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Metabolic model guided CRISPRI identifies a central role for
phosphoglycerate mutase in Chlamydia trachomatis persistence
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ABSTRACT Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts
from its normal growth to a non-replicating form, termed persistence. It is unclear if
persistence reflects an adaptive response or a lack thereof. To understand this, transcrip-
tomics data were collected for CTL grown under nutrient-replete and nutrient-starved
conditions. Applying K-means clustering on transcriptomics data revealed a global
transcriptomic rewiring of CTL under stress conditions in the absence of any canonical
global stress regulator. This is consistent with previous data that suggested that CTLs
stress response is due to a lack of an adaptive response mechanism. To investigate
the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic
model of CTL (iCTL278) and contextualized it with the collected transcriptomics data.
Using the metabolic bottleneck analysis on contextualized iCTL278, we observed that
phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence state.
Our data indicate that pgm has the highest thermodynamics driving force and lowest
enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm in the presence or
absence of tryptophan revealed the importance of this gene in modulating persistence.
Hence, this work, for the first time, introduces thermodynamics and enzyme cost as tools
to gain a deeper understanding on CTL persistence.

IMPORTANCE This study uses a metabolic model to investigate factors that contribute
to the persistence of Chlamydia trachomatis serovar L2 (CTL) under tryptophan and
iron starvation conditions. As CTL lacks many canonical transcriptional regulators, the
model was used to assess two prevailing hypotheses on persistence—that the chlamy-
dial response to nutrient starvation represents a passive response due to the lack of
regulators or that it is an active response by the bacterium. K-means clustering of
stress-induced transcriptomics data revealed striking evidence in favor of the lack of
adaptive (i.e, a passive) response. To find the metabolic signature of this, metabolic
modeling pin-pointed pgm as a potential regulator of persistence. Thermodynamic
driving force, enzyme cost, and CRISPRi knockdown of pgm supported this finding.
Overall, this work introduces thermodynamic driving force and enzyme cost as a tool to
understand chlamydial persistence, demonstrating how systems biology-guided CRISPRi
can unravel complex bacterial phenomena.

KEYWORDS C. trachomatis, persistence, nutrient starvation, global stress response,
metabolic bottleneck

hlamydia trachomatis serovar L2 (CTL) is a Gram-negative obligate intracellular
human pathogen (1) causing an estimated 1.7 million new genital tract infections
annually (2). CTL replicates in a specialized membrane compartment, termed the
inclusion, and uses different strategies to survive in the host intracellular environment
(3). During its development cycle, CTL can alternate between the extracellular infectious
elementary body (EB) and the intracellular non-infectious reticulate body (RB) (4). EBs
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enter epithelial cells and differentiate into RBs inside the inclusion. After several cycles of
replication, RBs undergo an asynchronous secondary differentiation to create new
EBs, which promote subsequent rounds of host cell infection (5).

When RBs experience nutrient starvation, they enter a reversible state of growth
arrest, named persistence (6). RBs in the persistent state exhibit a distinct and enlarged
morphological form, referred to as an aberrant reticulate body (ARB). ARBs remain
metabolically active (7). Experimentally, chlamydial persistence can be induced with
the addition of the cytokine interferon-y (8), tryptophan starvation (9), iron starvation
(10), or other stressors (11). Despite these studies, the fundamental nature of persistence
is still puzzling. Whether persistence is an active or passive response is not clear. In
evolving to obligate intracellular dependence, CTL has eliminated many genes from its
chromosome, including canonical stress regulators like the stringent response and o°
(12). One hypothesis is that CTL enters persistence as it lacks such canonical regulators
(13-15). An extension of this hypothesis is that persistence is effectively a substitute for
the lack of a conventional global response regulator. A recent study (16) compared iron
and tryptophan starvation to nutrient-replete conditions. While there were significant
transcriptomic differences between control and starvation conditions, it is still not clear
if those changes were a directed and evolved response. To gain a holistic understanding
about the mechanism of CTL persistence, it is pertinent to understand the metabolic
landscape that occurs alongside the transcriptional changes. However, there is a dearth
of experimental studies investigating the whole CTL metabolic landscape due to the
challenging nature of working with an obligate intracellular pathogen. Thus, a systems
biology approach may be useful to understand CTL metabolism during persistence.

Genome-scale metabolic models (GSMs) have been widely used in similar systems
biology studies (17, 18). A GSM captures annotated metabolic reactions within a
biological system and can predict reaction fluxes using flux balance analysis (FBA) (19),
flux variability analysis (FVA) (20), and parsimonious FBA (pFBA) (21). To date, GSMs
developed for different pathogens were successful in predicting metabolic adaptations
of Mycobacterium tuberculosis (22), Acinetobacter baumannii (23), Klebsiella pneumoniae
(24), and Helicobacter pylori (25). GSMs were also successful in predicting different
virulence factors such as lipid A modifications of Pseudomonas aeruginosa (26) and
substrate utilization patterns of Staphylococcus aureus (27). Moreover, GSMs successfully
predicted novel drug targets for Salmonella typhimurium (28) and Campylobacter jejuni
(29). Recently, a GSM was used to characterize the metabolic differences between
chlamydial EBs or RBs under normal growth and development conditions and yielded
the expected result that RBs are more metabolically active than EBs (30). We hypothesize
that nutrient starvation will alter CTL metabolism in a manner that is distinct from the
metabolic activities of EBs and RBs. Hence, we reconstructed the most comprehensive
GSM of CTL, iCTL278.

To study the nature of persistence, persistence-specific “omics” data needed to be
overlayed with the iCTL278. This process is called contextualization of the GSM. Without
contextualization, GSM may predict unrealistic reaction fluxes (31), erroneous cellular
phenotypes (32), or inaccurate growth rate patterns (33). Two different approaches
are available for contextualization: switch [e.g., GIMME (34), iMAT (35), MADE (36), and
RIPTiDe (37)] or valve [e.g., E-Flux (38), PROM (39), and EXTREAM (40)] approaches.
While switch approaches display a binary nature, resulting in the active-or-inactive status
of a reaction, valve approaches provide more flexibility by making the reaction flux
proportional to the abundance of associated transcripts/proteins.

In this work, to perform systems-level investigations of CTL persistence, transcriptom-
ics data were used for nutrient-sufficient and nutrient-starved conditions. To gain further
insights from these transcriptomics data, K-means clustering algorithm was implemen-
ted, resulting in the identification of four core components of the CTL transcriptome.
Furthermore, a statistical correlation study revealed a global transcriptomic rewiring
of CTL under nutritional stress conditions. This, along with a lack of global stress
regulators in CTL, revealed the lack of an adaptive response as the primary reason
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of CTLs entry to persistence. To further understand how this global transcriptomic
response impacts CTL metabolism, contextualized GSMs were reconstructed using
the E-flux algorithm. Our recently developed metabolic bottleneck analysis (MBA) (40)
identified phosphoglycerate mutase (pgm) as a candidate regulator of entry of CTL
into persistence. The data revealed that pgm activity had the highest thermodynamics
driving force and lowest enzymatic cost. To validate this finding, we used CRISPRIi
to block transcription of pgm and subsequently performed starvation experiments,
which revealed enhanced sensitivity of pgm knockdown to starvation conditions. The
outcome supported the prediction from MBA, thermodynamics driving force, and
enzyme cost analysis. Additional systems-level investigation pinpointed the cellular
impact of persistence, which is to prime itself for rapid growth upon the availability
of nutrients. Overall, this metabolic model-guided study, for the first time, examined CTL
persistence through the lens of thermodynamic driving force and enzymatic cost and
will work as a blueprint to investigate phenotypical and genotypical changes associated
with other microbial infections.

RESULTS AND DISCUSSION
C. trachomatis L2 genome-scale metabolic model development and analysis

To analyze the metabolism of CTL in different stress conditions, we reconstructed a GSM
of CTL using the NCBI RefSeq genome annotation (KBase Genome ID: GCF_000068585.1)
from KBase (41). After reconstructing the draft GSM and adding reactions from the
previously reconstructed model (30), a literature search was performed regarding the
CTL-specific biomass composition. With information unavailable, a template Gram-neg-
ative biomass equation was used as the objective function of FBA. We performed a
sensitivity analysis of each of the biomass constituents by increasing the coefficient
by 10% as described in the literature (42) to assess its impact on the biomass growth
rate. The analysis indicated only cobamide, peptidoglycan, and acyl carrier protein
(ACP) impacted the biomass growth rate (Table S1). This analysis justifies the use of a
template Gram-negative biomass equation, as the growth rate is not very sensitive to
the stoichiometry of major biomass components such as amino acids, fatty acid, lipid,
DNA, and RNA. This draft model did not capture some known metabolic functionality of
CTL. For example, CTL has an incomplete tricarboxylic acid(TCA) cycle and must obtain
malate from the host (43). However, the malate transport reaction was missing in the
draft model. Similarly, CTL also obtains glucose 6-phosphate from the host cell (43).
To account for these gaps in the metabolic network of CTL, we performed gap-filling
using our previously developed tool OptFill (44) and added transport reactions for both
malate and glucose 6-phosphate to the model. CTL partially depends on the host cell
for ATP and NAD+ (43), and associated transport activities were added to the model
to account for these biological needs. Overall, the curated model, iCTL278, consisted of
729 metabolites, 692 reactions, and 278 genes. We performed MEMOTE testing (45) for
iCTL278, and it returned a score of 94%. The model is fully mass balanced and stoichio-
metrically consistent. The full MEMOTE report can be found in the Text S1. The MEMOTE
score comparison between iCTL278 and the previously published CTL model is shown
in Fig. STA. In addition to performing MEMOTE, we also verified other known metabolic
traits of CTL, such as the iCTL278 requirement of guanosine triphosphate (GTP), cytidine
triphosphate (CTP), and uridine triphosphate (UTP) to sustain biomass growth (46). CTL
is an auxotroph for most amino acids and can only biosynthesize alanine, aspartate, and
glutamine using dicarboxylates from the TCA cycle (43). The rest of the amino acids
needs to be acquired from the host cell. iCTL278 recapitulated these metabolic traits
for amino acids. Overall, iCTL278 captured all the known metabolic characteristics of
CTL. The model reconstruction process is shown in Fig. 1, the metabolic networks of the
model are shown in Fig. 2A, and the number of reactions in different pathways is shown
in Fig. 2B.
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FIG 1 Overall process of the model reconstruction, refinement, and subsequent analysis/validation. Kbase, NCBI RefSeq, and ModelSEED database were used

to reconstruct the initial model. After standard model curations, a high-quality GSM was ready to use. Later, condition-specific transcriptomics data were

incorporated with GSM through E-flux algorithm, which resulted in five contextualized models. These models were used to find metabolic bottlenecks and

persistence mechanism. K-mean clustering algorithm applied on the transcriptomics data revealed a global stress response mechanism. Thermodynamics and

enzyme cost analysis, along with in vitro experimentation, reveal the regulatory role of pgm in CTL persistence.
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FIG2 An overview of the metabolic network captured in the CTL genome-scale metabolic model and the result of model validation. (A) Visualization of the GSM
metabolic network was performed using iPath3 (47). This metabolic network provides an idea regarding the limited metabolic capability of CTL. (B) A balloon
plot representing a number of reactions in different pathways in the iCTL278. (C) Predictions for contextualized iCTL278 matched well with the experimental

observations.

Model validation using experimental proteomics data

Although the MEMOTE testing of iCTL278 returned a score of 94%, it was still necessary
to determine if iCTL278 could capture the known phenotypes of CTL upon contextualiza-
tion. In a previous study (38), a valve-based approach using the E-flux algorithm, which
connects reaction activities linearly with the gene expression levels, accurately predic-
ted different cellular phenotypes regarding fatty acid biosynthesis of M. tuberculosis, a
well-known pathogenic bacterium. Therefore, a previously published study on quanti-
tative normalized protein profiling of interferon-y-treated CTL (8), despite its limited
effort to confirm the induction of aberrance, was used to reconstruct two contextualized
models using the E-flux algorithm (38), RB, and ARB models. The latter was under stress
induced by interferon-y. The proteomics data set covered all 278 proteins of the iCTL278,
thus ensuring a high degree of coverage of proteomics data for the model.

When flux distribution was calculated for both RB and ARB, similar to previous studies,
flux through energy metabolism was reduced in the ARB compared to RB (8). As CTL
enters persistence, cell division is arrested, and metabolism is reduced to a minimum
level such that only essential cellular functions are maintained. As GSMs are unable to
directly calculate the concentration of different metabolites involved in a biochemical
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network, we used the flux-sum analysis (FSA) approach to predict the metabolic pool
size of ATP in both RB and ARB for further verifications and found a lower ATP pool
size in the ARB condition. The details of flux-sum analysis can be found in our previous
work (33) and also in the Materials and Methods section. Thus, the reduced energy
metabolism in ARB compared to the RB, a distinguishing feature of the persistence state,
was successfully captured by the iCTL278.

As a further verification, we explored the peptidoglycan biosynthesis pathway of CTL.
Peptidoglycan is essential for cell division and is evident only at the division septum in
CTL but, unusually, is not a component of the cell wall (48). During stress conditions,
CTL arrests its cell division (6). As cell division is arrested in the ARB, the model predic-
ted reduced peptidoglycan biosynthesis in ARB compared to RB, which is consistent
with a previous study showing reduced expression of cell division components under
tryptophan starvation (49). CTL relies on both de novo biosynthesis and salvage from
the host for fatty acid and phospholipid to produce its membrane phospholipids, which
are also crucial for cell division (50). When fatty acid biosynthesis reactions in both RBs
and ARBs were compared, we found reduced activity in the fatty acid biosynthesis in
ARBs compared to RBs, which reiterates what has previously been reported (51). This
was expected given the predicted reduced requirement for fatty acid biosynthesis in the
absence of bacterial replication.

Overall, iCTL278 recapitulates known phenotypes of ARBs and RBs upon contextuali-
zation. Therefore, iCTL278 is well suited to analyze the metabolism of CTL under different
stress conditions. The summary of the validation result is shown in Fig. 2C.

Effects of nutrient starvation on CTL growth and development

Our understanding of the molecular underpinnings behind the persistence of CTL is still
limited. Despite employing numerous experimental methods to induce persistence, the
result consistently shows similar ARB morphology, as well as disruptions in the transcrip-
tome and proteome. Thus, specific alterations to transcriptional and translational profiles
may precede, and thus induce, aberrant growth.

We assayed several distinguishing features of CTL persistence across the different
treatment conditions, i.e., untreated (UTD24), 16 hours of iron chelation with the chelator
2,2-bipyridyl (Bpd; BPD16) or tryptophan starvation (TRP16), and 24 hours of iron
(BPD24) or tryptophan starvation (TRP24). All treatments were performed over a 24-hour
period. In the case of TRP16/BPD16, infection was induced after 8 hours, while for TRP24/
BPD24, it was induced immediately at the start. One of those was the morphology
of CTL, which was monitored by immunofluorescent confocal microscopy. Here, we
confirmed that, in contrast to the untreated CTL inclusions at 24 hours post-infection
(hpi; UTD24), all starvation strategies yielded smaller inclusions (Fig. 3A), which was
associated with lower yields of inclusion-forming units, indicating severely delayed
development that compromised the generation of infectious particles. We observed
that BPD treatments resulted in aberrantly enlarged organisms. TRP inclusions were
smaller, indicating a growth defect. We also analyzed genome copy number across all
stress conditions. We observed significantly reduced genome equivalents (GEs) for all
stress conditions compared to UTD24. Unsurprisingly, genome copy numbers of the
chlamydial late-stage transcriptional regulator, euo, between BPD and TRP were similar
(Fig. 3B). With regard to generation of infectious progeny, we observed a much more
dramatic effect of BPD treatment than TRP starvation when stress was administered at t
= 0 or 8 hours post-infection and maintained for 16 or 24 hours, respectively, indicating
that iron starvation was more effective in inducing CTL developmental arrest relative to
tryptophan depletion (Fig. 3C).

To further analyze the impact of environmental stress on CTL, RNA sequencing was
performed for each of the stress conditions, including an untreated control collected at
24 hpi (16). Many genes fall in the low expression level, and gene expression distribu-
tion also skewed heavily toward the low expression range (Fig. 3D). Subsequently, a
pair-wise comparison of profiles was conducted to determine the level of similarities
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FIG 3 Morphology, genome-copy number, and infectious progeny data for different stage of CTL tryptophan and iron starvation. (A) CTL exhibits duration-

dependent sensitivity to iron limitation and tryptophan (trp) starvation. Infected cells were starved for iron by treatment with the chelator 2,2-bipyridyl (Bpd)

starting at either the time of infection or at 8 hours post-infection. Inclusions as indicated by staining for the chlamydial major outer membrane protein (MVOMP)

were allowed to develop for a total of 24 hours. Tryptophan starvation was started at the same time points as above, with indicated durations. Note the more

significant delay in inclusion development by Chlamydia starved for 24 hours. (B) Genome copy number data of euo gene for UTD24, BPD16, TRP16, BPD24, and
TRP24. (C) Infectious progeny data for UTD24, BPD16, TRP16, BPD24, and TRP24. (D) Distribution of gene expression values.

of transcriptomes across different stress conditions. Using scatter plots, we were able
to visualize correlations between pairs of transcriptomics data. From comparisons of
TRP24-UTD24 (Fig. 4A) and BPD24-UTD24 (Fig. 4B), we found a weak correlation for each
case (Fig. 4D). However, TRP24-BPD24 (Fig. 4C) showed a strong correlation (Fig. 4D).
This pointed to CTL may having a common global transcriptomic response to different
stress conditions. To reveal more about the pattern of global transcriptomic response,
we implemented an unsupervised machine-learning technique, K-means clustering, on
TRP24-UTD24, BPD24-UTD24, and TRP24-BPD24 samples. K-means clustering identified
four distinct clusters for each plot. Details of each cluster can be accessed in the Table S2.

As K-means clustering is an unsupervised learning algorithm, it may be difficult
to decide if these clusters are biologically different or not. However, with the help of
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similarly under different stress conditions. (E) Scatter plot of 24 hours of iron starved (BPD24) and 16 hours of iron starved (BPD16) CTL. (F) Scatter plot of

24 hours of tryptophan starved (TRP24) and 16 hours of tryptophan starved (TRP16) CT. (G) Scatter plot of 16 hours of tryptophan starved (TRP16) and 16 hours
of iron starved (BPD16). (H) Correlation of different scatterplots. These scatterplots and correlations between different stress conditions reveal that CTL may

have a global transcriptomics response. (I) Pearson correlation matrix among different conditions. The correlation was calculated using two-tail test with 95% Cl.

(J) Heat map for a number of reactions in each cluster for different conditions. (K) Gene ontology enrichment chart for common genes in green cluster across all

conditions.

bioinformatics tools, we can decide the arbitrariness of each cluster. For that purpose,
we performed gene set enrichment analysis, a well-established method to identify the
uniqueness of clusters obtained from the K-means algorithm (52).

Genes were clustered based on function, with clusters in green indicating metabo-
lism-related genes; yellow clusters consisting of cell signaling-related genes, and red and
blue clusters indicating transcription- and translation-related genes, respectively. From
Fig. 4A and C, it is evident that most of the genes in green clusters remained similarly
expressed. However, genes in the yellow and red cluster were moderately or highly
upregulated in the TRP24/BPD24 compared to the UTD24 (Fig. 4A and B). In contrast,
genes in the blue clusters were upregulated in the UTD24 compared to the TRP24/BPD24
(Fig. 4A and B).

As green clusters are tightly clustered across all the conditions (Fig. 4A and C), these
can be called “core” components, as identified previously (16). In contrast, blue, yellow,
and red clusters were upregulated/downregulated across given conditions (Fig. 4A and
C) and can be labeled as stress-specific “accessory” components (16). Some of the known
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tryptophan utilization genes such as trpR, trpC, and trpS fell in the yellow clusters and
were thus moderately upregulated in TRP24 (Fig. 4A). Several studies predicted similar
upregulation of tryptophan utilization genes under tryptophan starvation (15). In vivo,
the amount of tryptophan available is often depleted by the pro-inflammatory cytokine
interferon-y through the transcriptional upregulation by the ido7 gene, encoding the
enzyme Indoleamine 2,3 - dioxygenase (IDO) that catabolizes tryptophan to kynurenine,
which cannot be used by CTL. However, the microbiome in the relatively hospitable
niche of the lower genital tract may provide tryptophan or more likely indole, which CTL
can use for tryptophan biosynthesis via the salvage pathway (53). Indeed, several studies
have shown that under tryptophan starvation, CTL can use indole supplemented in the
media for conversion to tryptophan (53, 54).

Several stress-related genes, such as ahpC and euo, were also upregulated in the
TRP24 compared to the UTD24 (Fig. 4A). Between these two genes, ahpC was signifi-
cantly upregulated and fell in the red cluster, while euo was moderately upregulated
and included in the yellow cluster. AhpC is a thiol-specific antioxidant peroxidase gene
and is predicted to regulate redox homeostasis in CTL. A similar upregulation of ahpC is
also observed in CTL exposed to interferon-y stress (55). For Chlamydia pneumoniae, it
was reported that the upregulation of ahpC would protect the bacteria against cytokine-
induced reactive nitrogen intermediates, thus allowing C. pneumoniae to cause long-
term infection (56). For euo, encoding a DNA-binding protein, a moderate upregulation
was observed in CTL under interferon-y induced stress. Euo is a predicted negative
regulator of CTL genes involved in RB-to-EB differentiation (57). /hfA is a DNA-binding
protein that alters DNA topology and was downregulated in the TRP24, thus, possibly
contributing to other transcriptional effects in TRP24-treated samples (Fig. 4A).

In persistence, glycolysis mostly supports the increased production of starch and
carbohydrate, with CTL mostly depending on the host cell for energy (43). As a result,
reduced expression of TCA cycle genes, such as sucABCD, was expected and fell in
the bottom left portion of the green cluster. A similar overall result was observed for
BPD24-UTD24 (Fig. 4B). In the TRP24-BPD24 (Fig. 4C) scatterplot, the key difference is
that the stress-related accessory genes were expressed more in line with the core genes,
thus establishing a strong relation between two different stress conditions. Overall, the
K-means clustering predicted clusters whose functionality matched closely with the
literature. Thus, this clustering analysis will further serve as a “genome-wide library” to
identify core and stress-related genes of CTL.

To gather more insights into the presence of a global stress response in CTL, we
plotted other stress conditions, such as BPD24-BPD16 (Fig. 4E), TRP24-TRP16 (Fig. 4F),
and TRP16-BPD16 (Fig. 4G). Interestingly, we noticed a very strong correlation in all the
cases (Fig. 4H), supporting the proposed existence of global stress response of CTL. A
Pearson correlation heat map (Fig. 4l) of normalized read counts of all genes among
different conditions also indicated strong correlation between all the stress conditions.
The number of reactions in each cluster for different conditions is shown in Fig. 4J.
Common genes in green, yellow, blue, and red clusters were identified using Venn
diagrams (Fig. S1B through E respectively). Gene ontology enrichment analysis for the
common genes across green clusters is shown in Fig. 4K. The same analysis for the
yellow cluster (Fig. S2A) and the red clusters (Fig. S2B) is provided in the supplementary
information. Since the blue cluster has only one common gene (ctl0256), we could not
perform the gene ontology enrichment analysis.

Notably, the strong correlation between transcriptomes associated with two distinct
stresses is not unique to CTL. Analysis of publicly available transcriptomes from
differently stressed M. tuberculosis and Escherichia coli revealed a similar correlation.
We collected the transcriptional profile of M. tuberculosis exposed to in vitro lysosomal
stress for 24 hours and 48 hours (58). From the scatterplot (Fig. S3A), we noticed a very
high correlation (Fig. S3D). We also collected the transcriptional profile of M. tuberculosis
exposed in zinc-limited medium and zinc replete medium (59). Similar to the previous
case, the scatterplot (Fig. S3B) indicated a very high correlation (Fig. S3D). However, when
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we scatterplot (Fig. S3C) M. tuberculosis transcription data for lysosomal stress of 24 hours
and zinc-limited medium, it showed a very low correlation (Fig. S3D). Thus, M. tuberculosis
response to divergent stresses is customized to each stress. However, the transcriptional
response for a single type of stress in M. tuberculosis progresses as a function of severity
(i.e., duration) of the stress.

Unlike M. tuberculosis, E. coli demonstrated a single global stress response mecha-
nism. Transcriptomics profile of 50 minutes of cold stress against 90 minutes of cold
stress (Fig. S4A) for E. coli from the literature (60) showed a very strong correlation
(Fig. S4D). Similarly, transcriptomics profile of 40 minutes of oxidative stress against 90
minutes of oxidative stress (Fig. S4B) for E. coli from the literature (60) also showed a
very strong correlation (Fig. S4D). Thus, like M. tuberculosis, for temporal progression
of similar stress, E. coli may have a similar stress response mechanism. Interestingly,
the transcriptomics profile of 90 minutes of cold stress against 90 minutes of oxidative
stress (Fig. S4C) showed a very strong correlation (Fig. S4D). Thus, under different stress
responses, the transcriptional response of E. coli is generally conserved, similar to our
data for CTL.

For E. coli, ppGpp is a global stress regulator (61). When an uncharged tRNA binds in
the ribosome, the ribosome-associated RelA protein is activated to synthesize ppGpp
(62), which acts as a global regulator of transcription by modulating transcription
complexes at promoters (61). The stringent response serves to stop the synthesis of
stable RNA species, such as rRNA and tRNA, to increase protein degradation pathways to
maintain growth rate (62). Collectively, these responses serve to overcome the starvation.
SpoT is a cytosolic bifunctional enzyme with ppGpp synthase and hydrolase activity that
helps control the levels of ppGpp. CTL does not have homologs of relA and spoT and
does not synthesize ppGpp (12). The loss of these genes has likely occurred through
reductive evolution as a means for adapting to obligate intracellular environment. Thus,
gene expression showing a strong correlation under various stress conditions, lack of
homologs for relA and spoT, missing metabolic pathways to synthesize ppGpp, and
elevated expression of stable RNA (13) indicate that CTL does not engage in a strin-
gent response during starvation, manifesting as an overlapping transcriptional response
during iron and tryptophan starvation.

Impact of global stress response on C. trachomatis metabolism

We next sought to determine if this lack of stringent action translated to novel insights
into the metabolic landscape of tryptophan- or iron-starved CTL. To answer this, we
contextualized iCTL278 for UTD24, TRP16, TRP24, BPD16, and BPD24 conditions using
the E-flux algorithm.

To confirm that the results from contextualized models are not the artifact of
transcriptomics data, we calculated the correlation matrix between transcriptomics data
predicted flux (detailed descriptions of experimental design are found in the “E-flux
algorithm” sub-section of the Methods and Materials) and model-predicted flux and
found very weak correlation between them (Fig. S5A). We also found that model-predic-
ted flux distribution for different stress conditions is highly correlated (Fig. S5B). This
supports the previously observed high correlation among different stress conditions
from the transcriptomics data analysis(Fig. S4I).

As CTL enters persistence, the metabolic difference between UTD24 and TRP16/
BPD16 can give insight into the impact of CTL global transcriptome rewiring on its
metabolism. To identify the metabolic differences between UTD24 and TRP16, we used
the TRP16 model and implemented MBA (40). MBA revealed that, for TRP16, allowing
phosphoglycerate mutase (pgm; ctl0097) from the glycolysis pathway to carry a similar
reaction flux as UTD24 resulted in the same biomass growth rates for UTD24 and TRP16
conditions. The resulting reaction fluxes of other reactions of UTD24 and TRP16 were
also found to be similar after making this change to pgm flux. This result indicates that
potential regulation of pgm is the metabolic trait of rewiring the CTL global transcrip-
tomics response as it enters persistence (Fig. 5A and B). The same result was obtained
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FIG 5 Regulatory reactions in CTL to enter persistence. (A) Phosphoglycerate mutase in the glycolysis pathway. (B) Normalized gene expression heatmap of
genes involved in the glycolysis. (C) Transcripts level of pgk in TRP16-UTD24 and BPD16-UTD24. (D) Transcripts level of pgm in TRP16-UTD24 and BPD16-UTD24.
(E) Max/min driving force (MDF) analysis showing the cumulative driving force of glycolysis. (E) The driving force plot showing phosphoglycerate mutase (pgm)

and phosphoglycerate kinase (pgk) are two top most driving force reactions. (F) Individual driving force of each reactions. (G) The enzyme cost of glycolysis for
TRP16 showing phosphoglycerate mutase has the lowest enzyme costs. (H) Carbon usage efficiency for UTD24, TRP16, TRP24, BPD16, and BPD24.

for the BPD16. The transcript profiles of pgm and the gene encoding the upstream
reaction phosphoglycerate kinase (pgk) showed opposite expression levels under TRP16
condition, with the former being increased (Fig. 5C and D). Similar results were obtained
for BPD16. However, the evidence of increased levels of transcripts does not necessarily
equate to increase levels of protein in CTL during starvation conditions (6, 13).
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To further dissect the significance of pgm transcriptional regulation in persistence, we
performed max/min driving force (MDF) analysis (63) on the glycolysis pathway of CTL.
MDF analysis maximizes the total driving force of a given pathway within the biologically
relevant concentration of different metabolites. Figure 5E indicates the driving force of
glycolysis before and after the MDF analysis. Among all the reactions in glycolysis, MDF
analysis predicted that pgm has the highest driving force (Fig. 5F), while pgk has the
second-highest driving force (Fig. 5F). Concentrations of different metabolites, predicted
from MDF analysis, are shown in Fig. S5C. In the context of MDF, the “shadow price”
(64) of a reaction accounts for the Impact of Gibb's free energy of said reaction on
the overall pathway thermodynamics. Similarly, the shadow price of concentrations for
each metabolite indicates the impact of small perturbations of metabolite concentration
on the overall pathway thermodynamics. Therefore, we calculated the shadow price of
the driving forces of each of the reactions (Fig. S5D) and found the first three steps of
glycolysis (pgi, pfk, and als) having the most impact on the overall driving force with
changing reaction fluxes. Next, we calculated the shadow price of concentrations of each
of the metabolites and found H+, glyceraldehyde 3-phosphate, and glycerone phosphate
have the most impact on the overall driving force despite small changes in concentra-
tions (Fig. S5E). Flux-force efficacy relationship indicated a high proportion of each
reaction in the forward direction, and thus, the glycolysis pathway was enzymatically
highly efficient (Fig. S5F). In addition, we calculated the enzyme cost (65) of each reaction
from their enzyme turnover rate, k.., (Table S3). The turnover rates were calculated using
DLKcat for CTL (66). From the enzyme cost analysis, pgm has the lowest enzyme costs
compared to the other reactions of glycolysis, and pgk has the second lowest enzyme
costs, indicating a low carbon investment to catalyze those reactions compared to other
glycolysis reactions (Fig. 5G). To ensure the observed thermodynamics driving force and
enzyme cost implications are not an artifact of reduced carbon usage efficiency (CUE)
of CTL, we calculated CUE for all the conditions (67) and found that CUE remained 25%
for both unstressed and stressed conditions (Fig. 5H). Therefore, it is evident that the
thermodynamics and enzyme cost of pgm, rather than its CUE, could potentially dictate
its regulatory role in CTL persistence.

Explaining unusual bacterial phenomena through thermodynamic driving force and
protein cost is not uncommon in the systems biology domain. For example, the overflow
metabolism is an unusual phenomenon for both E. coli (68) and yeast (69), which was
well explained through protein cost analysis. Moreover, thermodynamic driving force
analysis also explained the need for Entner-Doudoroff pathway over Embden-Meyerhof-
Parnas, despite having a lower ATP yield (70). This work is also an effort to understand
CTL persistence by combining thermodynamics driving force and protein cost analysis
with an additional component of CRISPRi-mediated gene silencing.

Validation of thermodynamics and enzyme cost analysis through CRISPRi-
based suppression and starvation experiment

Using systems biology approaches, we predicted that pgm was regulated at the levels of
transcription (from the MBA), thermodynamics driving force, and enzyme cost. However,
other glycolysis enzymes, including pgk, were regulated only at the level of thermody-
namic driving cost and enzyme cost. Therefore, we predicted a pgm-mutant would have
greater impact on chlamydial growth compared to a pgk-mutant, as compared to the
wild type.

To test these predictions, C. trachomatis inducible knockdown transformants
targeting pgk or pgm were created using CRISPRi as previously described (71). In these
transformants, the CRISPR RNA (crRNA) that targets the promoter region of either pgk
or pgm is constitutively expressed, while the expression of an inactive Cas12 endonu-
clease (dCas12) is induced with anhydrotetracycline (aTc). The RNA-DNA hybrid formed
by the crRNA and genomic DNA is recognized by dCas12, where it binds and blocks
RNA polymerase processivity. A control C. trachomatis was created by transforming
C. trachomatis with the pL12CRia plasmid that lacks a crRNA. The knockdown strains
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and the empty-vector control were validated for dCas12 induction by aTc, reduction
in expression of the target genes, CTL development, and bacterial replication (Fig. S6A
through Q). In the absence of induction under normal growth conditions, all strains grew
equally well (Fig. 6A).

Computational modeling indicated the importance of pgm in CTL entry into
persistence. To test this prediction, the strains were grown in Hela cells for 10 hours,
followed by a 4-hour induction of knockdown by treatment with 5 nM aTc. The
experimental groups were further subjected to either mock- or tryptophan-starvation
for an additional 6 hours, with aTc maintained in the growth media. At the end of the
experiment (22 hours post-infection), samples were fixed and processed for immuno-
fluorescence staining of the chlamydial inclusions. Images were collected by confocal
microscopy, and inclusion size was measured by NIH Imagel particle analysis plug-in.
Inclusion size correlates with bacterial growth and replication, in that increased inclusion
volume is necessary to accommodate an increase in bacterial numbers. As shown in
Fig. 6A, all strains yielded similar inclusion sizes in tryptophan-replete media without
induction of knockdown (i.e., +Trp and —aTc). Tryptophan starvation for 6 hours led to
a slight reduction in inclusion size, as expected. However, the inclusion size reduction
became more pronounced in tryptophan-limited and knockdown-inducing conditions
(i.e, =Trp and +aTc), with the pgm knockdown exhibiting a statistically significant
difference in inclusion size (Fig. 6B), thus validating the results obtained from the
modeling studies. Collectively, these data implicate pgm as a critical determinant of
sensitivity to tryptophan starvation-mediated persistence. Moreover, this experimental
validation also justifies the use of a template Gram-negative bacteria biomass equation
in the absence of a CTL-specific biomass equation to model CTL metabolism.

Cellular objective of global stress response

Our data suggest CTL regulates pgm activity, in conjunction with transcriptional changes,
as a consequence of exposure to nutrient limiting conditions. We next sought to
investigate the cellular objective of this global transcriptome rewiring. To gain insight
into the significance of metabolic rewiring associated with tryptophan starvation, we
plotted biomass growth rate against different tryptophan uptake rates. If we made more
tryptophan available for uptake in the case of TRP24, then it could grow at a higher
growth rate compared to TRP16 and UTD24 (Fig. 7A). A similar result was obtained for
BPD16 and BPD24 (Fig. 7B). We also calculated the correlation matrix of growth patterns
(Fig. 7C and D) under tryptophan and iron starvation conditions. Similar to the previous
analysis (Fig. 41; Fig. S5A), stress conditions were better correlated.

However, a previous study (72) suggested that, with a shorter starvation timeline, CTL
should better restore its growth and start differentiating to the RB upon availability of
nutrients. In other words, it should be easier to restore the growth of CTL after 16 hours
of nutrient starvation compared to 24 hours of nutrient starvation. Thus, we explored
the model further to investigate this phenomenon. We again applied MBA in the TRP16
metabolic model. Surprisingly, we found that if pgm reaction flux was relaxed to its value
obtained from TRP24 model (Fig. 5A), the biomass of TRP16 and TRP24 became the
same. A similar result was obtained for the BPD16 and BPD24. This analysis indicates
that the cellular objective of the CTL global transcriptome rewiring during persistence is
to reach such a cellular phenotype so that, when the stress is withdrawn, CTL can exit
persistence immediately and re-enter the normal developmental cycle. CTL can do that
by relaxing its regulation of pgm, which is critical. This final objective also supports the
evolutionary selection of CTL, which is to maximize its own fitness function. The protein
interaction network suggests that pgm has a strong interaction with yggH (Fig. 7E). YggH
catalyzes the S-adenosyl-I-methionine-dependent formation of N’-methylguanosine at
position 46 (m’G46) in tRNA and can impact the activity of tRNA (73). It was previously
reported that inhibition of tRNA synthetase activity can induce persistence in CTL (74).
The normalized read counts of yggH show significantly higher levels of transcripts in
all the stress conditions compared to the UTD24 (Fig. 7F). Thus, the regulation of pgm
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FIG 6 In vitro experiments support model prediction that pgm plays a major role in pushing C. trachomatis to persistence.
(A) Tryptophan deprivation for 6 hours resulted in a small reduction in inclusion size. However, with pgm knockdown, the
decline became more severe in tryptophan-limited and knockdown-inducing settings. (B) Inclusion reduction became more
evident in tryptophan-limited and knockdown-inducing settings, with the pgm knockdown showing a statistically significant
difference in inclusion size, corroborating the modeling studies’ findings.

may be mediated in part by changes in yggH. The proposed mechanism that led CTL
to enter persistence is shown in Fig. 7G. Quantitative proteomics from the literature
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different conditions. (G) Schematic of the mechanism proposed to enter persistence and factors that keep CTL in the persistence mode.
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(75) indicated that the ARB is primed for a burst in metabolic activity upon nutrient
availability, whereas the RB is geared toward nutrient utilization, a rapid increase in
cellular mass, and securing the resources for an impending transition into the EB form. In
addition to confirming previously published findings, this study indicates that pgm may
be a mediator of ARB-to-RB transition.

This study utilized transcriptomics data sets and systems biology tools, including
K-means clustering and GSM, to analyze the transcriptome and metabolism of CTL under
tryptophan and iron stress conditions. The findings suggest a global transcriptomic
rewiring in CTL under stress, impacting its persistence mechanisms. Through a combined
systems and synthetic biology approach, the study identified pgm as a regulator of
CTL persistence, highlighting the importance of systems biology in understanding the
growth and development of the obligate intracellular pathogen CTL, complementing
insights gained through molecular genetics approaches in model prokaryotes. Future
research efforts will be geared toward studying the interaction between CTL and
different host epithelial cells (e.g., endocervical and endovaginal epithelial cell). Similar to
this study, we aim to identify the metabolic signatures that influence the CTL infection in
these cells.

MATERIALS AND METHODS
Cell lines

Human female cervical epithelial adenocarcinoma Hela cells (RRID: CVCL_1276) were
cultured at 37°C with 5% atmospheric CO, in Dulbecco’s Modified Eagle Medium (DMEM;
Gibco, Thermo Fisher Scientific) supplemented with 10 pg/mL gentamicin, 2 mM
I-glutamine, and 10% (vol/vol) filter sterilized fetal bovine serum. For all experiments,
Hela cells were cultured between passage numbers 3 and 15. Hela cells were originally
authenticated by ATCC via STR profiling and isoenzyme analysis per ATCC specifications.

Bacterial strains

C. trachomatis serovar L2 434/Bu was originally obtained from Dr. Ted Hackstadt (Rocky
Mountain National Laboratory, NIAID). Chlamydial EBs were isolated from infected Hela
cells at 36-40 hpi and purified by density gradient centrifugation essentially as described
(76). For infections, at 80%-90% confluence, Hela cells were first washed with Hanks
Buffered Saline Solution (HBSS; Gibco, Thermo Fisher Scientific), and ice-cold inoculum
prepared in HBSS at the indicated multiplicity of infection (MOI) was overlaid onto the
cell monolayer. To synchronize the infection, inoculated cells were then centrifuged for
15 minutes at 500x relative centrifugal force (RCF), 4°C in an Eppendorf 5810 R tabletop
centrifuge with an A-4-81 rotor. The inoculum was then aspirated, and pre-warmed
DMEM (or relevant media with treatment supplementation) was added to the cells.
Infected cultures were then returned to the tissue culture incubator until the indicated
time post-infection.

Genome copy humber quantification

All quantitative PCR (qPCR) assays were performed using Power Up SYBR Green Master
Mix (Applied Biosystems, Thermo Fisher Scientific) essentially as previously described (77,
78). In brief, cDNA was diluted 1:5-1:10, and gDNA was diluted 1:50-1:100 in nuclease-
free H>O (dilutions were identical within each experiment). The 2x PCR master mix was
diluted to 1x in nuclease-free H,0 with specific primers to the euo open-reading frame
diluted to 500 nM. To 79 uL of the master mix solution, 3.3 L of template (cDNA or
gDNA) was added and then aliquoted into three 25 pL technical replicate reactions in a
96-well optical plate. Reactions were analyzed on a QuantStudio 3 real-time PCR system
with standard SYBR cycling conditions. All assays were performed with a melt-curve
analysis to ensure specific product amplification across samples. Primer sets used in qPCR
were validated against a standard curve of C. trachomatis L2 gDNA diluted from 2 x 10-3
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to 2 X 100 ng per reaction. Ct values generated from each experimental reaction were
then fit to a standard curve, and only primer sets with an efficiency of 100% + 5% were
used. The sequences of the forward and reverse primers are as follows:

euo forward - 5'- GCTGTTCCTGTTACTTCGCAAA - 3’

euo reverse — 5- AACATAGATAGCCTGACGAGTCACA - 3’

GEs were calculated by first converting the mean Ct of the triplicate technical
replicate reactions to a ng quantity of gDNA (ng template) with the linear equation
generated from the standard curve of the euo primer pair. This value was then normal-
ized to the total ng/uL gDNA isolated for each sample.

Validation of CRISPRi knockdown strains

The pBOMBL12Cria::L2 empty vector was digested with BamHI and treated with alkaline
phosphatase (ThermoFisher). Two nanogram of the crRNA gBlock (IDT DNA, Coralville,
IA) targeting the intergenic region of either pgm or pgk (Table S4) was used in a
HiFi reaction with 25 ng of digested plasmid according to the manufacturer’s instruc-
tions [New England Biolabs (NEB); lpswich, MA]. Twenty-five microliter of chemically
competent E. coli 103 cells (NEB) were transformed with 2 uL of the HiFi reaction
and plated on Luria-Bertani (LB) agar with ampicillin selection. Plasmid was isolated
from overnight cultures of individual colonies grown in LB broth with ampicillin and
verified by restriction digest and sequencing. Two microgram of verified plasmid
was used to transform C. trachomatis serovar L2 (-pL2) lacking its endogenous plas-
mid as described elsewhere (71). After obtaining transformants carrying either the
pBOMBL12Cria(pgm):L2 or pBOMBL12Cria(pgk)::L2 CRISPRi vectors, cells were infected
with an MOI of 1. At 10 hpi, the expression of the dCas12 protein was induced or not
with 2 nM aTc, and RNA and DNA samples were collected and processed as described
previously at 10, 14, and 24 hpi (71). Transcript levels for pgm and pgk were determined
by RT-gPCR from equal volumes of cDNA using gene-specific primers (Table S4) on
a QuantStudio3 (Applied Biosystems; Thermo) and normalized to genomic DNA levels
determined from equal masses of DNA by gPCR using the pgm gPCR primer set.
A standard amplification cycle with a melting curve analysis was used for the qPCR
analysis and compared to a standard curve of C. trachomatis L2 genomic DNA. Data are
representative of two biological replicates assessed in triplicate.

Treatment conditions and induction of knockdown of pgk and pgm transcrip-
tion by CRISPRi

Hela cells were infected at an MOI of 0.5 (t = 0 hpi) and were maintained in complete
DMEM for 14 hours. The infected cells were then exposed to anhydrous tetracycline
(@Tc) at 5 nM for 4 hours to induce knockdown of expression (t = 14 hpi). Tryptophan
depletion was performed at t = 18 hpi by first washing cells with HBSS and then
replacing complete DMEM with tryptophan-depleted DMEM-F12 (U.S. Biological Life
Sciences). Treated cells were then returned to the tissue culture incubator for the
remainder of the experimental time course. At t = 22 hpi, samples were collected and
fixed with freshly prepared 4% paraformaldehyde and permeabilized for 10 minutes
with 0.1% Triton X-100 in phosphate-buffered saline (PBS). Samples were immunostained
with mouse antibody against the C. trachomatis major outer membrane protein (1:1,000
dilution). Samples were incubated at 4°C overnight with constant rocking. The next day,
the primary antibody solution was removed, and samples were rinsed 3x with 1x PBS
and incubated with 1:1,000 dilution of goat anti-mouse IgG conjugated with Alexa-488
for 1 hour. Samples were rinsed and visualized by fluorescence microscopy. Images were
processed, and inclusion size was measured using NIH ImageJ.

Genome-scale metabolic model reconstruction of CTL

The genome-scale metabolic network reconstruction was based on available genome
information of the model strain C. trachomatis L2 434/Bu (KBase Genome ID:
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GCF_000068585.1), according to the ModelSEED databases (79), BRENDA (80), and
available literature. Additional reactions were added to the model based on the
previously published genome-scale metabolic model of CTL (30), experimental data (8),
and previously published literature on metabolic traits of CTL. Gap filling for pathways
in our model was first conducted in Kbase (41) and then by OptFill (44) based on the
complete media, as complete media was used in the experimental settings as well to
grow CTL in vitro. In total, 95 reactions were added to the draft model to fill the gaps. The
model was further checked for elemental mass balance, and MEMOTE reports confirm
that all the reactions in the model are mass balanced. gene-protein-reaction association
(GPR) for all the reactions was manually curated from the KEGG database. As a result, 525
out of 692 reactions have a GPR relationship. We used the General Algebraic Modeling
System (GAMS) platform along with the CPLEX solver for solving all the optimization
problems. NEOS server can be used to run GAMS codes without having to buy the
license. Details of the procedure of running GAMS codes in NEOS server can be found in
the literature (81). However, for the convenience of COBRApy users, SBML version of the
iCTL278 is also provided.

Parsimonious flux balance analysis

pFBA (21) is constrained based optimization technique to model GSMs. The pseudo-
steady state mass balance in pFBA is represented by a stoichiometric matrix, where the
columns represent metabolites, and the rows represent reactions. For each reaction,
upper and lower bounds are imposed based on thermodynamic information. pFBA
provides the flux value for each reaction in the model according by solving the following
optimization problem:

Max pjomass — 0.0001 Y [vj]

JjEJ
Subject to:
jes
ajSUijj [2]

In this formulation, I is the set of metabolites, and J is the set of reactions in the
model. S;; is the stoichiometric matrix with i indicating metabolites and j indicating
reactions, and v; is the flux value of each reaction. The objective function, vpomass is the
proxy of the growth rate of an individual cell. a; and b; are the lower and upper bounds
of flux values for each reaction. For forward reactions, the highest possible bounds were
0 mmol/gDW/h to 1,000 mmol/gDWr/h. For the reversible reactions, the highest possible
bounds were —1,000 mmol/gDW/h to 1,000 mmol/gDW/h.

Flux variability analysis

The result from FBA may include degenerate optimal solutions, this FVA (20) was used to
find out the alternate flux distributions. The formulation is the following:

max/min v;

Sub ject to:
Z Sijvj=0, Viel [3]
jer
Ubiomass = Ubiomass [4]
ajSU]Sb}, V]G] [5]

FVA maximizes and minimizes each of the reaction fluxes subject to the pseudo-
steady mass balance, fixing biomass growth rate for a specific condition, and upper and
lower bounds on reaction fluxes. In this manuscript, all the FVA resulted in very tight
bounds (changes can only be observed after two decimal place).
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E-Flux algorithm

E-Flux is an extension of FBA/pFBA that uses transcriptomic data to further constrain
the feasible space based on the transcriptomics data (38). The E-flux algorithm involved
solving the following linear optimization problem:

MaxX  Vpiomass — 0.0001 Y |vj|

jeJ
Subject to:
ZSijvjzo, Vle I [6]
JET

where a; and b; are the minimum and maximum allowed fluxes through reaction j,
based on the transcriptomics data. The E-Flux method calculates the upped bound, bj,

for the j”‘ reaction according to the following function of the gene expression:
b; = (expression level of genes associated with reaction j) [8]

In this manuscript, b; is the exact level of each reaction was calculated through its
GPR association [i.e., based on “OR” (addition of gene expressions) and “AND” (minimum
of gene expressions) relation]. If the reaction catalyzed by the corresponding enzyme
was reversible then a; = — bj, otherwise a; = 0.

Flux sum analysis

The metabolite pool size of ATP in the validation section was determined based on the
FSA method (33). The flux sum is a measure of the amount of flux through the reactions
associated with either the production or consumption of the metabolite. The range of
the flux sum can be calculated as follows:

_ m .
Max/Min O.SZ |S:v
=1
Subject to:

o ,Viel
ZSijvj=0, iel [9] .
=1

a,- < Uj < bj [10]

Ubiomass = Ug;gfnass [11] i

Here, set I represents the set of metabolites for which the flux sum will be calculated.
By linearizing the objective function, the resulting formulation became a mixed-integer
linear programming problem. Therefore, the basic idea was to determine the range of
the flux-sum of a metabolite under a given condition by fixing the maximum biomass
growth of that condition ().

K-mean clustering

K-mean clustering algorithm was used to classify different genes into different clusters.
The number of clusters was determined using the Elbow method (Fig. S7). The whole
K-mean clustering was implemented in Python, using numpy, pandas, and sklearn
modules. Different plots for the K-mean clustering were generated using matplotlib
module. Default setting of K-mean clustering, mentioned in the sklearn, was not
changed in this study.
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Metabolic bottleneck analysis

To determine the metabolic bottleneck in a GSM, metabolic bottleneck analysis (40) was
used. The formulation is as follows:

Max Ubiomass
Subject to:
m
> Sy =0, il [12]], Vj' €]
=1
a;<v;<b;, ji{j'} €7 [13]
| Uj/,min, < Uj' < Uj/,max’ j, €J [14] i

Here, a; is the lower bound reaction vj, and b; is the upper bound of reaction v;.
Both a; and b; were calculated from the transcriptomics data and gene-protein-reaction
association. v, is the expanded lower bound of the reaction j', and v}, . is the

expanded upper bound of the reaction j. In this case, we set v} i = — IOOOgg“‘;,"f’Lr and

Uj max = IOOOgI')"‘;,"f’Lr. We solved the optimization problem by maximizing the biomass

Ubiomass fOr the new expanded flux space of each reaction j' in an iterative manner and
then recorded the biomass growth rate. From this biomass growth rate collections, we
can check for which j* biomass growth rate increased significantly. Then that j* can be
considered as the metabolic bottleneck of a given metabolic network.

Max/min driving force analysis

To find out the thermodynamic driving force and thermodynamic bottleneck of a
given pathway, we used MDF analysis from the literature (63). In this method, we
maximized the driving force of each reaction in a given pathway within the biologically
relevant concentration and found the maximum possible driving force of a pathway. The
formulation of the MDF analysis is given below:

axB
Sub jectto:

-G>B [15]
G=(G"+RT-S"-x) [16]
In(Cin) < x < In(C,,ax) [17]
x,TP > 10x,DP [18]
xyADH > 0.1xyAD [19]
x4DP = 0.4 [20]
XNyAD = 6.5 [21]
x3;PGA = 13.0 [22]

G° is the standard Gibbs free energy, R is the gas constant, T is the temperature,
and xandC indicates concentration. This analysis is particularly useful when metabolo-
mics information is not fully available for a given pathway. Thus, a biologically relevant
metabolite concentration range can be used to infer information about a pathway,
whether it will be thermodynamically feasible or not. Furthermore, this analysis will
indicate reaction(s) with the highest and lowest thermodynamic driving forces and will
also provide a concentration of metabolites to support the maximum pathway driving
force. Here, we fixed the ATP/ADP and NADF/NAD ratio as mentioned in the original
MDF article (63). Besides concentrations (mM) of ADP, NAD, and 3-PGA were fixed in
the MDF optimization problem based on literature evidence (82, 83). Shadow price of
different constraints was calculated using the built-in features of GAMS. The temperature
in the optimization problem was set to 37°C, which is similar to the temperature of
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the growth culture. The ratio of forward-to-backward reaction fluxes for each of the
glycolysis reactions was calculated using the following equation.

[23]

AG

vt—uvT _ eRT

+ — AG
v +v e

-1
“RT +1

Here, A G was calculated from the MDF analysis. Also, vt and v~ indicate reaction flux
in forward and backward directions, respectively.

Enzyme cost calculation

To find out enzyme synthesis costs for different enzymes of a given pathway, we used the
following equation from the literature (65) assuming all the enzymes are fully saturated.

v=E- kcat<1 —e—%) [24]

Here, v is the reaction flux obtained from the contextualized GSM, E is the enzyme
cost, kg is the enzyme turnover rate, AG is the Gibbs free energy obtained from the
MDF analysis, R is the gas constant, and T is the temperature. Relative enzyme cost was
calculated using the following equation.

E:
Ei, relative — - [25]

E lowest

Here, E; ,eiarive is the relative cost of an enzyme in a given pathway, E; is the actual cost
of an enzyme in a given pathway, and E,,,. is the lowest cost of an enzyme in a given
pathway.

Simulation platform

The GAMS version 24.7.4 with IBM CPLEX solver was used to run pFBA and FVA, E-Flux,
FSA, MBA, and MDF algorithms on the model. Each of the algorithms was scripted in
GAMS and then run on a Linux-based high-performance cluster computing system at
the University of Nebraska-Lincoln. Furthermore, flux sampling, tSNE plot, and K-mean
clustering analysis of transcriptomics data were performed in Python using an Intel(R)
Core(TM) i5-8250U CPU 1.60 GHz HP laptop with 8.00 GB of RAM and 64-bit operation
with Windows 11 Home operating system.
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