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Abstract: This paper proposes a novel discrete-time multi-virus SIR (susceptible-infected-
recovered) model that captures the spread of competing SIR epidemics over a population
network. First, we provide a sufficient condition for the infection level of all the viruses over the
networked model to converge to zero in exponential time. Second, we propose an observation
model which captures the summation of all the viruses’ infection levels in each node, which
represents the individuals who are infected by different viruses but share similar symptoms. We
present a sufficient condition for the model to be locally observable. We propose a Luenberger
observer for the system state estimation and show via simulations that the estimation error of
the Luenberger observer converges to zero before the viruses die out.
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1. INTRODUCTION
The history of human civilization has been a narrative
of undergoing, battling, and outmatching various pan-
demics (Benedictow and Benedictow, 2004; Johnson and
Mueller, 2002). Suffering severe life and economic loss, the
research of modeling and monitoring the spread of multiple
diseases concurrently has grown significantly through the
inspection of each epidemic. In this paper, we investigate
the modeling, analysis, and observation of the spread of
multi-viruses over population networks.

A considerable amount of effort has been expended on the
study of multi-virus models (Paré et al., 2017; Prakash
et al., 2012; Sahneh and Scoglio, 2014; Paré et al.,
2020b; Santos et al., 2015; Liu et al., 2016; Paré et al.,
2021), which focus on the competing susceptible-infected-
susceptible (SIS) networked virus model. In this paper our
focus is on the competing susceptible-infected-recovered
(SIR) epidemic model over a network, as the SIR model
can capture the behavior of a diverse set of different epi-
demics such as: HIN1 (Coburn et al., 2009), Ebola (Berge
et al., 2017), and COVID-19 (Chen et al., 2020). The single
virus SIR epidemic networked model has been studied
extensively, e.g., (Hota et al., 2021; Mei et al., 2017; Paré
et al., 2020a). However, to the best of our knowledge,
the competing SIR epidemics has not been studied in the
literature. Thus, in this work we propose a discrete-time
competing SIR virus networked model. The multi-virus
model captures the presence and spread of viruses such
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as influenza and the SARS-CoV-2 virus over a population
and could also be utilized to represent different behaviors
of variants of the SARS-CoV-2 virus (Lopez Bernal et al.,
2021).

Beyond the modeling and analysis of the epidemic models,
the epidemic monitoring and infection level estimation
have been crucial to the research on contagions. Given
that the SARS-CoV-2 pandemic has provided us with an
enormous amount of data, how to accurately infer the in-
fection levels of the infectious diseases has become a topic
requiring urgent attention (Barmparis and Tsironis, 2020;
Meyerowitz-Katz and Merone, 2020). However, the various
symptoms caused by diseases such as influenza (Monto
et al., 2000) and SARS-CoV-2 (Tostmann et al., 2020)
affect the measurement of the cases of different diseases
and pose difficulties for the estimation of the states of
different epidemics, especially when tests are limited as
was witnessed at the beginning of the pandemic and at
various peaks of different waves.

In this paper, we propose what we believe to be the first
multi-virus model of SIR networked epidemic spreading,
along with specifications that ensure the model is well
defined. We then provide sufficient conditions for the infec-
tion level of each virus to converge to zero in exponential
time. Moreover, we explore the system state estimation
with an observation model which captures the summation
of all cases that exhibit similar signs of illness.

1.1 Notation
We denote the set of real numbers and the set of non-

negative integers by R and Z>q, respectively. For any
positive integer n, we have [n] := {1, 2, ...,n}. The spectral
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Fig. 1. The competing SIR networked model. Each node
in the network can only be in one of three states: S,
I*, R, where k € [m].

radius and an eigenvalue of a matrix A € R"*™ are
denoted by p(A) and A\(A), respectively. A diagonal matrix
is denoted by diag(-). The transpose of a vector x € R
is 7. The Euclidean norm is denoted by ||-||. We use I
to denote the identity matrix. We use 0 to denote the
vectors whose entries are all 0, where the dimensions of
the vectors are determined by context. Given a matrix A,
A = 0 indicates that A is positive definite, whereas A < 0
indicates that A is negative definite.

2. BACKGROUND

In this section, we present our system model, the set of
questions to be addressed, and some auxiliary results to
be used in subsequent sections.

2.1 System Model

We consider discrete-time dynamics for the networked
model of the multi-virus SIR epidemics. There are m
viruses spreading over the network and each individual
can be infected by no more than one virus. We denote
by ij the infection rate of the k-th virus from node j

to node 4, and by ¥ the healing rate for node i with
respect to virus k. We denote by s; and r; the susceptible
and recovered proportions of subpopulation 4, respectively.
We use z¥[t], where k € [m], to denote the fraction of
1nd1v1dua1s infected with virus k at time instant ¢. A
graphical depiction of this model is given in Figure 1. The
discrete-time dynamics of the time-invariant competing
virus of SIR networked epidemic model are written as:

sift+1]=s; (sZ ZZ B ] ) (1a)
k=1 j=1
xﬂt+u=xﬂti+h<smz bttt ). (o

nﬁ+u:wﬂﬂ+h§5%%kt (1c)

where h > 0 is the sampling parameter, ¢t is the time
index, and k € [m] indicates the k-th virus. Notice that
sift] + xlt] + -+ + 2™[t] + ri[t] = 1, capturing the fact
that in the competing virus scenario, all the viruses are
exclusive: an individual cannot be infected by more than
one virus concurrently. We now rewrite (1b) as:

2kt + 1) = 2 [t] + R{S[t|B* — TF 2k [, (2)

Where S[t] = diag(s;[t]), B* is a matrix with (7, j)-th entry
and ['*[t] = diag(yF).

Zj’
We now introduce the following assumptions to ensure that
the model in (1) is well-defined.

Assumption 1. For all i € [n] and k € [m], we have
s;[0], 2¥[0], 7:]0] € [0, 1].
Assumption 2. For all i € [n], and k € [m], we have

fj >0,7% > 0.

Assumption 3. For all i € [n], and k € [m], we have
hy 1Zj VB <Vand hY ) yF < 1.

Remark 1 Assumptwns 1 and 2 can be interpreted as
the initial proportion of susceptible, infected, and recovered
individuals all lying in the interval of [0,1] and we assume
that the healing rates are always positive, which are both
reasonable. Assumption 3 ensures the sampling rate is

frequent enough for the states of the model to remain well
defined.

We next build an observation model which produces the
output as the proportion of individuals who show flu-like
symptoms from infection of all viruses. The observation
model is written as (where we repeat (1b) for convenience):

xk[ + 1] = 2F[t] + h(s, ZB” T [t]), (3a)
= Z cFakt (3b)
where c is the measurement coefﬁc1ent
Assumptlon 4. The coefficient c¥ € (0,1] for all i €
[n], k € [m].

Remark 2. The coefficient c¥ from Eq. (3b) can capture
the probability of showing symptoms from the k-th virus at
subpopulation i. Therefore, 1 — cf captures the probability
of individuals infected with the k-th virus in subpopulation
1 being asymptomatic. The coefficient cf can also represent
how each subpopulation i defines and measures the cases
based on the symptoms of each virus k. For example, the
symptoms of influenza can include but are not limited to
fever, muscle aches, cough, runny nose, headaches, fatigue,
etc.

Remark 3. In the observation model, Eq. (3b) can be
interpreted as the summation of all the number of symp-
tomatic patients in each subpopulation, which is an indi-
cator for the decision-makers to be able to judge adequacy
of the local hospital capacity and the availability of medical
resources against the need.

We then have the following results for the system model
under Assumptions 1-3.

Lemma 1. Suppose that s;[0],2¥[0],7;[0] € [0,1], s:[0] +
S zk[0] + (0] = 1 for all k € [m],i € [n], and
Assumptzons 1, 2, and 3 hold. Then, for all i € [n] and

te Z>O7

(1) sl[] [] ri[t] € [0,1], for all k € [m], and s;[t] +

R[] +ri[t] = 1, and

(2) sl[t + 1] < slt].
Proof. 1) We prove this result by induction. Base Case:
By the assumptions made, s;]0], 2¥[0], ;0] € [0, 1], s;[0] +
Zk La®[0] + 0] = 1 for all k € [m],i € [n].
From Assumptions 1-3, we know that s;[0] > 0 and
1 —hd Z ﬁ” ][] > 0, hence s;[1] = s;[0](1 —
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Ry Z? ijxf [0]) > 0. Since —h(s;[t] Y1 Z? ,ijxj [0]) <
0, we obtain that s;[1] < s;[0] < 1. We can also acquire
that z¥[1] > 2¥[0](1 — hyF) > 0 and 2F[1] < 2¥[0] +
hsi[0] 227 BExk[0] < 2F[0] 4 5;[0] < 1. Ultimately, we have
ri[1] > 7;[0] > 0 and r;[1] < r;[0] + >0, 2¥[0] < 1. Sum-
ming up Eqs. (1a)-(1c), we obtain that s;[1]+>" ", z¥[1]+
ri[1] = s;[0] + Y- pe, ¥ [0] + r;[0] = 1.

Inductive Step: We assume for some arbitrary t that the
following holds: s;[t], z¥[t],7[t] € [0,1], for all k € [m]
and s;[t] + Y, x¥[t] + r;[t] = 1. By repeating the same
steps from the Base Case except replacing 0 and 1 with
k and k + 1, we can write that s;[t + 1], 28t + 1], r;[t +
1] € [0,1], for all k € [m] and s;[t + 1] + >, aF[t +
1] + r;[t + 1] = 1. Therefore, by induction, we can prove
that s;[t], zF[t],r:[t] € [0,1], for all k € [m] and s;[t] +

S xkt] 4+ rift] = 1 for all i € [n] and t € Zxo.
2) From 1) and Assumption 2 we know that
—h(si[t] D D ka:k[t]) < 0 for all ¢t € Zso. Thus,

(Y]
we have s;[t + 1] < s,[t] for all i € [n] and t € Z>¢. O

2.2 Problem Formulation

With the model in place, we now introduce the problems
considered in this paper under Assumptions 1- 4:

(i) For the system with dynamics given in (2), provide a
sufficient condition which ensures that z*[t] for some
and all k& € [m] converges to the eradicated state,
namely 2¥ = 0, in exponential time.

(ii) What is the rate of convergence for the sequence
2*[t], k € [m] (converging to 0 exponentially)?

(iii) Given the observation y;[t], under what conditions
are the infection levels of each virus %[t], for all i €
[n], k € [m] locally observable, at s;[t] = 0, Vi € [n]?
2.3 Preliminaries
Consider a system described as follows:
zlt + 1] = f(¢, z[t]), (4a)
ylt] = g(«lt]), (4b)
where z[t] € R", y[t] € RP with p < n, f is non-linear, and
g is surjective.
Definition 1. An equilibrium point of (4a) is GES if there
exist positive constants o and w, with 0 < w < 1, such that
z[t]]| < alzto]lw ), ¥t > to > 0,Vz[to] € R™.  (5)
Lemma 2. (Vidyasagar, 2002, Theorem 28) Suppose that
there exist a function V : Zy x R™ — R, and constants
a,b,c > 0 and p > 1 such that a||z||P < V(t,x) < b||z|?,
AV (t,z) == V(z[t +1]) — V(z[t]) < —c|z|]P,Vt € Zxo.
Then Va(to) € R™, x = 0 is the globally exponential stable
equilibrium of (4a).
Lemma 3. (Rugh, 1996, Theorem 23.3) Under the con-
ditions of Lemma 2, convergence to the origin has an
exponential rate of at least \/1 — (c/b) € [0,1), where b
and c are as defined in Lemma 2.
Lemma 4. (Rantzer, 2011, Proposition 2) Suppose that
M is a nonnegative matriz which satisfies p(M) < 1. Then
there exists a diagonal matriz P = 0 such that M T PM —
P <0.
Definition 2. The system in Eq. (3) is locally observable
at s;[t] if we are able to recover z¥[t] for alli € [n], k € [m]
through the output y;[t] in the duration of [t,t +m — 1].

Lemma 5. (Sontag, 1979) The system in (4) is lo-
cally observable at z[t] if and only if the map z[t] —

(g([t]), g(f ([t +1])), -+, g(f ([t +n = 1]))) is injective,
where n is the dimension of x[t].

3. HEALTHY STATE ANALYSIS

This section presents sufficient conditions that guarantee
that each virus k£ converges to zero exponentially fast,
and provides the associated rates of convergence for each
virus. We then present the conditions for all the viruses
to converge to zero in exponential time. Similar to the
standard SIR model, the multi-competitive SIR networked
model converges to a healthy state regardless of the system
parameters and initial conditions; however, it is important
to study the exponential convergence as it guarantees that
the viruses die out at a faster rate and fewer individuals
become infected over the course of the outbreak.

et M* = T — hT* 4+ hBY, (
MPF[t] := I + h{S[t]B¥ — T*}, (7)
and note that M¥ is the state transition matrix of Eq. (2):
M¥[t] = M* — h(I — S[t])B". (8)

We first present a sufficient condition, in terms of M*, for
the viruses to converge to zero exponentially.

Theorem 1. Under Assumptions 1-3, if p(M*) < 1, then
the k-th virus of the system in (1) converges to zero in
exponential time, and this holds for all k € [m].

Proof. By Assumptions 2 and 3, M*, defined by Eq. (6),
is nonnegative for all k € [m], and from the condition we
know that p(M*) < 1. Therefore, according to Lemma 4,
for each k € [m], there exists a positive definite diago-
nal matrix P* such that (M*)T P*M* — PF is negative
definite.

Consider the candidate Lyapunov function: V*(¢, z¥) =
(xF)T Pka*. Since P* is diagonal and positive definite,
(xF)T P2k > 0, for all z¥ # 0. Therefore, VF(¢,2%) > 0
for all k € [m],t € Zso, a¥ # 0. Since P* is positive
definite,

Amin(Pk)I S Pk S Amax(Pk)I7 (9)
which implies that
atllz"[* < VE(t, 2*) < of||2"|?, (10)

where of = Apin(P¥) and 0} = Apax(PF), with of o >
0.

Now we turn to computing AV* (¢, z). For 2* # 0 and for
all k € [m], using (2) and (6)-(7), we have
AVF(t, 27)
— (") T NI* )T PENIF )2 — (%) T PRt
= (") T[(M*)T PEMF — phlgh
—2h(z®) T (B*) (I — S[t]) PF M*a*
+h2(M) T (BMT (I — S[t) P (I — S[t))BFz*.  (11)

Note that the second and third terms of (11) can be
reorganized as
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(«®) " [-2h(B*)T (I — S[t) P*M*
+ h*(B*) (I — St])P*(I — S[t]) B*]2*
= (") {n(B") (I - S[t])P*
[-2M" + h(I — S[t])B*]}2*
= (") {n(B") (I — S[t])P*

[—2(I — hT*[t]) — h(I + S[t]))B¥]}2* <0,  (12)
where the last equality follows from (6), and the inequality
follows from Assumptions 2-3 and Lemma 1. Thus, by
plugging (12) into (11), we obtain

AV (t,2%) < (2®)T[(M*)T PP M* — PRk (13)
Since [(M*)T PFM* — P*] is negative definite, we have,
from Eq. (13),

AV (t,a*) < —of||2"||?,
where 0§ = Apin[P* — (MF)T P*M¥), with 0% > 0.
Therefore, from (10) and (14), V*(¢,2%) is a Lyapunov

function, with an exponential decay, and hence, z* con-

verges to zero at an exponential rate. O

(14)

Corollary 1. Under the assumptions of Theorem 1, and

with P* as defined in the proof of Theorem 1, convergence

of x*[t] generated by Eq. (2) has an exponential rate of at

1- % where o = A (P*), ok = Apin[P* —
Ug s 2 mazxr ) 3 mn

(M*)T P*M¥) for each k € [m].

least

Proof. From Lemma 3, (10), and (14), the rate of con-
1- Z—% We

2

then need to show that the rate is well defined, which is

vergence of virus k is upper bounded by

— % € [0,1). Since 0§ > 0 and of > 0, it will be

)
sufficient to show that o§ > o¥.

Since P* is positive definite and (M*)T P¥M* is nonneg-
ative definite, we have

okl < P* — (M*)TP*M* < PF < ob1, (15)

from which o4 > ¥ and the rate of convergence (/1 — Z;’,:
2

is well defined. O

4. STATE OBSERVATION MODEL

In this section, we use the measurement of y;[t], the
fraction of individuals who show similar symptoms from
all viruses, to determine the infection level of each virus.
We first construct the observability matrix for the system
from Eq. (3b), writing Eq. (3b) as:

ylr] = CXI, (16)

where y[t] = [yi[t] v2[t] -+ yalt]]" € R™*1, the measure-

ment matrix C € R"*™" is:

c=I[ctc?... cm]
with CF = diag([cF,ck, -+ ,ck]) for all k € [m], X[t] €
Rmnxl is:
! [t
2?[t]
X[i]=1] .
v

Therefore, the measurement y[t] can be reorganized as:
y[t] = Cral[t] + C222[t] 4 - - - + C™a™[t]. (17)
We can express the measurement at each time step over
the time interval [t,t +m — 1] as:
y[t]
vyt +1]
vyt + 2]

CM*Mt)
CYM[t] Mt 4 1] 2
CM*Mt] - -~A21[t+m —2]

02
C?M?[t]
i C2M?[t)M?[t + 1]

y[t—i-;n—l]

xQ[t]—i—”-

| C2MP[t] - - M?[t +m — 2]
- e
™M™ [1]

+ CM™[IM™[t + 1] ™[]

[CTM™ ] M™ [t +m — 2

=0 [t)z [t] + O*[t])2?[t] + - - - + O™ [t]a™[t]

=[O'[t] O?[t] --- O™[t]] X]t], (18)
where

Ck
Regn
OF[t] = C*MF [t M [t + 1)
kayrm - k

C"M™[t] -+ Mt + m — 2]
with OF[t] € R™™*" for all k € [m]. We now define the
observability matrix of the system in Eq. (3) as:

oft] = [0'f] O*[1] --- O™[1]],
where O[t] € R""*™",

(19)

We now consider the case when s;[t] = 0,Vi € [n]. Then
the observability matrix in Eq. (19) becomes

Oolt] = [Oplt] O3t] -~ OF'[H]] (20)
where oL
C*(I — hT*)
O] = | CF(I —hT*)? (21)

C*(I — hrkym=t
for all k € [m).
Theorem 2. Under Assumptions 1-4, if, for each i € [n],
¥ is a distinct value for all k € [m], the competing virus
model (3) is locally observable at s;[t] = 0,Vi € [n].

Proof. From the assumptions A ., v¥ <1, h > 0, and
vF > 0 for all i € [n], k € [m], we obtain that 1 — hy* >0
for all ¢ € [n],k € [m]. In addition, since we assume
that c& > 0 for all i € [n],k € [m], we can conclude
that the entries of Eq. (20): c¢F(1 — hyF) € (0,1) for all
i€ n],k e [m].

Welet 07 :=[0 0 --- 0]"*" and 0° := (). Consider Eq. (21)
and recall that every matrix in it is diagonal; Hence,
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,ng UK ESP GER TUR RUS
UK 0.08 0.15 0.24 0 0.06
ESP 0.15 0.12 0.13 0.11 0
GER 0.24 0.13 0.25 0.05 0.04
TUR 0 0.09 0.05 0.11 0.15
RUS 0.06 0 0.04 0.14 0.09
v 0.15 0.23 0.17 0.25 0.2
ml[(]] 0.005 0.01 0.0075 0.0025 0.0075
9'51[0] 0.00375 0.0075 0.0056 0.0019 0.0056
ct 0.4 0.4 0.4 0.4 0.4
Table 1. Network Parameters of variant 1 of
Figure 2.
,6’2.2]. UK ESP GER TUR RUS
UK 0.02 0.05 0.04 0 0.01
ESP 0.05 0.06 0.07 0.02 0
GER 0.04 0.07 0.04 0.03 0.05
TUR 0 0.03 0.04 0.09 0.07
RUS 0.01 0 0.05 0.07 0.06
72 0.095  0.12 0.1 015  0.13
xz[O] 0.001 0.002 0.0035 0.002 0.001
352[0] 0.0005  0.001 0.002 0.001  0.0005
c? 0.3 0.3 0.3 0.3 0.3
Table 2. Network Parameters of variant 2 of
Figure 2.

Eq. (20) is the concatenation of a set of block diagonal
matrices. For all ¢ € [n], the i-th row of the observability
matrix (20) can be written as:

[Oi—l C} On—z Oi—l CZZ On—i - Oi—l cl’(n O’n—l]

which is linearly independent with the (i + In)-th row
of (20) for all l € [m — 1]

071 eh(1— hyd) 07 0 G (- ) 0

under our assumption that, for each i € [n], v is a distinct
value across all k € [m]. Thus, the observability matrix in
Eq. (20) has full row rank. Since the observability matrix
is a square matrix, we conclude that Eq. (20) is full rank.
Notice that whenever we add another virus to the system
model (3), we increase the dimension of (20) from mnxmn
to (m + 1)n x (m 4+ 1)n by adding m blocks, and the
rank of the observability matrix will change from mn to
(m~+1)n, by the same logic as above. Therefore, by Lemma
5, the competing virus model in (3) is locally observable
at s;[t] = 0,Vi € [n]. O
Remark 4. The assumption in Theorem 2, namely that,
for each i € [n], vF is a distinct value across every
k € [m], can be interpreted as each virus having a dif-
ferent recovery rate. This assumption is reasonable as the
recovery rate represents the inverse of the average dura-
tion of an infected individual being sick, and the average
amount of time for an individual to recover from different
types/strands of viruses varies drastically (Whitley and
Roizman, 2001).

5. SIMULATIONS

In this section, we consider the special case of two exclusive
variants of the SARS-CoV-2 virus spreading over the net-
work depicted in Figure 2. In the network, each node rep-
resents a major country in Europe: UK, Turkey, Germany,
Spain, and Russia, and the edges represent transportation
between two node countries. The system parameters are
listed in Table 1 and Table 2.

Fig. 2. European graph topology.
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Fig. 3. Evolution of infection level of variant 1 in each
country (left); Evolution of infection level of variant
2 in each country (right).

240
230
220

210

Fig. 4. The scale of the observer gain vs the time for the
estimation error to converge to zero.

1»57x10

0 100 ¢ 200 300

Fig. 5. Estimation error of infection level of variant 1 in
each country (left); Estimation error of infection level
of variant 2 in each country (right).

The evolution of the infection levels of both viruses are
illustrated in Figure 3. We estimate the infection level by
using the following proposed Luenberger observer:

n

P[4 1] =28t + h <s [t] Z

+L( ilt] = 9alt]), (22)

Gilt
where §;[t] = 1>, 2F[t] — #;[t], in which the recovered
level is estimated through 7i[t] = hzqzo S vEEkq]
at each time step recursively. To investigate the impact
of the observer gain, we simulate the Luenberger ob-
server’s performance with a scaled observer gain nL;,
where L; = 1, for all ¢ € [n]. We denote by t* the time

e 1t]

— yFal]
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with the property that the aggregated estimation error
S >y |2k[t] — 2F[t)] < 0.01, for all t > t*; the
relationship between n and t* can be seen in Figure 4. We
can see that with the observer gain increasing, the con-
vergence time first decreases and then increases because a
large observer gain can cause the estimated infection level
to exceed 1, namely, the estimated system states become
not well defined.

We then simulate the state estimation in Figure 5 with
initial conditions from Tables 1, 2, and n = 2 which
results in the quickest convergence in Figure 4. We can
see that the estimation errors first fluctuate drastically
due to the gap between the estimated initial condition
and the actual initial condition. The difference in the
initial conditions has a larger effect on the estimation
error of variant 1, while the estimation error of variant 2,
when ¢ > 10 is negligible in comparison to its infection
level. When t > 39, the magnitude of the estimation
error of variant 1 in each node stays less than 10% of its
infection proportion. Moreover, as can be observed from
Figure 4 that the accumulated estimation error converges
to zero before both variants die out. Hence, with properly
chosen observer gain and initial condition, the Luenberger
observer is an adequate system state estimator for our

system model (2). ¢ a1 STON

This paper has investigated the stability and observability
of a novel discrete-time networked multi-virus SIR model.
We have provided a sufficient condition for each virus to
converge to zero exponentially. We have then specified a
necessary and sufficient condition for the system to be
locally observable at s;[t] = 0,Vi € [n]. In simulation, we
utilized a Luenberger state observer to estimate the system
states, and the results have illustrated that the Luenberger
observer is suitable for state estimation of our new model.
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