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In the 1 4 1D ultralocal lattice Hamiltonian for staggered fermions with a finite-dimensional Hilbert
space, there are two conserved, integer-valued charges that flow in the continuum limit to the vector and

axial charges of a massless Dirac fermion with a perturbative anomaly. Each of the two lattice charges
generates an ordinary U(1) global symmetry that acts locally on operators and can be gauged individually.
Interestingly, they do not commute on a finite lattice and generate the Onsager algebra, but their

commutator goes to zero in the continuum limit. The chiral anomaly is matched by this non-Abelian
algebra, which is consistent with the Nielsen-Ninomiya theorem. We further prove that the presence of
these two conserved lattice charges forces the low-energy phase to be gapless, reminiscent of the

consequence from perturbative anomalies of continuous global symmetries in continuum field theory.
Upon bosonization, these two charges lead to two exact U(1) symmetries in the XX model that flow to the
momentum and winding symmetries in the free boson conformal field theory.

DOI: 10.1103/PhysRevLett.134.021601

Introduction—The realization of chiral symmetries on the
lattice has been a long-standing problem in lattice field
theory [I]. One prominent difficulty is that the global
symmetries of interest typically have anomalies in the
sense that they cannot be consistently coupled to dynami-
cal gauge fields.

Anomalies are traditionally linked to divergences in
continuum field theory and are often considered challeng-
ing, if not impossible, to realize on a lattice with finite
lattice spacing. However, this piece of lore is not true.
Numerous examples of anomalies for discrete global
symmetries are realized on the lattice. See, for example,
Ref. [2] for a recent survey of this topic. A more refined
piece of lore is that perturbative anomalies of continuous
global symmetries cannot be realized on a lattice. By
perturbative or local anomalies, we mean those captured by
Feynman diagrams and local operator product expansions.
This piece of lore also turns out to be incorrect: perturbative
anomalies can be realized in Villain-type lattice models
[2-7]. The local Hilbert spaces of these models are infinite-
dimensional. See Ref. [7] for discussions of chiral fermion
symmetry in 1+ 1D QED in this setup, and Ref. [8] for
a Euclidean lattice realization of mixed gravitational
anomalies with global symmetries.

Perhaps a more interesting question is whether pertur-
bative anomalies be realized in a lattice model whose local
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Hilbert space is finite-dimensional (e.g., qubits). There is a
simple no-go argument against this hope. This can be
seen most readily for U(1) symmetries in 1 4 1D, where
perturbative anomalies are encoded in the equal-time
commutator of the conserved current operators [j°(z, x),
J(t,x")] ~i0.6(x —x'), known as the Schwinger term
[9,10]. Taking the trace of this relation immediately shows
that the Schwinger term cannot be realized verbatim on a
finite-dimensional Hilbert space since the trace of a
commutator in a finite-dimensional vector space neces-
sarily vanishes. This is similar to the fact that [X, P| = ih
cannot be realized in a finite-dimensional Hilbert space in
quantum mechanics. See Ref. [11] for a rigorous proof of
this no-go result. The Schwinger term, however, has
recently been realized exactly on a lattice model with an
infinite-dimensional Hilbert space [5].

These difficulties are rigorously formulated in the
Nielsen-Ninomiya theorem [12—14]. The theorem, most
precisely formulated in [15], asserts that in any quadratic
lattice fermion Hamiltonian with certain locality properties
in odd spatial dimensions, there must be an equal number
of left- and right-moving fermions within each irreducible
representation of the global symmetries. In particular, this
theorem prohibits the existence of an axial charge that
(i) has quantized, integer eigenvalues and (ii) commutes
with the vector U(1) symmetry. If such an axial charge
existed, one could restrict to states with fixed vector and
axial charge and find a single left-moving fermion.

Given the above, what fingerprints of anomalies can we
hope for on a lattice with a finite-dimensional Hilbert
space? In this Letter, we focus on the anomaly between the
vector and axial symmetries of a 1 + 1D massless Dirac
fermion, which is the oldest and arguably the simplest
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FIG. 1. In an ultralocal Hamiltonian lattice model, we discuss
two conserved, quantized charges 0V and 0*, which become the
vector and axial charges OV and QA of the massless Dirac
fermion field theory in the continuum limit. We use calligraphic
and ordinary fonts for operators in the continuum and on the
lattice, respectively. The anomaly between QV and Q* is
matched on the lattice by the non-Abelian Onsager algebra
generated by QY and QA.

anomaly of all. In a microscopic Hamiltonian lattice
realization, we discuss two conserved, quantized charges
that become the vector and axial charges in the continuum
limit. While each of the two charges generates an ordinary
U(1) symmetry satisfying all the locality properties, they do
not commute on a finite-size lattice. Together, they form a
non-Abelian algebra, known as the Onsager algebra [16],
which is consistent with the Nielsen-Ninomiya theorem
and matches the continuum anomaly (see Fig. 1).
Symmetries and anomalies in the continuum—We start
by reviewing the symmetries and anomalies of the massless
Dirac fermion field theory in 1+ 1D. We denote the
left- and right-moving (complex, one-component) Weyl
fermions as W (f,x) and Wg(z,x), respectively. In
Minkowski spacetime with metric 77, = (1, —1), the action

for a free, massless Dirac fermion ¥ = (Wg ¥, )T is

S = i/dzdxl?rﬂaﬂqf
— i [[araxwl0,- 0w+ w0+ 00w, (1)

where the Dirac matrices I’ = ¢* and I'' = —i¢® and
¥ = 9T, The internal global symmetry for the right-
moving Weyl fermion is O(2)R = U(1)RxZS", where
U(1)R and the charge conjugation symmetry ng act

on the fermion as ¥ Wpe Q" = =0, and
CRWR (CR)~! = W, respectively. Here, QR is the quantized
charge for the right movers, which obeys
CROR(CR)™! = —QR. A similar global O(2)" symmetry

applies to the left movers, making the total internal global
symmetry O(2)F x O(2)R.
The (quantized) vector and axial charges are defined

as OV =0QF 4+ OR and 9 = QF — OR and act on the
fermions as

Qv Wl =w, [Q". W=,

QAW =W, [N W)=Y (2)

The Z, subgroups of the vector and axial U(1) symmetries
act identically on the fermions as a fermion parity, so the

global form of these symmetries is [U(1)Y x U(1)4]/Z,.
The vector and axial charges are related by

QA — CRQV(CR)_I. (3)

The vector and axial U(1) symmetries are separately
anomaly-free in the sense that there is no obstruction to
gauging either one of the two. However, there is a mixed
anomaly between them, which implies that when the vector
symmetry is gauged (i.e., in QED), the axial symmetry is
broken, and vice versa [17,18]. This can be seen from the
anomalous conservation equation 0" jﬁ = —(1/n)E, where

= WI°T,¥ (with I = TT"") is the axial current and E
is the electric field.

Lattice model—Consider the 1 4 1D staggered fermion
lattice Hamiltonian [19-21]

L
Hz—iZ(cj'-ch—i—cjcj-H), (4)
=1
where there is a single-component complex fermion c;
at every site j, satisfying {c;,c;} = {c},c;,} =0 and
{c;. c;,} = ¢, 7. This Hamiltonian is ultralocal, with only
nearest-neighbor couplings. The continuum limit is a
single, free, massless Dirac fermion (1). We consider both
periodic and antiperiodic boundary conditions on a closed
chain with L sites, i.e., ¢;; = (=1)"c; with v =0, 1. We
assume L to be even for simplicity.

It will be important for the following discussion to
decompose the complex fermion into two real fermions
as ¢; =1%(a; +ib;), where q; —aj and b; —bT are
decoupled Majorana fermlons satisfying {a )=
{b;, by} =26;7. In terms of these Majorana ferm1ons
the Hamlltonlan (4) becomes

_EZ(Q

J=1

jaj1 +bbji). (5)

The Hamiltonian (4) has a U(1)Y fermion-number
symmetry whose quantized charge is

L

QV:Z<C 1€~ ) Zazb —Z%

J=1

It flows to the vector charge OV of the Dirac fermion field
theory in the continuum limit. We will hence refer to
it as the vector charge or the fermion number. The
U(1)V symmetry acts on the lattice fermions as

v v . .
€2 ¢c;em 9" = ¢~ ¢, or equivalently as

. v ) \ .
¢ a;e72" = cos pa; + sin pb;,

e?C"b,e=0C" = cos pb; — singa;. (7)
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Quantized axial charge—Is the axial symmetry exact on
the lattice? We claim that the lattice operator
1 - T i
or = EZ (cj+cp)cimn —cjiy)
=1
i L L
_ — A
3> b =) ah, (8)
— =
obeys the following properties. (a) It is quantized with
integer eigenvalues. (b) It commutes with the ultralocal
Hamiltonian (4). (c) It is a sum of local charge density
operators q’jf“+l . (d) It is bilinear in the fermions. (e) It
2

becomes the continuum axial charge Q* in the continuum
limit. Property (a) follows from the fact that the local
factors q L which are the lattice version of the (time

component of the) Noether current, commute with each
other and can be simultaneously diagonalized. Properties
(b), (c), and (d) are straightforward to verify. Below, we will
argue for the last property.

To find a lattice axial charge, we note that since the
vector charge is manifest on the lattice, using (3), it suffices
to find a lattice realization of the right-moving charge
conjugation CR. The latter is a chiral fermion parity that
flips the sign of a single Majorana-Weyl fermion.
Specifically, we decompose the Weyl fermion into two
Majorana-Weyl fermions as W = Ag + iyg, then CR only
flips the sign of yg. It is known that such a chiral fermion
parity is realized as a lattice translation on the lattice, which
we review below.

We focus on the Majorana fermion b; in the lattice
Hamiltonian (5), which flows to the left and right
Majorana-Weyl fermions y; and ygr in the continuum.
Up to a constant, the Hamiltonian for »; in momentum

space i D opepp Sin(27k/L)B i fr, where B =
(1/VL) Yk e Prikilbp, with  k€Z+wv/2  and
k ~k+ L. The ground state(s) |Q) obeys f;|Q) =0 for
all 0 < k < (L/2). The left- and right-moving modes in the
continuum field theory created by y; and ygr arise from
the lattice modes created by f_; with k close to k = 0 and
k = (L/2), respectively.

The key symmetry in the lattice model (5) is the
translation operator 7, that acts as TbajT;‘ =a; and
Tyb,T;' =bj ;. In momentum space, T,5,T,' =
e@mik/L)p  hence T, acts with a relative minus sign
between the modes around k =0 and k = (L/2) in the
limit L — oo. We conclude that on the low-lying states, T,
acts as the right-moving charge conjugation times the
continuum translation operator [22]

T, = CReT", (9)

where P is the continuum momentum operator acting only
on the Majorana fermion y (but not A). This is to be

contrasted with the lattice translation 7 = T, T}, that shifts
both a; and b; by one site. In the continuum limit, 7 flips
the signs of both Ay, yr [20,21], while T, only flips the sign
of XR-

Having identified the lattice origin of the right-moving
charge conjugation CR, we follow (3) to define the lattice
axial charge,

oA =T, 0VT;!, (10)

which gives (8). On the low-lying states in the L — o
limit, ¢2#P/L becomes 1 and T, ~ CR, so from (3) we see
that Q* becomes the continuum axial charge Q*. From this
expression, it is clear that Q” has integer eigenvalues since
it is unitarily equivalent to QV. It is also clear that it
commutes with the Hamiltonian since Q¥ and T, do.

Since Q? is quantized, we can exponentiate it to find an
exact U(1)" axial symmetry on the lattice, which acts
locally on the fermions as

N A .
€2 q;e™2" = cospa; + singb .

e 2" e=90" = cos pb; — singpa;_,. (11)
This quantized axial charge was first identified in [23,24]
from the connection to integrability. Here, we provided an
alternative derivation using lattice translation.

While QV and Q* each generates an ordinary U(1)
global symmetry, interestingly, these two lattice charges do
not commute,

[0Y.0Y == (¢

Jj=1

~

i +eiel). (12)

This is to be contrasted with the continuum where
[QY, Q] = 0. In the Supplemental Material [25] (SM),
we show that the nonvanishing lattice commutator goes to
zero on the low-lying states in the L — oo limit. Note that
(—=1)F = ¢i7Q" = ¢i"@" is the (nonanomalous) fermion
parity that flips the sign of all the fermions. It commutes
with both U(1)’s, i.e., [(-=1)F, QA = [(-=1)F, QY] = 0.
Unquantized axial charge—Although Q* does not

commute with QV, there is another conserved operator
that does [20,21],

(Cjch C/CIH)
(ajbj+1

L
—bjaj;) = Zéﬁ%- (13)

As we show in the SM, both 0” and Q0* flow to the same
continuum axial charge Q*. However, the eigenvalues
of Q* are generally irrational and are not quantized.
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Furthermore, while ¢2" is a conserved unitary operator
with 1 € R, it fails to send local operators to local operators
when 4 ~ O(L) (i.e., it is not a locality-preserving unitary).
See the SM for further discussion.

The commutator between the local charge densities q}’
and EI?JF% is [46]

B i
JI?ﬁ] =5 (6} = 8j-1.7)hy 1, (14)

where ;1 = —(i/2)(a;a;1 + b;bjy,) is the Hamiltonian
density. This is the lattice avatar of the Schwinger term,
which encodes the mixed anomaly of U(1)” and U(1)# in
the continuum.

The simultaneous realization of both vector and axial
U(1) symmetries seems to conflict with the well-known
Nielsen-Ninomiya theorem. However, neither of the con-
served lattice operators Q* and Q* satisfies both con-
ditions (i) and (ii) mentioned in the introduction: Q* is
quantized but does not commute with QV, while Q0
commutes with QY but is not quantized (see Table I).
Therefore, we cannot define a notion of lattice chirality
using them. The fact that these two conditions cannot be
met simultaneously is in harmony with the Nielsen-
Ninomiya theorem. Relatedly, we do not have U(1)* or
U(1)R symmetries on the lattice (which would have
violated the no-go theorem in Ref. [11]) since 1(QY +
Q") do not have quantized eigenvalues. In the SM, we
compare our construction with others in the literature.

Chiral anomaly from the Onsager algebra—We now
discuss the non-Abelian algebra generated by the charges
QY and Q*. Let us define G, = (i/2) 3 (a;a;., —b;b ;)
and Q, = (i/2) )_;a;b;,, with n € Z. These operators all
commute with the Hamiltonian and obey the following
closed algebra:

[Qna Qm] = iGm—m [Gnv Gm] =0,
[Qna Qm] = 2i<Qn—m - Qn—‘rm)’ (15)

which is precisely the Onsager algebra [16]. In particular,
v - QO’ QA - le QA :%(Ql + Q—l)’ Whlle Qn =
T, 00T," have integer eigenvalues, G, do not.
For a fixed finite n, these operators are sum of local
operators, and using (9), we find

OV for neven,

lim Q, — 16
L%OQ {QA for n odd. (16)

Therefore, we find an infinite tower of conserved lattice

operators, with Q* and O* special cases of them, that flow
to the same axial charge in the continuum limit.
Furthermore, this implies that lim;_, ., G, = 0. Thus, the
anomalous [U(1)Y x U(1)4]/Z, symmetry in the massless

TABLE I. Properties of the two lattice operators, both flowing
to the same axial charge of a free Dirac fermion in the continuum
limit.

Lattice operators oA or
Quantized eigenvalues? v

[+,QV] = 0? v
[+,H]=0? v/ v
Sum of local terms? v v

Dirac fermion field theory arises from the Onsager algebra
in the staggered fermion lattice model.

Since the model (4) is integrable, it is expected to have
many conserved quantities. However, the majority of
these conserved quantities are nonlocal, meaning they
cannot be expressed as a sum of operators supported in a
finite region, nor do they map local operators to other local
operators. The interesting point, however, is that among
these conserved operators in the Onsager algebra, Q*
(along with Q,, for small, odd n) is local and flows to the
axial charge in the continuum, which has an anomaly with
the vector charge.

Gauging the vector symmetry—Let us now discuss the
fate of the two axial charges after we gauge U(1)Y. The
gauged Hamiltonian is a lattice regularization of 1+ 1D
QED, i.e., the Schwinger model [17]. We introduce
a U(l)-valued gauge field U, i and an integer-valued

electric field operator L; i on each link. They satisfy

[Lj41.U 1] =6, yUj 1. The gauged Hamiltonian is [20,47]

Hy == (icj Ujpicin + H.c) +KY L2, (17)
J J

Furthermore, we impose the Gauss constraint, L =
Ly =gq] +[(=1)//2] [48.49]. The Gauss law restricts
the Hilbert space to a subsector of fixed QV charge.
Since the quantized axial charge Q* does not commute
with QV, it does not act within the gauge-invariant subspace.
QA is therefore no longer a symmetry when we couple to the
dynamical gauge field for U(1)Y. This is analogous to
gauging a U(1) subgroup of SU(2): if the $° symmetry is
gauged, the S* and §” charges cannot be made gauge-
invariant and are, therefore, explicitly broken. 3

On the other hand, the unquantized axial charge O* can
be made gauge-invariant as Q*(U) = %Zj(chH%ch—

-

Cj Uj €541
acting in the gauged theory, it fails to commute with the
gauged Hamiltonian,

). Even though it is a gauge-invariant operator

~IOMU)HY = =5 S Lyl (18)
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where h; 1(U) = —i(c}Uj%ch + CJUL%C}H) is the
Hamiltonian density for the fermions. This is the lattice
avatar of the Schwinger anomaly of the continuum axial
charge (d/dt)Q* = —i[Q* H] = —(1/x) [ dx E [50]. We
conclude that both the quantized Q” and the unquantized
QO axial symmetries are broken as we gauge the vector
U(1)Y symmetry.

Gauging the axial symmetry—The main advantage of the
quantized axial charge Q?, compared to the unquantized
one Q% is that it can be coupled to dynamical (compact)
U(1) gauge fields. The gauged Hamiltonian is obtained by
conjugating Hy with T,

i , .
Hy=) |:_Z(aj —ibj))Ujii(aj1 +ibjin) + he,

J
2
+ KZLH%. (19)
J

The Gauss law is obtained similarly, and found to be
Lig-Liy= qﬁ% + [(=1)//2]. We conclude that Q" and

QA can individually be gauged on the lattice and are free of
self-anomalies.

A lattice anomaly as an obstruction to gapped phases—
Do the lattice axial and vector symmetries have an
anomaly? Conventionally, the anomaly of a global sym-
metry is defined as the obstruction to gauging the
symmetry. However, the lattice charges Q* and QV
generate the non-Abelian Onsager algebra (15), which
includes highly nonlocal charges, so it is not clear if there
is a sensible prescription for gauging it. On the other hand,
it has been advocated in Refs. [51-54] that a global
symmetry should be called anomalous if there does
not exist a trivially gapped phase (i.e., a gapped phase
with a nondegenerate ground state and no long-range
entanglement) preserving the symmetry. This definition is
inspired by the ’t Hooft anomaly matching argument and
avoids the need to discuss the gauging of said global
symmetry. Below, we will show that the lattice axial and
vector symmetries together are anomalous in this sense.
See Refs. [55-57] for the relation between these two
definitions of anomalies.

Concretely, we prove in the SM that local deformations
of the Hamiltonian (4) preserving both QY and Q* are
necessarily quadratic in the fermions. In fact, the only QY
and QA symmetric local deformations are of the form

Ly (cj»c T jc;f +n)» Which flow to irrelevant defor-
mations of the Dirac conformal field theory (CFT) in the
IR. For a small deformation strength, such terms only
renormalize the velocities of the left- and right-moving
fermions in the continuum limit. In particular, the quartic
Thirring coupling c;c jc; 41Cj+1 preserves 0OV but breaks

Q*. This is to be contrasted with its continuum limit; the

LPrHY)(Pr,Y) =
P ¥, WiW, preserves both the vector and axial sym-
metries QY, OA, and leads to an exactly marginal defor-
mation of the Dirac fermion CFT.

One interesting corollary is that any Hamiltonian that
commutes with both QY and Q” must be gapless. This is
reminiscent of the constraint from perturbative anomalies
of continuous global symmetries in continuum field
theory, which are encoded in the local operator product
expansion and, therefore, cannot be matched by a gapped
phase. Even when the symmetry is spontaneously broken,
there are gapless Goldstone boson modes. The sym-
metries QV and Q? present an example of such a gapless
constraint on a lattice with a finite-dimensional local
Hilbert space.

This constraint is much stronger than the typical discrete
anomalies or the Lieb-Schultz-Mattis constraints [58—-60],
where the low-energy phase is constrained to be either
gapless or gapped with some nontrivial features, such as
degenerate ground states and/or long-range entanglement
described by a topological quantum field theory. It is
also stronger than the “symmetry-enforced gaplessness”
discussed in Refs. [61-67], where a gapped phase with
spontaneous broken discrete symmetries (e.g., time-
reversal symmetry) remains a possibility. The charges
OV and Q* entirely exclude any gapped phases, leaving
the gapless phase as the only possibility.

While the preservation of both QV and Q* imposes a
nontrivial gapless constraint, each of these two conserved
charges can individually be coupled to respective gauge
fields and is free of anomalies. Moreover, it is possible to
deform the gapless Hamiltonian (4) to a trivially gapped
phase with a unique vacuum while preserving either QV
or Q* (but not both). If we choose to preserve QV,
while violating Q*, we can add the deformation
S6H = Zj(—l)jcj-cj to open an energy gap. In the con-
tinuum, this corresponds to deforming the Lagrangian
density by the mass term ‘PE‘PL + ‘P{‘PR [20,21,49]. On
the other hand, the deformation 7),6HT;' =~ (-1)/ qﬁ%
preserves Q* but violates QV and drives the system to a
trivially gapped phase. In the continuum, it corresponds
to W, + V] ¥}

Finally, we note that the charge QV is on-site in the sense
that the local terms q}f involve fermions only on site j, and
it maps a local operator at site j to another at the same
location. On the other hand, Q* is not on-site since it
smears a local operator at site j to its nearest neighbors. The
unitary transformation by 7! renders Q* on-site, but this
comes at the cost of OV no longer being on-site. However,
there does not seem to be a unitary transformation that
makes both QV and Q* on-site simultaneously, hinting
at a mixed anomaly between them. See Refs. [68,69] for
related discussions.

continuum  Thirring  coupling
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Exact winding symmetry in the XX model—It is well-
known that upon bosonization, the fermionic Hamiltonian
(4) becomes the XX model, H =), X;X; .| +Y;Y;
[58]. The vector charge QV becomes %Z ; Z;, the charge of
the manifest U(1) spin rotation symmetry of the XX
Hamiltonian. In the continuum, this flows to the momen-
tum U(1) symmetry of the ¢ = 1 compact boson CFT at

radius R = \/§ (our convention for the radius R is such that
R =1 is the self-dual point under T-duality). On the other
hand, the axial charge Q* is mapped to a second U(1)
symmetry of the XX model, which flows to the winding
U(1) symmetry in the continuum; its explicit form on a
chain with even L is

| L2
ZZ(ijquj—Yszsz)- (20)
=

These two lattice charges first appeared in [16], and were
later discussed in [41,70-72] in the context of symmetries
of the XX model.

Conclusion—While a lattice model with a finite-
dimensional Hilbert space cannot host the exact chiral
anomaly, the symmetry generators for the axial and vector
symmetries—which in the continuum limit have a mixed
anomaly—exist exactly in the staggered fermion lattice
model. The quantized charges QV,Q* resemble their
continuum counterparts closely: each one of them gener-
ates a (compact) U(1) global symmetry and can be gauged.
However, they do not commute with each other on the
lattice. By contrast, the unquantized axial charge Q*
generates an R global symmetry, and it is not clear how
to couple it to U(1) gauge fields.

It would be interesting to investigate the fate of these
charges for interacting fermions, e.g., in 1 + 1D QED with
multiple flavors of fermions and in QCD, where gauge
interactions make the models nonintegrable. Another gen-
eralization is to explore quantized axial charges in 3 + 1D
staggered fermions, which is more phenomenologically
relevant. One qualitative difference compared to the 1 + 1D
case is that the axial symmetry in 3 + 1D not only has a
mixed anomaly with the vector symmetry but it is also
anomalous by itself.
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