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Some neural representations gradually change across multiple timescales. Here we argue that modeling this
“drift” could help explain the spacing effect (the long-term benefit of distributed learning), whereby differences
between stored and current temporal context activity patterns produce greater error-driven learning.We trained
a neurobiologically realistic model of the entorhinal cortex and hippocampus to learn paired associates
alongside temporal context vectors that drifted between learning episodes and/or before final retention
intervals. In line with spacing effects, greater drift led to better model recall after longer retention intervals.
Dissecting model mechanisms revealed that greater drift increased error-driven learning, strengthened weights
in slower drifting temporal context neurons (temporal abstraction), and improved direct cue–target
associations (decontextualization). Intriguingly, these results suggest that decontextualization—generally
ascribed only to the neocortex—can occur within the hippocampus itself. Altogether, our findings provide a
mechanistic formalization for established learning concepts such as spacing effects and errors during learning.

Keywords: spacing effect, temporal context, error-driven learning, computational modeling,
neurobiological drift

A primary goal in learning is to make information accessible long
after encoding. One well-known technique for enhancing retention is
distributing learning events over time rather than cramming them into a
short interval. This phenomenon, known as the spacing effect (Maddox,
2016; Russo et al., 1998), is ubiquitous across manymemory paradigms
(Cepeda et al., 2006; Russo et al., 1998; C. D. Smith & Scarf, 2017) and
operates over a wide spectrum of time scales spanning seconds
(Glenberg, 1976), days (Cepeda et al., 2006; Küpper-Tetzel et al., 2014),
months (Cepeda et al., 2008, 2009), and years (Bahrick et al., 1993).
While the spacing effect has profound real-world implications, it

also presents a theoretical puzzle: How does the passage of time,
which normally leads to forgetting, also allow for dramatically better
long-term memory strengthening after further learning?We propose
that one part of the answer is that forgetting can actually enable
stronger learning the next time, to the extent that learning is based on
the difference between the existing memory representation from
prior learning and the representation at the time of relearning. This
type of learning is known as error-driven learning (EDL), which

plays a central role in our model. The other key element to this
puzzle involves the role of context in both memory encoding and
recall. Decades of research have shown that spatial, temporal,
situational, and mental contexts contribute to the what–when–where
of episodic memories for everyday learning events (Davachi, 2006;
Eichenbaum et al., 2007). Each of these contextual factors can
support holistic episodic memory recall when cued later, and they
are each represented within the intricate neural machinery of the
hippocampus (HC) and its major input, the entorhinal cortex (EC).
However, just as contextual cues support memory, we will argue
that they also limit the potential use of memories to the instances in
which they can be reinstated. In order for learning to be accessible
over longer intervals, memories may benefit from becoming
temporally abstracted or “decontextualized”—two ways that the
memory can generalize beyond the local, learned context (Karpicke
et al., 2014; S. M. Smith & Handy, 2014). As explained further
below, these processes constitute a major part of how our
computational model produces spacing effects.
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Among the many dimensions of context, the most relevant for the
spacing effect is temporal context. A collection of computational
models have posited that, as memories are encoded, temporal context
can be represented as a distributed, drifting pattern of neural activity
(Balota et al., 1989; Estes, 1955; Horner et al., 2016; Howard &
Kahana, 2002; Howard et al., 2008; Kahana, 2020; Kiliç et al., 2013;
Lohnas et al., 2015; Mensink & Raaijmakers, 1988; Mozer et al.,
2009; Murdock, 1997; Polyn et al., 2009; Raaijmakers, 2003;
Rouhani et al., 2020; Sederberg et al., 2011). One consequence of
this arrangement is that idiosyncratic, encoding-related activity
patterns become reinstated during retrieval (El-Kalliny et al., 2019;
Folkerts et al., 2018; Howard et al., 2012; Manning et al., 2011). In
our model, this drifting temporal context provides a well-established
explanation for the temporal forgetting function in terms of the
gradually diminishing contextual cue support for the memory
(Bouton, 1993; Crowder, 1976; Estes, 1955; Gershman&Niv, 2010;
Mensink & Raaijmakers, 1988). Moreover, greater drift creates
greater mismatches between the temporal contexts at encoding and
relearning, enhancing the EDL that then drives greater plasticity for
more widely spaced items. In addition, we show that this form of
learning favors the elements in common between the two learning
events, resulting in better subsequent recall that relies less on the
temporal context. Thus, our model demonstrates how spacing effects
emerge as a synergistic interaction between contextual drift and EDL
(Mozer et al., 2009).
In the following introductory sections, we first discuss prior

spacing effect findings and theories. Second, we provide behavioral
and neural evidence that temporal context drifts across multiple time
scales. Third, we tie these various lines of evidence together to
introduce a drifting, biologically plausible model of the EC and HC
to simulate paired associate learning. Finally, we discuss how and
what gets strengthened due to spacing, how this compares against
prior spacing effect theories, and what this means for the fate of the
memory.

The Nonmonotonic Relationship Between Spacing and
Final Retention Interval and Its Explanation

Spacing effects have received considerable attention in the
cognitive psychology literature, generating a rich array of findings
and explanations. Typically, longer intervals between learning
events (interstimulus intervals, or ISIs) produce superior memory
after some retention interval (RI) following the last instance of
learning. However, one curious result is that more spacing is not
always better. Rather, the optimal ISI depends strongly on RI, such
that for very short RIs, short ISIs (or “massed” trials) often confer an
advantage over spacing (Balota et al., 1989; Glenberg, 1976;
Peterson et al., 1963; Rawson & Kintsch, 2005; Spieler & Balota,
1996; Toppino & Gerbier, 2014). In fact, plots relating ISI to RI are
often nonmonotonic, with recall (given the same RI) rising sharply,
reaching a maximum, and slowly decreasing with increasing ISI
(Cepeda et al., 2006, 2009, 2008). No single ISI always benefits
memory the most, and therefore, memory performance cannot be
explained by a single factor—the relationship is more complex.
One prominent explanation for spacing effects is encoding

variability theory. This theory suggests that a greater temporal
difference between learning events results in more unique temporal
elements assigned to each learning instance of the memory. This
creates more variable encoding contexts during learning that, in

turn, allow for more routes to the memory during retrieval (Balota
et al., 2007; Glenberg, 1976, 1979; Huff & Bodner, 2014; Lohnas et
al., 2011; McFarland et al., 1979; Melton, 1970; Raaijmakers, 2003;
Ross & Landauer, 1978). However, as discussed above, maximum
spacing (and hence, maximum encoding variability) does not always
produce maximum memory benefits, making encoding variability
alone unsatisfying as an explanation of spacing. Therefore, encoding
variability has often been paired with another process called study-
phase retrieval (Benjamin & Tullis, 2010; Cepeda et al., 2009;
Greene, 1989; Mozer et al., 2009; Raaijmakers, 2003). Study-phase
retrieval suggests that memory strengthening only occurs if elements
of the study phase can actually be retrieved and reactivated during
relearning (Thios & D’Agostino, 1976). Given that this ability will
decrease over time, there will be a lower likelihood of strengthening
at later intervals. On its own, study-phase retrieval would produce an
antispacing effect, but combining it with the benefits afforded by
encoding variability offers a plausible account of how one might
observe nonmonotonic effects between ISI and RI in the spacing
effect (Benjamin & Tullis, 2010; Landauer, 1969; Maddox, 2016;
Raaijmakers, 2003).

While encoding variability is plausible in explaining many of
the behavioral effects of spacing, the spacing effect is a temporal
phenomenon and encoding variability largely does not incorporate
recent developments on the critical role of temporal context for
memory (though see Raaijmakers, 2003). Here, we will argue that
the nonmonotonic nature of spacing effects can be explained via
EDL as a strengthening mechanism. We propose that adding more
routes to a memory trace, which is the memory-strengthening
mechanism proposed by encoding variability theory, may be less
important than strengthening aspects of the trace in common across
learning events.

Behavioral and Neural Evidence of Multiscale Drift in
Temporal Context

A central feature of episodic memory is that it is temporally
organized. One classic example demonstrating this organization is
that, during free recall, subjects tend to recall information successively
that was presented nearby (Antony et al., 2021; Healey, 2018; Healey
et al., 2019; Heusser et al., 2018; Howard & Kahana, 2002; Kahana,
1996, 2020; Uitvlugt & Healey, 2019). Explanations of this effect
center around the temporal context model (Howard & Kahana, 2002;
Lohnas et al., 2015; Polyn et al., 2009; Sederberg et al., 2008), which
shows that a slowly drifting temporal context representation at
encoding can become reinstated with a corresponding episodic
memory, guiding subsequent memory recall to other information
learned contiguously in time. Importantly, evidence for behavioral
temporal contiguity spans numerous time scales. For instance, Howard
et al. (2008) had subjects learn a number of word lists, and after the
final list, they were asked to recall all words from all lists. They found
that subjects did not only transition to nearby words during recall but
also to nearby lists, suggesting temporal context has the property of
being scale-invariant. Evidence for scale-invariant temporal repre-
sentations has also arisen in behavioral paradigms like temporal
estimation (Gibbon, 1977; Gibbon et al., 1984; Lewis & Miall, 2009;
Merchant et al., 2013), other memory paradigms (Brown et al., 2007;
Singh et al., 2017), and a variety of neural data (Bright et al., 2020; Cao
et al., 2022; Folkerts et al., 2018; Guo et al., 2021; Jeunehomme &
D’Argembeau, 2020; Manning et al., 2011; Nielson et al., 2015;
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Rossi-Pool et al., 2019; Yaffe et al., 2014). Accordingly, spectral
temporal representations have been incorporated into a variety of
computational models of time (Brown et al., 2007; Grossberg &
Schmajuk, 1989; Howard, 2018; Howard & Kahana, 2002; Jacques et
al., 2022; Lewandowsky et al., 2012; Liu et al., 2019; Miall, 1989;
Rolls & Mills, 2019; Tiganj et al., 2015), and the organization of time
has been related to other laws of scale-invariance such as the Weber–
Fechner law of perception (Arzy et al., 2009; Brietzke &Meyer, 2021;
Cao et al., 2022; Dehaene, 2003). Intriguingly, scale-invariant
temporal representations could also explain the shape of forgetting:
if temporal context provides cue support for memories, drift over a
spectrum of time scales would produce forgetting curves resembling
human episodic memory data—that is, forgetting would proceed
rapidly, and then more slowly, like a canonical forgetting curve
(Ebbinghaus, 1885; D. C. Rubin & Wenzel, 1996).
Scale-invariant temporal context theories of memory have

received support from recent neurobiological studies of the EC
and HC. EC neurons drift, or slowly increase or decrease in activity,
at varying rates over time, from seconds to hours (Aghajan et al.,
2023; Bright et al., 2020; Tsao et al., 2018; Umbach et al., 2020). For
example, Tsao et al. examined lateral EC (LEC) neurons in rats as
they repeatedly explored two different environments over the course
of an hour. Activity in a large proportion of recorded neurons drifted
at varying rates, including some that drifted slowly over the entire
session. Such an arrangement suggests the full population vector of
LEC neurons drifts in a multiscale fashion over time. Within HC,
representational drift of neuronal ensembles has been demonstrated
over even wider scales, from seconds to months (Devalle & Roxin,
2022; Geva et al., 2023; Hainmueller & Bartos, 2018; Keinath et al.,
2022; Kinsky et al., 2018; J. S. Lee et al., 2020; Liu et al., 2022;
Mankin et al., 2015; Manns et al., 2007; Mau et al., 2018, 2020; A.
Rubin et al., 2015; Umbach et al., 2022; Y. Ziv et al., 2013), and
distinct memories acquired within short temporal windows share
greater HC representational overlap (Cai et al., 2016; Rashid et al.,
2016; Shen et al., 2022). Additionally, HC in rodents supports
temporal order memory (Dusek & Eichenbaum, 1997; Fortin et al.,
2002) and has cells that chart out repeated intervals of time, or “time
cells” (Liu et al., 2019; MacDonald et al., 2011; Pastalkova et al.,
2008; Reddy et al., 2021; Shimbo et al., 2021). Evidence from
human functional magnetic resonance imaging (fMRI) experiments
also suggests EC and HC support temporal representations. EC may
support judgments of temporal duration (Lositsky et al., 2016), and
anterolateral EC (the analogue of LEC that can be measured in
human fMRI) may aid in recalling the temporal context of a movie
(Montchal et al., 2019) and representing the temporal proximity of
experience during learning (Bellmund et al., 2019). Additionally,
HC in fMRI is sensitive to short temporal durations (Barnett et al.,
2014), temporal proximity (Dimsdale-Zucker et al., 2022; Ezzyat &
Davachi, 2014), sequences (Hsieh et al., 2014), and the time since
encoding (Jenkins & Ranganath, 2010; Nielson et al., 2015).
Altogether, these results suggest that the neural substrate for
representing the temporal context of episodes, as simulated in
computational models, may be instantiated in LEC and HC (see also
Noulhiane et al., 2007).

Present Work: A Drifting Model of the EC and HC

The present modeling work investigates forgetting and spacing
effects within a biologically realistic computational model of the

medial temporal lobe, drawing inspiration from computational
models of drifting, multiscale temporal contexts (e.g., Estes, 1955;
Howard & Kahana, 2002; Mensink & Raaijmakers, 1988; Tiganj et
al., 2015) and neurobiological evidence of drift (e.g., Tsao et al.,
2018). Our model builds on prior complementary learning systems
(CLS) models (Ketz et al., 2013; McClelland et al., 1995; K. A.
Norman & O’Reilly, 2003; Rudy & O’Reilly, 2001) and includes
neural network layers for HC subregions like the dentate gyrus (DG),
cornu ammonis 3 (CA3), and CA1, which play distinct roles in
episodic memory (Hasselmo & McGaughy, 2004; Leutgeb et al.,
2004; Schapiro et al., 2017). The model also includes EC, which
provides the main input into HC and receives its outputs (Witter et al.,
2017), and we now include multiscale temporal context inputs to
EC, simulating the timing of various learning schedules resembling
human experiments.We therefore call it theHipSTeR (Hip-pocampus
with Spectral Te-mporal Representations) model. The CLS configu-
ration has multiple advantages in explaining episodic memory: It
demonstrates how some episodic memory effects arise via specialized
machinery, as in how high inhibition in the DG allows similar patterns
to be separated (pattern separation; Grossberg, 1982; O’Reilly &
McClelland, 1994; Rolls, 1989; Wigström, 1973) and how an area
with strong intraconnections (like CA3) allows prior patterns to be
recovered given incomplete inputs (pattern completion; Colgin et al.,
2008; Hasselmo & McGaughy, 2004; Marr, 1971; K. A. Norman &
O’Reilly, 2003; Rolls & Kesner, 2006; Treves & Rolls, 1994;
Whittington et al., 2020); it shows how new learning can avoid
catastrophic interference of old information by including contextual
information as an input (Masse et al., 2018; O’Reilly & Munakata,
2000); and it elucidates how different subregions and pathways of the
HC contribute independently to episodic memory effects (Schapiro
et al., 2017; Zheng et al., 2022). Importantly, the model learns via a
balance of associative (or Hebbian) learning and EDL processes
(O’Reilly & Munakata, 2000), the latter of which we will show to be
particularly relevant for simulating spacing effects.

Previous explanations of spacing effects center around encoding
variability, whereas in our model, spacing effects arise largely via
EDL. EDL conceptually dates back at least to learning rules created
by Rescorla and Wagner (1972) and has been applied to learning &
memory domains (Brod, 2021; Ku et al., 20211; Metcalfe, 2017)
and computational models (Sutton & Barto, 1981; Zheng et al.,
2022). Principally, in EDL, network weights that underlie memory
traces change proportionally to the difference between network
predictions based on activations and stored weights versus actual
outcomes driven by current inputs (Ketz et al., 2013; O’Reilly,
1996; Zheng et al., 2022). As a memory-strengthening mechanism,
encoding variability shares some similarities with the error-based
account we posit in that it explains how greater benefits should
accrue with greater spacing. However, the reasons for these benefits
differ between the two accounts. Encoding variability predicts that
spacing produces more contextual routes to retrieval. This largely
assumes that the two events are independent at encoding rather than
the later event at least partially updating the memory (Hintzman,
1986; Ross & Landauer, 1978). Note that the independence
assumption is problematic due to the spacing property of super-
additivity. Superadditivity refers to a higher probability of recalling
a repeated item than either of two items separated by the same
temporal lag (Begg & Green, 1988; Benjamin & Tullis, 2010;
Maddox, 2016). That is, recall is above what would be obtained if
you accounted for the recall likelihoods of two independent stimuli,
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indicating that there is no independence—rather, the original trace is
reactivated. Conversely, the error-based account predicts first that
the two learning instances interact (the later instance reactivates the
first) and, more specifically, that greater temporal mismatch will
produce stronger weight changes to the earlier trace via EDL.
Critically, these greater weight changes will strengthen units in
common across the memories. In other words, encoding variability
predicts spacing effects arise via more connections, whereas EDL
predicts they arise via stronger connections.
If temporal drift occurs, which elements of a prior memory remain

in common during a relearning event? We discuss two strengthening
processes relevant to this idea: temporal abstraction (Toppino &
Gerbier, 2014) and decontextualization (S. M. Smith & Handy,
2014). Regarding temporal abstraction, if drift occurs over multiple
time scales, greater spacing between training examples will result in
relatively more overlap in slow-drifting units than in fast-drifting
units. Although there will be a high temporal mismatch and,
therefore, greater EDL, the weight changes from fast-drifting neurons
will keep strengthening new units because they will have drifted too
substantially to strengthen the old ones. However, because slow-
drifting units retain greater overlap with the prior training examples,
the greater EDL can actually strengthen these prior connections. As a
result, greater spacing preferentially improves the weight strengths
of units with longer time scales. Temporal abstraction fits nicely
with rational accounts of spacing effects, which posit that, given
computational constraints, it may be beneficial to support memory in
proportion to how long it has been since it was last encountered
(Anderson & Milson, 1989; Brea et al., 2014; Kording et al., 2007;
Mozer et al., 2009). That is, information repeated numerous times
within a short interval (e.g., hourly) and then not again will likely only
be relevant for the next few hours, whereas information repeated on
broader interval (e.g., monthly) will likely be important for longer,
and it would be optimal to strengthen units according to this
expectancy.
Decontextualization takes the idea of abstraction one step further,

suggesting that memories may become resistant to all contextual drift.
This process occurs via direct strengthening between the core
elements of memory itself rather than a preferential strengthening of
any manner of temporal context units; in the case of paired associate
learning (which will be the focus of our modeling efforts), this
involves direct weights between cue and target representations.
Behavioral evidence for decontextualization from different kinds of
contexts shows that, in comparison to constant learning contexts,
variable learning contexts slow down learning but improve final
memory performance when tests are given in a new context
(Glenberg, 1979; Imundo et al., 2021; S. M. Smith et al., 1978; S. M.
Smith & Handy, 2014, 2016). In other words, variable learning
contexts make the memory depend less on elements of the original
learning context at retrieval. Intriguingly, temporal spacing and
environmental context change additively benefit memories tested
days later in a novel context (S. M. Smith, 1982; S. M. Smith &
Rothkopf, 1984). However, to our knowledge, decontextualization
has not been used as a concept to explain spacing effects, whereby
memories become less reliant on cue support from the temporal
context for retrieval.
As a result of these strengthening processes, we suggest that

“cramming” trials in time (relative to distributing them) produces
overfitting to a local temporal context. These short ISIs can benefit
memories when RIs are also short. However, after substantial temporal

drift occurs (like with long RIs), the overfitting from short ISIs
ultimately prevents the information from remaining accessible, whereas
the temporal abstraction and decontextualization processes that occur
with long ISIs keep the memory accessible (Figure 1). Therefore, we
will argue that drift is not merely noise or a nuisance but may optimize
memory function within a computationally constrained system. That is,
drift allows old, nonrepeated information to be rationally forgotten
while strengthening repeated information according to its temporal
regularity (Anderson & Milson, 1989; Mozer et al., 2009).

Notably, the error-based model of spacing effects we propose
here has an important and related antecedent. Mozer et al. (2009)
simulated the spacing effect using a multiscale neural network
model, whereby errors in representing temporal context at one
timescale of drift were passed to representations at a longer
timescale. Alongside the similarities, our approach also differs
from theirs in numerous ways: (a) we simulated additional spacing
effects; (b) we used a biologically realistic framework of EC–HC,
which allowed us to more closely link the network’s learning
mechanisms to known neurobiology and create testable neural
predictions; (c) temporal abstraction, which was built specifically
in Mozer et al. (2009) by passing errors up one layer of the
temporal hierarchy, emerged spontaneously in our model without
such engineering; and (d) our model suggested decontextualization
can also drive spacing benefits. In so doing, our model builds
bridges between more abstract models of spacing effects (Mozer
et al., 2009; Raaijmakers, 2003; Walsh et al., 2018) and the
underlying neural mechanisms in the EC-HC, which creates new
avenues for testing the underlying learning mechanisms and their
implications for real-world memory performance.
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Figure 1
Schematic of Basic Learning Principles Under Paired Associate
Learning in Hippocampal Area CA3

Cue Target Short

CA3 memory

CA3 memory

(A)

(B)
Item pools Temporal context pools

Medium Long

Weight
strength

Weak
Medium
Strong

Cue Target Short
Item pools Temporal context pools

Medium Long

Short spacing: overfitting
to short timescales

Long spacing: Decontextualization
and temporal abstraction

Decontextualization Temporal 
abstraction

Note. (A) Under low spacing, training will preferentially strengthen short
timescale representations to CA3, effectively overfitting to the trained
temporal context. (B) Under high spacing, greater error-driven learning will
be allocated to associations between cues and targets to CA3 (decontextua-
lization, stronger weights on left) and longer timescale representations
(temporal abstraction, stronger weights on right). Both processes allow
memories to remain accessible after greater drift occurs. CA3 = cornu
ammonis 3.
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Method

Model Architecture

Learning in neural networks occurs via the modification of
synaptic weights between sending and receiving neurons. Our model
was implemented in the Leabra (local, error-driven, and associative,
biologically realistic algorithm) framework, which features two
distinct learning rules. The first is Hebbian learning, which posits that
changes to weights between connected units are incrementally
updated through simultaneous, repeated activations (Hebb, 1949).
The second, more powerful learning rule is EDL. This rule posits that
the network constantly produces expectations (based on activations
and stored weights) that are measured against outcomes and that
learning is proportional to the difference between the two (O’Reilly
& Munakata, 2000). The model also used rate-coded neurons
separated into different layers and pools, sparse and distributed
representations, competition driven by inhibitory interneuronswithin
and across layers, and full bidirectional connectivity between some
layers. Our specific model of the HC was based upon early CLS
models (K. A. Norman & O’Reilly, 2003; O’Reilly & Rudy, 2001),
with additions of theta-phase dynamics (Ketz et al., 2013) and EDL
from the entorhinal cortex input layer (ECin) to CA3 (Zheng et al.,
2022). The main changes in the present model are the expanded
notion of temporal context into various spectra following evidence
for this in EC (Bright et al., 2020; Tsao et al., 2018; Umbach et al.,
2020) and the continuity of time across different learning epochs and
tests. For this reason, we call this the HipSTeR (Hip-pocampus with
Spectral Te-mporal Representations) model. Please see theAppendix
for many of its parameters and https://github.com/CCNLab and
https://github.com/JamesWardAntony/HipSTeR for all code and
detailed explanations, including annotations, fully documented
equations, and example simulations, including the model.
Temporal representations were divided into pools that shared a

common underlying rate of drift, which involved random bit flips in
activation/deactivation at each time step (Estes, 1955). In this way,
time was translated into a spatial code that changed at each moment
(Buonomano & Merzenich, 1995). To equalize the overall level of
activation over time, whenever an active neuron became inactive, a
random, previously inactive neuron became active. Following
evidence that other EC cells (grid cells) have discrete spatial
frequencies (Stensola et al., 2012;Wei et al., 2015;Whittington et al.,
2020) and that drifting EC cells may have discrete drift rates
(Aghajan et al., 2023), drift rates spanned a discrete set of values
along a spectrum of timescales separated by powers of 2, with 1/4
(22) of the neurons in the fastest pools flipping at each time step and
1/512 (29) in the slowest drifting pools. Differences between the
imposed drift rate and actual drift at each time step were carried over
into successive time steps so that, especially in the slowest pools with
drift rates of less than one unit per time step, drift would eventually
occur at an approximately consistent rate across time. Figure 2A
depicts the representational drift within each pool via its respective
autocorrelation (Pearson r) against an initial timepoint (t = 0).
Drift was implemented both within lists across successive trials

and between lists (Figure 2B). Within lists, successive trials always
occurred after one time step, so the full list of 16 paired associates
always spanned 16 time steps. Accounting for the idea that focused
tasks or events create some stable state (Antony et al., 2021;
Baldassano et al., 2017), after which larger “shifts” in activity occur

(DuBrow et al., 2017), within-list drift was set to 1/4 the rate of
between-list drift. Between-list drift occurred to varying extents
depending on the experimental condition except in the No drift
comparison condition.

The HipSTeR architecture (Figure 2C) involved the following
layers:

1. An input layer comprising 16 pools of 49 neurons each:
four cue pools, four target pools, and eight temporal
context pools (Figure 2B). These pools were organized
separately to reflect how information coming from various
cortical regions converges in the HC (Eichenbaum et al.,
2007). This layer has only direct, one-to-one forward
connections with ECin. Additionally, this arrangement of
separating temporal context from other inputs reflects the
fact that multidimensional representations of global drift
over time versus externally driven contextual factors (e.g.,
spatial environment) remain largely orthogonal (Keinath
et al., 2022).

2. An ECin layer, which receives these signals from the input
layer and sends connections into DG, CA3, and CA1 of the
HC. ECin, which resembles superficial EC layers (Witter
et al., 2017; Zhang et al., 2023), also receives inputs from
ECout, which serves as the initial output layer from the HC
and resembles deep layers of EC. ECin projections to DG
and CA3 via the perforant path are broad and diffuse, with
a 25% chance of connection.

3. A large DG layer, which features high inhibition (Coulter
&Carlson, 2007; O’Reilly &Munakata, 2000), resulting in
only very sparse representations that functionally separate
the patterns of similar inputs from ECin. In HipSTeR, DG
has an inhibitory conductance multiplier of 2.9, resulting in
the activity of about 1% of neurons. In turn, DG sends
outputs to CA3 via strong mossy fiber projections (Henze
et al., 2002; Vyleta et al., 2016), which have a multiplier of
four and give it a stronger influence on CA3 activity than
the more direct perforant path inputs from ECin.

4. A CA3 layer, which receives inputs from both ECin and
DG and projects to itself (via recurrent collateral
connections) and to CA1. The recurrent collaterals—
which are fairly strong, with a strength multiplier of two in
the model—have been theorized to be important for
pattern completion because an activated representation can
retrieve its previously learned association within this layer
(Marr, 1971; O’Reilly & McClelland, 1994).

5. A CA1 layer, which receives and compares input from
ECin and CA3, therefore serves as the convergence point
for two hippocampal pathways and sends information
back out of the HC to the entorhinal cortex output layer
(ECout). The pathway from CA3, commonly referred to as
the trisynaptic pathway (ECin → DG → CA3 → CA1 →
ECout), essentially separates common inputs, binds items
to contexts, and completes previously stored patterns
based on degraded inputs. Evidence for rapid trisynaptic
learning comes from findings such as the high inhibition
featured in DG, which allows for a separation between
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Figure 2
Temporal Representations and Their Implementations in HipSTeR

(C) Model architecture and sample network
training (left) and testing (right) trial

Training inputs(A) (B)Autocorrelation of pools over time
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Note. (A) Temporal representationswere separated into different pools of activity that simulated relatively
independent cortical inputs and drifted at different rates. Autocorrelations of each temporal context pool
were plotted over time against their initial time point. (B) Inputs to our complementary learning systems
(CLS) model comprised the eight temporal context pools and four pools each representing cues and targets
for paired associate learning. Shown are two successive cue–target pairs during afirst training epoch and the
first pair again in a second training epoch. Black squares indicate flips in the context pools, showing how
drift proceeds differently across pools. (C) Training inputs from (B) entered HipSTeR via ECin, after which
they entered the hippocampal loop, with all model connections depicted by arrows on the left. During
training (left), the model learned the input patterns. During testing (right), it was presented with the cue and
current temporal context pools but without the target pools. Performance was measured by how well the
model reproduced target pool activity in ECout. Numbers correspond to layer numbers in the detailed
explanationswithin theMethods–ModelArchitecture section. (D)Autocorrelations for the primary network
layers are depicted in (A) as the correlation of the activation pattern in each layer against its pattern on the
first time step. This was run on a separate, “pure” version of the model without any cue–target repetitions,
meaning there were 500 unique cue–target pairs alongside identical temporal context pools. Colors
correspond to those surrounding each network layer in (C). HipSTeR = Hip-pocampus with Spectral Te-
mporal Representations; DG = dentate gyrus; ECin = entorhinal cortex input layer; ECout = entorhinal
cortex output layer; CA3= cornu ammonis 3; CA1= cornu ammonis 1. See the online article for the color
version of this figure.

6 ANTONY, LIU, ZHENG, RANGANATH, AND O’REILLY



highly similar pattern inputs (Leutgeb & Leutgeb, 2007;
Vazdarjanova & Guzowski, 2004), the importance of area
CA3 in learning new paired associates (Rajji et al., 2006),
and the role of these regions together in discriminating
between highly similar information in memory (Bakker
et al., 2008). Note that here we suggest an important
role for a disynaptic, ECin → CA3 → CA1 → ECout
subpathway, following modeling results that this pathway
can support generalization (Kang & Toyoizumi, 2024;
Kowadlo et al., 2019) and learn via EDL (Zheng et al.,
2022). The pathway from ECin → CA1 → ECout
constitutes the monosynaptic pathway of the HC
(Schapiro et al., 2017), which allows CA1 to directly
encode target ECin activity (Grienberger et al., 2022) and
sends activity from the HC back into the cortex. Evidence
for slower monosynaptic learning comes from its having a
slightly slower learning rate (Nakashiba et al., 2008) and
more overlapping, generalized representations (Fenton et
al., 2008; Leutgeb et al., 2004; Schapiro et al., 2017; Singer
et al., 2010). These connections remain within pools,
following their point-to-point anatomical connectivity
patterns (Witter et al., 2017). This pathway, therefore,
serves an autoencoder function, which translates the pattern-
separated representations from the trisynaptic pathway
back into a common reference frame for the cortex.

6. An ECout layer, which serves as the output of the HC
and, therefore, the hippocampal network’s “guess” during
testing (Figure 2C). Additionally, it also serves as the input
back into ECin, which can result in different activations in
successive cycles through the HC (Kumaran &McClelland,
2012; Schapiro et al., 2017).

The effects of drift differed across layers of the network. We
depicted this without any cue–target pair repetitions by training the
network on different cue–target associations for each of 500 time
steps and calculated the autocorrelation of each region with its initial
time step. Of the hippocampal areas, CA1 showed the slowest pace
of drift, followed by DG, which was followed very closely by CA3
(Figure 2D).
Model training and testing followed four discrete phases

resembling activity during the four quarters of the hippocampal
theta rhythm (Ketz et al., 2013). The model was learned via two EDL
mechanisms. In the first mechanism, the first three quarters constituted
what are considered the minus phases, whereby the network produced
an expected output based on its weights and input activations. The
fourth and final quarter was the plus phase, whereby the target
activation was provided from ECin → ECout, and thereby, learning
occurred based on the difference between the network’s prediction
from the minus phases into ECout and the actual outcome. The first
and fourth theta phases came during theta troughs when CA1 was
strongly influenced by ECin (Siegle & Wilson, 2014). Conversely, at
theta peaks, CA1 was strongly influenced by CA3, which involved a
guess based on activations and previously stored patterns. During the
plus phase, ECin drove both CA1 and ECout activity, effectively
clamping the correct answer in both EC layers and forcing weight
adjustments in CA1. Therefore, across learning, ECout activity came
to resemble ECin activity via the CA1 projection during the minus
phases (without the direct ECin → ECout input). The second

mechanism involved EDL in CA3 (Zheng et al., 2022). This error
arose as a form of temporal difference learning between different
pathways converging on CA3 neurons (Sutton & Barto, 1998): direct
input from ECin (via the perforant path) and CA3 recurrent collateral
activations arrived on CA3 neurons within the first quarter of the theta
cycle, and critically, this input preceded signals from themultisynaptic
ECin → DG → CA3 pathway (Yeckel & Berger, 1990). This minus
phase constituted CA3 activity prior to DG inputs, and the plus phase
occurred when they arrived. Therefore, the pattern-separated DG
activation acted as a teaching signal to correct the predicted pattern in
CA3 based only on perforant path and recurrent collateral activations
(Kowadlo et al., 2019).

In our simulations, as in prior models (Ketz et al., 2013; Zheng
et al., 2022), temporal context drift occurred within trials of an
epoch. However, drift differed in HipSTeR in multiple ways. As
mentioned above, drift occurred in all simulations across a spectrum
of time constants in a manner that was constant within each temporal
context pool. Additionally, we differentially modified drift in some
experimental conditions in two other ways. First, drift often occurs
between learning epochs, with the number of drifting time steps
defined as those coming after the final learning trial of an epoch and
before the first trial of the next epoch.We refer to this drift as the ISI.
The exception to this was the No Drift condition, in which drift still
occurred within-epoch, but each epoch of training was identical.
Given that neurobiological drift occurs (e.g., Tsao et al., 2018), such
a condition is biologically impossible, as an agent would never
return to the exact same drifting neural pattern during relearning.
Notably, similar neural firing patterns can recur even on long
timescales with repeated experiences (Liu et al., 2022; Sun et al.,
2020), but they are not identical. However, it is common to train
neural networks this way, including in prior versions of the CLS
architecture, so we used the No drift condition as an illustrative
comparison.

Second, drift often occurred after the final training epoch and
before the model was tested. We refer to this as the RI, following
the labeling convention used in human behavioral experiments
employing memory tests after various intervals. We defined the
number of drifting time steps as those occurring after the final
learning trial of the final training epoch and before the first trial of
testing. Drift continued at the same rate for each trial of the testing
epoch. Similar to the No drift training condition, we also had a No
Lag (RI-0) RI, for which the temporal context given at the test was
the exact temporal context used in the final training epoch. Similar to
the No drift condition above, the No Lag condition is biologically
impossible but likewise served as a useful control to assess the
network’s ability to recall under the exact conditions of at least one
of its learning epochs.

HipSTeR has trisynaptic (ECin→DG→ CA3→ CA1→ ECout),
disynaptic (ECin → CA3 → CA1 → ECout) and monosynaptic
(ECin → CA1 → ECout) pathways. Thus, it is possible to turn
off learning (prevent all weight changes) in some pathways and
reasonably expect some alternate learning to proceed (Schapiro et al.,
2017). Additionally, ECin → CA3 learns via both Hebbian learning
and EDL, which changes weights proportionally to the difference
between CA3 activity with ECin, DG, and recurrent CA3 inputs
present against activity prior to DG input. We can, therefore, isolate
the importance of these learning rules within ECin→CA3 by turning
off EDL while leaving Hebbian learning intact or turning off all
learning. Altogether, we compared the full HipSTeR model to
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alternative models in which learning pathways were affected in the
following ways: ECin → DG (no learning), ECin → CA3 (no
learning), ECin → CA3 (no EDL, but Hebbian learning present),
ECin→ CA1 (no learning), CA3→ CA3 (no learning), and CA3→
CA1 (no learning). To assess the impact of multiscale drift versus
other uniform drift implementations, we also compared simulations
of our control HipSTeRmodel against networks wherein all temporal
context pools drifted at a uniform slow, medium, or fast rate. The
slow-drifting network used the slowest drift rate from HipSTeR
(1/512 per time step), the fast-drifting network used the fastest
drift rate (1/4), and the medium-drifting network used a medium
rate (1/64).

Experimental Conditions in Spacing Effect Simulations

We will now outline specific simulations of prior behavioral
findings. For these and other simulations, our hypotheses were not
preregistered. More information about the original studies can be
found in the corresponding region in the Results section. To model
spacing effects with one variable ISI (Cepeda et al., 2008), we used
four training epochs with a unique scheduling procedure. The
first two epochs simulated the encoding and one perfect recall trial
of the first learning session. These were implemented in direct
temporal succession (ISI = 2 between lists) in the model. The third
and fourth epochs simulated the two practice + feedback trials of
the second learning session, and these also occurred in direct
temporal succession (ISI = 2). Critically, the ISI between the
second and third lists differed across experiments. These eight ISIs
spanned powers of 2, from 4 (22) to 512 (29). We then used four RIs
after the final training epoch spanning powers of 2, from 64 (26) to
512 (29). We chose these ISI and RI combinations so that we had a
mix of ISI:RI ratios, ranging from far less to far greater than 1. We
fit these data to find optimal ISIs using an equation from (Cepeda
et al., 2008): y = −a × (log(x + 1) − b)2 + c, where y is recall
performance, x is ISI; and a, b, and c are free parameters. From the
best-fit parameters, we found the timepoint corresponding to
maximum performance in the curve to obtain the optimal ISI.
For the spacing override effect (Rawson et al., 2018), three

experimental groups had three epochs of training with lags of 2 (low
spacing), 8 (medium spacing), or 32 (high spacing). Following
this initial training session were two training epochs separated by
128 time steps each. After these epochs, the final test occurred after
another 128 time steps. Note that the low and high spacing conditions
approximately map onto Rawson et al. (2018) conditions of Lag-15
and Lag-47 because they used different naming conventions; by
their conventions, our Massed would be Lag-17 (15 drifting time
steps during the training list itself+2 time steps after the list), and our
Lag-32 would be Lag-47 (15 during training + 32 after the list).
To model the importance of absolute amounts of spacing and

different spacing regimens, including expanding, contracting, and
equal spacing (Küpper-Tetzel et al., 2014), we used four different
experiments, each using five training epochs with unique ISIs. All
experiments had very short intervals between the first, second, and
third training epochs. Following this, the first three experiments had
intervals between training epochs that were expanding (16, 256),
contracting (256, 16), or equally spaced intervals (136, 136) that
matched the overall drift of the prior two (equal, match). To
demonstrate the importance of absolute spacing, the final experiment

(equal, compressed) used equally spaced intervals between training
epochs but 1/8 of the amount of overall spacing (17, 17). After the
final training epoch, RIs occurred after drift corresponding to values
spanning powers of 2, from 32 (25) to 2048 (211) time steps.
To model list-wise spacing with repeated variable ISIs (Bahrick

et al., 1993), we used five training epochs using consistent ISIs in
each experimental condition. The drifting conditions had ISIs of
powers of 2, including 8 (23), 64 (26), and 512 time steps (29). After
the final training epoch, RIs occurred after drift corresponding
to values of powers of 2, including 64 (26) and 1,024 (210).
Additionally, a scrambled condition used scrambled temporal
context vector pools. These pools were only scrambled once after
training, meaning that they used the same drift rate during the testing
epoch, which controlled for the presence of drift during testing.

In later simulations aimed at demonstrating the mechanisms of
learning in HipSTeR, we primarily used the approach from
modeling Bahrick et al. (1993; repeated variable ISI) with a few
additions. First, we added more ISIs and RIs. ISIs spanned powers
of 2, from 2 to 512 (29) time steps, while RIs went from 32 (25) to
2048 (211) time steps. Second, we added a No drift ISI condition
that involved training the model using the same temporal context
vectors in each epoch. Drift still occurred within this list, but the
input pattern, for example, the first cue–target pair, was the exact
same across epochs. Third, we added a Scrambled ISI condition,
whereby we completely scrambled the temporal contexts before
each new training epoch while preserving within-list drift within a
training epoch. Finally, we added a No Lag RI condition that was
tested using the temporal context vector from the final training
epoch. We still used the Scrambled RI condition as in Bahrick et al.
(1993) simulations that involved scrambling the temporal contexts
before the final test.

Measuring Model Memory Performance, CA3 Error,
Representational Similarity, and Weights

In each experimental condition, model weights were reinitialized
and trained anew with random weights within what we call runs.
Different runs were analogous to random assignment for human
participants, and we, therefore, performed inferential statistics
across different runs of the model.

We tested model memory performance by assessing the activation
of ECout neurons after the minus phases against the plus phase.
Neuronal activity above and below 0.5 was considered active and
inactive, respectively. For correct performance on a given trial, the
proportion of active neurons that were expected to be inactive and
the proportion of inactive neurons that were expected to be active
had to both be below 0.2.

To assess error across training epochs, we calculated the absolute
difference in CA3 activation in the first quarter (Q1) versus the final
plus phase (Q4) and divided this quantity by the average trial-wise
CA3 activation. This error metric indicated how easily the network
produced the intended output. Given that it generally scales with poor
current performance but greater subsequent learning, it provides a
useful proxy for the concept of desirable difficulties in learning, in
which making learning more difficult often has positive long-term
consequences for memory retention (Bjork & Bjork, 1992).

To gain a sense of how representations changed across epochs, we
calculated the representational similarity in CA3 during all training
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trials. To do this, we correlated across-CA3 neuron activation
patterns at the end of each trial in the current epoch (starting in
Epoch 2) against each trial in the prior epoch. These values were
then separated based on whether they involved the same versus
different input cues.
To assess the structural changes to the network across learning and

as a function of experimental conditions, we measured the average
weight strength between ECin → CA3 neurons for each pool. We
measured changes in this pathway (the perforant path) because of its
role in supporting cue–target learning and its EDL properties. To
assess how various experimental conditions affected representations
in different temporal pools, we calculated the average strength from
neurons in each ECin temporal pool separately. To assess the effects
of training regimens, we used values after the final training epoch and
contrasted various experimental conditions (e.g., Drift vs. No drift)
across runs.

Experimental Conditions in Item-Wise and Block-Wise
Decontextualization Simulations

Following evidence of decontextualization in the spacing effect
simulations, we simulated more canonical decontextualization
paradigms using epoch-wise (Imundo et al., 2021; S. M. Smith
et al., 1978) or item-wise contexts (S. M. Smith & Handy, 2014,
2016). Rather than eight temporal context pools, our inputs here
involved six temporal context pools and two other context pools
representing either epoch-wise or item-wise context. For epoch-
wise contexts, which were analogous to learning associations for an
entire session within a spatial context (Imundo et al., 2021; S. M.
Smith et al., 1978), the other context pools were either the same for
all training epochs (constant epoch condition) or new for each
epoch (variable epoch condition). For trial-wise contexts, which
were analogous to having some incidental background context
present during each individual learning association (S. M. Smith &
Handy, 2014, 2016), the other context pools were unique for each
cue–target pair but were either the same across each training
instance of that pair (constant trial) or changed each time (variable

trial). Finally, the other context pools at the test could either be the
same as the context from the first training epoch (old test) or a new
context (novel test). All context vectors were randomly generated
and bore no resemblance to others. For these experiments, we
used a short ISI (two steps) and moderate RI (512 steps) for all
simulations to control for the temporal context.

Results

We began our investigations by simulating a number of
behavioral findings from the spacing effect literature. Following
this, we probed the mechanisms by which our HipSTeR model
learned amid constantly drifting inputs during training, including
assessments of error, representational similarity within layers of
the network, weight changes, eliminating learning in specific
HC pathways under various training regimens, and comparing
our multiscale drift model to alternative models with uniform
drift. Last, to connect our findings to more canonical ideas of
decontextualization, we simulated decontextualization paradigms
that were unrelated to temporal context.

Optimal ISI DecreasesWith RI andOptimal ISI:RI Ratio
Decreases With Increasing RI: List-Wise Spacing With
One Variable ISI

We first simulated an experiment (Cepeda et al., 2008) containing
a single variable ISI separating two training sessions. Briefly, Cepeda
et al. (2008) had human subjects learn lists of paired associates to a
criterion of two correct trials and wait a variable number of days
before performing a criterion of two more correct trials (0 [3 min], 1,
2, 7, 21, or 105 days), with testing occurring after RIs of another 7,
35, 70, or 350 days. They found that the relationship between ISI and
memory recall was nonmonotonic (e.g., optimal at some ISI between
the extremes of those tested) and that the optimal ISI increased with
RI (Figure 3A). Additionally, they found an intriguing relationship
between ISI and RI, such that the optimal ISI:RI ratio was not
consistent but actually decreased with increasing ISI.
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Figure 3
Simulations Showing Optimal ISI Depends on RI and Optimal ISI:RI Ratio Decreases Over Time

(A) Modeling paradigm
5 repetitions / pair

ISI-1: 4 steps

ISI-2: 8 steps

ISI-3: 16 steps

ISI-4: 32 steps

ISI-5: 64 steps

ISI-6: 128 steps

RIs: 64, 128, 256, 512, 1024, 2048

Data (Cepeda et al. ,2008, Exp 2) Modeling results

*
*

*

*

*
*ISI: 2 steps

*
*

(B) (C)

Rep1 Rep2 Rep3 Rep4 Rep5

Note. (A) Data replotted from “Spacing Effects in Learning,” by N. J. Cepeda, E. Vul, D. Rohrer, J. T. Wixted, and H. Pashler,
2008, Psychological Science, 19(11), p. 1098 (https://doi.org/10.1111/j.1467-9280.2008.02209.x). (B) Our modeling paradigm,
wherein only a single ISI between repetitions 3 and 4 differed across the conditions. Note that we used steps as a proxy for time in
the behavioral experiments. (C) Modeling results. Data from simulations were plotted as mean ± SEM across runs in the model.
In (A) and (C), the optimal ISI for the sameRI is markedwith an asterisk. Exp 2= experiment 2; ISI= interstimulus interval; RI=
retention interval; Rep= repetition; SEM= standard error measurement. See the online article for the color version of this figure.
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We simulated these results by (a) training themodel to learn lists in
short succession (to capture initial study and one round of learning to
criterion), (b) imposing one variable ISI (from 4 [22] to 128 [27]
trials) between the second and third training epochs, (c) training the
model on twomore lists occurringwithin short succession (to capture
the final rounds of learning), and (d) testing the model after variable
RIs (from 64 [26] to 512 [29] steps; Figure 3B). First, we performed a
2-way, ISI × RI between-subjects analysis of variance (ANOVA),
and we found a main effect of RI, F(3, 3564) = 2962.0, p < .001, a
main effect of ISI, F(8, 3564) = 20.5, p = .19, and a significant
interaction, F(24, 3564) = 67.1, p < .001. Second, similar to Cepeda
et al. (2008), we found that the relationship between ISI and RI was
nonmonotonic, peaking at medium (not the shortest nor the longest)
ISIs for each RI. Third, the optimal ISI increased with increasing RIs;
to find this, we used model fits based on a three-parameter equation
from Cepeda et al. (2008), y = −a × (log(x + 1) − b)2 + c (see the
Method section for details). The optimal ISIs from these model fits
were 14.3, 34.8, 70.7, and 204.1, respectively. Third, the ISI:RI ratio
with increasing RI decreased, as these ratios were 64/14.3 = 4.48,
128/34.8 = 3.68, 256/70.7 = 3.62, and 512/204.1 = 2.5, respectively
(Figure 3C). Therefore, we captured the main principles of the
spacing effect outlined in Cepeda et al. (2008). Of these principles,
the first is especially important conceptually because it suggests there
is not one solo factor underlying memory strength—if there were, the
ISI condition resulting in the greatest strengthening would produce
the best memory performance regardless of RI. We will later
demonstrate that these differentiating factors depend on the amount
of overlap between the temporal context at test and the learned
contexts (as governed by the RI), the strength of each of the weights
in each of the layers, and the direct strength between the cue and
target pools.

Relearning Override Occurs With Relatively Large
Amounts of Spacing

If a memory has been learned with low spacing, can it still benefit
from spacing later? Next, we addressed this question, following
what has previously been referred to as the relearning override
effect (Rawson & Dunlosky, 2011; Rawson et al., 2018). Briefly,
this effect occurs when an initial, small difference in either spacing
(Rawson et al., 2018) or initial learning (Rawson & Dunlosky,
2011; Rawson et al., 2018) becomes largely (but not necessarily
completely) overridden by relearning after a longer spacing
interval. That is, the relative gain after a longer spacing interval
is larger for an initially weaker memory, whether it be weaker
because of fewer initial learning trials or more massed training. To
demonstrate the override effect in terms of initial differences in
spacing, we turned to the learning criterion = three conditions of
Experiment 1 in Rawson et al. (2018). In this condition and
experiment, subjects initially studied Lithuanian–English word
pairs with different initial lags of either 15 or 47 during the first
session. They were then practiced in the same order until they were
retrieved correctly thrice. After this session, subjects returned for a
series of relearning sessions spaced 1 week apart (Figure 4A, right).
The relative gain when relearning after a large temporal gap was
larger for initially less-spaced memories.
To model the spacing override effect, we created three

experimental conditions (Figure 4B). These conditions used three
initial epochs of training with lags of 17 (15 for training list + two

extra time steps; low spacing), 23 (15 for training list + eight extra
time steps; medium spacing), and 47 (15 for training list + 32 extra
time steps; high spacing). In all conditions, initial training was
followed by two later training epochs, each after 128 time steps,
followed by a final test after another 128 time steps.

Investigating memory at each training epoch in the first two
groups, we first found a typical effect of faster learning in the lower
spacing conditions before the first larger gap; final training epoch,
F(2, 297) = 194.2, p < .001; Figure 4C. After this gap, memory was
superior for the higher spacing conditions, F(2, 297) = 122.6, p <
.001, in line with classic spacing effects. However, after two large
gaps, memory benefits were higher for the initially low spacing
groups at the final test, F(2, 297)= 9.0, p< .001; follow-up t tests for
the low versus and medium and high spacing groups indicated both
t > 3, p < .003, demonstrating a relearning override of initial,
relatively small spacing.

In some ways, the override effect of initial learning criteria is
surprising, as it has long been known that increasing the number
of learning trials slows the rate of forgetting (e.g., Krueger, 1929).
However, these benefits tend to be weak and transitory when
overlearning occurs within close temporal succession (or all within
the same session; Driskell et al., 1992; Elliott et al., 2014; Pyc &
Rawson, 2009). Therefore, the relative change in memory change
offered by later spacing is substantial enough to drastically reduce
or eliminate these initial differences. These findings underscore
the idea that learning that is relatively compressed in time overfits
one temporal context that ultimately proves unhelpful when that
temporal context is no longer active. It also points to the importance
of absolute spacing, or the total time between the first and last
training instances for a given memory, which we will cover in more
detail in the following section.

Alternative Schedules and Absolute Spacing:
Contracting, Expanding, and Equally Spaced Intervals

The relearning override effects of large spacing suggest that the
greatest temporal determinant of later memory may be the absolute
amount of spacing between all training instances (Karpicke &
Bauernschmidt, 2011). However, a number of investigations have
examined the importance of alternative training schedules, such as
ISIs that expand, contract, or remain equal across training instances
(Gerbier et al., 2015; Mettler et al., 2016; Toppino et al., 2018;
Toppino&Gerbier, 2014). In one study (Küpper-Tetzel et al., 2014),
subjects learned paired associates before relearning on multiple
sessions after either expanding (1-, 5-, and 9-day), contracting (9-, 5-,
and 1-day), or equal (all 5-day) ISIs. Final tests were given either 1, 7,
or 35 days after the final learning session. Free recall performance
(requiring both items of a pair to be recalled and matched) showed
that the contracting schedule was superior to the equal and expanding
schedules for the early (1- and 7-day sessions) RIs, whereas equal and
expanding scheduleswere superior to the contracting schedule at long
RIs (Figure 5A; They focused on free recall because cued recall was
at or near ceiling performance, though we will model cued recall).

We modeled the effects of alternative schedules and absolute
spacing using four experimental conditions with unique ISIs
(Figure 5B). Here the intervals before the two final training epochs
differed in the following conditions by the number of drifting time
steps: expanding (16, 256), contracting (256, 16), equal matched
(136, 136), and equal compressed (17, 17). The first three conditions
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allowed us to assess the importance of alternative schedules, while the
final condition allowed us to again assess the importance of absolute
spacing. Finally, RIs occurred after 32 (25) to 2048 (211) time steps.
Overall, a two-way learning schedule (expanding, contracting,

equal, matched, or equal, compressed) × RI (32–2048) ANOVA
revealed significant main effects of schedule, F(3, 2376)= 21.7, p<
.001, RI; F(5, 2376) = 671.2, p < .001, and an interaction, F(15,
2376) = 16.8, p < .001. Similar to Küpper-Tetzel et al. (2014), the
Contracting schedule demonstrated superior performance to the
other conditions at the early RI: the order, considering significant
differences at p < .05 as “>” and insignificant ones as “=”, was
equal, compressed > contracting > equal, matched > expanding
(Figure 5C). We believe that this occurred because this group had
the most training opportunities within a short temporal interval of
these tests, allowing for better training within this narrow temporal
context. However, at the longest RIs, we found that this advantage
had disappeared, reversing against the equal condition and showing
no difference from the expanding condition: The order was equal,
matched > contracting = expanding (p = .87) > equal, compressed.
Note that the insignificant differences between expanding and
contracting at long RIs differ from the Küpper-Tetzel et al. (2014)
results for their longest RI. All three groups showed superior
memory at the longest RIs against the equal compressed group (all
p < .023), once again highlighting the critical importance of
absolute spacing when tests occur after long RIs.

Therefore, we showed that contracting schedules had superior
performance at short RIs, likely due to their having more training
examples within close temporal proximity of these tests, but this
advantage disappeared over time. Additionally, the equal spacing
condition produced superior recall at some long RIs. One aspect of the
results of Küpper-Tetzel et al. (2014) that we were not able to capture
was superior memory for expanding than contracting schedules at the
longest time points. Benefits for expanding over contracting schedules
are not always found at the longest RIs (e.g., Cull, 2000; Karpicke &
Bauernschmidt, 2011). However, we believe there is a larger point: the
subtle differences in recall across RIs between these three conditions—
as well as findings from the relearning override effects—point to the
absolute spacing of training instances as the greatest determinant of
long-termmemory performance. This accords with behavioral findings
showing that differences between expanding, equal, and contracting
schedules were inconsistent and minor in comparison to differences
at three levels of absolute spacing (Karpicke & Bauernschmidt, 2011).

Spacing Effects at Extremely Long RIs Using Repeated
Variable ISIs

Another seminal spacing effect finding involvedmultiple learning
episodes spread over ISIs of up to almost 2 months and final RIs of
up to 5 years (Bahrick et al., 1993). In the study, four members of
the same (Bahrick) family learned foreign language–English pairs
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Figure 4
Simulations Showing That Relearning Override Occurs When Later Spacing Is Greater Than Initial Spacing

(A) Modeling paradigm
5 repetitions / pair Modeling results

Pre-3  Pre-2  Pre-1  Gap-1  Gap-2

Low initial spacing: 2 steps

RI: 128 steps

128 steps

Medium initial spacing: 8 steps
High initial spacing: 32 steps

Data (Rawson 
et al., 2018)

(B) (C)

Note. (A; top) Data replotted from “Investigating and Explaining the Effects of Successive Relearning on Long-Term
Retention,” by K. A. Rawson, K. E. Vaugh, M. Walsh, and J. Dunlosky, 2018, Journal of Experimental Psychology, 24(1), p. 61
(https://doi.org/10.1037/xap0000146). (bottom) Recall differences from the first to third relearning sessions showed larger
benefits in initially lower spacing conditions. (B) Our modeling paradigm, wherein we created low, medium, and high initial
spacing conditions before longer gaps, relearning epochs, and a final test. (C) Modeling results. (top) Data from simulations were
plotted as mean ± SEM across runs in the model, including performance on initial training runs (left), after larger gaps (middle),
and at the final test (right; in some cases, error bars are too small to visualize). (bottom)Model recall differences from just after the
first large gap (Gap-1) to the final test showed larger benefits with initially lower spacing. RI = retention interval; Pre = pregap
learning repetition; sp = spacing; SEM = standard error measurement. See the online article for the color version of this figure.
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over 13 or 26 sessions spaced by 14, 28, or 56 days before a final
test 1, 2, 3, or 5 years after the final learning session. Similar to prior
effects showing that short ISIs improve memory at short RIs,
performance was best at the end of training for the 14-day interval
schedule. However, when assessed after RIs from 1 to 5 years,
performance was best for words in the 56-, then 28-, then 14-day
interval (Figure 6A). For our purposes, these findings show that
spacing effects can compound over numerous intervals and can still
be demonstrated at extremely long RIs.
We modeled these findings by training HipSTeR using the

same ISI (8, 64, or 512 time steps) across each of five epochs
(Figure 6B). After the final training epoch, we implemented RIs of

64 and 1,024 time steps. We additionally added a condition using
scrambled temporal context vector pools to simulate what could
arguably occur to temporal context at very long RIs (e.g., 5 years in
Bahrick et al., 1993).

A two-way, ISI (8, 64, or 512 time steps) × RI (64, 1,024, or
scrambled) ANOVA revealed significant main effects of ISI; F(3,
888) = 137.7; p < .001, RI; F(2, 888) = 1233.5; p < .001, and an
interaction, F(6, 888) = 109.3; p < .001. Similar to Bahrick et al.
(1993), we found that memory recall in the model was best for
the ISI-8, then ISI-64, then ISI−512 at the early RI (Figure 6C; both
p < .001). For the RI-2048 conditions, model recall followed a ISI-
512 > ISI-64> ISI-8 (all p < .001), and for the Scram RI conditions,
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Figure 6
Simulations Showing Spacing Effects at Extremely Long RIs

(A) Data (Bahrick et al., 1993) Modeling paradigm
5 repetitions / pair

Rep1  Rep2  Rep3  Rep4  Rep5

ISI-8: 8 steps

ISI-64: 64 steps

ISI-512: 512 steps

RIs: 64, 1024, scrambled 
temporal context

Modeling results

**

*
*
**

**

(B) (C)

Note. (A) Data replotted from “Maintenance of Foreign Language Vocabulary and the Spacing Effect,” by H. P. Bahrick, L. E.
Bahrick, A. S. Bahrick, and P. E. Bahrick, 1993, Psychological Science, 4(5), 316–321 (https://doi.org/10.1111/j.1467-9280.1993
.tb00571.x). (B) Our modeling paradigm, wherein the same ISI was used between all training epochs, and RIs were included at a short
and long delay as well as after scrambling the temporal context vector. (C)Modeling results. In (A) and (C), the optimal ISI for the same
RI is marked with an asterisk. Data from simulations were plotted as mean ± SEM across runs in the model (in some cases, error bars are
too small to visualize). RI = retention interval; ISI = interstimulus interval; Rep = repetition; SEM = standard error measurement. See
the online article for the color version of this figure.

Figure 5
Simulations Showing the Importance of Absolute Spacing and Investigations of Alternative Schedules

(A) Modeling paradigm
5 repetitions / pair

Rep1  Rep2  Rep3  Rep4  Rep5

Expanding: 16, then 256

RIs: 64, 128, 256, 512, 1024, 2048

2 steps

Contracting: 256, then 16
Equal, matched: 136, then 136
Equal, compressed: 17, then 17

Data (Kupper-Tetzel et al., 2014) Modeling results(B) (C)

Note. (A) Data replotted from “Contracting, Equal, and Expanding Learning Schedules: The Optimal Distribution of Learning Sessions
Depends on Retention Interval,” by C. E. Küpper-Tetzel, I. V. Kapler, and M. Wiseheart, 2014, Memory and Cognition, 42(5), pp. 729–741
(https://doi.org/10.3758/s13421-014-0394-1). (B) Our modeling paradigm, wherein we created expanding, contracting, equal, and matched, or
equal and compressed conditions to show the impact of different relearning schedules and absolute spacing. (C) Modeling results. Data from
simulations were plotted as mean ± SEM across runs in the model (in some cases, error bars are too small to visualize). RI = retention interval;
Rep = repetition; SEM = standard error measurement. See the online article for the color version of this figure.
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model recall followed a ISI-512 = ISI-64 (p = .95) > ISI-8 pattern
(other contrasts, p < .001). These results—especially those with
a scrambled temporal context—suggest that spacing benefits in
HipSTeR go beyond strengthening connections within the temporal
context layer, but also benefit decontextualized connections between
the cues and targets themselves. As we will discuss below in
investigating the mechanisms of learning in the model, these benefits
accrue during later training epochs based on greater errors between
stored and current temporal context vectors.

Drift Versus No Drift: Learning Mechanisms

Having established that the model can reproduce a number of
spacing-related effects on memory, we next probed the mechanisms

underlying these effects in HipSTeR. To simplify our initial
investigations, we first contrasted performance in the model with no
drift between training epochs—the canonical way in which neural
networks are trained—against performance with modest drift,
specifically four time steps + the drift during the list itself (ISI-4).
We tested the model with various RIs after the final training epoch,
including a No Lag RI and a condition with a scrambled temporal
context (Scram RI; Figure 7A). As expected, a two-way ISI × RI
ANOVA revealed a significant main effect of RI, F(8, 1782) =
2135.5, p < .001, in line with forgetting (Figure 7B). Importantly,
the Drift condition outperformed the No drift condition in recall
generally, F(1, 1782) = 1356.6, p < .001, and did so increasingly at
longer RIs, as shown by an interaction, F(8, 1782) = 42.2, p < .001.
These results suggest that drift during training makes the learned
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Figure 7
Effects of Imposing Neural Drift Between Model Training Epochs

Representational similarity for 
same (—) and different pairs (--) 

in CA3 across epochs

Representational change in CA3 activation 
versus activation in prior training epoch

(A) (B) (C)

(D)

CA3 error (prediction vs. outcome)

(E)

Memory performanceTimeline of experiments

N
o 

dr
ift

Epoch 2

Epoch 2

Epoch 3

Epoch 3

Epoch 4

Epoch 4

Epoch 5

Epoch 5

D
rif

t

Reps 1-5

No drift 

ISI: 4 steps

RIs: No lag, 32, 64, 128, 256,
512, 1024 steps, Scram

Drift
Rep1 Rep2 Rep3 Rep4 Rep5

Note. (A) The timeline of experiments includes one regimen with five training epochs composed of identical temporal contexts for each
paired associate trial (No Drift) and another with modest drift between each epoch (four time points). Each regimen occurred in eight
training conditions, followed by retention intervals consisting of either no lag (e.g., the same temporal context as the final training trial) or
six lags (32 to 1,024 time points). (B)Model memory recall was plotted for NoDrift and Drift conditions across all retention intervals. Drift
improved memory performance, especially after long retention intervals. (C) Error between the first quarter of the theta cycle in CA3 (the
model’s prediction based on the stored pattern) versus the final quarter (the “plus” phase) remained higher across training for the Drift than
the No drift condition. (D) Representational stability across training epochs, measured by correlating CA3 unit activation patterns for each
trial from a given training epoch against each trial of the prior epoch, was plotted for both the No Drift (top) and Drift (bottom) conditions.
Trials along the diagonal represent the same pairs across epochs, whereas off-diagonal trials represent different pairs. (E) Across training,
representations from epoch to epoch increased for the same pairs (solid lines) and decreased across pairs (dotted lines). The No Drift
regime produced higher same- and across-pair representations than the Drift condition. Data in B, C, and E are shown as mean ±
SEM across runs in the model (in some cases, error bars are too small to visualize). ISI = interstimulus interval; RI = retention interval;
Rep = repetition; CA3 = cornu ammonis 3; SEM = standard error measurement. See the online article for the color version of this figure.
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representations more resistant to further drift. Curiously and
unexpectedly, the Drift condition even slightly bested the No drift
condition at the No lag RI, which featured the exact same temporal
context vectors used for all five training epochs in the No drift
condition, t(198) = 7.1, p < .001. Although these results were
unexpected, they are reminiscent of the impoverished learning that
occurs in human behavior when two (massed) learning trials are
presented with no delay (Benjamin & Tullis, 2010; Thios &
D’Agostino, 1976; Xue et al., 2011).
We next sought to characterize mechanistic differences between

HipSTeR trained in the Drift and No drift conditions. First, to gain
insight as to how EDL differs between these conditions, we
measured error in area CA3, which acts as a convergence zone
between the direct pathway from ECin and the indirect pathway
from DG. Recall that training trials in HipSTeR have four quarter
stages resembling distinct theta phases. Error in area CA3 occurs
because information arrives at different phases from different
sources: During the first quarter (Q1), information arrives from ECin
via the ECin→CA3 pathway, whereas in later quarters, information
arrives from ECin → DG → CA3. As a result, the signal from DG
effectively teaches and adjusts direct weights from EC → CA3
accordingly. Therefore, we were especially interested in the error
contrasting CA3 Q1 and Q4 (plus phase) activity, which drives
EDL in this area. In line with typical learning effects when using
repetitions of identical input patterns, this error signal quickly abated
across training epochs in the No drift condition (Figure 7C).
Conversely, because temporal context patterns continually changed
across training epochs in the Drift condition, this error remained
high, driving greater subsequent weight changes. These patterns
were supported by results from a mixed, two-way ANOVA on CA3
error, with condition (Drift vs. No Drift) and learning epoch (1–5) as
factors. This ANOVA revealed a main effect of condition, F(1,
9990) = 5042.5, p < .001, a main effect of epoch, F(4, 9990) =
952.1, p < .001, and a significant interaction, F(4, 9990) = 623.6,
p < .001.
Next, we asked a related question of how drift affects learning-

related representational change on successive training epochs to ask
how well learning drives pattern separation across pairs. To do this,
we measured activity patterns across CA3 neurons at the end of the
trial (Q4), and we correlated each pattern against all pairs in a given
training epoch against the prior epoch (e.g., Epoch 2 vs. Epoch 1). To
test this, we ran a three-way condition (Drift vs. No Drift) × Learning
Epoch (2–5) × Pattern Status (same vs. different) ANOVA. As
expected, activity patterns were more similar for the same than
different pairs in both the No drift and Drift conditions, as shown by
the bright diagonal line in Figure 7D and revealed by a main effect of
pattern status, F(1, 1584)= 153796.0, p < .001. However, the nature
of these correlations differed markedly between the conditions, as
revealed by a main effect of condition, F(1, 1584) = 28344.3, p <
.001. The main effect of the learning epoch, as well as every two-way
interaction and the three-way interaction, were all significant (all F >
114, p < .001). In the No drift condition, similarity with the same
pair was very high across training epochs, and similarity was
substantially lower in the Drift condition (Figure 7E). This result
likely reflected the fact that the input pattern was identical across
epochs without drift, whereas it always slightly differed with drift.
Intriguingly, however, representational similarity for a given pair
against different pairs in the list also markedly differed between the
conditions. In this case, similarity to different cues was much lower

for the Drift condition throughout training, suggesting there was
more separation between patterns in this condition.

Greater Drift Between Training Epochs Drives Temporal
Abstraction and Decontextualization

In the preceding section, we demonstrated that drift (relative to
no drift) benefited long-term memory, produced higher training-
related errors, and drove pattern separation between memories.
Intriguingly, we also found that drift benefited memory when
temporal context vectors were scrambled at the test, suggesting it
improved direct connections between the cues and targets. These
results beg the question: does greater drift between learning events
benefit memory by strengthening longer and longer time scale
representations (temporal abstraction; Toppino & Gerbier, 2014),
does it benefit memory by improving cue–target connections
(decontextualization), or both (Figure 1)?

To address this question, we ran simulations with a large range of
ISIs and RIs. Specifically, we included 11 ISIs between training
epochs [nine Drift conditions with 2–512 time steps of drift, plus a No
drift conditionwith no drift between learning epochs and a Scrambled
ISI condition with a random temporal context vector between each
learning epoch] and nine RIs [seven RIs after the last training epoch,
from 32 (25) to 2048 (211) time steps, plus a No Lag condition using
the final training temporal context and a Scrambled condition with a
random temporal context at test]. We will present the results by
speaking generally about relatively short and long ISIs and RIs, and
we will summarize and interpret this entire subsection below.

In line with our prior results and canonical spacing effects
(Benjamin & Tullis, 2010; Cepeda et al., 2006), the relationship
between ISI and RI was nonmonotonic, and memory was best for
small ISI conditions at short RIs (and the No RI Lag condition) and
large ISI conditions at long RIs (and the Scrambled RI condition;
Figure 8A). This was supported by a two-way ANOVA on memory
performance, with ISI × RI as factors, which showed significant
main effects for both factors and a significant interaction (all F > 96,
p < .001). Moreover, even in the Scrambled RI condition, longer
ISIs produced better recall, suggesting more drift produced more
decontextualized, direct cue–target benefits. However, the forgetting
effect occurred gradually across RIs, such that themiddle ISI condition
had better memory recall than the shortest- and longest-ISI conditions
by RI-128 (both, p < .001). Importantly, in the later RIs, such as RI-
512, the recall was best in the moderate-ISI conditions and still better
than in RI-2048 and Scrambled RI conditions (both, p < .001). This
suggests that, in addition to direct cue–target strengthening, there was
long-term strengthening of slow-drifting temporal context units, though
the benefits of this became eliminated by further temporal context drift
(at longer RIs). This constitutes evidence for long-term temporal
abstraction as a process apart from complete decontextualization.

In accordance with findings showing greater CA3 error in the
Drift than No drift condition in the preceding section, we found a
main effect of condition, F(10, 5445) = 1128.6, p < .001, such that
CA3 error increased with ISI (Figure 8B). We also found a main
effect of epoch, F(4, 5445) = 162.6, p < .001, and a significant
interaction, F(40, 5445) = 160.1, p < .001.

Additionally, as in the preceding section, we ran a three-way,
ISI × Learning Epoch (2–5) × Pattern Status (same vs. different)
ANOVA. We again found that all main effects, two-way and three-
way interactions, were significant (all F > 272, all p < .001).
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Notably, greater ISIs produced lower within-pattern similarity but
also lower across-pattern similarity throughout training (Figure 8C).
Critically, to address the question of temporal abstraction, we

measured the mean temporal context pool weights between ECin→
CA3 for each ISI against the No drift condition. A two-way ISI by
temporal context pool interaction on mean weights produced the
main effects of both factors and a significant interaction (all F> 444,
all p < .001). For the interaction, we found a full crossover effect
between the temporal context pool and ISI: the fast-drifting pools
had the greatest mean weights in the short-ISI conditions, whereas
the slow-drifting pools had the greatest mean weights in the long-ISI
conditions (Figure 9).
We now offer a cumulative explanation of these results. The

short-RI advantage for short-ISI conditions occurs because the fast-
drifting temporal context vectors can still offer cue support to the
memory after short RIs, so strengthening these vectors benefits
recall at these time points. For short-ISI conditions tested after long
RIs, strengthening the fast-drifting temporal context pool weights
does very little to support recalling the memory because the test
patterns have drifted far away from the final training pattern; this
condition has caused the model to effectively overfit to a local
temporal context, and therefore forgetting occurs more quickly. The
long-ISI conditions are inferior at short RIs because so much drift
has occurred between training epochs that, while they can strengthen

the slow-drifting temporal context pool weights, they do not
strengthenmany of the fast-drifting temporal context weights as well;
these fast-drifting weights are effectively scrambled by the time new
training epochs occur, so each new training instance effectively
strengthens a new random subset of weights. Nevertheless, the slow-
drifting vectors retain some overlap across training epochs, and
their corresponding pool weights become strengthened. Therefore,
the slow-drifting pools support memory recall better in long-ISI
conditions at long RIs than in short-ISI conditions. This temporal
abstraction process confers advantages for the long-ISI conditions at
medium-to-long RIs before the slow-drifting pools have also drifted
to a chance level of overlap. Finally, greater error also results in
more decontextualized cue–target associations because the same
ECin units will be activated for each cue and target, and their
corresponding weight changes in HC will be stronger due to the
higher error in the network layer. This produces spacing benefits at
the longest RIs and when the temporal context pools have become
fully scrambled (Figure 1).

Eliminating Learning in Specific Pathways Reveals
Dissociable Learning Mechanisms Within the HC

We have thus far outlined two primary learning mechanisms
that can support spaced learning: temporal abstraction and
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Figure 8
Effects of Different Amounts of Spacing Between Training Epochs on Model Performance

(A) Memory performance for many ISIs and RIs CA3 error (prediction vs. outcome)(B)

(C) Representational similarity for same (—)
and different pairs (--) in CA3 across epochs

Note. (A) Different amounts of spacing influenced memory performance depending on the retention interval: shorter spacing
benefited memory best at short retention intervals, whereas greater spacing benefited memory best at long retention intervals. (B)
Across training, CA3 errors remained higher across epochs with greater spacing. (C) Across training, representations from epoch
to epoch increased for the same cues (solid lines) and decreased across cues (dotted lines). Greater spacing produced lower same-
and across-pair representational stability values. ISI = interstimulus interval; RI = retention interval; CA3 = cornu ammonis 3.
See the online article for the color version of this figure.
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decontextualization. To examine how different pathways and
learning mechanisms in HipSTeR produced these results, we next
performed analyses involving turning off learning or only EDL in
specific pathways. We contrasted the full HipSTeR model in the
preceding section against models that were identical except for the
following changes: ECin → DG (no learning), ECin → CA3 (no
learning), ECin → CA3 (no EDL, but Hebbian learning was
present), ECin → CA1 (no learning), CA3 → CA3 (no learning),
and CA3 → CA1 (no learning). We will present these results by
their increasing relevance for elucidating learning mechanisms.
As expected, turning off learning between CA3→ CA1 abolished

learning completely in the model, as it is the only connection from
the trisynaptic and disynaptic pathways (Figure 10, top center).
Conversely, turning off learning from ECin → CA1 had almost no
effect on performance (Figure 10, top right); however, at later
intervals, this model actually outperformed the full HipSTeR model
in short-ISI conditions tested at long RIs (more on this below). This
was supported by a two-way ISI × RI ANOVA on memory
differences between the control and lesionmodels, which showed the
main effects of both factors and, critically, a significant interaction
(all F > 5, all p < .001). Turning off learning between the recurrent
CA3 → CA3 pathway produced moderate impairments relative to
the full model that increased with drift (Figure 10, top left), which
was supported by a similar ANOVA showing a main effect of RI,
F(4, 780)= 26.7, p< .001, nomain effect of ISI, F(3, 780)= 0.4, p=
.54, and a significant interaction, F(12, 780) = 25.3, all p < .001.
We saw the strongest and most interesting dissociation between

models without ECin → CA3 learning and without ECin → DG
learning. Turning off learning completely from ECin → CA3
strongly affected cue–target learning, such that the memory became
hypersusceptible to drift (i.e., performance decreased more quickly
with drift) relative to the full HipSTeR model, Figure 10, left middle;
main effect of RI: F(4, 780) = 230.4, p < .001; no main effect of ISI:
F(3, 780)= 1.4, p= .54; interaction:F(12, 780)= 533.4, all p< .001.

This was similarly the case when we turned off EDL but kept
Hebbian learning in this pathway (Figure 10, bottom left; both main
effects and interaction:F> 34, p< .001); the differences between the
complete nonlearning and the no EDL ECin → CA3 models were
significant, but they were quantitatively small (Figure 10, bottom
center; both main effects and interaction: F > 142, p < .001). These
results suggest that EDL from ECin→ CA3 strongly drives the drift-
resistant, temporally abstracted, or decontextualized part of the
memory, directly linking cue and target. Critically, they also reveal a
novel mechanism by which decontextualization—generally thought
to be a process confined to the neocortex (Hasselmo, 2005; Winocur
et al., 2010)—could occur within the HC itself.

As opposed to the ECin→ CA3 pathway, turning off ECin→ DG
learning rendered the memory largely resistant to drift. Relative to the
full HipSTeR model, this model mostly lacked the benefits conferred
by the intact temporal context at short RIs, which have temporal
contexts that have not yet drifted away from their training contexts
(Figure 10, bottom right; bothmain effects and interaction:F> 26, p<
.001). On the other hand, without learning in this pathway, error in
CA3 remained higher during training, which helped to strengthen the
direct cue–target aspect of the memory (dependent on ECin→ CA3).
As a result, this model paradoxically outperformed the full HipSTeR
model at long RIs (and the very weak benefits at long RIs in the
nonlearning ECin→ CA1 model likely occurred for similar reasons).
In sum, the more direct ECin → CA3 pathway produced the spacing
benefits of temporal abstraction and decontextualization that make
memories more drift-resistant, whereas the ECin → DG pathway
produced transitory benefits that continued to rely on temporal context,
the scale of which depended on the amount of drift during training.

Comparing Multiscale to Uniform Drift

Many prior temporal context models posit that drift occurs across
multiple time scales (e.g., Liu et al., 2019), which is supported by
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Figure 9
Temporal Abstraction in HipSTeR

(A) Post-training differences in mean weights
from all EC temporal pools to CA3

Seed
neuron

Sample weights from
ECin neuron -> CA3 

Target
neurons

(B)

Faster-drifting
pools

Slower-drifting
pools

**
** *

* * *

Note. (A) Weight strengths from a sample seed neuron from ECin→ CA3 units are shown. (B) Posttraining
differences in mean weights between each ISI against the No Drift condition are shown for each temporal
context pool. Asterisks indicate the ISI with the strongest mean weight for each pool. Across spacing
conditions, greater spacing produced weaker weights for the shorter timescale pools and stronger weights for
the longer timescale pools. HipSTeR = Hip-pocampus with Spectral Te-mporal Representations; ECin =
entorhinal cortex input layer; ISI = inter-stimulus interval; DG = dentate gyrus; ECout = entorhinal cortex
output layer; EC= entorhinal cortex; CA3= cornu ammonis 3; CA1= cornu ammonis 1. See the online article
for the color version of this figure.
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various forms of neurobiological evidence (e.g., Tsao et al., 2018;
Umbach et al., 2020). Nevertheless, it is worthwhile to assess
the advantages and disadvantages of a system employing uniform
as opposed to multiscale drift. In the next three simulations, we
contrasted our results across numerous ISIs and RIs from our
multiscale (control) model against identical models using uniform
drift for all eight temporal context pools. We chose three drift rates
that were equal to the fastest, slowest, and medium-speed pool from
our control model, and we plotted the results alone and against our
control model (Figure 11). For statistics, we ran two-way, ISI × RI
ANOVAs on the memory differences for each model against the

control model. First, for most ISIs and RIs in the all-fast drift model,
the pattern was completely new upon each training instance because
the autocorrelated pattern reaches a value of 0 after approximately
16 time steps (Figure 11A; both main effects and interaction: F> 18,
p < .001). This means that the amount of drift was a much smaller
factor, so most of the results after the No Lag RI were equivalent
(Figure 11B). With five training epochs, the model actually
outperformed the multiscale model after modest-to-long delays
because the high error (from having essentially random context
patterns on each training instance) drove such strong decontextua-
lization that the memories were robust to drift. However, at short
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Figure 10
Removing Learning in Different CLS Pathways Revealed Dissociable Learning Mechanisms

Pathway analyses
No CA3-> CA1 learning:

catastrophic, zero memory

No ECin -> CA3 learning: impaired cue-target
 learning, more susceptible to drift

No error-driven learning (EDL) in ECin -> CA3: 
 impaired cue-target learning, more susceptible to drift

No ECin -> CA1 learning:
almost no effect on memory

No ECin -> DG learning: smaller
benefits and costs of drift

No learning vs. no
EDL in ECin -> CA3

No CA3 -> CA3 learning: modest learning
impairments that increase with drift

No drift

ISI-2

ISI-32

ISI-512

ISI condition 
legend

(A)

(B)

(C) (D) (E)

(F)
(G)

Note. We plotted HipSTeR model architecture in the center, with affected pathways shown as arrows connecting results on the periphery. For simplicity, we
plotted retention interval conditions for only four spacing conditions: NoDrift, ISI-2, ISI-32, and ISI-512, representing no, short, medium, and long spacing. (A)
Preventing CA3 → CA3 learning in the model left performance generally preserved (left). Comparing this with the full HipSTeR model shows only modest
improvements for the full model that increase with greater drift (right). (B) Preventing learning from ECin → CA3 impaired cue–target learning, making
performance highly susceptible to drift (left). Comparisons with the full model showed nearly uniform performance differences across retention intervals
(right). (C) Specifically, preventing error-driven learning (EDL) in this pathway produced similar results, both on its own (left) and when compared with the full
model (right). (D) Directly comparing the full- and Hebbian-only models revealed minimal differences. (E) Preventing learning from ECin → DG preserved
cue–target learning and created a relative resistance to neural drift: Benefits of the full model are present with short retention intervals but are reversed at longer
retention intervals, such that performance is actually superior in this model versus the full model. (F) Preventing learning from ECin→CA1 left memory largely
intact (top), as shown by negligible differences when comparing it with the full model (bottom). (G) Preventing CA3→ CA1 learning abolished memory in all
conditions and at all retention intervals (unshown). CLS = complementary learning systems; HipSTeR = Hip-pocampus with Spectral Te-mporal
Representations; ISI = interstimulus interval; ECin = entorhinal cortex input layer; DG = dentate gyrus; CA3 = cornu ammonis 3; CA1 = cornu ammonis 1;
RI = retention interval. See the online article for the color version of this figure.
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delays like RI-32, the multiscale model outperformed the all-fast
model due to a lack of cue support in the all-fast model.
Next, we will analyze the all-slow model (Figure 11D). In

contrast to the all-fast model, after many ISIs and RIs, the temporal
context pattern was almost completely intact (both main effects and
interaction: F > 20, p < .001). When the ISI was low (No drift or
short ISI conditions, such as ISI-32), all cue–target pairs from the
five epochs were trained on almost exactly the same temporal
context pattern. Note that this differs somewhat from the ‘No Drift’
condition in prior simulations in that the drift here is so slow that

there is hardly any within-epoch drift in addition to little between-
epoch drift at short ISIs. This means that the retrieval context after a
short delay (such as with no lag or at RI-32) resembles the pattern of
the final training epoch—and there will be massive interference
among list items. Interestingly, the model actually benefited from
some drift to “unstick” the memory from having basically the same
pattern across all epochs, which, when it remained the same for all
pairs within the list, caused interference among the pairs. These
performance benefits arose with either moderate RIs (e.g., RI-256),
which were long enough to prevent some of the unsticking that
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Figure 11
Simulations Contrasting Multiscale Drift Against Uniform Drift

All fast drift model

No drift

ISI-2

ISI-32

ISI-512

ISI condition legend

(B) (C) All slow drift modelAll medium drift model (D)

Autocorrelations of selected pools over time(A)

Note. (A) Autocorrelations for the three uniform drift rates (equivalent to Pool 1, 5, and 8 in the multiscale model,
respectively). (B–D) Results from models with the fastest, medium, and slowest uniform drift rates (top) and direct
contrasts between the multiscale (control) model against these models (bottom). ISI = interstimulus interval; RI =
retention interval. See the online article for the color version of this figure.
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occurred at low RIs but not so long that the very slow-drifting
patterns nonetheless drifted away (e.g., RI-2048). The benefits can
also occur with more drift during learning epochs (e.g., ISI-512). In
these cases, the model learned different temporal patterns in each
instance and did not repeatedly strengthen the same (ultimately
interfering) weights. The model was inferior to the multiscale model
at most intervals because of either this interference (at short RIs) or
reduced EDL because the pattern remained intact for longer (at long
RIs). However, it was superior to the multiscale model at a moderate
RI like RI-256, indicating that there is some RI for which it is
optimized. Ultimately, the slow drift model allowed patterns to be
maintained for long periods of time but suffered from interference
due to poor within-list drift. Finally, the all-medium model fell
between these two extremes, performing closest to the control model
of the three simulations but showing deficits with very short or long
lags (Figure 11C; both main effects and interaction: F > 17,
p < .001).
It is never certain during learning when information will be

relearned or need to be retrieved. Therefore, we interpret these
results to indicate that multiscale drift does not optimize for any
particular RI but rather a range of potential RIs, balancing learning
and long-term memory maintenance while allowing for relearning
benefits according to the temporal frequency of the information.

Decontextualization in Other Paradigms

To the best of our knowledge, conceptualizing spacing effects as
temporal decontextualization is novel. Therefore, our final simula-
tions aimed to bridge ourmodeling framework to other studies falling
under the umbrella of decontextualization, which has used paradigms
with environmental, task, or background (pictorial) contexts (Butler
et al., 2017; Glass, 2009; Maskarinec & Thompson, 1976; S. M.
Smith et al., 1978; S. M. Smith & Handy, 2014, 2016; S. M. Smith &
Rothkopf, 1984; Soderstrom & Bjork, 2015; Trask & Bouton, 2018;
Zawadzka et al., 2021). These final simulations thus demonstrate that
our general modeling approach can also capture other decontextua-
lization effects.
In decontextualization paradigms, the contexts are either constant

or variable before final tests take place in novel contexts. In S. M.
Smith et al. (1978), subjects learned words in Room A and either
practiced recalling the words in Room A or in Room B in a second
session before taking a final test in Room C. Critically, memory
performance in the variable room (relative to the constant room) was
worse during practice but better at the final test in RoomC, suggesting
the environmental variability decontextualized the memory. Imundo
et al. (2021) used a similar method but had subjects either restudy or
retrieve lists (without feedback) during the second session. They
found variability benefits, but only during restudy, whereas retrieval
(without feedback) likely relied on successful retrieval for benefits. In
S. M. Smith and Handy (2016), subjects learned word pairs against
background contexts that were unique for each pair and either
remained constant across five practice trials or varied across trials.
A final test was given for all pairs with no background context. As in
S.M. Smith et al. (1978) and Imundo et al. (2021), cued recall for pairs
in the variable (relative to the constant) condition was worse during
learning but better at the final test, suggesting trial-specific pictorial
context variability also decontextualized memories. Following the
logic outlined in the preceding sections, these findings could arise
because variable contexts offered less cue support to memories during

learning, and this, therefore, led to the more direct strengthening of the
cue–target elements that were in common across training epochs.
These changes would then support the memory when tested in novel
contexts. Note that, for the purposes of our simulations, S.M. Smith et
al. (1978) manipulated context at the epoch level, whereas S. M.
Smith and Handy (2016) manipulated context at the trial pair level.
Note also that if the test in these paradigms occurred instead with the
original training context, pairs in the constant (relative to the variable)
context should produce better memory, in line with some of both
their results (S. M. Smith et al., 1978) and findings akin to context-
dependent memory (Godden&Baddeley, 1975). These effects should
arise because weights related to the original training context should be
repeatedly strengthened across training (Cox et al., 2021; Estes, 1955;
S. M. Smith & Handy, 2014, 2016).

To simulate these results, we kept the same HipSTeR model
architecture and slightly modified the inputs (Figure 12A). The inputs
included the same number of cue and target pools and the six fastest
drifting temporal context pools (out of eight). Here, instead of the two
slowest drifting temporal context pools, we added two other context
pools. In our epoch-wise simulations (representing environmental
context, as in S. M. Smith et al., 1978), the context vectors were
identical throughout a learning epoch. Across epochs, they either
remained the same (constant) or changed for each epoch (variable).
At the final test, these pools had either the context vectors from the
first learning epoch (old) or a new vector (vew). In our trial-wise
simulations (representing background pictorial contexts, as in S. M.
Smith &Handy, 2016), the context vectors were unique for each pair.
Across epochs, they either remained the same for that specific pair
(constant) or changed on each epoch (variable). At the final test, these
pools had either the same specific context vectors for that pair from
the first learning epoch (old) or a new vector (new). In all experiments,
we used a temporal ISI of two steps and an RI of 512 steps.

We analyzed these data with a three-way Training Type (epoch-
wise vs. trial-wise) × Test Context (old vs. new) × Training
Variability (constant vs. variable) ANOVA on model memory. We
found that all three main effects, all three two-way interactions, and
the three-way interaction were all significant (all F > 40, p < .001).
The main effect of training type showed that overall memory
performance was higher in the trial-wise than epoch-wise simula-
tions. This likely occurred because the more specific context cues
resulted in more efficient learning with less incidental interference
resulting from the same context applied to all pairs of a list (Nairne,
2002; Figure 12B). The other main effects indicated that memory
was better overall with constant training and old contexts presented
in the text, but note that the interactions are of more interest here. In
line with prior results and our predictions, in both epoch-wise and
trial-wise simulations, final test performance was superior in the
constant relative to the variable condition when tested with the old
context (p < .001), showing unsurprisingly that cue support from
training aids memory (Cox et al., 2021). More critically, however,
performance was superior in the variable relative to the constant
condition when tested with a new context (p < .001), suggesting that
contextual variability led to decontextualized memory traces that
allowed for successful memory recall even with new contexts.

Discussion

By implementing drift and EDL within HipSTeR, a biologically
plausible model of the EC–HC network, we simulated forgetting
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and a wide array of spacing effects from the cognitive psychology
literature. First, we ran simulations that replicated specific spacing
effect principles. We found that the optimal spacing ISI depended
on the RI before the final test (Cepeda et al., 2008), that relearning
after long temporal delays overrode smaller differences due to initial
spacing (Rawson et al., 2018), that different spacing schedules
produced modest differences (Küpper-Tetzel et al., 2014) but
that absolute spacing was the most critical factor (Karpicke &
Bauernschmidt, 2011), and that spacing can produce direct benefits
between cues and targets at extremely long RIs—intervals when
there is little (to arguably no) resemblance between the temporal
contexts during training and at test (as in the 5-year follow-up test in
Bahrick et al., 1993).
Next, we probed the mechanisms producing these effects in

HipSTeR. The very presence of temporal context drift (relative to no
drift) resulted in better recall performance, greater error in CA3 in later
training epochs, and greater representational dissimilarity between
different CA3 activation patterns. Further analyses investigating a full
spectrum of drift values between training epochs showed that greater
spacing produced more temporal abstraction (as shown via stronger
mean weights in slower temporal context pools from ECin → CA3)
and decontextualization (as shown via better recall when temporal
context vectors were scrambled; Figure 1). These analyses also
showed that massed learning can be superior in the short term because
there is preferential strengthening in the faster drifting temporal
context vectors, which can still provide cue support for the memory
after low drift.
Turning off learning in various pathways in HipSTeR showed a

stark dissociation between a pathway that continued to support
contextualized memories and benefited the model under conditions

of low drift between the training and testing context (ECin→ DG→
CA3) and one that supports decontextualization (ECin→ CA3). The
latter mechanism is especially novel because decontextualization
has generally been attributed to the neocortex (Winocur et al.,
2010; Yassa & Reagh, 2013), but here we show how it can arise in
the HC. Comparing our model using multiscale drift against a set
of uniformly drifting alternatives showed that, while the uniform
models performed better when testing after some particular RIs, the
multiscale model seemed to balance memory performance for a
range of potential RIs. Finally, because conceptualizing spacing
effects as arising partly due to decontextualization is novel, we
linked our results with more canonical decontextualization effects
in the literature. Using an identical model architecture and similar
inputs, HipSTeR captured classic decontextualization effects,
showing that variable encoding contexts lead to better memory
when tested in novel contexts.

Comparisons With Other Spacing Effect and Encoding
Variability Theories and Models

Many articles argue that spacing effects could arise from some
combination of two processes: encoding variability, which deter-
mines the amount of strengthening, and study-phase retrieval, which
determines the likelihood of strengthening (Benjamin & Tullis, 2010;
Küpper-Tetzel & Erdfelder, 2012; Landauer, 1969; Mozer et al.,
2009; Raaijmakers, 2003; Smolen et al., 2016; Walsh et al., 2018).
Encoding variability theory asserts that re-encoding benefits increase
with more variable encoding contexts (such as after greater temporal
lags) because there will be a greater diversity of contextual elements
added to the memory, resulting in more routes to retrieval
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Figure 12
Simulations of Decontextualization in Other Paradigms

(A) (C)Sample training
inputs

Temporal 
context
pools

Cue
pools

Target
pools 

Epoch #1Other
context
pools

(B) Conditions
Epoch-wise context (Trial #1-2)

Epoch #2
Constant 

Variable

Epoch #1

Trial-wise context (Trials #1-2)
Epoch #2
Constant 

Variable

Modeling results

Epoch-wise Trial-wise
Old New Old New

C V C V C V C V

Note. (A) For these simulations, we modified HipSTeRmodel inputs slightly by replacing two temporal context
pools with other context pools. (B) Other context pools were either constant within an epoch (top) or unique for
each cue–target pair (bottom). (top) Epoch-wise contextual changes were always constant within an epoch (top
left) and either constant across all epochs or variable across epochs (top right). (bottom) Trial-wise contextual
changes were always different for every trial, even within an epoch (bottom left), and were either in a constant
order in each epoch or variable for each trial (bottom right). (C) Modeling results showed that, while performance
was superior in the constant training context when the constant (old) context was given at the test, performance
was superior in the variable training context when a new context was given at the test. HipSTeR =Hip-pocampus
with Spectral Te-mporal Representations; C = constant training context; V = variable training context. See the
online article for the color version of this figure.

20 ANTONY, LIU, ZHENG, RANGANATH, AND O’REILLY



(Estes, 1955; Maddox, 2016; Mozer et al., 2009; S. M. Smith et al.,
1978; S. M. Smith & Handy, 2014). Study-phase retrieval asserts that
in order to benefit from spacing, subjects must retrieve the episode
from encoding (Thios & D’Agostino, 1976). Ultimately, because
encoding variability would produce benefits that increase monotoni-
cally with spacing and because study-phase retrieval would be best
immediately after encoding and, therefore, would produce antispa-
cing benefits as a solo mechanism, the two have been proposed in
combination to capture the nonmonotonic nature of spacing effects
(Benjamin & Tullis, 2010). From these foundations, a question
arises as to which representations become strengthened and why. One
intriguing theory is that there is a temporal abstraction process that
depends on the ISI (Mozer et al., 2009; Toppino & Gerbier, 2014).
That is, longer ISIs may preferentially strengthen aspects of the
memory trace that have more long-term stability. In particular, Mozer
et al. (2009) created a multitemporal scale neural network model in
which strengthening preferentially occurred in longer-term repre-
sentations as a function of the error between encoding contexts along
shorter time scales, such that a failure to support the memory along
shorter time scales forced strengthening along a longer time scale.
How do these theories and models square with results from

HipSTeR?We found that encoding variability (in the form of temporal
context vector differences) benefitedmemory at the longest RIs via two
EDL-driven mechanisms (Figure 1). Like Mozer et al. (2009), greater
ISIs caused temporal abstraction or greater relative strengthening in
slower drifting temporal pool weights. Greater ISIs also allowed for
better intact memory in the face of the complete decontextualization of
fully scrambled context vectors. There is, therefore, a critical difference
between how variability produces strengthening in encoding variability
theory and in HipSTeR: encoding variability theory suggests that
strengthening occurs because the same memory accrues more
contextual routes to retrieval, whereas our model suggests it occurs
because greater error produces strengthening of the relevant temporal
context pool weights and/or cue–target weights. That is, our results
suggest that gaining more unspecified contextual routes to the memory
may not be ultimately that helpful since it is unclear, given that drift
will occur randomly, how or why any of them should be meaningfully
activated during retrieval after further drift has occurred.
Instead, drift in HipSTeR strengthened the weights of slower

drifting units that were more likely to be active at retrieval or
decontextualized cue–target weights that were fully drift-resistant.
We believe this latter explanation seems almost necessary to explain
results at extremely long RIs, such as the 5-year RI from Bahrick
et al. (1993) or results in other paradigms showing retention across
decades (Maxcey et al., 2022). Moreover, this account can be
considered even more straightforwardly in our final environmental/
pictorial decontextualization paradigm simulations. We tested these
models with novel context vectors, and there was no reason why
these (random) vectors should have activated any of the contextual
elements accrued in the variable condition anymore than they would
have activated unhelpful elements that would have counteracted
memory retrieval. Altogether, rather than encoding variability
driving memory strengthening while study-phase retrieval limits the
likelihood of strengthening, in HipSTeR, EDL drove strengthening
via temporal abstraction and decontextualization while contextual
drift produced forgetting with elapsing time.
A recent article showed that as rodents accumulated experience

within the same environment across multiple days, some place
cells—or cells that fire at particular locations within a spatial

context—transiently entered and left the memory trace, whereas
other ones sustained a stable firing location across days (Vaidya
et al., 2023). Intriguingly, the proportion of sustained neurons grew
over time and predicted behavioral performance in accordance with
the memory trace reactivating and solidifying itself with experience.
We believe that an experiment manipulating spacing and using a
similar analytical approach that also measures their endurance (how
long they stay in the memory trace) could help adjudicate between
the predictions of encoding variability and our model. That is,
encoding variability theory predicts that spacing would increase the
proportion of new neurons in a trace upon relearning (even if they
were ultimately transient and not part of the trace in the next learning
session). Conversely, our model predicts that spacing would
increase the number and endurance of sustained neurons in the trace.
A further prediction of our model, given the principle of temporal
abstraction, is that the amount of spacing should directly scale with
neuron endurance.

These findings resonate with an influential theory that separates
memory constructs into retrieval and storage strength (Bjork &
Bjork, 1992; RBjork, 2011). Retrieval strength refers to the in-the-
moment accessibility of memory and explains memory performance
at a particular time, whereas storage strength refers to a latent
factor referring to how well the memory is learned and explains its
persistence at later moments. Note that prior researchers similarly
distinguished between constructs related to current and later
performance (Estes, 1955; Hull, 1943; Skinner, 1938). Mapping
these constructs onto our modeling findings, we believe retrieval
strength relies on momentary pattern matches that depend partially
on the overlap between the learned temporal context and the
temporal context at retrieval. Conversely, both temporal abstracted
weights (which help the memory for longer periods of time but not
necessarily forever) and decontextualized weights (which directly
strengthen cue–target associations) align with the concept of storage
strength.

The Organization of Time and Model Plausibility

Researchers have long been interested in the role of time in episodic
memory. “Mental time travel” was a core aspect of Tulving’s (1972)
conceptualization of episodic memory, suggesting the reinstatement
of a particular temporal frame. Countless researchers have investigated
the organization of time in memory, with a core question being
whether or not it is organized by chronological “time stamps”
(Bradburn et al., 1987; Burt, 1992; Friedman, 1993; Hintzman, 2016;
Jeunehomme et al., 2018). Indeed, contiguity effects in memory,
whereby information presented nearby in time is also temporally
clustered together during recall, suggest that individuals reinstate
temporal contexts that guide further retrieval (e.g., Howard &Kahana,
2002; Lohnas et al., 2015). Intriguingly, temporal clustering occurs
across numerous time scales, across lists, and up to days and months
(Healey et al., 2019; Howard et al., 2008; Moreton & Ward, 2010;
Uitvlugt & Healey, 2019; Unsworth, 2008), suggesting a scale-
invariant property in support of log-spaced temporal representations
(Brown et al., 2007; Howard, 2018). Moreover, reinstatement has also
shown neural contiguity effects (Folkerts et al., 2018; Manning et al.,
2011), and it has been proposed that another role of neural drift is to
create such time stamps (A. Rubin et al., 2015).

However, there have been notable criticisms of these ideas (e.g.,
Friedman, 1993; Hintzman, 2016). Many free recall tasks rely on
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intentional encoding, whereby subjects can develop rehearsal
strategies that rely on successive rehearsals, and incidental encoding
drastically reduces (though does not eliminate) temporal contiguity
effects (Dester et al., 2021; Healey, 2018; Mundorf et al., 2021).
Moreover, temporal contiguity effects can be reduced or altered by
other types of (e.g., semantic, narrative) structure (e.g., Antony et
al., 2021; Bousfield, 1953; Heusser et al., 2021; Polyn et al., 2009),
suggesting these effects are highly manipulable in the presence of
more salient organizing characteristics. Additionally, temporal
context theories might predict that successively presented cued
recall trials would differ as a function of their lag at encoding, but
multiple experiments have shown no effect of this lag (Osth & Fox,
2019). At the very least, these findings question the idea that we
automatically encode and retrieve information as if reading from a
timeline.
How can we resolve these ideas and determine to what extent drift

might influence memory? We propose that time is a weak signal if
not given prioritized attention. That is, the ability to reconstruct the
past in a direct linear order when one is not intend to or does not
encode a set of causally connected events in a linear order is poor
(Dimsdale-Zucker et al., 2022) but not zero (Dester et al., 2021;
Healey, 2018). Even in a rodent experiment that showed robust
decoding of trial numbers from LEC neurons, when a task change
eliminated the need to keep track of different trials, the ability to
decode trial numbers from the neurons was reduced but not
eliminated (Figure 8 experiments, Tsao et al., 2018). It is reasonable,
then, to wonder what the point of such a drifting signal could be
across each of these time scales. We speculate that—just like features
of the environment that are represented in sensory subsystems but do
not receive direct attention—the ability to use this signal relies
strongly on whether one incorporates it somehow into the focus of
attention (Niv et al., 2015). Though speculative, this may even be
optimal from a memory standpoint, as too strong of a temporal signal
may result in linking unlike events that just so happen to co-occur.
This idea suggests that the prominence of drifting signals within a
memory trace can fall under executive control, either becoming
accentuated or minimized (see below the Limitation section on
neural drift versus shift; DuBrow et al., 2017).

Relevance to Temporal Context Models of Memory

Dating back to Estes (1955) and Bower (1967), memory models
have considered context as a pattern of activity that fluctuates over
time. This family of models has shown that modeling context can
capture numerous temporal memory phenomena. For instance,
Mensink and Raaijmakers (1988) captured howmemory interference
depends on the timing of interfering information and the time of
test, capturing intricate findings from the literature on proactive and
retroactive interference and spontaneous recovery. Later, Howard
and Kahana (2002) showed how binding learned items to a drifting
context can capture the aforementioned temporal contiguity effects in
free recall. These models have also generalized this idea to other
types of context, such as semantic (Lohnas et al., 2015; Polyn et al.,
2009) and emotional context (Talmi et al., 2019). Altogether, this
family of models has simulated an impressive array of memory data.
The primary contribution of our model to these efforts is to show

howmemories get updated and strengthened upon repetition. Context
continually drifts over time in a multiscale manner, but our model
suggests that repeating information at increasing timescales will

strengthen increasingly long context representations that effectively
help the model generalize over time. Therefore, in HipSTeR, memory
strength at a given time relies on a rich combination of drifting
temporal context and the timing history of training.

Implications for the Neurobiology of Drift

The theory behind HipSTeR draws heavily from recent
neurobiological evidence of drift in single neurons and neural
ensembles within the medial temporal lobe. This evidence stems
from two types of findings. The first involves activity from individual
neurons or ensembles that ramp up or down spontaneously (Folkerts
et al., 2018; Howard et al., 2012; Tsao et al., 2018; Umbach et al.,
2020; Yoo et al., 2022) or in a cue- or context-evoked fashion (Bright
et al., 2020; Liu et al., 2022; Tsao et al., 2018; Umbach et al., 2020;
Yoo et al., 2022). This “ramping” drift, which constitutes a form of
persistent activity, could occur as a result of unique, slow-adapting
Ca++ currents (Egorov et al., 2002; Liu et al., 2019; Tahvildari et al.,
2007; Tiganj et al., 2015). The second compares representational
similarity between successive experiences of the same type after
variable delays, such as neural activity patterns when animals are
placed in the same environment (Bladon et al., 2019; Keinath et al.,
2022; Mankin et al., 2015; Marks & Goard, 2021; Mau et al., 2018;
A. Rubin et al., 2015; Rule et al., 2019; Y. Ziv et al., 2013). This drift
has been attributed to fluctuations in synaptic weights (Mau et al.,
2020; N. E. Ziv & Brenner, 2018) and intrinsic excitability
(Delamare et al., 2023), and the difference in these drift types may
be critical when considering temporal effects between those from
seconds to hours against those from days to years. Therefore,
although HipSTeR implements drift in a manner more resembling
the former ramping type, it is worth considering in later models
whether these results would hold in models with drifting synaptic
weights.

One common puzzle arising within this literature on drift is how
long-term memories survive amidst drift and what function drift
might serve. It has been claimed (and shown via modeling) that long-
term representations can continue to survive even with substantial
drift (Kalle Kossio et al., 2021; Mau et al., 2020; Rule & O’Leary,
2022). Using a recurrent neural network model, Clopath et al. (2017)
showed that long-term stability can be maintained with a “backbone”
of stable neurons and recurrent activity. Relatedly, while there
may be drift from the perspective of some external input (e.g., the
environment), internal representations between neural representa-
tions and their downstream readers may remain relatively coherent
and low-dimensional latent structure relatively constant, which could
help to compensate for drift in earlier representations (Delamare et
al., 2023; Gallego et al., 2020; Kalle Kossio et al., 2021; Mau et al.,
2020; Rule et al., 2019).

Drift could also be helpful for new encoding, as it allows for
greater flexibility and even forgetting of old information in an
arguably rational manner. Regarding flexibility, drift allows efficient
new encoding in a way that does not fully depend on or compete with
old memories (Frank et al., 2018; Mau et al., 2020), as it allows for
new memories to not simply be reassigned to the same, most
excitable units (O’Reilly et al., 2017; Rogerson et al., 2014; Zhou et
al., 2009). This would allow memories to form with sparse, efficient
representations while eventually (after enough time) involving most
or all of the relevant neurons in a particular region. Regarding
forgetting from a rational memory standpoint, a memory encountered
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once or a series of experiences repeatedwithin a short temporal frame
is less likely to be relevant for the long term than those repeated more
infrequently (Anderson & Milson, 1989; Anderson & Schooler,
1991; Mozer et al., 2009). That is, the likelihood of many stimuli in
the environment being repeated falls off rapidly as a function of
its last occurrence, a principle which has applications in such
wide-ranging domains as word occurrences within New York
Times articles and utterances from parents to children (Anderson &
Schooler, 1991). Given computational constraints, it would seem
rational to forget such memories to maintain both the potential to
form newmemories or preferentially retain those more likely to serve
future needs on a timescale that resembles the frequency of encoding
(see Figure 11). Therefore, we propose a novel mechanism of drift,
such that it allows for useful forgetting and, when amemory becomes
experienced (or reactivated) after variable delays, it allows for
strengthening on a relevant timescale in the form of greater EDL-
driven temporal abstraction. Additionally, to the extent that drift
between training epochs constitutes a form of noise between input
patterns, these results—whereby drift helps the network generalize
over time—support the idea that optimal levels of noise help avoid
overfitting and improve generalization in neural networks (Elman &
Zipser, 1988; Hinton & van Camp, 1993; Sietsma & Dow, 1991;
Srivastava et al., 2014; Tran et al., 2022).

Relationship to Theories of Hippocampal Contributions
to Episodic Memory

Our results are relevant to findings relating hippocampal activity to
memory of different ages. First, univariate HC activity measured
using fMRI increases when recalling memories with increasing
temporal lags across trials (Brozinsky et al., 2005) or days (Chen et
al., 2016). Moreover, the rate of hippocampal ripples increases with
the recall of older autobiographical memories (Y. Norman et al.,
2021). In HipSTeR, this increase could be spurred by the amount of
error encountered between the differences in temporal contexts.
Second, a neural version of the encoding variability account—
whereby more variability in neural representations across repetitions
predicts better long-termmemory—has received support from at least
two fMRI studies investigating representational similarity in the HC.
That is, representational variability (or instability) in hippocampal
patterns across repetitions promotes subsequent memory (Karlsson
Wirebring et al., 2015) and memory updating (Speer et al., 2021).
These results differ markedly from similar investigations in the
neocortex, where it has been found instead that stable patterns across
repetitions of the same stimuli promote memory (Xue et al., 2010).
One proposed resolution to these disparate findings is that cortical
fidelity is required to represent the content of memories, and thereby
ensures proper reactivation of old traces, but variability within the HC
promotes greater subsequent updating (Karlsson Wirebring et al.,
2015). This interpretation fits well with our account, which requires
stable inputs about the informational content of cues and targets from
elsewhere in the cortex into the EC–HC system but also needs
variability from temporal context drift to drive optimal learning via
EDL. One potentially conflicting result comes from an important
recent study showing that the extent to which prior encoding patterns
of picture stimuli are reinstated in the HC during re-encoding days to
months later predicts subsequent temporal memory for when the
picture was first shown (Zou et al., 2023). It is unclear whether this
result, whereby pattern stability rather than variability in HC benefits

memory, is specific to the temporal memory task, whether there
is some other form of undetected neural variability that serves as
a strengthening mechanism, or whether it is problematic for the
proposed account.

Our results also have relevance for learning within specific HC
pathways. The trisynaptic route involving DG formed associations
that continued to change and rely on temporal context with drift
between training epochs (Pereira et al., 2007), which allowed for
multiple traces of a memory that otherwise had identical content
like the cue and target (Guzman et al., 2021). This finding aligns
with the idea that the drifting excitability shown in DG neurons may
be responsible for time encoding (Aimone et al., 2006, 2009).
Intriguingly, we found the EC→ CA3 pathway to be critical for the
drift-resistant memory component. A prior computational model
suggested that this pathway is especially important for generalizing
over a variable set of examples belonging to the same visual category
at retrieval (Kowadlo et al., 2019). Like our results, Kowadlo et al.
(2019) generalization effects were similarly much stronger for this
pathway than for the CA3→ CA3 recurrent collaterals, suggesting a
prominent role in the EC→ CA3 pathway at retrieval. In accordance
with these results, our effects can be thought of as creating
representations that generalize across time, avoiding the pitfalls of
memory that occur without any temporal context support.

Due to the profound long-term benefits of spacing, it is natural
to ask whether spacing promotes systems consolidation or the
strengthening of the more relatively long-lasting synapses in the
neocortex and the gradual ability to recall memories independent of
the HC (Attardo et al., 2015; Carpenter, 2020; C. D. Smith & Scarf,
2017). However, current evidence on this is unclear. To our
knowledge, there is no current neuroimaging evidence that suggests
that spacing decreases hippocampal involvement. Rather, following
spaced versus massed learning, the HC shows increased activity (Li&
Yang, 2020; Nonaka et al., 2017) or greater connectivity with
neocortex (Ezzyat et al., 2018) at retrieval. Evidence from amnesics
on the necessity of the HC for spacing effects is also inconclusive.
Amnesics show no spacing benefits for recollection, a process that
requires the HC, but intact spacing benefits for familiarity (Verfaellie
et al., 2008), which can rely on neocortical sources (Yonelinas, 2002).
Developmental amnesics do show spacing benefits in free recall, but
their hippocampal size was only diminished by 30%, indicating that
benefits could result from residual hippocampal tissue (Green et al.,
2014). Our results suggest that spacing benefits could be explained
without systems consolidation. However, we hope to test the impact
of the cortex in later models, especially given evidence that a related
phenomenon known as the testing effect—whereby long-term
memory benefits more from retrieval than restudy—results in greater
neocortical involvement (Antony et al., 2017; Ferreira et al., 2019;
Himmer et al., 2019; Van den Broek et al., 2013). One particularly
interesting speculation along these lines is that systems consolidation
may occur as EDL in multiple stages from HC to cortex, with each
faster learning region training each slower learning region (Irish &
Vatansever, 2020; Remme et al., 2021; Schapiro et al., 2017).
One novel aspect of our results for memory consolidation

research is that a pathway within the HC (EC → CA3) produced
decontextualization. Here, we defined decontextualization as the
invariance to supporting contextual input. In our initial simulations,
this invariance arose to changing temporal contexts. Following
findings from others that decontextualization can also arise due to
invariance of learning environment (Imundo et al., 2021; S. M.
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Smith et al., 1978; S. M. Smith &Rothkopf, 1984), semantic context
(Beheydt, 1987), and learning task (S. M. Smith & Handy, 2014,
2016), we later simulated how variable learning contexts apart from
temporal drift led to similar benefits over constant learning contexts.
Although, to our knowledge, prior paradigms have not investigated
the neural locus of how decontextualization develops, a related idea
called semanticization from a prominent consolidation theory
(Winocur et al., 2010; Yassa & Reagh, 2013) occurs when memories
lose their contextual details and retain only their central (gist-like)
aspects. This theory accounts for findings that rodents with HC
damage are more likely to generalize fear memories (Winocur et al.,
2010), that fear memories become more generalized over time when
the HC aspect of the memory trace becomes less activated (Kitamura
et al., 2017; Wiltgen & Silva, 2007), and that HC amnesiac patients
often appear normal when asked gist-based questions but impaired
when pressed for contextual details (Nadel & Moscovitch, 1997).
Therefore, semanticization is only explicitly stated to occur within the
neocortex, whereas the HC is stated to support the retrieval of
contextual details. Our findings showing decontextualization in HC
do not oppose such a neocortical mechanism but instead predict that
such a process could initiate the formation of decontextualized traces
within the HC itself (Y. Norman et al., 2021; Quiroga et al., 2005).

Limitations

One limitation of HipSTeR is that drift-driven contextual change is
simulated as a slow, passive process that is constant per unit time.
However, context can also shift more rapidly (DuBrow et al., 2017),
which often occurs with sudden input changes or shifts in perceived
events (Antony et al., 2021; Baldassano et al., 2017; Bright et al.,
2020; Brunec et al., 2018, 2020; Clewett et al., 2019; Cohn-Sheehy et
al., 2021; DuBrow & Davachi, 2013, 2014, 2016; Griffiths &
Fuentemilla, 2020; Lu et al., 2020;Michelmann et al., 2021; Rouhani
et al., 2020; Sellevoll et al., 2023; Wen & Egner, 2022; Zacks et al.,
2007). In other words, in addition to slow drifts, there are faster
shifts, which allow setting up “walls” between dissimilar situational
contexts nearby in time and “bridges” to similar situational contexts
apart in time (Clewett et al., 2019; Cohn-Sheehy et al., 2021).
Moreover, these sudden event changes can lead to more rapid
forgetting of information that is more likely to rely on properly
instating the temporal context (Delaney et al., 2010; El-Kalliny et al.,
2019; Horner et al., 2016; Radvansky et al., 2011), suggesting that
such shifts accelerate the rate of contextual change away from the
encoding context. Intriguingly, these shifts have been instantiated in
sudden changes in EC (Bright et al., 2020; Tsao et al., 2018; Umbach
et al., 2020) and HC activity (Griffiths & Fuentemilla, 2020), and
the same EC neurons can show mixed, item-specific patterns of
activity that shift with given inputs and also drift thereafter (Bright
et al., 2020). Although our final environmental/pictorial decontex-
tualization experiments begin to model such faster shifts, we hope to
explore these functional activities in later versions of the model.
Another limitation is that other EC–HC subregions contribute to

memory. Specifically, we have not separated LEC, which has
neurons showing drifting properties (Tsao et al., 2018), from medial
entorhinal cortex. Additionally, when the HC subfields have been
compared within the study in a representational drift setting, the
subfield most intimately linked with changes in temporal context is
CA2 (Mankin et al., 2015). CA2 and CA3 share many similarities
yet also have critical differences (Dudek et al., 2016). Here, we

worked under the assumption that the EC and CA3 layers in
HipSTeR combined aspects that would encompass properties of the
dissociable regions. This could elucidate some aspects of the effects
of CA3 in time, such as the fact that representational drift in CA1 is
slower than CA3 in our model (Figure 2D) but is faster than CA3 in
empirical data (Mankin et al., 2015). This could be reconciled by the
fact that drift is faster in CA2 than any of the other CA regions, and
these CA2 properties may be included in our CA3.

A final limitation of our model is that we did not capture some of
the spacing effects produced by expanding spacing schedules.
Instances in which expanding spacing is superior to equal spacing
seem limited to cases in which feedback is not given after tests (Cull
et al., 1996; Landauer & Bjork, 1978). In these training regimes, it is
fairly unlikely that memories will be recovered once lost, so
rehearsing after an early interval after learning keeps the memory “in
the running,” so to speak, whereas a slightly longer initial interval
(with equal spacing) may result in a higher percentage of memories
being lost and unrecoverable. In instances when feedback is given or
when restudy is used rather than retrieval, there is often no benefit of
expanding spacing over equal spacing (Carpenter & DeLosh, 2005;
Cull, 2000; Cull et al., 1996; Karpicke & Roediger, 2010; Küpper-
Tetzel et al., 2014; Landauer & Bjork, 1978). These instances are
more analogous to our model, as the target information is always
available during training epochs. However, expanding performance
in our model contradicted the behavioral data by being inferior to an
equal schedule and not superior to a contracting schedule. There do
not seem to be convincing theoretical explanations for this effect,
though Küpper-Tetzel et al. (2014) have speculated that the impact
of later ISIs may have a stronger influence on memory performance
than earlier ISIs. Perhaps later versions of themodel could attempt to
employ related mechanisms.

Conclusions and Broader Relevance

Given a lifetime of learning, our goal should be to optimize
knowledge that can be retained over long periods of time. In this
regard, the practical difficulties with conducting and publishing well-
controlled research studies with long delays have likely biased the
literature toward what can be assessed on relatively short time scales.
Nevertheless, it is difficult to overstate the importance of spacing in
long-term learning (Bahrick, 1979; Rawson&Dunlosky, 2011): even
the well-known importance of testing for learning (e.g., Rowland,
2014) cannot overcome poor temporal generalization when tests are
conducted at short lags, as practicing paired associates up to 10 times
with 1-minute lags can still produce floor (<5% correct) performance
a week later (Pyc & Rawson, 2009). Ultimately, a memory that
remains context-dependent (e.g., Abernethy, 1940; Imundo et al.,
2021; Parker et al., 2007; S. M. Smith et al., 1978; S. M. Smith &
Rothkopf, 1984) may not be ideal for learning because it continues to
rely on the “crutch” of context—either the presence of contextual
inputs or the mental recovery of a context—for successful memory
retrieval (S. M. Smith & Handy, 2014). Efforts to render memories
context-independent when the context is an incidental or irrelevant
aspect of the memory will ultimately benefit lifelong learning.

Recent attempts to overcome catastrophic interference and other
kinds of ordering effects, such as how prior learning generalizes to
new tasks, have led the artificial intelligence field to the problem of
continual learning (e.g., Flesch et al., 2018; Hadsell et al., 2020;
Masse et al., 2018; van de Ven et al., 2020). We hope our efforts
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will demonstrate the critical importance of accounting for temporal
context in artificial intelligence problems. In particular, the manner
in which drift between training trials—featuring different input
patterns—actually improved performance in HipSTeR seems particu-
larly important in addressing these problems.
Though representations in some regions are relatively stable over

time (Dhawale et al., 2017; Katlowitz et al., 2018; McGuire et al.,
2022; Pérez-Ortega et al., 2021), drift occurs in many regions
beyond the medial temporal lobe (Deitch et al., 2021; Driscoll et al.,
2017; Hyman et al., 2012; Margolis et al., 2012). Notably, spacing
effects have been observed in numerous other learning domains,
including motor-skill learning (e.g., Baddeley & Longman, 1978;
T. D. Lee & Genovese, 1988; Shea et al., 2000), the acquisition of
math skills (e.g., Rohrer, 2009), reading (e.g., Krug et al., 1990),
classical conditioning (e.g., Rohrer, 2009) and extinction (e.g.,
Bernal-Gamboa et al., 2018; Rowe & Craske, 1998), and similar
EDL mechanisms may be at play in the systems underlying these
skills. Intriguingly, computational models have suggested multi-
tiered learning in other domains like motor learning (Murray &
Escola, 2020), suggesting parallel mechanisms in strengthening
increasingly long-lasting memory traces in these systems.
Additionally, there are known biological ramifications of spacing,
such that spaced rather than massed inductions of long-term
potentiation result in a slower decline in long-term potentiation-
induced changes (Jiang et al., 2016; Josselyn et al., 2001; Kramár et
al., 2012; Scharf et al., 2002; Smolen et al., 2016). Differences in
these properties across brain regions may play a critical role in how
spacing and drift affect learning.
Finally, our investigations have implications for those with

impairments within the EC–HC system. Anterolateral EC hypoac-
tivity occurs in healthy aging and has been linked with memory
deficits (Reagh et al., 2018), and anterolateral EC is one of the first
regions to be affected by Alzheimer’s Disease (e.g., Braak & Braak,
1995). Other long-term memory abnormalities linked with temporal
lobe impairments, including accelerated long-term forgetting, which
involves rapid forgetting after initially intact long-term memories
(>30 min; Elliott et al., 2014), could ultimately rely on mechanisms
uncovered here.
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Appendix

Overview

Here, we provide many important parameters for understanding the HipSTeR model architecture and critical aspects of our inputs (Tables
A1, A2 and A3). See table captions for detailed definitions and descriptions. Please note that the model is available at https://github.com/Jame
sWardAntony/HipSTeR, with the full Leabra model and documentation available at https://github.com/CCNLab.

Network Size Parameters

Training/Testing Input Diagram

Table A1
Parameters for Network Sizes

Network layer Neuron

Input pool size 7 × 7
Input number of pools 2 × 8
ECin pool size 7 × 7
ECin number of pools 2 × 8
ECout pool size 7 × 7
ECout number of pools 2 × 8
DG size 60 × 60
CA3 size 40 × 40
CA1 pool size 20 × 20
CA1 number of pool 2 × 8

Note. The numbers for pool sizes indicate the number of neurons in each specific pool. ECin =
entorhinal cortex input layer; ECout = entorhinal cortex output layer; DG = dentate gyrus; CA3 = cornu
ammonis 3; CA1 = cornu ammonis 1.

Table A2
Training/Testing Pools

TC7/OC1 TC8/OC1
TC5 TC6
TC3 TC4
TC1 TC2

B3/empty B4/empty
B1/empty B2/empty

A3 A4
A1 A2

Note. Each cell represents a pool in the input layer. All spacing effect simulations used TC7/TC8,
whereas the decontextualization experiment used OC1/OC2. All training used B1–4, and all testing used
empty pools instead. TC = temporal context; OC = other context for decontextualization experiments;
B = target; A = cue; empty = no input.

(Appendix continues)
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Table A3
Model Parameters That Diverged From the Default (Zheng et al., 2022)

Area Param Value Default

ECout ECoutToECin.WtScale.Rel 0.4 0.5
DG Inhib.Layer.Gi 2.95 3.8

Note. These changes were made to account for different network sizes, specifically the change from 2 × 3 input pools used in Zheng et
al. (2022) to the 2 × 8 pools here. ECout = entorhinal cortex output layer; DG = dentate gyrus.
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