(t) is a positive diagonal matrix andM(t) is a non-
negative matrix ∀t ≥ 0. Note that the time-dependence of
Q(t) and M(t) comes from the fact that they are functions

of X(t), where the indication of time dependence is left for
emphasis of this fact.

Definition 1. A graph G(t) = (V,∪t≥0E(t),W) for t ∈ R≥0

is K-strongly connected if there exist some bound K such that
(V,∪t+K−1

j=t E(j),W) is strongly connected, for all t ∈ R≥0.

Assumption 3. Let the graph G(t) = (V,∪t≥0E(t),W),
where W : E(t) → R>0 is defined by wij(t), be K-strongly
connected.

Lemma 6. Given Assumptions 2-3, if ∃t0 ≥ 0 and ∃i ∈ [n]
such that xi(t0) > 0, the matrix M(t0) is irreducible.

Proof. Assume, by contradiction, that M(t0) is reducible.
Then M(t0)−Q(t0) will also be reducible, as Q(t0) is a di-
agonal matrix. Thus, the graph described by the adjacency
matrix in (12) cannot be strongly connected. However, we
can partition the graph into n strongly connected compo-
nents where each component describes the evolution of the
epidemic in each subpopulation. Consider the case where
n = 1, which reduces to a non-networked SEIRS model.
By Assumption 2, this system is strongly connected in the
sense of the epidemic states given x1(t0) > 0 where

ṡ1

ė1

ẋ1

ṙ1

 =


−β1x1(t0) 0 0 α1

β1x1(t0) −σ1 0 0
0 σ1 −δ1 0
0 0 δ1 −α1



s1

e1

x1

r1

 .
For n > 1, the network connections are defined by the
total flows between each sub-population. Thus, for the
system to be reducible, there must exist a sub-population
that is unreachable via travel from at least one other sub-
population in the graph, which contradicts Assumption 3.
Therefore, M(t0) must be irreducible.

Note that the irreducibulity of M(t) will play an
important role in proving the existence of an endemic
equilibrium, which will be proven in Section 4.

4 NETWORK FLOWS MODEL ANALYSIS

In this section, we analyze the fundamental behaviors of
our model, which is divided into the analysis of the healthy
and the endemic states of the system in (4).

4.1 Healthy State Analysis
We first consider the existence of a disease-free, or healthy
state of the system and when the stability of the healthy
state can be ensured. We then examine the effect of manip-
ulating travel flows on the stability of the healthy state and
prove that there is no permissible perturbation of flows
that will change the local stability of the healthy state for
any system.

Proposition 2. The healthy state, (s∗, e∗, x∗, r∗) =
(1,0,0,0), is always an equilibrium of the system.

Proof. Substituting (1,0,0,0) into (3) yields

ṡi =
1

Ni

∑
j 6=i

(Fij − Fji) , ėi = 0, ẋi = 0, ṙi = 0
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for all i ∈ [n], where
∑
j 6=i (Fij − Fji) = 0 by Assump-

tion 3. Thus, (s∗, e∗, x∗, r∗) = (1,0,0,0) is always an
equilibrium of the system given Assumptions 1 and 2.

We now consider the stability of the healthy state
of the system and the conditions needed to reach this
equilibrium.

First, since si + ei + xi + ri = 1 for all i ∈ [n], we can
rewrite the dynamics of (6) with respect to the exposed,
infected, and recovered states asėẋ
ṙ

 =

−Σ − Γ + Φ B(I − E −X −R) 0
Σ −D − Γ + Φ 0
0 D −A− Γ + Φ


︸ ︷︷ ︸

H̄

ex
r

 ,
(13)

where E = diag(ei), X = diag(xi), and R = diag(ri).
The Jacobian matrix of (13) evaluated at an equilibrium
(x∗, e∗, r∗), denoted as J(e∗,x∗,r∗), is−Σ − Γ + Φ −BX∗ B(I − E∗ − 2X∗ −R∗) −BX∗

Σ −D − Γ + Φ 0
0 D −A− Γ + Φ

 .
(14)

Further, we define the following matrix, the top 2x2 diag-
onal block of J evaluated at (0,0,0),

U =

[
−Σ− Γ + Φ B

Σ −D − Γ + Φ

]
, (15)

which yields the following conditions for the local stability
and instability of the healthy state.

Proposition 3. If s(U) < 0, then the healthy state of (6) is
locally exponentially stable.

Proof. Evaluating (14) at the healthy state equilibrium
yields

J(1,0,0,0) =

−Σ− Γ + Φ B 0
Σ −D − Γ + Φ 0
0 D −A− Γ + Φ

 .
(16)

Since (16) is block lower triangular, we can examine the
eigenvalues of each block separately. By Assumption 1
we have that γi =

∑
j 6=i φij , thus by the Gershgorin

Circle Theorem we have that s(−A − Γ − Φ) < 0. The
upper block is equal to U , which is negative definite by
assumption. Thus, we have that s(J(1,0,0,0)) < 0, which
satisfies Lyapunov’s indirect method for determining the
local stability of the healthy state.

Corollary 1. If s(U) > 0, then the healthy state of (6) is
unstable.

Proof. This result follows by the same method as the proof
of Proposition 3, which leverages (14) evaluated at the
healthy state, shown in (16), which is block lower trian-
gular. Since the upper block is equal to U , if s(U) > 0 then
s(J(1,0,0,0)) > 0. Thus, by Lyapunov’s indirect method,
the healthy state is unstable.

We now discuss the local stability of the healthy state for
(13) with respect to changes in the rate of flow between
nodes.

Theorem 1. If J(1,0,0,0), as defined in (16), has distinct
eigenvalues then, given Assumptions 1 and 2, there exists no
permissible perturbation to the population flows γi, for i ∈ [n],
that will change the local stability of the healthy state of (6).

Proof. Let γ′i be some perturbation to γi, i ∈ [n] such that
Assumption 1 is satisfied and γ′i = γi + θi. We can then
define the perturbed system dynamics of (13) with the
matrix

H̄′ =

−Σ − Γ′ + Φ′ B(I − E −X −R) 0
Σ −D − Γ′ + Φ′ 0
0 D −A− Γ′ + Φ′

 ,
(17)

where Γ′ = Γ + Θ, Θ = diag(θi), and Φ′ = N−1W (Γ +
Θ)N . We can then separate the perturbed system into

H̄ ′ = H̄ + Ē, (18)

where H̄ is the original system dynamics defined in (13)
and

Ē =

N−1WΘN − Θ 0 0
0 N−1WΘN − Θ 0
0 0 N−1WΘN − Θ

 .
(19)

Taking the Jacobian of (18) yields

J ′(e∗,x∗,r∗) = J(e∗,x∗,r∗) + Ē.

We consider the healthy state equilibrium, which exists for
all allowed parameters of our system by Proposition 2.
Since the eigenvalues of J(1,0,0,0) are distinct, we have
that J(1,0,0,0) is diagonalizable by some matrix S̄, where
J(1,0,0,0) = S̄ΛS̄−1 and Λ = diag(λi). Thus, by Lemma 4
we have that if λ′ is an eigenvalue of J ′, then there exists
some eigenvalue λi of J such that

|λ′ − λi| ≤ κ(S̄)∞||Ē||∞. (20)

However, by Assumption 1 we have that θi =∑
j 6=i

Nj

Ni
wijθj . Thus, ||Ē||∞ = 0 and for any eigenvalue

λ′ of J ′ there exists some eigenvalue λi, i ∈ [n] such that
λ′ = λi. Therefore, no perturbation of the travel flows that
maintains Assumption 1, and thus keeps the model well-
defined, can change the local stability of the healthy state
of (6).

4.2 Endemic State Analysis
We now present conditions for when an endemic state of
the system, where z∗ � 0, will exist. For clarity, we define
the following matrices explicitly as a function of the full
system state

Q∗(z∗) =

BX
∗(z∗) + Γ 0 0 0

0 Σ + Γ 0 0
0 0 D + Γ 0
0 0 0 A+ Γ

 (21)

M∗(z∗) =

 Φ 0 0 A
BX∗(z∗) Φ 0 0

0 Σ Φ 0
0 0 D Φ

 , (22)

where X∗(z∗) = diag
([

0 0 In 0
]
z∗
)
.

Theorem 2. If inft≥t0 s(−Q(t)+M(t)) > 0, then there exists
an endemic equilibrium such that z∗ � 0.
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Proof. Define the continuous map f : (0, 1]4n → [0, b]4n,
where b ∈ R≥1, given by

f(z) = Q∗(z)−1M∗(z)z. (23)

Since the domain of f is (0, 1]4n, z as an argument of f
satisfies z � 0. Further, by Lemma 6, since Q∗(z)−1M∗(z)
is an irreducible, non-negative matrix for all z � 0, by
Lemma 2, there exists a v � 0 such that

Q∗(z)−1M∗(z)v = cv, (24)

where c = ρ
(
Q∗(z)−1M∗(z)

)
. Since inft≥t0 s(−Q(t) +

M(t)) > 0 we have, by Proposition 1, that c > 1. We
can then find an ε > 0 such that for each i ∈ [4n]

εvi ≤
c− 1

c
(25)

and
εvi ≤ zi. (26)

From (25), it follows that 1 ≤ c
1+εcvi

and thus εvi ≤ εcvi
1+εcvi

,
yielding

εvi ≤
(
Q∗(z)−1M∗(z)εv

)
i

1 +
(
Q∗(z)−1M∗(z)εv

)
i

. (27)

We can show that the right hand side of (27) is less than or
equal to f(εv)i =

(
Q∗(εv)−1M∗(εv)εv

)
i

for each i ∈ [4n]
as follows. We can expand (23) using (11) as

f(z) =


(diag(Bxz) + Γ)−1(Arz + Φsz) (28a)
(Σ + Γ)−1(diag(Bxz)sz + Φez) (28b)
(D + Γ)−1(Σez + Φxz) (28c)
(A+ Γ)−1(Dxz + Φrz) (28d)

where we can write z =
[
sz> ez> xz> rz>

]>
. Note

that for (28b)-(28d), if we increase any value zi the output
also increases, i.e., (28b)-(28d) are monotonic. Thus, since
εvi ≤ zi, for any f(εv)i in (28b)-(28d), we have εvi ≤
f(εv)i.

We now consider (28a), which is not monotonic, and
show that εvi ≤ f(εv)i, for the last case (28a). To show
this is true, we write the vector v as

v =
[
vs> ve> vx> vr>

]>
and note that by (26) we have

βiεv
x
i + γi ≤ βixi + γi, (29)

for every i ∈ [n]. To simplify notation, let

ai = (αiv
r
i + (Φvs)i). (30)

We then have that

βiεv
x
i + γi ≤ (βixi + γi)(1 + (βixi + γi)

−1εai) (31)

since (βixi + γi)
−1εai ≥ 0, which then yields

(βixi + γi)
−1

1 + (βixi + γi)−1εai
≤ (βiεv

x
i + γi)

−1. (32)

Finally, multiplying both sides of (32) by εai we have

(βixi + γi)
−1εai

1 + (βixi + γi)−1εai
≤ (βiεv

x
i + γi)

−1εai. (33)

Therefore, since by (27) we have

εvsi ≤
(βixi + γi)

−1ε(αiv
r
i + (Φvs)i)

1 + (βixi + γi)−1ε(αivri + (Φvs)i)

and by (28a)

f(εvs)i = (βiεv
x
i + γi)

−1ε(αiv
r
i + (Φvs)i),

we have that εvsi ≤ f(εvs)i, for all i ∈ [n], by (33). Thus,
we have shown that εvi ≤ f(εv)i, for all i ∈ [4n].

We now show that f(z) is bounded by a b ∈ IR.
Since 0 � z ≤ 1 we have by Assumption 2 and (28)
that f(z) must also be finite and we can choose b =
supi∈[4n] f(z)i <∞. Thus, f maps the convex compact set
C = {z | εv ≤ z ≤ 1b} to itself. By Brouwer’s fixed-point
theorem, f has a fixed point in C, which must be strictly
positive. Let z∗ be this fixed point, then f(z∗) = z∗, i.e.

z∗ = Q∗(z∗)−1M∗(z∗)z∗. (34)

Therefore, we have

Q∗(z∗)z∗ = M∗(z∗)z∗

0 = (M∗(z∗)−Q∗(z∗))z∗

and thus z∗ � 0 is an equilibrium point of (4). Further, by
Lemma 5 we know that z∗ ∈ (0, 1]4n.

Note that since our method of proving existence of an
endemic equilibrium for (4) requires irreducibility we
must include the susceptible state in our analysis, causing
the sufficient condition needed to prove existence to be
stronger than one that is time invariant. We now give con-
ditions under which the endemic equilibrium is unique.

Theorem 3. Let there exist an endemic equilibrium for the
system in (4). If βi ≥ γi, for all i ∈ [n], then the endemic
equilibrium is unique.

Proof. Let z and y be two nonzero equilibria of (4)
which can be divided into their respective epidemic
states as z =

[
sz> ez> xz> rz>

]>
and y =[

sy> ey> xy> ry>
]>

. We can express z in terms of
y for i ∈ [n] as

(syi + εsi) + (eyi + εei) + (xyi + εxi
) + (ryi + εri)

= szi + ezi + xzi + rzi = 1,
(35)

where

εsi + εei + εxi
+ εri = 0, (36)
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for each i ∈ [n]. Since both z � 0 and y � 0 are fixed
points of (4), we can sum (4b), (4c), and (4d) to obtain

ėzi + ẋzi + ṙzi = βix
z
i s
z
i − γi(ezi + xzi + rzi )

− αirzi +
∑
j 6=i

φij(e
z
j + xzj + rzj )

= βi(x
y
i + εxi

)(syi + εsi)− αi(r
y
i + εri)

− γi(eyi + xyi + ryi + εei + εxi
+ εri)

+
∑
j 6=i

φij(e
y
j + xyj + ryj + εej + εxj

+ εrj )

= βix
y
i s
y
i − γi(e

y
i + xyi + ryi )

− αiryi +
∑
j 6=i

φij(e
y
j + xyj + ryj )

= ėyi + ẋyi + ṙyi = 0,

where φij =
Nj

Ni
wijγj . Thus, by taking the difference of

(ėzi + ẋzi + ṙzi )− (ėyi + ẋyi + ṙyi ) we get

βi
(
xyi εsi + syi εxi + εxiεsi

)
− γi(εei + εxi + εri)

−αiεri +
∑
j 6=i

φij(εej + εxj
+ εrj ) = 0.

(37)
We can express (37) for all i ∈ [n] using matrix notation as
follows. Define εq = [εq1 , . . . , εqn ]>, where q ∈ {s, e, x, r}.
Then, using (36) and (37) we have

B(Xyεs + Syεx + Exεs) + Γεs −Aεr − Φεs = 0, (38)

where Xy = diag(xyi ), Sy = diag(syi ), and Ex =
diag(εxi

). Further, we can put (38) into a block matrix form
as BXy + Ex + Γ− Φ 0 0

0 BSy 0
0 0 −A


︸ ︷︷ ︸

K

εsεx
εr

 = 0. (39)

Thus, the solution to the vector of perturbations to
sy, xy, ry is the nullspace of K . Note that if K is full
rank, then the only solution for the perturbations must be
εs = εx = εr = 0. Considering the rank of K , it is clear
that the second and third block diagonals are full rank
since y � 0 and by Assumption 2, respectively. Further, by
Lemma 3, we have that if BXy +Ex + Γ−Φ is diagonally
dominant then it is also full rank, or in other words, if

|βixyi + εxi + γi| >
∑
j 6=i
|φij |, ∀i ∈ [n], (40)

then det(BXy + Ex + Γ− Φ) 6= 0.
We will now show that (40) holds for any choice of εxi

if βi ≥ 1 for all i ∈ [n]. Note that when εxi ≥ 0 we have
that (40) is satisfied, since γi =

∑
j 6=i φij for all i ∈ [n] by

Assumption 1, and βix
y
i > 0 by Assumption 2. We now

consider when εxi
< 0. Since xyi + εxi

= xzi > 0, we have
that xyi > −εxi

. Therefore, if εxi
< 0, then we have that

xyi > |εxi
|. Thus, if βi ≥ 1 for all i ∈ [n], then (40) must

hold for any feasible choice of εxi
. Therefore, by (39) we

have εs = εx = εr = 0, which implies, by (36), that εe = 0.
Thus, by (35), z = y.

Now consider a system with an endemic equilibrium
where ∃i ∈ [n] such that βi < 1. If βi ≥ γi for all i ∈ [n],
there exists some constant scalar η ∈ R such that by (6),

η
(
Ar∗ − (BX∗ + Γ)s∗ +N−1WΓNs∗

)
= 0

η
(
BX∗s∗ − (Σ + Γ)e∗ +N−1WΓNe∗

)
= 0,

where ηβi ≥ 1 and ηγi ≤ 1 for all i ∈ [n]. Thus, any
endemic system with parameters where ∃i ∈ [n] such that
βi < 1 can be mapped to one with the same endemic
equilibrium where βi ≥ 1 for all i ∈ [n].

Remark 1. It should be noted that the condition βi ≥ γi, ∀i ∈
[n], for uniqueness of the endemic equilibrium is only sufficient
and simulations show that an endemic equilibrium can still exist
even when ∃i ∈ [n] such that βi < γi.

The analysis throughout this section establishes sev-
eral key points. First, we find that short of a complete
lockdown of infected nodes before spreading begins, ma-
nipulating travel flows alone cannot change the long-term
stability of the healthy state of this system. Further, we
have established conditions under which the healthy state
is exponentially stable, the healthy state is unstable, an
endemic equilibrium exists, and the endemic equilibrium
is unique.

5 APPLICATIONS OF TRAVEL FLOWS MODEL

In this section, we shift our focus to constructing novel
tools that will enable us to leverage real-world data in
Section 6. The proposed tools are 1) learning the infection
spread parameters given infection states and travel flows
data and 2) using travel flows data to predict the arrival
time of a disease to every node in the network given a
disease origin. In this section, we illustrate these tools
using simulated data. We share the simulation code used
for this section on GitHub at [52].

5.1 Parameter Identification

In this section we present a method for estimating the
infection parameters βi, σi, δi, αi for each node i, respec-
tively, given measurement data. Since infection data is gen-
erally collected at discrete time intervals, we first discretize
the system in (4) using Euler’s method which yields

sk+1
i = ski + h

αir
k
i − (βix

k
i + γk

i )ski +
∑
j 6=i

Nj

Ni
wk

ijγ
k
j s

k
j


(41a)

ek+1
i = eki + h

βixki ski − (σi + γk
i )eki +

∑
j 6=i

Nj

Ni
wk

ijγ
k
j e

k
j


(41b)

xk+1
i = xki + h

σie
k
i − (δi + γk

i )xki +
∑
j 6=i

Nj

Ni
wk

ijγ
k
j x

k
j


(41c)

rk+1
i = rki + h

δixki − (αi + γk
i )rki +

∑
j 6=i

Nj

Ni
wk

ijγ
k
j r

k
j

 ,

(41d)
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where h > 0 is a sampling parameter and k ∈ Z≥0

is a given time index. For this application, we assume
a sampling parameter h that is small enough such that
the system remains well-defined given the relative values
of the model parameters. For a more detailed discussion
and analysis of exactly when this condition holds, see our
previous work in [47]. Given T samples of infection state
data, we can estimate the parameters for node i as follows.
Let

∆qi =

 q1
i − q0

i + h(γ0
i q

0
i −

∑
j 6=i

Nj

Ni
w0

ijγ
0
j q

0
j )

...
qTi − qT−1

i + h(γT−1
i qT−1

i −
∑

j 6=i
Nj

Ni
wT−1

ij γT−1
j qT−1

j )


(42)

where qi ∈ {si, ei, xi, ri}, and define

Ψi = h



−s0i x0
i 0 0 r0

i
...

...
...

...
−sT−1

i xT−1
i 0 0 rT−1

i
s0i x

0
i −e0i 0 0

...
...

...
...

sT−1
i xT−1

i −eT−1
i 0 0

0 e0i −x0
i 0

...
...

...
...

0 eT−1
i −xT−1

i 0
0 0 x0

i −r0
i

...
...

...
...

0 0 xT−1
i −rT−1

i



, (43)

then, we rewrite the system in (41) for a node i given T
data samples of data in terms of the spread parameters as

∆si
∆ei
∆xi
∆ri

 = Ψi


βi
σi
δi
αi

 . (44)

Thus, we can solve for the parameters βi, σi, δi, αi as
βi
σi
δi
αi

 = Ψ†i


∆si
∆ei
∆xi
∆ri

 , (45)

where Ψ†i is the pseudo-inverse of Ψi. Thus, we have that
a solution to the spread parameters using (45) is unique if
and only if (43) is full column rank.

Using this method of parameter estimation, we can
utilize real infection data along with real travel flows
data to determine the spreading rates for a given disease
outbreak, assuming that the model defined in Section 3
approximates the behavior of the outbreak. We show an ex-
ample of parameter identification in Figure 1, where data
from a 5-node simulated system with initial conditions
s0 = [0.549, 0.715, 0.603, 0.545, 0.424]>, e0 = 1 − s0, and
x0 = r0 = 0 is perturbed with Gaussian noise with zero
mean and standard deviation 0.01 and then used to learn
the infection spread parameters as outlined in this section,
where the travel weight matrix used is given in Table 1
and the spread parameters and of the learned parameters
are given in Table 2.

wij 1 2 3 4 5
1 0 0.212 0.275 0.25 0.212
2 0.249 0 0.26 0.299 0.338
3 0.246 0.198 0 0.204 0.178
4 0.285 0.29 0.259 0 0.272
5 0.22 0.299 0.206 0.247 0

TABLE 1: Travel connection matrix used in the simulated
system shown in Figure 1.

Node 1 2 3 4 5
βi 0.065 0.044 0.089 0.096 0.038 0.03
σi 0.079 0.053 0.057 0.093 0.007 0.01
δi 0.001 0.001 0.008 0.008 0.009 0.002
αi 0.01 0.008 0.005 0.008 0.001 0.012
γi 0.002 0.002 0.002 0.002 0.005 -

TABLE 2: Parameters used in the simulated system shown
in Figure 1 along with the of learned parameters.

5.2 Effective Distance and Travel Flows

Given our notion of population flow and the definition
of wij being the proportion of traveling members of the
population at node j flowing to node i, we can use this
proportional flow information to compute the effective dis-
tance between any two nodes based on the most probable
path an individual would take between nodes. Further,
we can then use the effective distance between nodes to
make predictions of the arrival time of an outbreak to a
given node based on the distance of that node from other
infected nodes. This notion of effective distance based
on travel and its use in predicting disease arrival time
is introduced in [32], [33], where the effective distance
between countries is computed using flight traffic data.
The work in [34] extends the notion of effective distance to
incorporate multiple outbreak locations for the prediction
of disease arrival times. In [35], travel flows and effective
distance metrics are used to model higher-order effects
resulting from population travel movements. Additionally,

FIGURE 1: Simulated 5-node system from (41) with param-
eters and travel matrix defined in Tables 2 and 1 where
n = 5, h = 1, and added zero-mean Gaussian noise with
standard deviation 0.01 and spread parameters chosen
to induce an endemic state. Each solid line represents
the perturbed simulated data for each node. Parameters
from the noisy system are identified and then re-simulated
from the same initial condition, where the predicted state
trajectories for each node are shown by dashed lines of the
same color.
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in [36] they use effective distance to create an infection
delay model that estimates infection delays under multiple
possible outbreak scenarios. In our work, we apply this
method of using effective distance via travel flows to pre-
dict disease arrival time using to inter-county travel data
in Minnesota during a period of the COVID-19 pandemic,
which will be shown in Section 6.

We compute the effective distance between nodes as
follows. We interpret the mobility matrix defined by the
wij as the transition matrix of a discrete time homogeneous
stochastic jump process, where at each time step a ran-
domly moving particle moves from node j to node i with
probability wij . Let nk be the location of this particle at
time k. Now, consider the path of a randomly moving par-
ticle after L steps, forming the path Ξ = {n0, n1, . . . , nL}.
If we fix any two endpoints in the graph where Ξij is any
path with n0 = j and nL = i, we can associate any path
taken between these points with a probability

F (Ξij) = winL−1
× · · · × wn1j =

L∏
k=1

wnknk−1
. (46)

Since the proposed notion of distance is additive, we estab-
lish a connection between the probability of a given path
and the effective distance of a given path by employing
the multiplicative property of logarithms

DF (Ξij) = − logF (Ξij) = −
L∑
k=1

logwnknk−1
, (47)

where DF (Ξij) is the log sum of the probabilities of each
step taken on the given path. Thus, since wij ∈ [0, 1] a low
probability path will equate to a high effective distance,
with DF (Ξ) → ∞ as F (Ξ) → 0, and high probability
paths result in lower effective distance. We construct a new
graph with edge weights between nodes being the one-
step negative log probabilities of traveling between nodes
as

dij =


0 i = j

− logwij wij > 0

∞ wij = 0.

(48)

Using this graph with edge weights between nodes i and
j defined by (48), we compute the effective distance as

Dij = min
Ξij

DF (Ξij) ≥ 0, (49)

where Dij is the sum of the path lengths between nodes
j and i that yield the smallest distance, which can be
found for any node i ∈ [n] by computing the minimum
spanning tree for the distance graph from node j, since
DF (Ξij) =

∑L
k=1 dnknk−1

describes the cost of traveling
any path between i and j in the graph. It is important
to note that since it is possible dij 6= dji, we also have
that Dij 6= Dji. Further, the shortest path to and from
any two endpoints may not necessarily contain the same
intermediate points.

We can extend the notion of the most probable path and
effective distance further by considering the most probable
path from a subgroup of nodes to any given node. Since

we are interested in the effective distance for an infection
to travel to uninfected nodes with respect to an infected
group of nodes, we can construct a node subgroup as
follows

X =
{
i ∈ [n];xi > p

}
, (50)

where xi is the infection level at node i and p ∈ (0, 1]
is some threshold at which we consider the node to be
infected. We can then compute the probability that an
individual from node group X travels to node i as

w̃iX =
1∑

l∈X Nl

∑
j∈X

Njwij . (51)

This method incorporates the relative population size be-
tween nodes as well as the total likelihood that an indi-
vidual from the infected node group X would travel to a
given node i. Another method for computing the effective
distance of a single node to a group of outbreak nodes
is given in [34], which instead computes the effective dis-
tance to the infected group X independently of population
size

w̃iX =
1

n

∑
j∈X

1

edij
, (52)

which is analogous to the computation of the effective
resistance in parallel circuits.

Thus, we can construct another effective distance
graph, with respect to a group of nodes X , using edge
weights

d̃Xij =


0 i ∈ X or i = j

− log w̃iX i /∈ X , j ∈ X , w̃iX > 0

− logwij i, j /∈ X , wij > 0

∞ otherwise,

(53)

making the effective distance in the case from any node
j to every other node i ∈ [n], with respect to the node
group X ,

D̃Xij = min
Ξij

(
d̃XjnL−1

+ · · ·+ d̃Xn1i

)
. (54)

When a disease outbreak occurs, one important ques-
tion for policymakers is how long it will take for the dis-
ease to infect new nodes given past infection data. Given
travel data and knowledge of which nodes are currently
infected, we can use (54) to predict the arrival time of the
disease to uninfected nodes as follows. Let Tk be the time
of the kth arrival of the disease to an uninfected node, and
suppose k > τ disease arrivals have occurred, where τ is
the size of your training window:

1) At time Tk, select training data that includes the
disease arrivals from time Tk−τ to Tk, where τ =
|{Tk−τ , Tk−τ+1, . . . , Tk}|

2) Compute the effective distance of each node in the
training data to the infected group X at time Tk−τ

3) Given the arrival times of the training data and the
computed effective distances to the infected group, fit
a line to these training data

4) Using the fitted line, predict the arrival time of the
remaining uninfected nodes given their effective dis-
tance to the current infected group X at time Tk.
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FIGURE 2: The arrival time of the disease to each node
versus the effective distance of each node in our simulated
system from the disease origin, computed by (49). The
dashed line shows the linear fit of all data points.

To ensure that this method always predicts sensible arrival
times, as the fitted line may predict arrival times that have
already passed, a constant shift is added to the predictions
such that the next predicted arrival time is greater than
zero. This method differs from [32], [33] most significantly
in its ability to make updated predictions on the arrival
time of an outbreak, which depends on the current flow
rate. Further, it facilitates a notion of the distance of an
outbreak from any given node based on the likelihood of
transmission from multiple source nodes as the epidemic
progresses similarly to [34], described by (53), rather than
relying on the distance from the original source. Note
that (53) may use either the population-dependent model
described in (51) or the population-independent model
described in (52) as proposed by [34]. Additionally, our
prediction algorithm may use any method of computing
the effective distance to multiple infected nodes, so long as
it accounts for the proportional travel flow between nodes
and the set of currently infected nodes. Further, note that
(53) cannot use the methods from [35] and [36] as they do
not handle the case of multiple outbreak locations. These
factors contribute to a more accurate prediction of arrival
time in a more realistic evolving scenario.

We illustrate this algorithm by simulating the spread of
a disease over a network using our model as defined in
Section 3. We construct our network to emulate counties
in Minnesota with travel between counties given by inter-
county travel data collected during part of the COVID-
19 pandemic. A full description of this data is given in
Section 6. The system is then simulated using infection pa-
rameters satisfying Assumption 2 and sampling parameter
h = 1 (to emulate a daily resolution of data collection),
where a node is selected as the origin of the disease and
predictions on the next nodes to be infected are made.
Using (49), we compute the effective distance of each node
from the origin of infection and plot the effective distance
versus the arrival time of the disease to each node, shown
in Figure 2. Note the linear relationship between effective
distance and arrival time.

In Figure 3 we show an example of using the shift-
ing window algorithm to predict the remaining infection
arrival times with an arrival window of τ = 20 disease

(A) T = T50 (B) T = T60

(C) T = T70 (D) T = T80

FIGURE 3: Example of shifting prediction window of ar-
rival times in the simulated system at four different arrival
times during the spreading process (T = T50, T80) where
training window τ = 20, with the data used to make
predictions (black circles), true arrival times for each node
versus effective distance (blue squares), and shifted best-
fit predictions (red triangles) shown at several arrival
intervals, where the effective distances are computed at
each disease arrival using (54).

arrival events. To evaluate the prediction error of our
shifting window method, we compute the root-mean-
square error (RMSE) of the linear fit for all arrival times
versus effective distance from the origin at the start of
the epidemic (with the linear fit shown in Figure 2) and
compare it with the average RMSE of the shifting window
method that predicts the next 10 arrival times whenever
a new arrival occurs. This comparison yields an RMSE
of 4.59 timesteps (analogous to days since h = 1) for
the linear fit of all arrival times versus effective distance
from the disease origin (which can only be evaluated after
all data has been collected) versus an average RMSE of
1.91 timesteps and 1.58 timesteps for the shifting window
method using (51) and (52), respectively, that predicts the
next 10 arrival times whenever a new arrival occurs, which
is at least a 58% reduction in prediction error in addition
to being usable in real-time to predict the next immediate
disease arrivals versus analysis after the fact. Note that
in the case of the simulated data, using (52) to compute
the distance of uninfected nodes to the infected groups
yields a marginally lower for predicting future arrival
times compared with (51), as shown in Table 4; however,
it is uncertain that (52) will outperform (51) in all cases.
Further, (51) may provide a more explainable justification
for estimating the effective distance between the infected
group and uninfected nodes based on relative population
sizes and the number of individuals traveling from the
infected group to uninfected nodes.
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6 CASE STUDY: MINNESOTA AND COVID-19
We apply our model developed in Section 3 and methods
described in Section 5 to data collected from the beginning
of the 2020 COVID-19 pandemic in Minnesota. Daily in-
fection data at the county level is taken from usafacts.org
which contains the number of confirmed COVID-19 cases
over the period of March 2020 to December 2020 [53]. To
infer the infection states si, ei, xi, ri for each county i from
the confirmed cases data we apply a constant shift that
assumes confirmed individuals became exposed one week
before testing positive, at which point they are considered
infected. Then, we assume that infected individuals remain
infected for one week after testing positive, after which
they are considered recovered. Finally, to account for the
rate at which individuals can lose immunity, we transfer
recovered individuals back into being susceptible after six
weeks of being recovered. For travel data, we worked
with the Minnesota Department of Transportation to ob-
tain data collected by StreetLight [54] that estimates the
number of trips between counties via anonymous geolo-
calization using smartphones. This provides an estimate
of the total number of trips made by individuals between
counties over a specified period of time. We choose a
weekly time scale in an effort to average out periodic
behaviors such as commuting and use this average to
estimate the daily flow of individuals between counties.

6.1 Parameter Identification

Using the inferred infection states for each county in MN
along with the travel flows computed from the collected
traffic data, we can use (45) to solve for the best-fit infection
parameters using a convex solver and constraining solu-
tions to be strictly non-negative using our model defined
in Section 3. We then re-simulate the model using the same
initial conditions and learned parameters, with the results
of the simulation compared with the inferred infection
states shown in Figure 4, where we show a subset of
real infection levels at five counties (solid lines) and the
predicted infection levels from the learned parameters
(dashed lines). Note that although the predicted infection
peak of the model with learned parameters is much higher
than the actual data, we see that the peak infection time is
more closely approximated by the travel flows model, as
shown in Table 3.

Regarding the error in magnitude prediction, there are
several likely contributing factors. First, in our estimation
algorithm, we assume spread parameters (βi, σi, δi, αi)
that are not time-varying, which is most likely not the
case in reality since lock-downs, social distancing policies,
medical interventions, and virus mutations can all change
the spread parameters over time, which violates this as-
sumption. Additionally, we are assuming that our rather
naive method for state estimation (by choosing a priori the
recovering rate and the rate at which exposed individuals
become infected) yields the correct states for all counties
and that all counties are reporting infection cases in the
same manner, which may not be true in all cases. Thus,
these combinations of structural assumptions and naivety

Infection Peak Time
SEIRS (Travel Flows) 0.023 4.15 Weeks

SEIRS ( [46]) 0.007 21.21 Weeks

TABLE 3: The infection , defined as√
1
nT

∑
i∈[n],k∈[T ]

(
xki − x̂ki

)2, where n is the number of
nodes, T is the number of samples, and x̂ki is the predicted
infection level at node i for time step k, and the peak time

, defined as
√

1
n

∑
i∈[n]

(
arg maxk(xki )− arg maxk(x̂ki )

)2,
for the parameter fitting predictions of the SEIRS travel
flows model defined in Section 3 (shown in Figure 4) and
modified SEIRS model from [46] (shown in Figure 5),
respectively, on the COVID-19 infection data.

FIGURE 4: Simulating (4) for select MN counties using traf-
fic data to estimate inter-county travel flows (dashed lines)
with best-fit parameters learned from the estimated epi-
demic states using COVID-19 infection data (solid lines).

in state estimation are both likely large contributors to the
magnitude error in state prediction.

For comparison, we apply this parameter fit with an-
other similar model, modified from our previous work
in [46] to allow individuals to become reinfected. The
major difference between our model in Section 3 and
this modified model from [46] is that travel data is used
to infer direct interaction between sub-populations rather
than explicitly modeling the flow of individuals between
subpopulations. We then take the best-fit parameters for
this model given the infection and travel data and simulate
the model with the learned parameters, shown in Figure 5,
where we show a subset of real infection levels at the same
five counties as Figure 4 (solid lines) and the predicted in-
fection levels from the learned parameters (dashed lines).
Note that in this case, although the error is smaller in
magnitude than the prediction from the parameter fitting
of the travel flows model, the direct interaction model from
[46] fails to reproduce the peaking behavior shown clearly
in the inferred infection states from the COVID-19 data
and in Table 3.

6.2 Predicting Disease Arrival Time

We use the methods described in Section 5.2 and the
collected travel flows data to make predictions on the
arrival time of COVID-19 to counties in MN. In Figure 6
we compare the arrival time of the first reported case
with both the effective distance and geographic distance
of each county to the disease origin (i.e., the county with
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FIGURE 5: Simulating the modified direct connection
model from [46] for select MN counties using traffic data
to estimate inter-county travel flows (dashed lines) with
best-fit parameters learned from the estimated epidemic
states using COVID-19 infection data (solid lines).

Arrival Time Prediction (days)
Shifting Window [32], [33]

w̃iX (51) (52) [34] wij

Simulated Data 1.91 1.58 4.59
MN Data 4.02 3.68 18.86

TABLE 4: A comparison of the arrival time prediction for
the shifting window prediction method with multiple out-
break locations as described in Section 5.2 and the single
outbreak case of [32], [33].

the first reported case in MN), with the best-fit line shown
for each. We compute the R-value for each best-fit line
to be 0.53 and 0.48 for the effective distance and geo-
graphic distance, respectively, suggesting that the effective
distance is a better predictor of arrival time, albeit by a
small margin, than geographic distance when considering
all arrival times with respect to the disease origin. Finally,
we demonstrate the shifting window prediction method
on the MN COVID-19 data in Figure 7. We find an RMSE of
close to 19 days for the linear fit [32], [33] of all arrival times
versus effective distance from the disease origin versus an
average RMSE of 4.02 days and 3.68 days for the shifting
window method using (51) and (52), respectively, that
predicts the next 10 arrival times whenever a new arrival
occurs, yielding at least a 79% reduction in prediction error
in addition to enabling real-time arrival predictions. Again,
note that in the case of the MN COVID-19 data, using (52)
to compute the distance of uninfected nodes to the infected
groups yields a marginally lower for predicting future
arrival times compared with (51), as shown in Table 4.

7 CONCLUSION

In this work, we have developed a model for simulating
the spread of an SEIRS epidemic process using networked
population flows as the propagation mechanism. We pro-
vide sufficient conditions under which the healthy state of
the system will be locally stable or unstable and show via
model analysis that there exists no valid perturbation to
the population flows that will change the local stability of
any healthy state. These results suggest that manipulating

FIGURE 6: The arrival time of the disease to each node
versus the effective distance (top) of each county in MN
from the county with the first detected COVID-19 cases
during the 2020 pandemic, computed by (49), compared
with the geographic distance of each county (bottom) from
the disease origin. The dashed line shows the linear fit of
all data points for each case respectively.

(A) T = T45 (B) T = T55

(C) T = T65 (D) T = T75

FIGURE 7: Examples of the shifting prediction window of
arrival times of COVID-19 for counties in MN at four
different arrival times during the pandemic (T = T45, T75)
where training window τ = 20, with the data used to
make predictions (black circles), true arrival times for each
county versus effective distance (blue squares), and shifted
best-fit predictions (red triangles) shown at several arrival
intervals, where the effective distances is computed at each
disease arrival using (54).
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population flow alone is insufficient to achieve the long-
term eradication of the disease in the defined system where
a loss of immunity is present. Conversely, the result also
suggests that perturbing the population flows will not
prevent a system from achieving disease eradication (i.e.,
causing the healthy state to become unstable if it is already
locally stable). Further, we provide sufficient conditions
under which the system will enter a unique endemic state.
Although the analytical results show that travel control
is insufficient for affecting the long-term behavior of the
epidemic, we show that travel flows are a good predictor
of disease arrival time, which can provide valuable model-
agnostic estimates of the arrival times for a given disease
that are useful in allocating a fixed amount of medical
resources. To this end, we then develop tools for applying
our proposed model to data, such as spreading parame-
ter identification and disease arrival time prediction and
illustrate these tools using a case study of both travel and
infection data from the counties in MN during part of the
COVID-19 pandemic.

There are several directions for continued research on
the work presented in this paper. Future directions for
analysis included a study on the global stability of the
healthy state, as only local stability is explored in this
work, as well as a study of the stability of the endemic
equilibrium for this system. Additionally, in this work, we
have assumed that no infections occur during the transit of
individuals between populations, and adding this element
to our travel flows model may provide additional mean-
ingful insights into the role of travel in spreading infectious
diseases. Further, since the use of effective distance to
predict disease arrival time is independent of the epidemic
model being used, a more thorough analysis can be per-
formed comparing the usefulness of effective distance in
predicting arrival time for other epidemic models with
travel flows (such as networked SIR, SIS, SAIR, etc.).
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