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ABSTRACT

Optical coherence tomography (OCT) has emerged as a pre-
ferred imaging method for assessing plaques before stenting
and understanding blood vessel responses to intervention.
However, the current image resolution still limits the effec-
tive capture of crucial intravascular elements. Although deep
learning-based super-resolution techniques, relying on high-
resolution (HR) and low-resolution (LR) pairs, hold promise
in enhancing image resolution, existing methods primarily
employ HR and LR images from the same imaging platform
to demonstrate the potential of deep learning. This approach
is impractical in real imaging scenarios where the HR image
can not be obtained from a LR imaging platform. In this pa-
per, we present a cross-platform deep learning framework that
leverages unpaired cross-platform datasets. The HR training
dataset is sourced from a high-end, high-cost OCT system,
while the LR training dataset originates from a low-end, low-
cost OCT system. Improving a Cycle Generative Adversarial
Network with a specialized focus on coronary image struc-
ture, our experiments indicate that the new network generates
super-resolved images from any LR image, demonstrating
image quality comparable to OCT images acquired by HR
systems.

Index Terms— Optical coherence tomography, Super-
resolution, Deep learning, Cross-platform

1. INTRODUCTION

Optical coherence tomography (OCT) is a non-invasive imag-
ing modality that is capable of generating depth-resolved
reflectivity profiles in real-time using infrared interferome-
try [1]. Recently, intravascular optical coherence tomogra-
phy (IVOCT) has become a preferred imaging method for
evaluating plaques before stenting, ensuring effective stent
placement, and examining how blood vessels respond to
interventions [2]. However, the present optical resolution
of IVOCT (10-20 µm) limits its capability to detect crucial
elements such as endothelial layers and plaque erosion. Al-
though benchtop OCT systems can provide a high spatial
resolution of 2µm, there is no existing method to push the

Fig. 1. An example of (a) low-resolution (LR, axial reso-
lution of 7µm and lateral resolution of 18µm) and (b) high-
resolution (HR, axial resolution of 3µm and a lateral resolu-
tion of 8µm) images of human coronary samples. The high-
resolution OCT systems resolve detailed features of human
coronary samples.

resolution of IVOCT to such level due to the limitations of
imaging speed and hardware cost. A representative compari-
son between OCT scanning of human coronary samples using
low (LR) and high resolution (HR) systems is shown in Fig.
1. Detailed texture feature and layer boundary are observed
in HR images.

Deep learning (DL) algorithms have been developed to
improve the resolution of OCT images [3, 4, 5, 6, 7, 8] via
offline model training from HR and LR image pairs. Given
an unknown LR image, the trained model can generate a HR
counterpart with fine-grained details. However, there is a crit-
ical limitation on the system constrain of current DL algo-
rithms. However, a critical constraint exists regarding the sys-
tem limitations of current DL algorithms. The existing DL-
based algorithms focus on training/evaluating using HR-LR
image pairs from the same image platform. Specifically, the
LR image is synthetically degraded (i.e., undersampled in bit-
wise [3], spatial domain [5], and/ or spectral domain [4, 6, 7,
8]) version of HR images. This is different from the real-
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Fig. 2. Representative instances of OCT images to support
(a) classification and (b) segmentation tasks. For the classifi-
cation task, the image-wise labels of non-layer and layer are
provided; For the segmentation task, the pixel-wise labels for
the intima, media, and adventitia are provided.

world scenarios where LR imaging platform could not pro-
vide HR images due to the limitation of hardware and scan-
ning speed. For example, from a swept source OCT imaging
system with fast pullback for coronary imaging, the best res-
olution is 10 µm. Image resolution at 2 µm level could only
be obtained in spectral domain OCT platform. Therefore, a
cross-platform OCT super-resolution technology is in unmet
need to bring better image quality in coronary imaging.

In this paper, we develop a deep learning framework,
namely Cross-Platform Structure-Aware GAN (CPSA-GAN)
to improve the quality of LR images acquired by low-cost
systems. Our method is optimized for human coronary ap-
plications by considering coronary artery structures. In sum-
mary, the proposed method has the following contributions:
(1) Our method functions on real-world LR and HR images
acquired by low and high cost OCT systems, rather than syn-
thetic datasets; (2) Our method does not require pixel-wisely
matched OCT image pairs, which is promising to scale up
and accommodate more data; (3) We incorporate structural
information of human coronary samples during the process
of super-resolution.

2. METHODS

2.1. OCT data acquisition

Human coronary artery samples were collected from the
School of Medicine at the University of Alabama at Birm-
ingham (UAB). We adopt a Thorlabs Ganymede commercial
OCT system (axial resolution of 3µm and a lateral resolution
of 8µm) for the HR system; and a Lumedica OQ Labscope
OCT system (axial resolution of 7µm and lateral resolution
of 18µm) for the LR system. Volumetric data (N = 30) were
collected with an imaging depth of 2.56 mm and a pixel size
of 2µm x 2µm.

This dataset expands upon the coronary dataset utilized in

our prior research [9]. In particular, new images from a LR
imaging platform were acquired. Additionally, more speci-
mens were acquired using both LR and HR systems for eval-
uation purposes. Furthermore, we added more OCT coronary
images with both layered and non-layered structures. A non-
layered structure image corresponds to a sample where a sin-
gle layer is dominating. An instance of the extended human
coronary database is shown in Fig. 2. These images will be
used for the classification task (for all images, Fig. 2a) and the
segmentation task (for layered structure, Fig. 2b) to provide
guidance in the super-resolution process.
2.2. Design of CPSA-GAN

2.2.1. Network architecture

Details of the CPSA-GAN are shown in Fig. 3. Because
of the variety in coronary samples, the first layer might have
dominance, or multiple layers could co-exist in OCT images.
To address this, we devised a structure-aware module to clas-
sify these scenarios and incorporate this information as a con-
straint in the loss function. Two domains, DH and DL re-
fer to HR domain and LR domain. Two generators, GL→H

and GL→H are the image generation process from LR to HR
(GL→H ) and from HR to LR (GH→R). The GL→H and DH ,
GH→L and DL are symmetric pairs. With a unique con-
sideration on coronary imaging structure, we design GL→H

and GH→R with a structure that is capable of distinguishing
non-layer and layer structures of human coronary structure,
as well as further differentiating the intima, media, and ad-
ventitia layers. For the encoders, we adopt three convolution
layers with a stride of two in a U-Net shape; for decoders, we
adopt three transpose convolution layers with a stride of two.
We adopt two groups of residual feature blocks (RFB) [10],
eight in each group, to extract featuremaps from encoders.
One group is used for image generation. The other group is
combined with fully connected layers (FCL) for classification
and a 1×1 convolution layer for segmentation, with an aim to
provide coronary structure guidance. In addition to the gener-
ator design, we have two discriminators, DL and DH , which
classify if the generator images is LR or HR. Here, we follow
the conventional discriminator design of DL and DH in [11].
In testing, only the image generation module will be used for
an input LR image, as shown in Fig. 3.
2.2.2. Loss function

The loss function of CPSA-GAN consists of following com-
ponents: adversarial loss Ladv , cycle-consistency loss Lcycle,
embedding loss Lemb, coronary segmentation loss Lseg , and
coronary classification loss Lcla.

L(GL H , GH L, DH , DL, G
seg
L H , Gseg

H L, G
cla
L H , Gcla

H L)

= Ladv(GL H , DH) + Ladv(GH L, DL)

+ αLcycle(GL H , GH L) + βLemb(GL H , GH L)

+ γLseg(G
seg
L H , Gseg

H L) + δLcla(G
cla
L H , Gcla

H L)

(1)
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Fig. 3. Scheme of the proposed CPSA-GAN. The CPSA-GAN consists of two structure-aware generators: GL→H and GH→L;
and two discriminators. (a): During the training process, the CPSA-GAN is trained using LR and HR OCT images. The
generators are aware of the human coronary structures via classification and segmentation subtasks. We use 1x1 convolution
layer to merge the concatenated features from the two RFB groups. (b): During the testing phase, SR OCT images can be
generated using LR images as inputs.

The Ladv and Lcycle follows the same definition in a Cy-
cleGAN structure [11]. The Lemb is the differences between
the embeddings of two generators using L1-norm. The α, β,
γ, and δ are hyper-parameters. Gseg

L H and Gseg
H L, Gcla

L H and
Gcla

H L are segmentation and classification subtasks performed
by GL H and GH L. Gseg

L H and Gseg
H L predict the pixel-wise

segmentation of the feature map acquired by RFB. The train-
ing of Gseg

L H and Gseg
H L are supervised by the human coro-

nary structural database using cross-entropy loss term. Gcla
L H

and Gcla
H L classify coronary images with layer and non-layer

structures, which is supervised by binary cross-entropy loss.
We aim to solve the following minmax optimization problem:

G∗
L H , G∗

H L =

argminmaxL(GL H , GH L, DH , DL,

Gseg
L H , Gseg

H L, G
cla
L H , Gcla

H L)

(2)

3. EXPERIMENTAL DESIGN AND RESULTS

3.1. Experimental dataset

We performed three-fold cross-fold validation on our dataset.
The OCT images were cropped and resized to 512×512.
Next, image patches were randomly flipped from left to right
for data augmentation. In total, 208 OCT images were ac-
quired. A customized image processing toolkit was developed
to ensure that the image angle and region was approximately
the same when comparing OCT volumes from both platforms.

3.2. Evaluation setup and metrics

3.2.1. Network training details

The pixel values of OCT images were scaled to [0, 1]. The
batch size was 12. The learning rate was initialized as 10−4,
followed by a linearly decaying decay for every two epochs.
α, β, γ, and δ were empirically set to 10, 5, 5, and 5 respec-
tively. In total, the networks were trained with 3,000 epochs
to ensure convergence. The experiments were carried out in
parallel on two RTX A6000 GPUs.

3.2.2. Quantitative evaluation metrics

We measure the similarity of pairs of super-resolved (SR)
OCT images and HR OCT images using reference-free met-
rics including Fréchet inception distance (FID) [12] and Per-
ceptual hash value (PHV) [13]. The FID is defined as:

FID = |µ(SR)− µ(HR)|2

− Tr(
∑

SR+
∑

HR− 2
√∑

SR
∑

HR)
(3)

where µ(SR) and µ(HR) are the magnitudes of the SR and
HR OCT images; Tr is the trace of the matrix;

∑
SR and∑

HR are the covariance matrix of the SR and HR images.
The PHV is defined as:

PHV =
1

N

∑
U [|avg(Fi(SR))−avg(Fi(HR))|−T ] (4)

where N is the total number of extracted features; Fi repre-
sents the featuremap extracted from i-th layer of ResNet-101;
avg is the average pooling operation that turns 3-D features

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on May 31,2025 at 16:37:56 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. The visual inspection of representative OCT images acquired from (a) LR and (b) HR systems. The SR images generated
by (c) Cycle-GAN, (d) Coronary-GAN, and (e) CPSA-GAN are attached. The blue rectangle demonstrates a zoomed-in region
of interest (ROI). The PNSR, SSIM, and LPIPS scores of ROIs are attached. The green triangle indicates the media region and
the yellow hexagon indicates the adventitia region.

Fig. 5. The (a) PHV and (b) FID scores of our method,
Coronary-GAN, and Cycle-GAN. We calculate PHV1,
PHV2, and PHV3 scores from different levels of ResNet.

into 1-D features; U is the unit step function; and T is a preset
threshold. We use the three variations of PHV scores (i = 1,
PHV1), (i = 2, PHV2), and (i = 3, PHV3) which are ex-
tracted from i-th layer of ResNet-101.

3.2.3. Comparison with existing methods

We compare CPSA-GAN with existing methods including
Cycle-GAN [11] and Coronary-GAN [9]. Coronary-GAN [9]
is a Cycle-GAN based framework, originally used for trans-
lating OCT images to virtual histology. Minor modifications
are made in input and retraining for testing.

3.3. Results

A representative SR OCT image and its corresponding LR
OCT image are shown in Fig. 4. The SR image generated by
CPSA-GAN is capable of revealing the intima, media (yel-
low hexagon symbols), and adventitia layers (green rectan-
gle symbols). On the contrary, the media and adventitia are
compromised in LR images, as well as the SR images gen-
erated by Cycle-GAN and Coronary-GAN. We register HR
image with LR on pixel wise. The SR image generated by
CPSA-GAN has better performance, with higher peak signal-
to-noise ratio (PSNR), higher structural similarity index mea-
sure (SSIM), and lower learned perceptual image patch sim-
ilarity (LPIPS) [14] scores, when compared to Cycle-GAN
and Coronary-GAN.

Additionally, we calculated PHV 1, PHV 2, PHV 3, and
FID scores from our cross-validation experiments over the en-
tire dataset. The results are reported in Fig.5. Comparing
to Cycle-GAN and Coronary-GAN, our CPSA-GAN gener-
ates SR OCT images that are more similar to HR OCT im-
ages, which is confirmed by higher PHV scores and lower
FID scores.

4. CONCLUSIONS

We have developed a cross-platform super-resolution deep
learning framework to improve the resolution of LR OCT im-
ages acquired by low-cost systems. The CPSA-GAN is opti-
mized for human coronary samples by considering the layered
structure. The experimental results indicate that the CPSAG
generates super-resolved images that are comparable to HR
OCT images acquired by high-cost systems. The CPSA-GAN
does not need pixel-wisely matched synthetic image pairs for
training, which is promising to scale up and accommodate
more data. In the future, we plan to apply CPSA-GAN to the
real time coronary imaging during the diagnosis and treatment
of coronary artery disease.
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