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Abstract—Rapid expansion in the manufacture and use of
Internet of Things (IoT) devices has introduced significant
challenges in ensuring compliance with cybersecurity standards.
To protect user data and privacy, all organizations providing
IoT devices must adhere to complex guidelines such as the
National Institute of Standards and Technology Inter agency
Report (NIST IR) 8259, which defines essential cybersecurity
guidelines for IoT manufacturers. However, interpreting and
applying these rules from these guidelines and the privacy policies
remains a significant challenge for companies. Thus, this project
presents a novel approach to extract knowledge from NIST 8259
for creating semantically rich ontology mappings. Our ontology
captures key compliance rules, which are stored in a knowledge
graph (KG) that allows organizations to crosscheck and update
privacy policy documents with ease. The KG also enables real-
time querying using SPARQL and offers a transparent view
of regulatory adherence for IoT manufacturers and users. By
automating the process of verifying cybersecurity compliance,
the framework ensures that companies remain aligned with
NIST standards, eliminating manual checks and reducing the
risk of non-compliance. We also demonstrate that compared
to the baseline Large Language Models (LLMs), our proposed
framework has more compliance accuracy, and is more efficient
and scalable.

Index Terms—IoT, Cybersecurity, NIST 8259 standards, KGs,
regulatory compliance, automated compliance, LLMs, privacy
policies, SPARQL.

I. INTRODUCTION

Internet of Things (IoT) is a network of connected devices

that exchange data autonomously. As illustrated in Figure 1,

IoT device connections have rapidly grown in the past decade.

Moreover, according to [1], the anticipated growth in the num-

ber of active IoT devices is expected to surpass 25.4 billion

by 2030. The proliferation of smart devices across various

sectors and the large amount of data stored and processed by

the IoT devices can be targeted by cybercriminals, who can

gain unauthorized access to the data and use it for fraudulent

activities. Cyberattacks on these devices can lead to breaches

and loss of privacy. Therefore, it is critical to secure the

IoT devices, especially due to the sensitive nature of this

data. Regulatory authorities, particularly in the USA, have

developed comprehensive cybersecurity standards and data

protection regulations to safeguard users’ information, such as

federal IoT laws, the Cybersecurity Improvement Act [2], and

Improving the Nation’s Cybersecurity [3]. Also, it is essential

to obey standards by the NIST primarily that apply to IoT

device manufacturers like NISTIR 8259 [4] and NISTIR 8228

[5]. These regulations are encapsulated in complex documents,

and as part of this research, we focus on NIST Standard

8259 [4], which outlines specific requirements for IoT device

security.

Fig. 1: Global IoT and non-IoT connections 2010-2025 [6]

For the IoT device manufacturing companies, ensuring com-

pliance with these regulations is a daunting task, particularly

when it comes to understanding and integrating the relevant

rules into their privacy policies. Many companies struggle

to interpret and implement these regulations effectively. The

complexity of cybersecurity laws and the diversity of IoT

devices make manual compliance checks difficult, error-prone

and inefficient, thus highlighting the need for an automated

system that can facilitate compliance checks. Hence, com-

pliance with cybersecurity standards such as NIST 8259 is

essential but a big challenge for IoT vendors.

Thus, with the expanding IoT ecosystem, automation is

increasingly needed for cybersecurity compliance. Automated

systems can quickly verify adherence to standards, reducing

non-compliance risks. Leveraging technologies like KGs and

LLMs can ensure timely and thorough compliance across IoT

systems. A KG is a structured representation of entities and

their relationships, enabling rich connections between data. It

supports efficient querying and reasoning by modeling real-

world concepts and their interactions. Additionally, KGs play
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a vital role in Artificial Intelligence (AI) by enabling semantic

processing and open interconnection for intelligent services

like search and personalized recommendations [7]. While there

are attempts to use KGs in sectors such as finance and

healthcare, their application in the domain of IoT cybersecurity

compliance, particularly in automating the cross-verification of

Business Requirement Documents (BRDs) against regulatory

standards, has not been explored yet.

LLMs are AI systems trained on vast amounts of text to gen-

erate human-like language, answer questions, and assist with

tasks like summarization or translation. Retrieval-augmented

generation (RAG) combines LLMs with external data sources,

retrieving relevant information during inference to enhance the

model’s accuracy and relevance.

In this work we present a novel approach to interpret and

apply the guidelines in the policy documents. Essentially,

we propose a framework that extracts knowledge from NIST

8259 and related IoT cybersecurity regulations, creating se-

mantically rich ontology mappings. These ontologies capture

key compliance rules, which are stored in a KG that allows

organizations to crosscheck and update privacy policy docu-

ments with ease. The KG enables real-time querying of the

system using SPARQL [8] and also offers a transparent view

of regulatory adherence for IoT manufacturers and users. This

framework automates the process of verifying cybersecurity

compliance, thereby ensuring that companies remain aligned

with NIST standards, eliminating manual checks and reducing

the risk of non-compliance.

The key contributions of our work are as follows:

• Ontology-Based Knowledge Extraction: This structures

NIST standards and data protection regulations into a KG.

• Integration with Semantic Web Technologies: SPARQL

queries allow organizations to update privacy policies

based on regulatory changes, ensuring continuous com-

pliance with minimal manual effort.

• Automated Compliance Verification: Leverages LLMs to

help automate compliance checks via the KG.

• Publishing KGs: It is publicly accessible and helps IoT

manufacturers and users easily comprehend compliance

without reading complex documents.

In this paper, in Section II we review related works on KG,

LLMs, and IoT cybersecurity compliance. Next, in Section III,

we present our methodology, detailing ontology development,

LLM-based triple extraction, and KG construction. In Section

IV we present a comparative analysis of the proposed KG-

enhanced RAG system and experimentally evaluate the sys-

tem’s performance. Finally, in Section V, we conclude with

suggestions for future work.

II. RELATED WORK

A. Interoperability of Web of Things

The Web of Things (WoT) paradigm, introduced in the

late 2000s, aims to address the interoperability challenge by

leveraging web standards for the interconnection of embedded

devices. This situation poses significant challenges regarding

interoperability, and to mitigate these issues, semantic web

technologies have been proposed as a viable solution to

enrich raw IoT data, thereby facilitating better integration and

communication among diverse IoT systems [1]. The fragmen-

tation within the IoT landscape has intensified, necessitating

systematic approaches to integrate web technologies into IoT

scenarios [9]. Their literature presents a comprehensive taxon-

omy of WoT software architectures and enabling technologies.

Furthermore, as the IoT ecosystem grows, the security of con-

nected devices becomes increasingly critical. Another research

[10], emphasizes the importance of defining the intended

behavior of IoT devices to enhance cybersecurity measures.

Manufacturer Usage Description (MUD) standard, established

to describe the network behavioral profiles of IoT devices,

offers a framework for understanding and managing potential

security threats [10]. Despite its promise, the adoption of

MUD in practical applications remains limited, indicating a

need for further research to facilitate its implementation. Thus,

the intersection of semantic technologies, web standards, and

security frameworks presents a rich area of exploration for

improving interoperability and enhancing the robustness of IoT

systems. These studies underscore the necessity for ongoing

collaboration between academia and industry to advance the

state of IoT technologies and compliance.

B. NIST 8259

The National Institute of Standards and Technology (NIST)

has addressed the security and privacy related challenges of

IoT devices through publications like NISTIR 8259, which

offers a framework for ensuring the security of IoT devices.

NISTIR 8259 provides a baseline of recommended security

features that manufacturers should implement during the de-

sign and production of IoT devices to minimize vulnerabilities

[4]. In contrast to previous broader guidelines such as NIST SP

800-53 [11], which primarily focuses on security controls for

federal systems, NISTIR 8259 is tailored specifically for the

IoT environment. It emphasizes key areas like device identity,

secure communications, and lifecycle management, addressing

the unique challenges posed by the wide variety of IoT devices

[4].

In this paper, we incorporate these guidelines into our

ontology by representing NIST 8259 classes that map onto es-

sential IoT security and privacy practices, particularly around

manufacturer responsibilities. Next, we use KGs (which is a

Semantic Web technology) [12]–[14] to aid in the management

of this complex data. By embedding NISTIR 8259 within our

ontology, we create a framework that not only addresses in-

teroperability challenges but also enhances the overall security

of IoT systems. This allows for more effective communication

and integration of IoT device security standards into a wide

range of deployment environments.

C. Knowledge Graphs in Regulatory Compliance

KGs provide a structured way to represent the relationships

between various entities and rules within a domain, allowing

for more effective querying and reasoning. Various studies
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Fig. 2: Methodology Pipeline Overview

have shown the utility of KGs in sectors such as finance and

healthcare, where regulatory compliance is critical. Some have

also advocated for the leveraging of KG’s databases for data

compliance, however, the application of KGs in the domain

of IoT cybersecurity compliance, particularly in automating

the cross-verification of BRDs against regulatory standards,

remains underexplored.

Several studies have highlighted the importance of automat-

ing compliance processes by leveraging KGs, which will allow

for a structured representation of the intricate relationships

between legal regulations and IoT security standards. For

instance, Echenim et al. [15] developed IoT-Reg, a com-

prehensive ontology to ensure IoT data privacy compliance

by integrating regulatory standards into a unified framework.

The paper highlights how IoT-Reg assists manufacturers and

users in understanding and adhering to regulations such as

NISTIR 8228, HIPAA, and GDPR. Thus, IoT-Reg ontol-

ogy aggregates privacy regulations and automates IoT data

compliance checks through structured semantic relationships.

Thus, KGs have emerged as powerful tools for managing

and modeling complex regulatory environments. Previous

research [16]–[20] introduced a semantically rich KG that

integrates data compliance regulations in cloud environments,

automating compliance for cloud service providers such as

AWS and Google. Similarly, Kim et al. [21] developed a

KG that automates HIPAA regulations for cloud-based health

IT services, enabling healthcare organizations to maintain

compliance with privacy rules through machine-processable

formats. Further exploration of KG applications in unstruc-

tured document compliance was presented by [22], through

their Deep Semantic Compliance Advisor (DSCA), which

uses GNN-based models to compare complex contract clauses

semantically. This approach has been particularly effective in

domains like banking, where large volumes of unstructured

data require interpretation. Chen et al. advanced the inte-

gration of KGs with LLMs to enhance decision-making in

emergency management, demonstrating improved evidence-

based decision-making through the structured knowledge of

KGs [23].

The use of KGs for cyber defense exercises was examined
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by [24], who developed an ontology for managing data within

cyber defense scenarios, enhancing integration and knowledge

sharing in security contexts. Ontology Development for Cy-

bersecurity Ontologies are essential for organizing domain

knowledge in a structured and interoperable format, particu-

larly in cybersecurity, where they can model threat detection,

incident response, and compliance processes. Mozzaqua et al.

[25] proposed an ontology-based cybersecurity framework for

the IoT, which facilitates threat identification and dynamic

security adaptation in real time. Ontologies are also critical in

smart city applications, where IoT solutions are susceptible to

cybersecurity risks. Andrade et al. [26] analyzed cybersecurity

maturity in smart cities by proposing a model to assess risk

levels and improve IoT cybersecurity practices. In the EU

regulatory landscape, [27] reviewed the impact of evolving

cybersecurity regulations on the IoT domain, particularly the

EU’s Cybersecurity Act and its implications for IoT supply

chains. This work underlined the importance of ontologies and

structured knowledge in automating compliance across sectors.

D. Retrieval-Augmented Generation (RAG) models with KGs

Retrieval-Augmented Generation (RAG) models combine

LLMs with external knowledge sources like KGs to improve

the generation of contextually relevant text and automate

compliance checks. Xu et al. [28] proposed a novel dual-

pathway approach that integrates KGs into RAG models to im-

prove retrieval accuracy and mitigate hallucination during text

generation. This method enhances the ability of RAG models

to process domain-specific knowledge, making them more

applicable to regulatory compliance tasks. In a similar vein,

[29] demonstrated the integration of KGs with RAG models

in customer service environments, showing how structured

retrieval from a KG improves accuracy in answering customer

queries. These studies underscore the potential of combining

KGs with LLMs to address complex compliance challenges

in highly regulated environments, including IoT cybersecurity.

By integrating KGs into RAG models, organizations can

leverage structured, domain-specific knowledge to automate

and streamline compliance checks, making them more efficient

and accurate.

III. METHODOLOGY

In this section, we present our methodology as illustrated

in Figure 2, which involves four key stages:

1) Triple extraction,

2) Ontology development,

3) KG construction,

4) KG query and automated compliance verification using

a KG-enhanced RAG model.

These stages collectively facilitate the extraction, structur-

ing, and utilization of regulatory knowledge to verify IoT

cybersecurity compliance.

A. Triple Extraction Using LLMs

LLMs have revolutionized natural language processing

tasks, including text summarization, translation, and informa-

tion extraction. Recent advancements have enabled LLMs to

(a) LLM Prompt

(b) LLM Prompt chain

(c) Prompt Response

Fig. 3: Prompts

perform triple extraction, identifying subject-predicate-object

relationships within text. These triples can then be directly

mapped to an ontology, forming the basis of a KG. However,

traditional LLM applications in compliance have been limited

to document analysis rather than structured knowledge repre-

sentation. Our work leverages LLMs to automate the extraction

of triples from regulatory texts, a crucial step in building a

compliance-focused KG. The extraction of subject-predicate-

object triples from regulatory texts is performed using an

LLM. We evaluate various LLMs to determine the most

suitable for handling large volumes of data, balancing speed

and accuracy. The LLM is guided by a prompt engineered to

focus on identifying relationships relevant to IoT cybersecurity

compliance. This automated process ensures that the KG is

populated with accurate and relevant triples that reflect the

content of the regulatory documents, as shown in Fig. 3.

Effective Prompt Engineering for Triple Extraction—is crucial

for maximizing the accuracy of triple extraction. The prompt

is iteratively refined to improve the LLM’s ability to identify

entities and relationships that are critical for compliance veri-

fication. For example, prompts are designed to target specific

sections of NIST standards that outline security requirements

for IoT devices. The extracted triples are then validated to

ensure their relevance and accuracy before being mapped to

the ontology.
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Fig. 4: AWS attributes (Manufacturer instance)
Fig. 5: Wyze attributes (Customer instance)

Fig. 6: NIST 8259 Entities and Relationships

B. Ontology Development

The ontology is the backbone of our KG, and our Domain-

Specific Ontology Design (DSOD) and it captures the semantic

relationships between entities defined in USA cybersecurity

IoT laws, NIST standards (specifically NIST 8259), and other

relevant regulations. It provides a structured representation of

compliance processes, enabling more effective querying, rea-

soning, and automation for IoT cybersecurity compliance. Our

ontology development process was heavily guided by LLMs

using structured prompts to extract the relevant information

from NIST 8259. The prompts were designed to capture:

1) Entities:- stakeholders, processes, and components central

to IoT security. The key entities in NIST 8259 are:

• Stakeholders: represent the different actors involved in

NIST 8259 such as IoT device manufacturers, users, and

regulatory bodies like NIST. Each stakeholder has unique

responsibilities and actions to ensure IoT cybersecurity

compliance.

• Processes: represent actions or procedures related to man-

aging, verifying, and ensuring IoT security. For example,

configuration management ensures that IoT devices are

configured securely, and compliance check represents the

ongoing process of verifying adherence to regulatory

standards.

• Means: represent the tools, mechanisms, or devices that

are critical to the cybersecurity of IoT ecosystems. For

instance, SecurityFeature refers to any component or

feature that is implemented to enhance device security,

while IoTDevice represents the actual devices that must

comply with these standards.

2) Relationships:- connect these entities, reflecting the real-

world responsibilities and interactions outlined in NIST 8259.

3) Data Properties:- defines the attributes of the entities, and

key stakeholders relevant to NIST 8259, as shown in Fig. 4

and Fig. 5.

4) Object Properties:- define how entities interact with one

another as represented in Fig. 6, ensuring that the relationships

Authorized licensed use limited to: Texas A M University. Downloaded on May 31,2025 at 17:38:01 UTC from IEEE Xplore.  Restrictions apply. 



6341

Fig. 7: NIST 8259 Knowledge Graph

outlined in NIST 8259 are accurately represented. Here are

some key object properties:

• performs: defines the actions that a stakeholder, like a

manufacturer, must carry out. For example, a Manufac-

turer may perform configuration management to ensure

that IoT devices are securely set up. Thus, this property

links Stakeholders like Manufacturer to Processes like

configuration management, showing the responsibility of

manufacturers to actively manage IoT security.

• isResponsibleFor: indicates responsibility for specific

tasks or processes. For example, a RegulatoryBody such

as NIST isResponsibleFor ensuring that standards like

NIST 8259 are implemented and adhered to. Hence

this property links Stakeholders like RegulatoryBody to

Processes like compliance check, specifying regulatory

oversight and enforcement.

• update: represents the process of updating IoT devices

or their security measures over time. For example, a

Manufacturer may update SecurityFeature as new threats

emerge. This property connects Stakeholders (e.g., Manu-

facturer) to Means (e.g., SecurityFeature), indicating that

manufacturers have a duty to continually enhance and

update the security features of their devices.

Thus, our use of LLMs allowed for a semi-automated

approach to building the ontology, speeding up the extraction

of complex relationships from dense regulatory text. These

extracted relationships were then formalized into an ontology

framework that not only structures knowledge about the enti-

ties involved but also defines the interactions between them,

to enable the KG serve as a reliable source for querying and

Fig. 8: Sample Manufacturer Query 1

reasoning about regulatory compliance.

C. Knowledge Graph Construction

Once the triples are extracted, they are mapped to the prede-

fined ontology, forming a structured KG as depicted in Fig. (7)

that captures the regulatory knowledge from the documents.
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Fig. 9: Sample Manufacturer Compliance check

This KG is then stored in a format compatible with Semantic

Web technologies, OWL [30] or RDF [31] preferably, enabling

efficient querying and reasoning. The construction of the

KG involves aligning each triple with the appropriate classes

and properties defined in the ontology, ensuring that the KG

accurately reflects the regulatory landscape.

D. KG query and Compliance Verification using KG-

Enhanced RAG

The final stages of the methodology involve querying the

KG for compliance checks using SPARQL, then integrating

the KG into an LLM with RAG capabilities. This integration

allows the model to retrieve relevant regulatory information

from the KG during the generation of compliance verification

reports. By leveraging the structured knowledge in the KG,

the RAG model can provide accurate and contextually rel-

evant answers when cross-checking BRD against Functional

Requirement Documents (FRD), as shown in Figures 10 and

8 respectively.

Eventually, we unit test an instance of manufacturer and

their processes, querying the ontology to see if there is

compliance, as shown in Fig. 9. Then we compare an instance

of a customer and processes in their policy against the manu-

facturers to check for compliance as shown in Fig. 11.

RAG implementation and workflow help ensure seamless

interaction with the KG. When a compliance check is re-

quested, the model retrieves relevant triples from the KG,

which are then used to inform the generative process. This

workflow ensures that the outputs of the RAG model are not

only accurate but also grounded in the structured regulatory

knowledge stored in the KG. The result is a comprehensive

compliance verification system that automates the process

of cross-referencing BRD with applicable IoT cybersecurity

standards.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our experimental setup involves testing the KG-enhanced

RAG system on a dataset of BRDs and FRDs derived from

real-world IoT cybersecurity scenarios. The documents used in

the experiments cover a wide range of regulations, including

NIST standards and USA data protection laws. The LLM is

fine-tuned on domain-specific texts to ensure that it is well-

equipped to handle the nuances of IoT cybersecurity compli-

ance. The KG is constructed using the ontology developed in

the earlier stages, and SPARQL queries are used to evaluate

the system’s performance in retrieving relevant regulatory

information.

B. Performance Metrics

To assess the effectiveness of the KG-enhanced RAG sys-

tem, we employ several performance metrics:

• Compliance Accuracy: The percentage of correct com-

pliance checks performed by the system, indicating its

ability to accurately cross-reference BRD with relevant

regulations.

• Query Relevance: Measures the relevance of the infor-

mation retrieved from the KG during the RAG process,

ensuring that the outputs are contextually accurate.

• Efficiency: Evaluates the time taken to perform com-

pliance checks, with the KG-enhanced system showing

faster results due to the structured nature of the KG.

• Scalability: Assesses the system’s ability to handle in-

creasingly complex KGs without a significant drop in
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Fig. 10: Sample Customer Query 1

performance, ensuring that the methodology can adapt

to future regulatory changes.

C. Results and Discussion

Here, we discuss our results, the quantitative and qualita-

tive approaches we undertake to evaluate the impact of an

enhanced KG + LLM pipeline for compliance verification.

Our quantitative approach focuses on measuring the perfor-

mance improvements in compliance accuracy and efficiency

before and after KG integration. Then our qualitative approach

examines the unique integration of querying and compliance

verification features tailored to IoT device manufacturers,

highlighting the advantages of using a KG built from regu-

latory documents.

1) Quantitative Analysis Discussion:

To evaluate the impact of KG integration, we compare

the performance of LLMs in compliance verification

tasks Pre and Post KG + LLM integration. The baseline

LLM, without KG support, relies solely on its pre-

trained knowledge, leading to potential gaps in domain-

specific understanding. Specifically, the KG-enhanced

system achieved a compliance accuracy of 93%, com-

pared to 75% for the baseline model. Query relevance

also improved, with the KG-enhanced system consis-

tently retrieving information that was directly applicable

to the compliance checks. Thus, after integrating the

KG, the LLM is able to retrieve precise regulatory

information, significantly improving the accuracy and

relevance of its compliance checks.

The efficiency of the system was evident in the reduced

time required to perform compliance checks, highlight-

ing the benefits of using structured data.

Scalability tests also showed the system could handle

increasingly complex KGs without a significant drop in

performance, making it a robust solution for ongoing

compliance verification.

Overall, our analysis shows that the KG-enhanced RAG

model outperforms the baseline LLM in terms of both

compliance accuracy and efficiency. While KGs have

been used in other domains such as finance and legal

compliance, our approach is unique in its application

to IoT cybersecurity. Existing systems often lack the

flexibility and scalability needed to handle the rapidly

evolving regulatory landscape of IoT. Our methodol-

ogy addresses these challenges by leveraging LLMs

for automated triple extraction and by designing an

ontology that is specifically tailored to the intricacies

of the adaptability and precision of IoT cybersecurity

standards.

2) Qualitative Analysis Discussion:

To the best of our knowledge, this is the first work

that not only creates a KG from the FRD (in our

case NIST 8259 document) for IOT device companies,

but also provides querying and compliance verification

features to the users so that they can find gaps in

their BRDs. There are no previous works that provide

all these functionalities end-to-end to the IoT device

manufacturers/companies. For instance, Echenim et. al

[32] create IoT-Reg, (Internet of Things - Regulations),

an ontology that encapsulates regulations and guidelines

from NISTIR 8228, GDPR, and HIPAA and covers

compliance and risk mitigation areas affecting various

devices. While they have created the KG, we take the

process further by adding the querying and compliance

verification to our framework. Moreover, use of LLMs

in our framework has enabled retrieval of precise regu-

latory information, significantly improving the accuracy

and relevance of its compliance checks.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach to automating IoT

cybersecurity compliance checks by integrating a KG with an

LLM using RAG. The methodology effectively addresses the

challenges of understanding and applying complex regulatory

standards by leveraging ontology-based knowledge extraction

and structured querying. Our experimental results and case

study demonstrate the significant improvements in compliance

accuracy, query relevance, and efficiency provided by the

KG-enhanced system. The system has demonstrated big data

scalability and can handle complex KGs. A limitation of our

work is that the accuracy of triple extraction is dependent on

the quality of LLM and effectiveness of prompt engineering.

Therefore, further optimization may be needed to ensure that

performance remains consistent as the regulatory landscape

evolves.

In the future, we will focus on scaling up the system to

meet its big data potential, including optimizing data storage

and retrieval mechanisms for even larger datasets. We plan to
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Fig. 11: Sample Customer Compliance check

host and deploy the system publicly, providing open access to

the KG and compliance verification tools.

Additionally, one potential area for future exploration is the

development of effective prompting strategies for LLMs in

the context of compliance verification. Given the complex-

ity and specificity of regulatory language, optimizing how

prompts are structured could lead to better performance in

retrieving relevant information and interpreting compliance

requirements. Techniques such as prompt engineering, few-

shot prompting, and chain-of-thought prompting have shown

promise in enhancing the reasoning and retrieval capabilities

of LLMs, as highlighted in recent studies by Brown et al.

[33], Wei et al. [34], Reynolds et al. [35] and Gao et al. [36].

Exploring these approaches in the context of IoT regulatory

compliance could provide a pathway to further improve the

accuracy and relevance of compliance checks. Thus, we plan

to investigate ways to improve the LLM’s reasoning capa-

bilities over the KG, enabling more sophisticated compliance

checks and broader applicability across different regulatory

frameworks.
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