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Metabolic model guided CRISPRi identioes a central role for 

phosphoglycerate mutase in Chlamydia trachomatis persistence
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ABSTRACT Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts 

from its normal growth to a non-replicating form, termed persistence. It is unclear if 

persistence re�ects an adaptive response or a lack thereof. To understand this, transcrip­

tomics data were collected for CTL grown under nutrient-replete and nutrient-starved 

conditions. Applying K-means clustering on transcriptomics data revealed a global 

transcriptomic rewiring of CTL under stress conditions in the absence of any canonical 

global stress regulator. This is consistent with previous data that suggested that CTL’s 

stress response is due to a lack of an adaptive response mechanism. To investigate 

the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic 

model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. 

Using the metabolic bottleneck analysis on contextualized iCTL278, we observed that 

phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence state. 

Our data indicate that pgm has the highest thermodynamics driving force and lowest 

enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm in the presence or 

absence of tryptophan revealed the importance of this gene in modulating persistence. 

Hence, this work, for the �rst time, introduces thermodynamics and enzyme cost as tools 

to gain a deeper understanding on CTL persistence.

IMPORTANCE This study uses a metabolic model to investigate factors that contribute 

to the persistence of Chlamydia trachomatis serovar L2 (CTL) under tryptophan and 

iron starvation conditions. As CTL lacks many canonical transcriptional regulators, the 

model was used to assess two prevailing hypotheses on persistence—that the chlamy­

dial response to nutrient starvation represents a passive response due to the lack of 

regulators or that it is an active response by the bacterium. K-means clustering of 

stress-induced transcriptomics data revealed striking evidence in favor of the lack of 

adaptive (i.e., a passive) response. To �nd the metabolic signature of this, metabolic 

modeling pin-pointed pgm as a potential regulator of persistence. Thermodynamic 

driving force, enzyme cost, and CRISPRi knockdown of pgm supported this �nding. 

Overall, this work introduces thermodynamic driving force and enzyme cost as a tool to 

understand chlamydial persistence, demonstrating how systems biology-guided CRISPRi 

can unravel complex bacterial phenomena.

KEYWORDS C. trachomatis, persistence, nutrient starvation, global stress response, 

metabolic bottleneck

C hlamydia trachomatis serovar L2 (CTL) is a Gram-negative obligate intracellular 

human pathogen (1) causing an estimated 1.7 million new genital tract infections 

annually (2). CTL replicates in a specialized membrane compartment, termed the 

inclusion, and uses di�erent strategies to survive in the host intracellular environment 

(3). During its development cycle, CTL can alternate between the extracellular infectious 

elementary body (EB) and the intracellular non-infectious reticulate body (RB) (4). EBs 
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enter epithelial cells and di�erentiate into RBs inside the inclusion. After several cycles of 

replication, RBs undergo an asynchronous secondary di�erentiation to create new 

EBs, which promote subsequent rounds of host cell infection (5).

When RBs experience nutrient starvation, they enter a reversible state of growth 

arrest, named persistence (6). RBs in the persistent state exhibit a distinct and enlarged 

morphological form, referred to as an aberrant reticulate body (ARB). ARBs remain 

metabolically active (7). Experimentally, chlamydial persistence can be induced with 

the addition of the cytokine interferon-γ (8), tryptophan starvation (9), iron starvation 

(10), or other stressors (11). Despite these studies, the fundamental nature of persistence 

is still puzzling. Whether persistence is an active or passive response is not clear. In 

evolving to obligate intracellular dependence, CTL has eliminated many genes from its 

chromosome, including canonical stress regulators like the stringent response and σS 

(12). One hypothesis is that CTL enters persistence as it lacks such canonical regulators 

(13–15). An extension of this hypothesis is that persistence is e�ectively a substitute for 

the lack of a conventional global response regulator. A recent study (16) compared iron 

and tryptophan starvation to nutrient-replete conditions. While there were signi�cant 

transcriptomic di�erences between control and starvation conditions, it is still not clear 

if those changes were a directed and evolved response. To gain a holistic understanding 

about the mechanism of CTL persistence, it is pertinent to understand the metabolic 

landscape that occurs alongside the transcriptional changes. However, there is a dearth 

of experimental studies investigating the whole CTL metabolic landscape due to the 

challenging nature of working with an obligate intracellular pathogen. Thus, a systems 

biology approach may be useful to understand CTL metabolism during persistence.

Genome-scale metabolic models (GSMs) have been widely used in similar systems 

biology studies (17, 18). A GSM captures annotated metabolic reactions within a 

biological system and can predict reaction �uxes using �ux balance analysis (FBA) (19), 

�ux variability analysis (FVA) (20), and parsimonious FBA (pFBA) (21). To date, GSMs 

developed for di�erent pathogens were successful in predicting metabolic adaptations 

of Mycobacterium tuberculosis (22), Acinetobacter baumannii (23), Klebsiella pneumoniae 

(24), and Helicobacter pylori (25). GSMs were also successful in predicting di�erent 

virulence factors such as lipid A modi�cations of Pseudomonas aeruginosa (26) and 

substrate utilization patterns of Staphylococcus aureus (27). Moreover, GSMs successfully 

predicted novel drug targets for Salmonella typhimurium (28) and Campylobacter jejuni 

(29). Recently, a GSM was used to characterize the metabolic di�erences between 

chlamydial EBs or RBs under normal growth and development conditions and yielded 

the expected result that RBs are more metabolically active than EBs (30). We hypothesize 

that nutrient starvation will alter CTL metabolism in a manner that is distinct from the 

metabolic activities of EBs and RBs. Hence, we reconstructed the most comprehensive 

GSM of CTL, iCTL278.

To study the nature of persistence, persistence-speci�c <omics= data needed to be 

overlayed with the iCTL278. This process is called contextualization of the GSM. Without 

contextualization, GSM may predict unrealistic reaction �uxes (31), erroneous cellular 

phenotypes (32), or inaccurate growth rate patterns (33). Two di�erent approaches 

are available for contextualization: switch [e.g., GIMME (34), iMAT (35), MADE (36), and 

RIPTiDe (37)] or valve [e.g., E-Flux (38), PROM (39), and EXTREAM (40)] approaches. 

While switch approaches display a binary nature, resulting in the active-or-inactive status 

of a reaction, valve approaches provide more �exibility by making the reaction �ux 

proportional to the abundance of associated transcripts/proteins.

In this work, to perform systems-level investigations of CTL persistence, transcriptom­

ics data were used for nutrient-su�cient and nutrient-starved conditions. To gain further 

insights from these transcriptomics data, K-means clustering algorithm was implemen­

ted, resulting in the identi�cation of four core components of the CTL transcriptome. 

Furthermore, a statistical correlation study revealed a global transcriptomic rewiring 

of CTL under nutritional stress conditions. This, along with a lack of global stress 

regulators in CTL, revealed the lack of an adaptive response as the primary reason 
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of CTL’s entry to persistence. To further understand how this global transcriptomic 

response impacts CTL metabolism, contextualized GSMs were reconstructed using 

the E-�ux algorithm. Our recently developed metabolic bottleneck analysis (MBA) (40) 

identi�ed phosphoglycerate mutase (pgm) as a candidate regulator of entry of CTL 

into persistence. The data revealed that pgm activity had the highest thermodynamics 

driving force and lowest enzymatic cost. To validate this �nding, we used CRISPRi 

to block transcription of pgm and subsequently performed starvation experiments, 

which revealed enhanced sensitivity of pgm knockdown to starvation conditions. The 

outcome supported the prediction from MBA, thermodynamics driving force, and 

enzyme cost analysis. Additional systems-level investigation pinpointed the cellular 

impact of persistence, which is to prime itself for rapid growth upon the availability 

of nutrients. Overall, this metabolic model-guided study, for the �rst time, examined CTL 

persistence through the lens of thermodynamic driving force and enzymatic cost and 

will work as a blueprint to investigate phenotypical and genotypical changes associated 

with other microbial infections.

RESULTS AND DISCUSSION

C. trachomatis L2 genome-scale metabolic model development and analysis

To analyze the metabolism of CTL in di�erent stress conditions, we reconstructed a GSM 

of CTL using the NCBI RefSeq genome annotation (KBase Genome ID: GCF_000068585.1) 

from KBase (41). After reconstructing the draft GSM and adding reactions from the 

previously reconstructed model (30), a literature search was performed regarding the 

CTL-speci�c biomass composition. With information unavailable, a template Gram-neg­

ative biomass equation was used as the objective function of FBA. We performed a 

sensitivity analysis of each of the biomass constituents by increasing the coe�cient 

by 10% as described in the literature (42) to assess its impact on the biomass growth 

rate. The analysis indicated only cobamide, peptidoglycan, and acyl carrier protein 

(ACP) impacted the biomass growth rate (Table S1). This analysis justi�es the use of a 

template Gram-negative biomass equation, as the growth rate is not very sensitive to 

the stoichiometry of major biomass components such as amino acids, fatty acid, lipid, 

DNA, and RNA. This draft model did not capture some known metabolic functionality of 

CTL. For example, CTL has an incomplete tricarboxylic acid(TCA) cycle and must obtain 

malate from the host (43). However, the malate transport reaction was missing in the 

draft model. Similarly, CTL also obtains glucose 6-phosphate from the host cell (43). 

To account for these gaps in the metabolic network of CTL, we performed gap-�lling 

using our previously developed tool OptFill (44) and added transport reactions for both 

malate and glucose 6-phosphate to the model. CTL partially depends on the host cell 

for ATP and NAD+ (43), and associated transport activities were added to the model 

to account for these biological needs. Overall, the curated model, iCTL278, consisted of 

729 metabolites, 692 reactions, and 278 genes. We performed MEMOTE testing (45) for 

iCTL278, and it returned a score of 94%. The model is fully mass balanced and stoichio­

metrically consistent. The full MEMOTE report can be found in the Text S1. The MEMOTE 

score comparison between iCTL278 and the previously published CTL model is shown 

in Fig. S1A. In addition to performing MEMOTE, we also veri�ed other known metabolic 

traits of CTL, such as the iCTL278 requirement of guanosine triphosphate (GTP), cytidine 

triphosphate (CTP), and uridine triphosphate (UTP) to sustain biomass growth (46). CTL 

is an auxotroph for most amino acids and can only biosynthesize alanine, aspartate, and 

glutamine using dicarboxylates from the TCA cycle (43). The rest of the amino acids 

needs to be acquired from the host cell. iCTL278 recapitulated these metabolic traits 

for amino acids. Overall, iCTL278 captured all the known metabolic characteristics of 

CTL. The model reconstruction process is shown in Fig. 1, the metabolic networks of the 

model are shown in Fig. 2A, and the number of reactions in di�erent pathways is shown 

in Fig. 2B.
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FIG 1 Overall process of the model reconstruction, re�nement, and subsequent analysis/validation. Kbase, NCBI RefSeq, and ModelSEED database were used 

to reconstruct the initial model. After standard model curations, a high-quality GSM was ready to use. Later, condition-speci�c transcriptomics data were 

incorporated with GSM through E-�ux algorithm, which resulted in �ve contextualized models. These models were used to �nd metabolic bottlenecks and 

persistence mechanism. K-mean clustering algorithm applied on the transcriptomics data revealed a global stress response mechanism. Thermodynamics and 

enzyme cost analysis, along with in vitro experimentation, reveal the regulatory role of pgm in CTL persistence.
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Model validation using experimental proteomics data

Although the MEMOTE testing of iCTL278 returned a score of 94%, it was still necessary 

to determine if iCTL278 could capture the known phenotypes of CTL upon contextualiza­

tion. In a previous study (38), a valve-based approach using the E-�ux algorithm, which 

connects reaction activities linearly with the gene expression levels, accurately predic­

ted di�erent cellular phenotypes regarding fatty acid biosynthesis of M. tuberculosis, a 

well-known pathogenic bacterium. Therefore, a previously published study on quanti­

tative normalized protein pro�ling of interferon-γ-treated CTL (8), despite its limited 

e�ort to con�rm the induction of aberrance, was used to reconstruct two contextualized 

models using the E-�ux algorithm (38), RB, and ARB models. The latter was under stress 

induced by interferon-γ. The proteomics data set covered all 278 proteins of the iCTL278, 

thus ensuring a high degree of coverage of proteomics data for the model.

When �ux distribution was calculated for both RB and ARB, similar to previous studies, 

�ux through energy metabolism was reduced in the ARB compared to RB (8). As CTL 

enters persistence, cell division is arrested, and metabolism is reduced to a minimum 

level such that only essential cellular functions are maintained. As GSMs are unable to 

directly calculate the concentration of di�erent metabolites involved in a biochemical 

FIG 2 An overview of the metabolic network captured in the CTL genome-scale metabolic model and the result of model validation. (A) Visualization of the GSM 

metabolic network was performed using iPath3 (47). This metabolic network provides an idea regarding the limited metabolic capability of CTL. (B) A balloon 

plot representing a number of reactions in di�erent pathways in the iCTL278. (C) Predictions for contextualized iCTL278 matched well with the experimental 

observations.
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network, we used the �ux-sum analysis (FSA) approach to predict the metabolic pool 

size of ATP in both RB and ARB for further veri�cations and found a lower ATP pool 

size in the ARB condition. The details of �ux-sum analysis can be found in our previous 

work (33) and also in the Materials and Methods section. Thus, the reduced energy 

metabolism in ARB compared to the RB, a distinguishing feature of the persistence state, 

was successfully captured by the iCTL278.

As a further veri�cation, we explored the peptidoglycan biosynthesis pathway of CTL. 

Peptidoglycan is essential for cell division and is evident only at the division septum in 

CTL but, unusually, is not a component of the cell wall (48). During stress conditions, 

CTL arrests its cell division (6). As cell division is arrested in the ARB, the model predic­

ted reduced peptidoglycan biosynthesis in ARB compared to RB, which is consistent 

with a previous study showing reduced expression of cell division components under 

tryptophan starvation (49). CTL relies on both de novo biosynthesis and salvage from 

the host for fatty acid and phospholipid to produce its membrane phospholipids, which 

are also crucial for cell division (50). When fatty acid biosynthesis reactions in both RBs 

and ARBs were compared, we found reduced activity in the fatty acid biosynthesis in 

ARBs compared to RBs, which reiterates what has previously been reported (51). This 

was expected given the predicted reduced requirement for fatty acid biosynthesis in the 

absence of bacterial replication.

Overall, iCTL278 recapitulates known phenotypes of ARBs and RBs upon contextuali­

zation. Therefore, iCTL278 is well suited to analyze the metabolism of CTL under di�erent 

stress conditions. The summary of the validation result is shown in Fig. 2C.

Efects of nutrient starvation on CTL growth and development

Our understanding of the molecular underpinnings behind the persistence of CTL is still 

limited. Despite employing numerous experimental methods to induce persistence, the 

result consistently shows similar ARB morphology, as well as disruptions in the transcrip­

tome and proteome. Thus, speci�c alterations to transcriptional and translational pro�les 

may precede, and thus induce, aberrant growth.

We assayed several distinguishing features of CTL persistence across the di�erent 

treatment conditions, i.e., untreated (UTD24), 16 hours of iron chelation with the chelator 

2,2-bipyridyl (Bpd; BPD16) or tryptophan starvation (TRP16), and 24 hours of iron 

(BPD24) or tryptophan starvation (TRP24). All treatments were performed over a 24-hour 

period. In the case of TRP16/BPD16, infection was induced after 8 hours, while for TRP24/

BPD24, it was induced immediately at the start. One of those was the morphology 

of CTL, which was monitored by immuno�uorescent confocal microscopy. Here, we 

con�rmed that, in contrast to the untreated CTL inclusions at 24 hours post-infection 

(hpi; UTD24), all starvation strategies yielded smaller inclusions (Fig. 3A), which was 

associated with lower yields of inclusion-forming units, indicating severely delayed 

development that compromised the generation of infectious particles. We observed 

that BPD treatments resulted in aberrantly enlarged organisms. TRP inclusions were 

smaller, indicating a growth defect. We also analyzed genome copy number across all 

stress conditions. We observed signi�cantly reduced genome equivalents (GEs) for all 

stress conditions compared to UTD24. Unsurprisingly, genome copy numbers of the 

chlamydial late-stage transcriptional regulator, euo, between BPD and TRP were similar 

(Fig. 3B). With regard to generation of infectious progeny, we observed a much more 

dramatic e�ect of BPD treatment than TRP starvation when stress was administered at t 

= 0 or 8 hours post-infection and maintained for 16 or 24 hours, respectively, indicating 

that iron starvation was more e�ective in inducing CTL developmental arrest relative to 

tryptophan depletion (Fig. 3C).

To further analyze the impact of environmental stress on CTL, RNA sequencing was 

performed for each of the stress conditions, including an untreated control collected at 

24 hpi (16). Many genes fall in the low expression level, and gene expression distribu­

tion also skewed heavily toward the low expression range (Fig. 3D). Subsequently, a 

pair-wise comparison of pro�les was conducted to determine the level of similarities 
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of transcriptomes across di�erent stress conditions. Using scatter plots, we were able 

to visualize correlations between pairs of transcriptomics data. From comparisons of 

TRP24-UTD24 (Fig. 4A) and BPD24-UTD24 (Fig. 4B), we found a weak correlation for each 

case (Fig. 4D). However, TRP24-BPD24 (Fig. 4C) showed a strong correlation (Fig. 4D). 

This pointed to CTL may having a common global transcriptomic response to di�erent 

stress conditions. To reveal more about the pattern of global transcriptomic response, 

we implemented an unsupervised machine-learning technique, K-means clustering, on 

TRP24-UTD24, BPD24-UTD24, and TRP24-BPD24 samples. K-means clustering identi�ed 

four distinct clusters for each plot. Details of each cluster can be accessed in the Table S2.

As K-means clustering is an unsupervised learning algorithm, it may be di�cult 

to decide if these clusters are biologically di�erent or not. However, with the help of 

FIG 3 Morphology, genome-copy number, and infectious progeny data for di�erent stage of CTL tryptophan and iron starvation. (A) CTL exhibits duration-

dependent sensitivity to iron limitation and tryptophan (trp) starvation. Infected cells were starved for iron by treatment with the chelator 2,2-bipyridyl (Bpd) 

starting at either the time of infection or at 8 hours post-infection. Inclusions as indicated by staining for the chlamydial major outer membrane protein (MOMP) 

were allowed to develop for a total of 24 hours. Tryptophan starvation was started at the same time points as above, with indicated durations. Note the more 

signi�cant delay in inclusion development by Chlamydia starved for 24 hours. (B) Genome copy number data of euo gene for UTD24, BPD16, TRP16, BPD24, and 

TRP24. (C) Infectious progeny data for UTD24, BPD16, TRP16, BPD24, and TRP24. (D) Distribution of gene expression values.
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bioinformatics tools, we can decide the arbitrariness of each cluster. For that purpose, 

we performed gene set enrichment analysis, a well-established method to identify the 

uniqueness of clusters obtained from the K-means algorithm (52).

Genes were clustered based on function, with clusters in green indicating metabo­

lism-related genes; yellow clusters consisting of cell signaling-related genes, and red and 

blue clusters indicating transcription- and translation-related genes, respectively. From 

Fig. 4A and C, it is evident that most of the genes in green clusters remained similarly 

expressed. However, genes in the yellow and red cluster were moderately or highly 

upregulated in the TRP24/BPD24 compared to the UTD24 (Fig. 4A and B). In contrast, 

genes in the blue clusters were upregulated in the UTD24 compared to the TRP24/BPD24 

(Fig. 4A and B).

As green clusters are tightly clustered across all the conditions (Fig. 4A and C), these 

can be called <core= components, as identi�ed previously (16). In contrast, blue, yellow, 

and red clusters were upregulated/downregulated across given conditions (Fig. 4A and 

C) and can be labeled as stress-speci�c <accessory= components (16). Some of the known 

FIG 4 Pairwise K-mean clustering plots for di�erent stress conditions. (A) Scatter plot of 24 hours of tryptophan starved (TRP24) and untreated (UTD24) CTL. 

(B) Scatter plot of 24 hours of iron starved (BPD24) and untreated (UTD24) CT. (C) Scatter plot of 24 hours of tryptophan starved (TRP24) and 24 hours of iron 

starved (BPD24). (D) Correlation of di�erent scatterplots. These scatterplots and correlations between di�erent stress conditions reveal that CTL may behave 

similarly under di�erent stress conditions. (E) Scatter plot of 24 hours of iron starved (BPD24) and 16 hours of iron starved (BPD16) CTL. (F) Scatter plot of 

24 hours of tryptophan starved (TRP24) and 16 hours of tryptophan starved (TRP16) CT. (G) Scatter plot of 16 hours of tryptophan starved (TRP16) and 16 hours 

of iron starved (BPD16). (H) Correlation of di�erent scatterplots. These scatterplots and correlations between di�erent stress conditions reveal that CTL may 

have a global transcriptomics response. (I) Pearson correlation matrix among di�erent conditions. The correlation was calculated using two-tail test with 95% CI. 

(J) Heat map for a number of reactions in each cluster for di�erent conditions. (K) Gene ontology enrichment chart for common genes in green cluster across all 

conditions.
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tryptophan utilization genes such as trpR, trpC, and trpS fell in the yellow clusters and 

were thus moderately upregulated in TRP24 (Fig. 4A). Several studies predicted similar 

upregulation of tryptophan utilization genes under tryptophan starvation (15). In vivo, 

the amount of tryptophan available is often depleted by the pro-in�ammatory cytokine 

interferon-γ through the transcriptional upregulation by the ido1 gene, encoding the 

enzyme Indoleamine 2,3‐dioxygenase (IDO) that catabolizes tryptophan to kynurenine, 

which cannot be used by CTL. However, the microbiome in the relatively hospitable 

niche of the lower genital tract may provide tryptophan or more likely indole, which CTL 

can use for tryptophan biosynthesis via the salvage pathway (53). Indeed, several studies 

have shown that under tryptophan starvation, CTL can use indole supplemented in the 

media for conversion to tryptophan (53, 54).

Several stress-related genes, such as ahpC and euo, were also upregulated in the 

TRP24 compared to the UTD24 (Fig. 4A). Between these two genes, ahpC was signi�-

cantly upregulated and fell in the red cluster, while euo was moderately upregulated 

and included in the yellow cluster. AhpC is a thiol-speci�c antioxidant peroxidase gene 

and is predicted to regulate redox homeostasis in CTL. A similar upregulation of ahpC is 

also observed in CTL exposed to interferon-γ stress (55). For Chlamydia pneumoniae, it 

was reported that the upregulation of ahpC would protect the bacteria against cytokine-

induced reactive nitrogen intermediates, thus allowing C. pneumoniae to cause long-

term infection (56). For euo, encoding a DNA-binding protein, a moderate upregulation 

was observed in CTL under interferon-γ induced stress. Euo is a predicted negative 

regulator of CTL genes involved in RB-to-EB di�erentiation (57). IhfA is a DNA-binding 

protein that alters DNA topology and was downregulated in the TRP24, thus, possibly 

contributing to other transcriptional e�ects in TRP24-treated samples (Fig. 4A).

In persistence, glycolysis mostly supports the increased production of starch and 

carbohydrate, with CTL mostly depending on the host cell for energy (43). As a result, 

reduced expression of TCA cycle genes, such as sucABCD, was expected and fell in 

the bottom left portion of the green cluster. A similar overall result was observed for 

BPD24-UTD24 (Fig. 4B). In the TRP24-BPD24 (Fig. 4C) scatterplot, the key di�erence is 

that the stress-related accessory genes were expressed more in line with the core genes, 

thus establishing a strong relation between two di�erent stress conditions. Overall, the 

K-means clustering predicted clusters whose functionality matched closely with the 

literature. Thus, this clustering analysis will further serve as a <genome-wide library= to 

identify core and stress-related genes of CTL.

To gather more insights into the presence of a global stress response in CTL, we 

plotted other stress conditions, such as BPD24-BPD16 (Fig. 4E), TRP24-TRP16 (Fig. 4F), 

and TRP16-BPD16 (Fig. 4G). Interestingly, we noticed a very strong correlation in all the 

cases (Fig. 4H), supporting the proposed existence of global stress response of CTL. A 

Pearson correlation heat map (Fig. 4I) of normalized read counts of all genes among 

di�erent conditions also indicated strong correlation between all the stress conditions. 

The number of reactions in each cluster for di�erent conditions is shown in Fig. 4J. 

Common genes in green, yellow, blue, and red clusters were identi�ed using Venn 

diagrams (Fig. S1B through E respectively). Gene ontology enrichment analysis for the 

common genes across green clusters is shown in Fig. 4K. The same analysis for the 

yellow cluster (Fig. S2A) and the red clusters (Fig. S2B) is provided in the supplementary 

information. Since the blue cluster has only one common gene (ctl0256), we could not 

perform the gene ontology enrichment analysis.

Notably, the strong correlation between transcriptomes associated with two distinct 

stresses is not unique to CTL. Analysis of publicly available transcriptomes from 

di�erently stressed M. tuberculosis and Escherichia coli revealed a similar correlation. 

We collected the transcriptional pro�le of M. tuberculosis exposed to in vitro lysosomal 

stress for 24 hours and 48 hours (58). From the scatterplot (Fig. S3A), we noticed a very 

high correlation (Fig. S3D). We also collected the transcriptional pro�le of M. tuberculosis 

exposed in zinc-limited medium and zinc replete medium (59). Similar to the previous 

case, the scatterplot (Fig. S3B) indicated a very high correlation (Fig. S3D). However, when 
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we scatterplot (Fig. S3C) M. tuberculosis transcription data for lysosomal stress of 24 hours 

and zinc-limited medium, it showed a very low correlation (Fig. S3D). Thus, M. tuberculosis 

response to divergent stresses is customized to each stress. However, the transcriptional 

response for a single type of stress in M. tuberculosis progresses as a function of severity 

(i.e., duration) of the stress.

Unlike M. tuberculosis, E. coli demonstrated a single global stress response mecha­

nism. Transcriptomics pro�le of 50 minutes of cold stress against 90 minutes of cold 

stress (Fig. S4A) for E. coli from the literature (60) showed a very strong correlation 

(Fig. S4D). Similarly, transcriptomics pro�le of 40 minutes of oxidative stress against 90 

minutes of oxidative stress (Fig. S4B) for E. coli from the literature (60) also showed a 

very strong correlation (Fig. S4D). Thus, like M. tuberculosis, for temporal progression 

of similar stress, E. coli may have a similar stress response mechanism. Interestingly, 

the transcriptomics pro�le of 90 minutes of cold stress against 90 minutes of oxidative 

stress (Fig. S4C) showed a very strong correlation (Fig. S4D). Thus, under di�erent stress 

responses, the transcriptional response of E. coli is generally conserved, similar to our 

data for CTL.

For E. coli, ppGpp is a global stress regulator (61). When an uncharged tRNA binds in 

the ribosome, the ribosome-associated RelA protein is activated to synthesize ppGpp 

(62), which acts as a global regulator of transcription by modulating transcription 

complexes at promoters (61). The stringent response serves to stop the synthesis of 

stable RNA species, such as rRNA and tRNA, to increase protein degradation pathways to 

maintain growth rate (62). Collectively, these responses serve to overcome the starvation. 

SpoT is a cytosolic bifunctional enzyme with ppGpp synthase and hydrolase activity that 

helps control the levels of ppGpp. CTL does not have homologs of relA and spoT and 

does not synthesize ppGpp (12). The loss of these genes has likely occurred through 

reductive evolution as a means for adapting to obligate intracellular environment. Thus, 

gene expression showing a strong correlation under various stress conditions, lack of 

homologs for relA and spoT, missing metabolic pathways to synthesize ppGpp, and 

elevated expression of stable RNA (13) indicate that CTL does not engage in a strin­

gent response during starvation, manifesting as an overlapping transcriptional response 

during iron and tryptophan starvation.

Impact of global stress response on C. trachomatis metabolism

We next sought to determine if this lack of stringent action translated to novel insights 

into the metabolic landscape of tryptophan- or iron-starved CTL. To answer this, we 

contextualized iCTL278 for UTD24, TRP16, TRP24, BPD16, and BPD24 conditions using 

the E-�ux algorithm.

To con�rm that the results from contextualized models are not the artifact of 

transcriptomics data, we calculated the correlation matrix between transcriptomics data 

predicted �ux (detailed descriptions of experimental design are found in the “E-�ux 

algorithm= sub-section of the Methods and Materials) and model-predicted �ux and 

found very weak correlation between them (Fig. S5A). We also found that model-predic­

ted �ux distribution for di�erent stress conditions is highly correlated (Fig. S5B). This 

supports the previously observed high correlation among di�erent stress conditions 

from the transcriptomics data analysis(Fig. S4I).

As CTL enters persistence, the metabolic di�erence between UTD24 and TRP16/

BPD16 can give insight into the impact of CTL global transcriptome rewiring on its 

metabolism. To identify the metabolic di�erences between UTD24 and TRP16, we used 

the TRP16 model and implemented MBA (40). MBA revealed that, for TRP16, allowing 

phosphoglycerate mutase (pgm; ctl0091) from the glycolysis pathway to carry a similar 

reaction �ux as UTD24 resulted in the same biomass growth rates for UTD24 and TRP16 

conditions. The resulting reaction �uxes of other reactions of UTD24 and TRP16 were 

also found to be similar after making this change to pgm �ux. This result indicates that 

potential regulation of pgm is the metabolic trait of rewiring the CTL global transcrip­

tomics response as it enters persistence (Fig. 5A and B). The same result was obtained 
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for the BPD16. The transcript pro�les of pgm and the gene encoding the upstream 

reaction phosphoglycerate kinase (pgk) showed opposite expression levels under TRP16 

condition, with the former being increased (Fig. 5C and D). Similar results were obtained 

for BPD16. However, the evidence of increased levels of transcripts does not necessarily 

equate to increase levels of protein in CTL during starvation conditions (6, 13).

FIG 5 Regulatory reactions in CTL to enter persistence. (A) Phosphoglycerate mutase in the glycolysis pathway. (B) Normalized gene expression heatmap of 

genes involved in the glycolysis. (C) Transcripts level of pgk in TRP16-UTD24 and BPD16-UTD24. (D) Transcripts level of pgm in TRP16-UTD24 and BPD16-UTD24. 

(E) Max/min driving force (MDF) analysis showing the cumulative driving force of glycolysis. (E) The driving force plot showing phosphoglycerate mutase (pgm) 

and phosphoglycerate kinase (pgk) are two top most driving force reactions. (F) Individual driving force of each reactions. (G) The enzyme cost of glycolysis for 

TRP16 showing phosphoglycerate mutase has the lowest enzyme costs. (H) Carbon usage e�ciency for UTD24, TRP16, TRP24, BPD16, and BPD24.
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To further dissect the signi�cance of pgm transcriptional regulation in persistence, we 

performed max/min driving force (MDF) analysis (63) on the glycolysis pathway of CTL. 

MDF analysis maximizes the total driving force of a given pathway within the biologically 

relevant concentration of di�erent metabolites. Figure 5E indicates the driving force of 

glycolysis before and after the MDF analysis. Among all the reactions in glycolysis, MDF 

analysis predicted that pgm has the highest driving force (Fig. 5F), while pgk has the 

second-highest driving force (Fig. 5F). Concentrations of di�erent metabolites, predicted 

from MDF analysis, are shown in Fig. S5C. In the context of MDF, the <shadow price= 

(64) of a reaction accounts for the Impact of Gibb’s free energy of said reaction on 

the overall pathway thermodynamics. Similarly, the shadow price of concentrations for 

each metabolite indicates the impact of small perturbations of metabolite concentration 

on the overall pathway thermodynamics. Therefore, we calculated the shadow price of 

the driving forces of each of the reactions (Fig. S5D) and found the �rst three steps of 

glycolysis (pgi, pfk, and als) having the most impact on the overall driving force with 

changing reaction �uxes. Next, we calculated the shadow price of concentrations of each 

of the metabolites and found H+, glyceraldehyde 3-phosphate, and glycerone phosphate 

have the most impact on the overall driving force despite small changes in concentra­

tions (Fig. S5E). Flux-force e�cacy relationship indicated a high proportion of each 

reaction in the forward direction, and thus, the glycolysis pathway was enzymatically 

highly e�cient (Fig. S5F). In addition, we calculated the enzyme cost (65) of each reaction 

from their enzyme turnover rate, kcat (Table S3). The turnover rates were calculated using 

DLKcat for CTL (66). From the enzyme cost analysis, pgm has the lowest enzyme costs 

compared to the other reactions of glycolysis, and pgk has the second lowest enzyme 

costs, indicating a low carbon investment to catalyze those reactions compared to other 

glycolysis reactions (Fig. 5G). To ensure the observed thermodynamics driving force and 

enzyme cost implications are not an artifact of reduced carbon usage e�ciency (CUE) 

of CTL, we calculated CUE for all the conditions (67) and found that CUE remained 25% 

for both unstressed and stressed conditions (Fig. 5H). Therefore, it is evident that the 

thermodynamics and enzyme cost of pgm, rather than its CUE, could potentially dictate 

its regulatory role in CTL persistence.

Explaining unusual bacterial phenomena through thermodynamic driving force and 

protein cost is not uncommon in the systems biology domain. For example, the over�ow 

metabolism is an unusual phenomenon for both E. coli (68) and yeast (69), which was 

well explained through protein cost analysis. Moreover, thermodynamic driving force 

analysis also explained the need for Entner–Doudoro� pathway over Embden-Meyerhof-

Parnas, despite having a lower ATP yield (70). This work is also an e�ort to understand 

CTL persistence by combining thermodynamics driving force and protein cost analysis 

with an additional component of CRISPRi-mediated gene silencing.

Validation of thermodynamics and enzyme cost analysis through CRISPRi-

based suppression and starvation experiment

Using systems biology approaches, we predicted that pgm was regulated at the levels of 

transcription (from the MBA), thermodynamics driving force, and enzyme cost. However, 

other glycolysis enzymes, including pgk, were regulated only at the level of thermody­

namic driving cost and enzyme cost. Therefore, we predicted a pgm-mutant would have 

greater impact on chlamydial growth compared to a pgk-mutant, as compared to the 

wild type.

To test these predictions, C. trachomatis inducible knockdown transformants 

targeting pgk or pgm were created using CRISPRi as previously described (71). In these 

transformants, the CRISPR RNA (crRNA) that targets the promoter region of either pgk 

or pgm is constitutively expressed, while the expression of an inactive Cas12 endonu­

clease (dCas12) is induced with anhydrotetracycline (aTc). The RNA-DNA hybrid formed 

by the crRNA and genomic DNA is recognized by dCas12, where it binds and blocks 

RNA polymerase processivity. A control C. trachomatis was created by transforming 

C. trachomatis with the pL12CRia plasmid that lacks a crRNA. The knockdown strains 
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and the empty-vector control were validated for dCas12 induction by aTc, reduction 

in expression of the target genes, CTL development, and bacterial replication (Fig. S6A 

through C). In the absence of induction under normal growth conditions, all strains grew 

equally well (Fig. 6A).

Computational modeling indicated the importance of pgm in CTL entry into 

persistence. To test this prediction, the strains were grown in HeLa cells for 10 hours, 

followed by a 4-hour induction of knockdown by treatment with 5 nM aTc. The 

experimental groups were further subjected to either mock- or tryptophan-starvation 

for an additional 6 hours, with aTc maintained in the growth media. At the end of the 

experiment (22 hours post-infection), samples were �xed and processed for immuno­

�uorescence staining of the chlamydial inclusions. Images were collected by confocal 

microscopy, and inclusion size was measured by NIH ImageJ particle analysis plug-in. 

Inclusion size correlates with bacterial growth and replication, in that increased inclusion 

volume is necessary to accommodate an increase in bacterial numbers. As shown in 

Fig. 6A, all strains yielded similar inclusion sizes in tryptophan-replete media without 

induction of knockdown (i.e., +Trp and −aTc). Tryptophan starvation for 6 hours led to 

a slight reduction in inclusion size, as expected. However, the inclusion size reduction 

became more pronounced in tryptophan-limited and knockdown-inducing conditions 

(i.e., −Trp and +aTc), with the pgm knockdown exhibiting a statistically signi�cant 

di�erence in inclusion size (Fig. 6B), thus validating the results obtained from the 

modeling studies. Collectively, these data implicate pgm as a critical determinant of 

sensitivity to tryptophan starvation-mediated persistence. Moreover, this experimental 

validation also justi�es the use of a template Gram-negative bacteria biomass equation 

in the absence of a CTL-speci�c biomass equation to model CTL metabolism.

Cellular objective of global stress response

Our data suggest CTL regulates pgm activity, in conjunction with transcriptional changes, 

as a consequence of exposure to nutrient limiting conditions. We next sought to 

investigate the cellular objective of this global transcriptome rewiring. To gain insight 

into the signi�cance of metabolic rewiring associated with tryptophan starvation, we 

plotted biomass growth rate against di�erent tryptophan uptake rates. If we made more 

tryptophan available for uptake in the case of TRP24, then it could grow at a higher 

growth rate compared to TRP16 and UTD24 (Fig. 7A). A similar result was obtained for 

BPD16 and BPD24 (Fig. 7B). We also calculated the correlation matrix of growth patterns 

(Fig. 7C and D) under tryptophan and iron starvation conditions. Similar to the previous 

analysis (Fig. 4I; Fig. S5A), stress conditions were better correlated.

However, a previous study (72) suggested that, with a shorter starvation timeline, CTL 

should better restore its growth and start di�erentiating to the RB upon availability of 

nutrients. In other words, it should be easier to restore the growth of CTL after 16 hours 

of nutrient starvation compared to 24 hours of nutrient starvation. Thus, we explored 

the model further to investigate this phenomenon. We again applied MBA in the TRP16 

metabolic model. Surprisingly, we found that if pgm reaction �ux was relaxed to its value 

obtained from TRP24 model (Fig. 5A), the biomass of TRP16 and TRP24 became the 

same. A similar result was obtained for the BPD16 and BPD24. This analysis indicates 

that the cellular objective of the CTL global transcriptome rewiring during persistence is 

to reach such a cellular phenotype so that, when the stress is withdrawn, CTL can exit 

persistence immediately and re-enter the normal developmental cycle. CTL can do that 

by relaxing its regulation of pgm, which is critical. This �nal objective also supports the 

evolutionary selection of CTL, which is to maximize its own �tness function. The protein 

interaction network suggests that pgm has a strong interaction with yggH (Fig. 7E). YggH 

catalyzes the S-adenosyl-l-methionine-dependent formation of N7-methylguanosine at 

position 46 (m7G46) in tRNA and can impact the activity of tRNA (73). It was previously 

reported that inhibition of tRNA synthetase activity can induce persistence in CTL (74). 

The normalized read counts of yggH show signi�cantly higher levels of transcripts in 

all the stress conditions compared to the UTD24 (Fig. 7F). Thus, the regulation of pgm 
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may be mediated in part by changes in yggH. The proposed mechanism that led CTL 

to enter persistence is shown in Fig. 7G. Quantitative proteomics from the literature 

FIG 6 In vitro experiments support model prediction that pgm plays a major role in pushing C. trachomatis to persistence. 

(A) Tryptophan deprivation for 6 hours resulted in a small reduction in inclusion size. However, with pgm knockdown, the 

decline became more severe in tryptophan-limited and knockdown-inducing settings. (B) Inclusion reduction became more 

evident in tryptophan-limited and knockdown-inducing settings, with the pgm knockdown showing a statistically signi�cant 

di�erence in inclusion size, corroborating the modeling studies’ �ndings.
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FIG 7 Reaction halting CTL to undergo secondary di�erentiation to EB. (A) The growth rate vs tryptophan uptake (UTD24, TRP16, and TRP24). (B) The growth 

rate vs iron uptake (UTD24, BPD16, and BPD24). (C) The correlation matrix calculated among growth rates of UTD24, TRP16, and TRP24 using 95% CI and a 

two-tailed test. (D) The correlation matrix calculated among growth rates of UTD24, BPD16, and BPD24 using 95% CI and a two-tailed test. (E) Protein interaction 

map for the pgm enzyme. The minimum required interaction score was 0.50, and top �ve interactions allowed for �rst shell. (F) Normalized read counts of yggH in 

di�erent conditions. (G) Schematic of the mechanism proposed to enter persistence and factors that keep CTL in the persistence mode.
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(75) indicated that the ARB is primed for a burst in metabolic activity upon nutrient 

availability, whereas the RB is geared toward nutrient utilization, a rapid increase in 

cellular mass, and securing the resources for an impending transition into the EB form. In 

addition to con�rming previously published �ndings, this study indicates that pgm may 

be a mediator of ARB-to-RB transition.

This study utilized transcriptomics data sets and systems biology tools, including 

K-means clustering and GSM, to analyze the transcriptome and metabolism of CTL under 

tryptophan and iron stress conditions. The �ndings suggest a global transcriptomic 

rewiring in CTL under stress, impacting its persistence mechanisms. Through a combined 

systems and synthetic biology approach, the study identi�ed pgm as a regulator of 

CTL persistence, highlighting the importance of systems biology in understanding the 

growth and development of the obligate intracellular pathogen CTL, complementing 

insights gained through molecular genetics approaches in model prokaryotes. Future 

research e�orts will be geared toward studying the interaction between CTL and 

di�erent host epithelial cells (e.g., endocervical and endovaginal epithelial cell). Similar to 

this study, we aim to identify the metabolic signatures that in�uence the CTL infection in 

these cells.

MATERIALS AND METHODS

Cell lines

Human female cervical epithelial adenocarcinoma HeLa cells (RRID: CVCL_1276) were 

cultured at 37°C with 5% atmospheric CO2 in Dulbecco’s Modi�ed Eagle Medium (DMEM; 

Gibco, Thermo Fisher Scienti�c) supplemented with 10  µg/mL gentamicin, 2  mM 

l-glutamine, and 10% (vol/vol) �lter sterilized fetal bovine serum. For all experiments, 

HeLa cells were cultured between passage numbers 3 and 15. HeLa cells were originally 

authenticated by ATCC via STR pro�ling and isoenzyme analysis per ATCC speci�cations.

Bacterial strains

C. trachomatis serovar L2 434/Bu was originally obtained from Dr. Ted Hackstadt (Rocky 

Mountain National Laboratory, NIAID). Chlamydial EBs were isolated from infected HeLa 

cells at 36–40 hpi and puri�ed by density gradient centrifugation essentially as described 

(76). For infections, at 80%–90% con�uence, HeLa cells were �rst washed with Hanks 

Bu�ered Saline Solution (HBSS; Gibco, Thermo Fisher Scienti�c), and ice-cold inoculum 

prepared in HBSS at the indicated multiplicity of infection (MOI) was overlaid onto the 

cell monolayer. To synchronize the infection, inoculated cells were then centrifuged for 

15 minutes at 500× relative centrifugal force (RCF), 4°C in an Eppendorf 5810 R tabletop 

centrifuge with an A-4–81 rotor. The inoculum was then aspirated, and pre-warmed 

DMEM (or relevant media with treatment supplementation) was added to the cells. 

Infected cultures were then returned to the tissue culture incubator until the indicated 

time post-infection.

Genome copy number quanti�cation

All quantitative PCR (qPCR) assays were performed using Power Up SYBR Green Master 

Mix (Applied Biosystems, Thermo Fisher Scienti�c) essentially as previously described (77, 

78). In brief, cDNA was diluted 1:5–1:10, and gDNA was diluted 1:50–1:100 in nuclease-

free H2O (dilutions were identical within each experiment). The 2× PCR master mix was 

diluted to 1× in nuclease-free H2O with speci�c primers to the euo open-reading frame 

diluted to 500 nM. To 79 µL of the master mix solution, 3.3 µL of template (cDNA or 

gDNA) was added and then aliquoted into three 25 µL technical replicate reactions in a 

96-well optical plate. Reactions were analyzed on a QuantStudio 3 real-time PCR system 

with standard SYBR cycling conditions. All assays were performed with a melt-curve 

analysis to ensure speci�c product ampli�cation across samples. Primer sets used in qPCR 

were validated against a standard curve of C. trachomatis L2 gDNA diluted from 2 × 10–3 
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to 2 × 100 ng per reaction. Ct values generated from each experimental reaction were 

then �t to a standard curve, and only primer sets with an e�ciency of 100% ± 5% were 

used. The sequences of the forward and reverse primers are as follows:

euo forward – 5’- GCTGTTCCTGTTACTTCGCAAA - 3’

euo reverse – 5’- AACATAGATAGCCTGACGAGTCACA – 3’

GEs were calculated by �rst converting the mean Ct of the triplicate technical 

replicate reactions to a ng quantity of gDNA (ng template) with the linear equation 

generated from the standard curve of the euo primer pair. This value was then normal­

ized to the total ng/μL gDNA isolated for each sample.

Validation of CRISPRi knockdown strains

The pBOMBL12Cria::L2 empty vector was digested with BamHI and treated with alkaline 

phosphatase (ThermoFisher). Two nanogram of the crRNA gBlock (IDT DNA, Coralville, 

IA) targeting the intergenic region of either pgm or pgk (Table S4) was used in a 

HiFi reaction with 25 ng of digested plasmid according to the manufacturer’s instruc­

tions [New England Biolabs (NEB); Ipswich, MA]. Twenty-�ve microliter of chemically 

competent E. coli 10β cells (NEB) were transformed with 2 µL of the HiFi reaction 

and plated on Luria-Bertani (LB) agar with ampicillin selection. Plasmid was isolated 

from overnight cultures of individual colonies grown in LB broth with ampicillin and 

veri�ed by restriction digest and sequencing. Two microgram of veri�ed plasmid 

was used to transform C. trachomatis serovar L2 (-pL2) lacking its endogenous plas­

mid as described elsewhere (71). After obtaining transformants carrying either the 

pBOMBL12Cria(pgm)::L2 or pBOMBL12Cria(pgk)::L2 CRISPRi vectors, cells were infected 

with an MOI of 1. At 10 hpi, the expression of the dCas12 protein was induced or not 

with 2 nM aTc, and RNA and DNA samples were collected and processed as described 

previously at 10, 14, and 24 hpi (71). Transcript levels for pgm and pgk were determined 

by RT-qPCR from equal volumes of cDNA using gene-speci�c primers (Table S4) on 

a QuantStudio3 (Applied Biosystems; Thermo) and normalized to genomic DNA levels 

determined from equal masses of DNA by qPCR using the pgm qPCR primer set. 

A standard ampli�cation cycle with a melting curve analysis was used for the qPCR 

analysis and compared to a standard curve of C. trachomatis L2 genomic DNA. Data are 

representative of two biological replicates assessed in triplicate.

Treatment conditions and induction of knockdown of pgk and pgm transcrip­

tion by CRISPRi

HeLa cells were infected at an MOI of 0.5 (t = 0 hpi) and were maintained in complete 

DMEM for 14 hours. The infected cells were then exposed to anhydrous tetracycline 

(aTc) at 5 nM for 4 hours to induce knockdown of expression (t = 14 hpi). Tryptophan 

depletion was performed at t = 18 hpi by �rst washing cells with HBSS and then 

replacing complete DMEM with tryptophan-depleted DMEM-F12 (U.S. Biological Life 

Sciences). Treated cells were then returned to the tissue culture incubator for the 

remainder of the experimental time course. At t = 22 hpi, samples were collected and 

�xed with freshly prepared 4% paraformaldehyde and permeabilized for 10 minutes 

with 0.1% Triton X-100 in phosphate-bu�ered saline (PBS). Samples were immunostained 

with mouse antibody against the C. trachomatis major outer membrane protein (1:1,000 

dilution). Samples were incubated at 4°C overnight with constant rocking. The next day, 

the primary antibody solution was removed, and samples were rinsed 3× with 1× PBS 

and incubated with 1:1,000 dilution of goat anti-mouse IgG conjugated with Alexa-488 

for 1 hour. Samples were rinsed and visualized by �uorescence microscopy. Images were 

processed, and inclusion size was measured using NIH ImageJ.

Genome-scale metabolic model reconstruction of CTL

The genome-scale metabolic network reconstruction was based on available genome 

information of the model strain C. trachomatis L2 434/Bu (KBase Genome ID: 

Research Article mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00717-2417

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/m

sy
st

em
s 

o
n
 3

1
 M

ay
 2

0
2
5
 b

y
 2

6
0
3
:8

0
a0

:e
4
0
:9

d
:f

9
d
7
:9

f6
d
:7

c4
4
:e

d
6
9
.

https://doi.org/10.1128/msystems.00717-24


GCF_000068585.1), according to the ModelSEED databases (79), BRENDA (80), and 

available literature. Additional reactions were added to the model based on the 

previously published genome-scale metabolic model of CTL (30), experimental data (8), 

and previously published literature on metabolic traits of CTL. Gap �lling for pathways 

in our model was �rst conducted in Kbase (41) and then by OptFill (44) based on the 

complete media, as complete media was used in the experimental settings as well to 

grow CTL in vitro. In total, 95 reactions were added to the draft model to �ll the gaps. The 

model was further checked for elemental mass balance, and MEMOTE reports con�rm 

that all the reactions in the model are mass balanced. gene-protein-reaction association 

(GPR) for all the reactions was manually curated from the KEGG database. As a result, 525 

out of 692 reactions have a GPR relationship. We used the General Algebraic Modeling 

System (GAMS) platform along with the CPLEX solver for solving all the optimization 

problems. NEOS server can be used to run GAMS codes without having to buy the 

license. Details of the procedure of running GAMS codes in NEOS server can be found in 

the literature (81). However, for the convenience of COBRApy users, SBML version of the 

iCTL278 is also provided.

Parsimonious �ux balance analysis

pFBA (21) is constrained based optimization technique to model GSMs. The pseudo-

steady state mass balance in pFBA is represented by a stoichiometric matrix, where the 

columns represent metabolites, and the rows represent reactions. For each reaction, 

upper and lower bounds are imposed based on thermodynamic information. pFBA 

provides the �ux value for each reaction in the model according by solving the following 

optimization problem:

max vbiomass  − 0.0001
j ∈ J

vj

Subject to:

j ∈ J

Sijvj = 0, ∀i ∈ I   [1]

aj ≤ vj ≤ bj  [2]

In this formulation, I is the set of metabolites, and J is the set of reactions in the 

model. Sij is the stoichiometric matrix with i indicating metabolites and j indicating 

reactions, and vj is the �ux value of each reaction. The objective function, vbiomass, is the 

proxy of the growth rate of an individual cell. aj and bj are the lower and upper bounds 

of �ux values for each reaction. For forward reactions, the highest possible bounds were 

0 mmol/gDW/h to 1,000 mmol/gDW/h. For the reversible reactions, the highest possible 

bounds were −1,000 mmol/gDW/h to 1,000 mmol/gDW/h.

Flux variability analysis

The result from FBA may include degenerate optimal solutions, this FVA (20) was used to 

�nd out the alternate �ux distributions. The formulation is the following:

max/min  vj                                           

Subject  to:

j ∈ J

Sijvj = 0,  ∀i ∈  I           3

vbiomass = vbiomass
max               4

aj ≤ vj ≤ bj,    ∀j ∈ J            5

FVA maximizes and minimizes each of the reaction �uxes subject to the pseudo-

steady mass balance, �xing biomass growth rate for a speci�c condition, and upper and 

lower bounds on reaction �uxes. In this manuscript, all the FVA resulted in very tight 

bounds (changes can only be observed after two decimal place).
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E-Flux algorithm

E-Flux is an extension of FBA/pFBA that uses transcriptomic data to further constrain 

the feasible space based on the transcriptomics data (38). The E-�ux algorithm involved 

solving the following linear optimization problem:

max    vbiomass − 0.0001
j ∈ J

|vj|

Subject to:

j ∈ J

Sijvj = 0,  ∀i ∈  I                     6

aj ≤ vj ≤ bj                                     7

where aj and bj are the minimum and maximum allowed �uxes through reaction j, 

based on the transcriptomics data. The E-Flux method calculates the upped bound, bj, 

for the jtℎ reaction according to the following function of the gene expression:

bj = expression level of genes associated witℎ reaction j   8

In this manuscript, bj is the exact level of each reaction was calculated through its 

GPR association [i.e., based on <OR= (addition of gene expressions) and <AND= (minimum 

of gene expressions) relation]. If the reaction catalyzed by the corresponding enzyme 

was reversible then aj = − bj, otherwise aj = 0.

Flux sum analysis

The metabolite pool size of ATP in the validation section was determined based on the 

FSA method (33). The �ux sum is a measure of the amount of �ux through the reactions 

associated with either the production or consumption of the metabolite. The range of 

the �ux sum can be calculated as follows:

Max/Min  0.5
j = 1

m

Sijvj  

Subject  to:

j = 1

m

Sijvj = 0,   i ∈ I              9

aj ≤ vj ≤ bj                             10

vbiomass = vbiomass
max               11

,  ∀i ∈ I

Here, set I represents the set of metabolites for which the �ux sum will be calculated. 

By linearizing the objective function, the resulting formulation became a mixed-integer 

linear programming problem. Therefore, the basic idea was to determine the range of 

the �ux-sum of a metabolite under a given condition by �xing the maximum biomass 

growth of that condition ( ).

K-mean clustering

K-mean clustering algorithm was used to classify di�erent genes into di�erent clusters. 

The number of clusters was determined using the Elbow method (Fig. S7). The whole 

K-mean clustering was implemented in Python, using numpy, pandas, and sklearn 

modules. Di�erent plots for the K-mean clustering were generated using matplotlib 

module. Default setting of K-mean clustering, mentioned in the sklearn, was not 

changed in this study.
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Metabolic bottleneck analysis

To determine the metabolic bottleneck in a GSM, metabolic bottleneck analysis (40) was 

used. The formulation is as follows:

Max  vbiomass

Subject  to:

j = 1

m

Sijvj = 0,   i ∈ I                            12

aj ≤ vj ≤ bj,  j/ j′    ∈  J                 13

vj′,min, ≤ vj′ ≤ vj′,max,  j′   ∈  J      14

,  ∀j′ ∈ J

Here, aj is the lower bound reaction vj, and bj is the upper bound of reaction vj. 

Both aj and bj were calculated from the transcriptomics data and gene-protein-reaction 

association. vj`,min is the expanded lower bound of the reaction j`, and vj`,max is the 

expanded upper bound of the reaction j`. In this case, we set vj`,min = − 1000 mmol
gDW .ℎr  and 

vj`,max = 1000 mmol
gDW .ℎr . We solved the optimization problem by maximizing the biomass 

vbiomass for the new expanded �ux space of each reaction j` in an iterative manner and 

then recorded the biomass growth rate. From this biomass growth rate collections, we 

can check for which j` biomass growth rate increased signi�cantly. Then that j` can be 

considered as the metabolic bottleneck of a given metabolic network.

Max/min driving force analysis

To �nd out the thermodynamic driving force and thermodynamic bottleneck of a 

given pathway, we used MDF analysis from the literature (63). In this method, we 

maximized the driving force of each reaction in a given pathway within the biologically 

relevant concentration and found the maximum possible driving force of a pathway. The 

formulation of the MDF analysis is given below:

axB

Subjectto:

−G ≥ B [15]

G = (G0 + RT ⋅ ST ⋅ x) [16]

ln(Cmin) ≤ x ≤ ln(Cmax) [17]

xATP ≥ 10xADP [18]

xNADH ≥ 0.1xNAD [19]

xADP = 0.4 [20]

xNAD = 6.5 [21]

x3PGA = 13.0 [22]

G0 is the standard Gibbs free energy, R is the gas constant, T is the temperature, 

and xandC indicates concentration. This analysis is particularly useful when metabolo­

mics information is not fully available for a given pathway. Thus, a biologically relevant 

metabolite concentration range can be used to infer information about a pathway, 

whether it will be thermodynamically feasible or not. Furthermore, this analysis will 

indicate reaction(s) with the highest and lowest thermodynamic driving forces and will 

also provide a concentration of metabolites to support the maximum pathway driving 

force. Here, we �xed the ATP/ADP and NADF/NAD ratio as mentioned in the original 

MDF article (63). Besides concentrations (mM) of ADP, NAD, and 3-PGA were �xed in 

the MDF optimization problem based on literature evidence (82, 83). Shadow price of 

di�erent constraints was calculated using the built-in features of GAMS. The temperature 

in the optimization problem was set to 37°C, which is similar to the temperature of 
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the growth culture. The ratio of forward-to-backward reaction �uxes for each of the 

glycolysis reactions was calculated using the following equation.

v+ − v−

v+ + v−
=  e

−ΔG
RT − 1 

e−
ΔG
RT + 1 

  23

Here, ∆G was calculated from the MDF analysis. Also, v+ and v− indicate reaction �ux 

in forward and backward directions, respectively.

Enzyme cost calculation

To �nd out enzyme synthesis costs for di�erent enzymes of a given pathway, we used the 

following equation from the literature (65) assuming all the enzymes are fully saturated.

v  =  E ⋅  kcat 1 − e−
ΔG
RT   24

Here, v is the reaction �ux obtained from the contextualized GSM, E is the enzyme 

cost, kcat is the enzyme turnover rate, ΔG is the Gibbs free energy obtained from the 

MDF analysis, R is the gas constant, and T is the temperature. Relative enzyme cost was 

calculated using the following equation.

Ei,  relative  =  
Ei

Elowest
  25

Here, Ei, relative is the relative cost of an enzyme in a given pathway, Ei is the actual cost 

of an enzyme in a given pathway, and Elowest is the lowest cost of an enzyme in a given 

pathway.

Simulation platform

The GAMS version 24.7.4 with IBM CPLEX solver was used to run pFBA and FVA, E-Flux, 

FSA, MBA, and MDF algorithms on the model. Each of the algorithms was scripted in 

GAMS and then run on a Linux-based high-performance cluster computing system at 

the University of Nebraska-Lincoln. Furthermore, �ux sampling, tSNE plot, and K-mean 

clustering analysis of transcriptomics data were performed in Python using an Intel(R) 

Core(TM) i5-8250U CPU 1.60 GHz HP laptop with 8.00 GB of RAM and 64-bit operation 

with Windows 11 Home operating system.

ACKNOWLEDGMENTS

R.S. gratefully acknowledges funding support from the National Science Foundation 

(NSF) CAREER grant (1943310), National Institute of Health (NIH) R35 MIRA grant 

(5R35GM143009), and Nebraska Collaboration Initiative grant. R.A.C., S.P.O., and E.A.R. 

acknowledge AI132406 from the NIH.

R.S. and R.A.C designed the study. R.S., R.A.C, E.A.R., and S.P.O oversaw the project 

and funding acquisition. N.B.C. performed data curation, formal analysis, validation, and 

visualization. N.B.C. and N.P. worked on methodology. N.B.C. wrote the original draft. R.S., 

R.A.C, E.A.R., and S.P.O reviewed and edited the draft.

AUTHOR AFFILIATIONS

1Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, 

Nebraska, USA
2Department of Pathology, Microbiology, and Immunology, University of Nebraska 

Medical Center, Omaha, Nebraska, USA

Research Article mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00717-2421

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/m

sy
st

em
s 

o
n
 3

1
 M

ay
 2

0
2
5
 b

y
 2

6
0
3
:8

0
a0

:e
4
0
:9

d
:f

9
d
7
:9

f6
d
:7

c4
4
:e

d
6
9
.

https://doi.org/10.1128/msystems.00717-24


PRESENT ADDRESS

Nick Pokorzynski, Department of Microbial Pathogenesis, Yale University School of 

Medicine, New Haven, Connecticut, USA

AUTHOR ORCIDs

Niaz Bahar Chowdhury  http://orcid.org/0009-0005-3833-6380

Nick Pokorzynski  http://orcid.org/0000-0003-2438-2368

Elizabeth A. Rucks  http://orcid.org/0000-0002-0536-7691

Scot P. Ouellette  http://orcid.org/0000-0002-3721-6839

Rey A. Carabeo  http://orcid.org/0000-0002-5708-5493

Rajib Saha  http://orcid.org/0000-0002-2974-0243

FUNDING

Funder Grant(s) Author(s)

National Science Foundation (NSF) 1943310 Rajib Saha

National Institute of Health R35 MIRA 5R35GM143009 Rajib Saha

Nebraska Collaboration Initiative AI132406 Elizabeth A. Rucks

Scot P. Ouellette

Rey A. Carabeo

Rajib Saha

AUTHOR CONTRIBUTIONS

Niaz Bahar Chowdhury, Conceptualization, Data curation, Formal analysis, Investigation, 

Methodology, Resources, Software, Validation, Visualization, Writing – original draft | 

Nick Pokorzynski, Formal analysis, Methodology | Elizabeth A. Rucks, Funding acquisition, 

Project administration, Supervision, Writing – review and editing | Scot P. Ouellette, 

Conceptualization, Funding acquisition, Methodology, Project administration, Resources, 

Supervision, Writing – review and editing | Rey A. Carabeo, Conceptualization, Funding 

acquisition, Methodology, Project administration, Supervision, Writing – original draft, 

Writing – review and editing | Rajib Saha, Conceptualization, Funding acquisition, Project 

administration, Supervision, Writing – review and editing

DATA AVAILABILITY

The data that support for the �ndings of this study can be found in the related cited 

articles and/or in the supplementary data. All the codes used to generate these results 

can be accessed in the GitHub repository (https://github.com/ssbio/c_trachomatis).

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Text S1 (mSystems00717-24-s0001.html). MEMOTE report of iCTL278.

Table S1 (mSystems00717-24-s0002.xlsx). Biomass sensitivity analysis.

Table S2 (mSystems00717-24-s0003.xlsx). Details about each cluster.

Table S3 (mSystems00717-24-s0004.xlsx). Details of k_cat for each reaction in glycolysis.

Table S4 and Supplemental Figures (mSystems00717-24-s0005.docx). List of plasmids, 

strains, and primers and Fig. S1–S7.

Research Article mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00717-2422

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/m

sy
st

em
s 

o
n
 3

1
 M

ay
 2

0
2
5
 b

y
 2

6
0
3
:8

0
a0

:e
4
0
:9

d
:f

9
d
7
:9

f6
d
:7

c4
4
:e

d
6
9
.

https://doi.org/10.13039/100000001
https://github.com/ssbio/c_trachomatis
https://doi.org/10.1128/msystems.00717-24
https://doi.org/10.1128/msystems.00717-24


REFERENCES

1. Witkin SS, Minis E, Athanasiou A, Leizer J, Linhares IM. 2017. Chlamydia 

trachomatis: the persistent pathogen. Clin Vaccine Immunol 
24:e00203-17. https://doi.org/10.1128/CVI.00203-17

2. Wilson M, Wilson PJK. 2021. Chlamydia BT - close encounters of the 

microbial kind: everything you need to know about common infections, 
p 379–390. Springer International Publishing, Cham.

3. Elwell C, Mirrashidi K, Engel J. 2016. Chlamydia cell biology and 

pathogenesis. Nat Rev Microbiol 14:385–400. https://doi.org/10.1038/
nrmicro.2016.30

4. Bastidas RJ, Elwell CA, Engel JN, Valdivia RH. 2013. Chlamydial 

intracellular survival strategies. Cold Spring Harb Perspect Med 
3:a010256. https://doi.org/10.1101/cshperspect.a010256

5. Chavda VP, Pandya A, Kypreos E, Patravale V, Apostolopoulos V. 2022. 

Chlamydia trachomatis: quest for an eye-opening vaccine breakthrough. 
Expert Rev Vaccines 21:771–781. https://doi.org/10.1080/14760584.
2022.2061461

6. Ri�aud CM, Rucks EA, Ouellette SP. 2023. Persistence of obligate 

intracellular pathogens: alternative strategies to overcome host-speci�c 
stresses. Front Cell Infect Microbiol 13:1185571. https://doi.org/10.3389/
fcimb.2023.1185571

7. Mpiga P, Ravaoarinoro M. 2006. Chlamydia trachomatis persistence: an 

update. Microbiol Res 161:9–19. https://doi.org/10.1016/j.micres.2005.
04.004

8. Østergaard O, Follmann F, Olsen AW, Heegaard NH, Andersen P, 

Rosenkrands I. 2016. Quantitative protein pro�ling of Chlamydia 

trachomatis growth forms reveals defense strategies against tryptophan 
starvation. Mol Cell Proteomics 15:3540–3550. https://doi.org/10.1074/
mcp.M116.061986

9. Beatty WL, Byrne GI, Morrison RP. 1993. Morphologic and antigenic 

characterization of interferon gamma-mediated persistent Chlamydia 

trachomatis infection in vitro. Proc Natl Acad Sci U S A 90:3998–4002. 
https://doi.org/10.1073/pnas.90.9.3998

10. Thompson CC, Carabeo RA. 2011. An optimal method of iron starvation 

of the obligate intracellular pathogen, Chlamydia trachomatis. Front 
Microbiol 2:20. https://doi.org/10.3389/fmicb.2011.00020

11. Gracey E, Lin A, Akram A, Chiu B, Inman RD. 2013. Intracellular survival 

and persistence of Chlamydia muridarum is determined by macrophage 
polarization. PLoS One 8:e69421. https://doi.org/10.1371/journal.pone.
0069421

12. Mittenhuber G. 2001. Comparative genomics and evolution of genes 

encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and 
SpoT proteins). J Mol Microbiol Biotechnol 3:585–600.

13. Ouellette SP, Hatch TP, AbdelRahman YM, Rose LA, Belland RJ, Byrne GI. 

2006. Global transcriptional upregulation in the absence of increased 
translation in Chlamydia during IFNγ-mediated host cell tryptophan 
starvation. Mol Microbiol 62:1387–1401. https://doi.org/10.1111/j.1365-
2958.2006.05465.x

14. Ouellette SP, Rueden KJ, Rucks EA. 2016. Tryptophan codon-dependent 

transcription in Chlamydia pneumoniae during gamma interferon-
mediated tryptophan limitation. Infect Immun 84:2703–2713. https://
doi.org/10.1128/IAI.00377-16

15. Ouellette SP, Hatch ND, Wood NA, Herrera AL, Chaussee MS. 2021. 

Codon-dependent transcriptional changes in response to tryptophan 
limitation in the tryptophan auxotrophic pathogens Chlamydia 

trachomatis and Streptococcus pyogenes. mSystems 6:e0126921. https://
doi.org/10.1128/mSystems.01269-21

16. Pokorzynski ND, Alla MR, Carabeo RA. 2022. Host cell ampli�cation of 

nutritional stress contributes to persistence in Chlamydia trachomatis. 
mBio 13:e0271922. https://doi.org/10.1128/mbio.02719-22

17. Sertbas M, Ulgen KO. 2020. Genome-scale metabolic modeling for 

unraveling molecular mechanisms of high threat pathogens. Front Cell 
Dev Biol 8:566702. https://doi.org/10.3389/fcell.2020.566702

18. Alsiyabi A, Chowdhury NB, Long D, Saha R. 2022. Enhancing in silico 

strain design predictions through next generation metabolic modeling 
approaches. Biotechnol Adv 54:107806. https://doi.org/10.1016/j.
biotechadv.2021.107806

19. Orth JD, Thiele I, Palsson BØ. 2010. What is �ux balance analysis? Nat 

Biotechnol 28:245–248. https://doi.org/10.1038/nbt.1614

20. Mahadevan R, Schilling CH. 2003. The e�ects of alternate optimal 

solutions in constraint-based genome-scale metabolic models. Metab 
Eng 5:264–276. https://doi.org/10.1016/j.ymben.2003.09.002

21. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, 

Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, Weitz KK, Eils R, 
König R, Smith RD, Palsson BØ. 2010. Omic data from evolved E. coli are 
consistent with computed optimal growth from genome-scale models. 
Mol Syst Biol 6:390. https://doi.org/10.1038/msb.2010.47

22. López-Agudelo VA, Mendum TA, Laing E, Wu H, Baena A, Barrera LF, 

Beste DJV, Rios-Estepa R. 2020. A systematic evaluation of Mycobacte­

rium tuberculosis genome-scale metabolic networks. PLoS Comput Biol 
16:e1007533. https://doi.org/10.1371/journal.pcbi.1007533

23. Norsigian CJ, Kavvas E, Seif Y, Palsson BO, Monk JM. 2018. iCN718, an 

updated and improved genome-scale metabolic network reconstruction 
of Acinetobacter baumannii AYE. Front Genet 9:121. https://doi.org/10.
3389/fgene.2018.00121

24. Yu-Chieh L, Tzu-Wen H, Feng-Chi C, Pep C, HJS J, Hwan-You C, Shih-Feng 

T, PB O, HC A. 2011. An experimentally validated genome-scale 
metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228. 
J Bacteriol 193:1710–1717. https://doi.org/10.1128/JB.01218-10

25. Thiele I, Vo TD, Price ND, Palsson BØ. 2005. Expanded metabolic 

reconstruction of Helicobacter pylori (Iit341 GSM/GPR): an in silico 

genome-scale characterization of single- and double-deletion mutants. 
J Bacteriol 187:5818–5830. https://doi.org/10.1128/JB.187.16.5818-5830.
2005

26. Zhu Y, Czauderna T, Zhao J, Klapperstueck M, Mai�ah MHM, Han M-L, Lu 

J, Sommer B, Velkov T, Lithgow T, Song J, Schreiber F, Li J. 2018. 
Genome-scale metabolic modeling of responses to polymyxins in 
Pseudomonas aeruginosa. Gigascience 7:giy021. https://doi.org/10.1093/
gigascience/giy021

27. Mazharul Islam M, Thomas VC, Van Beek M, Ahn J-S, Alqarzaee AA, Zhou 

C, Fey PD, Bayles KW, Saha R. 2020. An integrated computational and 
experimental study to investigate Staphylococcus aureus metabolism. 
NPJ Syst Biol Appl 6:3. https://doi.org/10.1038/s41540-019-0122-3

28. Hartman HB, Fell DA, Rossell S, Jensen PR, Woodward MJ, Thorndahl L, 

Jelsbak L, Olsen JE, Raghunathan A, Dae�er S, Poolman MG. 2014. 
Identi�cation of potential drug targets in Salmonella enterica sv. 
Typhimurium using metabolic modelling and experimental validation. 
Microbiology (Reading) 160:1252–1266. https://doi.org/10.1099/mic.0.
076091-0

29. Metris A, Reuter M, Gaskin DJH, Baranyi J, van Vliet AHM. 2011. In vivo 

and in silico determination of essential genes of Campylobacter jejuni. 
BMC Genomics 12:535. https://doi.org/10.1186/1471-2164-12-535

30. Yang M, Rajeeve K, Rudel T, Dandekar T. 2019. Comprehensive �ux 

modeling of Chlamydia trachomatis proteome and qRT-PCR data 
indicate biphasic metabolic di�erences between elementary bodies and 
reticulate bodies during infection. Front Microbiol 10:2350. https://doi.
org/10.3389/fmicb.2019.02350

31. Schellenberger J, Lewis NE, Palsson BØ. 2011. Elimination of thermody­

namically infeasible loops in steady-state metabolic models. Biophys J 
100:544–553. https://doi.org/10.1016/j.bpj.2010.12.3707

32. Reed JL, Palsson BØ. 2004. Genome-scale in silico models of E. coli have 

multiple equivalent phenotypic states: assessment of correlated 
reaction subsets that comprise network states. Genome Res 14:1797–
1805. https://doi.org/10.1101/gr.2546004

33. Chowdhury NB, Schroeder WL, Sarkar D, Amiour N, Quilleré I, Hirel B, 

Maranas CD, Saha R. 2022. Dissecting the metabolic reprogramming of 
maize root under nitrogen-de�cient stress conditions. J Exp Bot 73:275–
291. https://doi.org/10.1093/jxb/erab435

34. Becker SA, Palsson BO. 2008. Context-speci�c metabolic networks are 

consistent with experiments. PLoS Comput Biol 4:e1000082. https://doi.
org/10.1371/journal.pcbi.1000082

35. Zur H, Ruppin E, Shlomi T. 2010. iMAT: an integrative metabolic analysis 

tool. Bioinformatics 26:3140–3142. https://doi.org/10.1093/bioinformat­
ics/btq602

36. Jensen PA, Papin JA. 2011. Functional integration of a metabolic network 

model and expression data without arbitrary thresholding. Bioinformat­
ics 27:541–547. https://doi.org/10.1093/bioinformatics/btq702

Research Article mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00717-2423

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/m

sy
st

em
s 

o
n
 3

1
 M

ay
 2

0
2
5
 b

y
 2

6
0
3
:8

0
a0

:e
4
0
:9

d
:f

9
d
7
:9

f6
d
:7

c4
4
:e

d
6
9
.

https://doi.org/10.1128/CVI.00203-17
https://doi.org/10.1038/nrmicro.2016.30
https://doi.org/10.1101/cshperspect.a010256
https://doi.org/10.1080/14760584.2022.2061461
https://doi.org/10.3389/fcimb.2023.1185571
https://doi.org/10.1016/j.micres.2005.04.004
https://doi.org/10.1074/mcp.M116.061986
https://doi.org/10.1073/pnas.90.9.3998
https://doi.org/10.3389/fmicb.2011.00020
https://doi.org/10.1371/journal.pone.0069421
https://doi.org/10.1111/j.1365-2958.2006.05465.x
https://doi.org/10.1128/IAI.00377-16
https://doi.org/10.1128/mSystems.01269-21
https://doi.org/10.1128/mbio.02719-22
https://doi.org/10.3389/fcell.2020.566702
https://doi.org/10.1016/j.biotechadv.2021.107806
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1038/msb.2010.47
https://doi.org/10.1371/journal.pcbi.1007533
https://doi.org/10.3389/fgene.2018.00121
https://doi.org/10.1128/JB.01218-10
https://doi.org/10.1128/JB.187.16.5818-5830.2005
https://doi.org/10.1093/gigascience/giy021
https://doi.org/10.1038/s41540-019-0122-3
https://doi.org/10.1099/mic.0.076091-0
https://doi.org/10.1186/1471-2164-12-535
https://doi.org/10.3389/fmicb.2019.02350
https://doi.org/10.1016/j.bpj.2010.12.3707
https://doi.org/10.1101/gr.2546004
https://doi.org/10.1093/jxb/erab435
https://doi.org/10.1371/journal.pcbi.1000082
https://doi.org/10.1093/bioinformatics/btq602
https://doi.org/10.1093/bioinformatics/btq702
https://doi.org/10.1128/msystems.00717-24


37. Jenior ML, Moutinho TJ, Dougherty BV, Papin JA. 2020. Transcriptome-

guided parsimonious �ux analysis improves predictions with metabolic 
networks in complex environments. PLoS Comput Biol 16:e1007099. 
https://doi.org/10.1371/journal.pcbi.1007099

38. Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY, 

Moody DB, Murray M, Galagan JE. 2009. Interpreting expression data 
with metabolic �ux models: predicting Mycobacterium tuberculosis 

mycolic acid production. PLoS Comput Biol 5:e1000489. https://doi.org/
10.1371/journal.pcbi.1000489

39. Chandrasekaran S, Price ND. 2010. Probabilistic integrative modeling of 

genome-scale metabolic and regulatory networks in Escherichia coli and 
Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107:17845–17850. 
https://doi.org/10.1073/pnas.1005139107

40. Chowdhury NB, Simons-Senftle M, Decouard B, Quillere I, Rigault M, 

Sajeevan KA, Acharya B, Chowdhury R, Hirel B, Dellagi A, Maranas C, 
Saha R. 2023. A multi-organ maize metabolic model connects 
temperature stress with energy production and reducing power 
generation. iScience 26:108400. https://doi.org/10.1016/j.isci.2023.
108400

41. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, 

Dehal P, Ware D, Perez F, Canon S, et al. 2018. KBase: the United States 
department of energy systems biology knowledgebase. Nat Biotechnol 
36:566–569. https://doi.org/10.1038/nbt.4163

42. Ray A, Kundu P, Ghosh A. 2023. Reconstruction of a genome-scale 

metabolic model of Scenedesmus obliquus and its application for lipid 
production under three trophic modes. ACS Synth Biol 12:3463–3481. 
https://doi.org/10.1021/acssynbio.3c00516

43. Mehlitz A, Eylert E, Huber C, Lindner B, Vollmuth N, Karunakaran K, 

Goebel W, Eisenreich W, Rudel T. 2017. Metabolic adaptation of 
Chlamydia trachomatis to mammalian host cells. Mol Microbiol 
103:1004–1019. https://doi.org/10.1111/mmi.13603

44. Schroeder WL, Saha R. 2020. OptFill: a tool for infeasible cycle-free 

gap�lling of stoichiometric metabolic models. iScience 23:100783. https:
//doi.org/10.1016/j.isci.2019.100783

45. Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, 

Bartell JA, Blank LM, Chauhan S, Correia K, et al. 2020. MEMOTE for 
standardized genome-scale metabolic model testing. Nat Biotechnol 
38:272–276. https://doi.org/10.1038/s41587-020-0446-y

46. Tjaden J, Winkler HH, Schwöppe C, Van Der Laan M, Möhlmann T, 

Neuhaus HE. 1999. Two nucleotide transport proteins in Chlamydia 

trachomatis, one for net nucleoside triphosphate uptake and the other 
for transport of energy. J Bacteriol 181:1196–1202. https://doi.org/10.
1128/JB.181.4.1196-1202.1999

47. Darzi Y, Letunic I, Bork P, Yamada T. 2018. iPath3.0: interactive pathways 

explorer v3. Nucleic Acids Res 46:W510–W513. https://doi.org/10.1093/
nar/gky299

48. Liechti GW, Kuru E, Hall E, Kalinda A, Brun YV, VanNieuwenhze M, 

Maurelli AT. 2014. A new metabolic cell-wall labelling method reveals 
peptidoglycan in Chlamydia trachomatis. Nature 506:507–510. https://
doi.org/10.1038/nature12892

49. Ri�aud CM, Rucks EA, Ouellette SP. 2023. Tryptophan availability during 

persistence of Chlamydia trachomatis directly impacts expression of 
chlamydial cell division proteins. Infect Immun 91:e00513-22. https://
doi.org/10.1128/iai.00513-22

50. Ouellette SP, Fisher-Marvin LA, Harpring M, Lee J, Rucks EA, Cox JV. 2022. 

Localized cardiolipin synthesis is required for the assembly of MreB 
during the polarized cell division of Chlamydia trachomatis. PLoS Pathog 
18:e1010836. https://doi.org/10.1371/journal.ppat.1010836

51. Yao J, Abdelrahman YM, Robertson RM, Cox JV, Belland RJ, White SW, 

Rock CO. 2014. Type II fatty acid synthesis is essential for the replication 
of Chlamydia trachomatis. J Biol Chem 289:22365–22376. https://doi.org/
10.1074/jbc.M114.584185

52. Pirrello J, Deluche C, Frangne N, Gévaudant F, Maza E, Djari A, Bourge M, 

Renaudin J-P, Brown S, Bowler C, Zouine M, Chevalier C, Gonzalez N. 
2018. Transcriptome pro�ling of sorted endoreduplicated nuclei from 
tomato fruits: how the global shift in expression ascribed to DNA ploidy 
in�uences RNA-Seq data normalization and interpretation. Plant J 
93:387–398. https://doi.org/10.1111/tpj.13783

53. Fehlner-Gardiner C, Roshick C, Carlson JH, Hughes S, Belland RJ, Caldwell 

HD, McClarty G. 2002. Molecular basis de�ning human Chlamydia 

trachomatis tissue tropism. J Biol Chem 277:26893–26903. 
https://doi.org/10.1074/jbc.M203937200

54. Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, Maclean I, 

Mohammed Z, Peeling R, Roshick C, Schachter J, Solomon AW, Stamm 
WE, Suchland RJ, Taylor L, West SK, Quinn TC, Belland RJ, McClarty G. 
2003. Polymorphisms in Chlamydia trachomatis tryptophan synthase 
genes di�erentiate between genital and ocular isolates. J Clin Invest 
111:1757–1769. https://doi.org/10.1172/JCI17993

55. Belland RJ, Zhong G, Crane DD, Hogan D, Sturdevant D, Sharma J, Beatty 

WL, Caldwell HD. 2003. Genomic transcriptional pro�ling of the 
developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci U S A 
100:8478–8483. https://doi.org/10.1073/pnas.1331135100

56. Mukhopadhyay S, Miller RD, Sullivan ED, Theodoropoulos C, Mathews 

SA, Timms P, Summersgill JT. 2006. Protein expression pro�les of 
Chlamydia pneumoniae in models of persistence versus those of heat 
shock stress response. Infect Immun 74:3853–3863. https://doi.org/10.
1128/IAI.02104-05

57. Rosario CJ, Tan M. 2012. The early gene product EUO is a transcriptional 

repressor that selectively regulates promoters of Chlamydia late genes. 
Mol Microbiol 84:1097–1107. https://doi.org/10.1111/j.1365-2958.2012.
08077.x

58. Lin W, de Sessions PF, Teoh GHK, Mohamed ANN, Zhu YO, Koh VHQ, Ang 

MLT, Dedon PC, Hibberd ML, Alonso S. 2016. Transcriptional pro�ling of 
Mycobacterium tuberculosis exposed to in vitro lysosomal stress. Infect 
Immun 84:2505–2523. https://doi.org/10.1128/IAI.00072-16

59. Dow A, Sule P, O’Donnell TJ, Burger A, Mattila JT, Antonio B, Vergara K, 

Marcantonio E, Adams LG, James N, Williams PG, Cirillo JD, Prisic S. 2021. 
Zinc limitation triggers anticipatory adaptations in Mycobacterium 

tuberculosis. PLoS Pathog 17:e1009570. https://doi.org/10.1371/journal.
ppat.1009570

60. Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, 

Steinhauser D, Selbig J, Willmitzer L. 2010. Metabolomic and transcrip­
tomic stress response of Escherichia coli. Mol Syst Biol 6:364. https://doi.
org/10.1038/msb.2010.18

61. Magnusson LU, Farewell A, Nyström T. 2005. ppGpp: a global regulator in 

Escherichia coli. Trends Microbiol 13:236–242. https://doi.org/10.1016/j.
tim.2005.03.008

62. Chatterji D, Ojha AK. 2001. Revisiting the stringent response, ppGpp and 

starvation signaling. Curr Opin Microbiol 4:160–165. https://doi.org/10.
1016/s1369-5274(00)00182-x

63. Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R. 2014. 

Pathway thermodynamics highlights kinetic obstacles in central 
metabolism. PLoS Comput Biol 10:e1003483. https://doi.org/10.1371/
journal.pcbi.1003483

64. Schroeder WL, Harris SD, Saha R. 2020. Computation-driven analysis of 

model polyextremo-tolerant fungus Exophiala dermatitidis: defensive 
pigment metabolic costs and human applications. iScience 23:100980. 
https://doi.org/10.1016/j.isci.2020.100980

65. Noor E, Flamholz A, Liebermeister W, Bar-Even A, Milo R. 2013. A note on 

the kinetics of enzyme action: a decomposition that highlights 
thermodynamic e�ects. FEBS Lett 587:2772–2777. https://doi.org/10.
1016/j.febslet.2013.07.028

66. Li F, Yuan L, Lu H, Li G, Chen Y, Engqvist MKM, Kerkhoven EJ, Nielsen J. 

2022. Deep learning-based kcat prediction enables improved enzyme-
constrained model reconstruction. Nat Catal 5:662–672. https://doi.org/
10.1038/s41929-022-00798-z

67. Saifuddin M, Bhatnagar JM, Segrè D, Finzi AC. 2019. Microbial carbon use 

e�ciency predicted from genome-scale metabolic models. Nat 
Commun 10:3568. https://doi.org/10.1038/s41467-019-11488-z

68. Chen Y, Nielsen J. 2019. Energy metabolism controls phenotypes by 

protein e�ciency and allocation. Proc Natl Acad Sci U S A 116:17592–
17597. https://doi.org/10.1073/pnas.1906569116

69. Malina C, Yu R, Björkeroth J, Kerkhoven EJ, Nielsen J. 2021. Adaptations 

in metabolism and protein translation give rise to the Crabtree e�ect in 
yeast. Proc Natl Acad Sci U S A 118:e2112836118. https://doi.org/10.
1073/pnas.2112836118

70. Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R. 2013. Glycolytic 

strategy as a tradeo� between energy yield and protein cost. Proc Natl 
Acad Sci U S A 110:10039–10044. https://doi.org/10.1073/pnas.
1215283110

Research Article mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00717-2424

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/m

sy
st

em
s 

o
n
 3

1
 M

ay
 2

0
2
5
 b

y
 2

6
0
3
:8

0
a0

:e
4
0
:9

d
:f

9
d
7
:9

f6
d
:7

c4
4
:e

d
6
9
.

https://doi.org/10.1371/journal.pcbi.1007099
https://doi.org/10.1371/journal.pcbi.1000489
https://doi.org/10.1073/pnas.1005139107
https://doi.org/10.1016/j.isci.2023.108400
https://doi.org/10.1038/nbt.4163
https://doi.org/10.1021/acssynbio.3c00516
https://doi.org/10.1111/mmi.13603
https://doi.org/10.1016/j.isci.2019.100783
https://doi.org/10.1038/s41587-020-0446-y
https://doi.org/10.1128/JB.181.4.1196-1202.1999
https://doi.org/10.1093/nar/gky299
https://doi.org/10.1038/nature12892
https://doi.org/10.1128/iai.00513-22
https://doi.org/10.1371/journal.ppat.1010836
https://doi.org/10.1074/jbc.M114.584185
https://doi.org/10.1111/tpj.13783
https://doi.org/10.1074/jbc.M203937200
https://doi.org/10.1172/JCI17993
https://doi.org/10.1073/pnas.1331135100
https://doi.org/10.1128/IAI.02104-05
https://doi.org/10.1111/j.1365-2958.2012.08077.x
https://doi.org/10.1128/IAI.00072-16
https://doi.org/10.1371/journal.ppat.1009570
https://doi.org/10.1038/msb.2010.18
https://doi.org/10.1016/j.tim.2005.03.008
https://doi.org/10.1016/s1369-5274(00)00182-x
https://doi.org/10.1371/journal.pcbi.1003483
https://doi.org/10.1016/j.isci.2020.100980
https://doi.org/10.1016/j.febslet.2013.07.028
https://doi.org/10.1038/s41929-022-00798-z
https://doi.org/10.1038/s41467-019-11488-z
https://doi.org/10.1073/pnas.1906569116
https://doi.org/10.1073/pnas.2112836118
https://doi.org/10.1073/pnas.1215283110
https://doi.org/10.1128/msystems.00717-24


71. Ouellette SP, Blay EA, Hatch ND, Fisher-Marvin LA. 2021. CRISPR 

interference to inducibly repress gene expression in Chlamydia 

trachomatis. Infect Immun 89:e0010821. https://doi.org/10.1128/IAI.
00108-21

72. Brinkworth AJ, Wildung MR, Carabeo RA. 2018. Genomewide transcrip­

tional responses of iron-starved Chlamydia trachomatis reveal 
prioritization of metabolic precursor synthesis over protein translation. 
mSystems 3:e00184-17. https://doi.org/10.1128/mSystems.00184-17

73. De Bie LGS, Roovers M, Oudjama Y, Wattiez R, Tricot C, Stalon V, 

Droogmans L, Bujnicki JM. 2003. The yggH gene of Escherichia coli 

encodes a tRNA (m7G46) methyltransferase. J Bacteriol 185:3238–3243. 
https://doi.org/10.1128/JB.185.10.3238-3243.2003

74. Hatch ND, Ouellette SP. 2020. Inhibition of tRNA synthetases induces 

persistence in Chlamydia. Infect Immun 88:e00943-19. https://doi.org/
10.1128/IAI.00943-19

75. Saka HA, Thompson JW, Chen Y-S, Kumar Y, Dubois LG, Moseley MA, 

Valdivia RH. 2011. Quantitative proteomics reveals metabolic and 
pathogenic properties of Chlamydia trachomatis developmental forms. 
Mol Microbiol 82:1185–1203. https://doi.org/10.1111/j.1365-2958.2011.
07877.x

76. Caldwell HD, Kromhout J, Schachter J. 1981. Puri�cation and partial 

characterization of the major outer membrane protein of Chlamydia 

trachomatis. Infect Immun 31:1161–1176. https://doi.org/10.1128/iai.31.
3.1161-1176.1981

77. Pokorzynski ND, Brinkworth AJ, Carabeo R. 2019. A bipartite iron-

dependent transcriptional regulation of the tryptophan salvage 
pathway in Chlamydia trachomatis. Elife 8:e42295. https://doi.org/10.
7554/eLife.42295

78. Pokorzynski ND, Hatch ND, Ouellette SP, Carabeo RA. 2020. The iron-

dependent repressor YtgR is a tryptophan-dependent attenuator of the 
trpRBA operon in Chlamydia trachomatis. Nat Commun 11:6430. https://
doi.org/10.1038/s41467-020-20181-5

79. Seaver SMD, Liu F, Zhang Q, Je�ryes J, Faria JP, Edirisinghe JN, Mundy M, 

Chia N, Noor E, Beber ME, Best AA, DeJongh M, Kimbrel JA, D’haeseleer 
P, McCorkle SR, Bolton JR, Pearson E, Canon S, Wood-Charlson EM, 
Cottingham RW, Arkin AP, Henry CS. 2021. The ModelSEED biochemistry 
database for the integration of metabolic annotations and the 
reconstruction, comparison and analysis of metabolic models for plants, 
fungi and microbes. Nucleic Acids Res 49:D575–D588. https://doi.org/10.
1093/nar/gkaa746

80. Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, Schomburg I, 

Neumann-Schaal M, Jahn D, Schomburg D. 2021. BRENDA, the ELIXIR 
core data resource in 2021: new developments and updates. Nucleic 
Acids Res 49:D498–D508. https://doi.org/10.1093/nar/gkaa1025

81. Chowdhury NB, Alsiyabi A, Saha R. 2022. Characterizing the interplay of 

rubisco and nitrogenase enzymes in anaerobic-photoheterotrophically 
grown Rhodopseudomonas palustris CGA009 through a genome-scale 
metabolic and expression model. Microbiol Spectr 10:e0146322. https://
doi.org/10.1128/spectrum.01463-22

82. Zhou Y, Wang L, Yang F, Lin X, Zhang S, Zhao ZK. 2011. Determining the 

extremes of the cellular NAD(H) level by using an Escherichia coli NAD+-
auxotrophic mutant. Appl Environ Microbiol 77:6133–6140. https://doi.
org/10.1128/AEM.00630-11

83. Takaine M, Imamura H, Yoshida S. 2022. High and stable ATP levels 

prevent aberrant intracellular protein aggregation in yeast. Elife 
11:e67659. https://doi.org/10.7554/eLife.67659

Research Article mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00717-2425

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/m

sy
st

em
s 

o
n
 3

1
 M

ay
 2

0
2
5
 b

y
 2

6
0
3
:8

0
a0

:e
4
0
:9

d
:f

9
d
7
:9

f6
d
:7

c4
4
:e

d
6
9
.

https://doi.org/10.1128/IAI.00108-21
https://doi.org/10.1128/mSystems.00184-17
https://doi.org/10.1128/JB.185.10.3238-3243.2003
https://doi.org/10.1128/IAI.00943-19
https://doi.org/10.1111/j.1365-2958.2011.07877.x
https://doi.org/10.1128/iai.31.3.1161-1176.1981
https://doi.org/10.7554/eLife.42295
https://doi.org/10.1038/s41467-020-20181-5
https://doi.org/10.1093/nar/gkaa746
https://doi.org/10.1093/nar/gkaa1025
https://doi.org/10.1128/spectrum.01463-22
https://doi.org/10.1128/AEM.00630-11
https://doi.org/10.7554/eLife.67659
https://doi.org/10.1128/msystems.00717-24

	Metabolic model guided CRISPRi identifies a central role for phosphoglycerate mutase in Chlamydia trachomatis persistence
	RESULTS AND DISCUSSION
	C. trachomatis L2 genome-scale metabolic model development and analysis
	Model validation using experimental proteomics data
	Effects of nutrient starvation on CTL growth and development
	Impact of global stress response on C. trachomatis metabolism
	Validation of thermodynamics and enzyme cost analysis through CRISPRi-based suppression and starvation experiment
	Cellular objective of global stress response



