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Abstract—Rapid expansion in the manufacture and use of
Internet of Things (IoT) devices has introduced significant
challenges in ensuring compliance with cybersecurity standards.
To protect user data and privacy, all organizations providing
IoT devices must adhere to complex guidelines such as the
National Institute of Standards and Technology Inter agency
Report (NIST IR) 8259, which defines essential cybersecurity
guidelines for IoT manufacturers. However, interpreting and
applying these rules from these guidelines and the privacy policies
remains a significant challenge for companies. Thus, this project
presents a novel approach to extract knowledge from NIST 8259
for creating semantically rich ontology mappings. Our ontology
captures key compliance rules, which are stored in a knowledge
graph (KG) that allows organizations to crosscheck and update
privacy policy documents with ease. The KG also enables real-
time querying using SPARQL and offers a transparent view
of regulatory adherence for IoT manufacturers and users. By
automating the process of verifying cybersecurity compliance,
the framework ensures that companies remain aligned with
NIST standards, eliminating manual checks and reducing the
risk of non-compliance. We also demonstrate that compared
to the baseline Large Language Models (LLMs), our proposed
framework has more compliance accuracy, and is more efficient
and scalable.

Index Terms—IoT, Cybersecurity, NIST 8259 standards, KGs,
regulatory compliance, automated compliance, LLMs, privacy
policies, SPARQL.

I. INTRODUCTION

Internet of Things (IoT) is a network of connected devices
that exchange data autonomously. As illustrated in Figure 1,
IoT device connections have rapidly grown in the past decade.
Moreover, according to [1], the anticipated growth in the num-
ber of active IoT devices is expected to surpass 25.4 billion
by 2030. The proliferation of smart devices across various
sectors and the large amount of data stored and processed by
the IoT devices can be targeted by cybercriminals, who can
gain unauthorized access to the data and use it for fraudulent
activities. Cyberattacks on these devices can lead to breaches
and loss of privacy. Therefore, it is critical to secure the
IoT devices, especially due to the sensitive nature of this
data. Regulatory authorities, particularly in the USA, have
developed comprehensive cybersecurity standards and data
protection regulations to safeguard users’ information, such as
federal IoT laws, the Cybersecurity Improvement Act [2], and
Improving the Nation’s Cybersecurity [3]. Also, it is essential
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to obey standards by the NIST primarily that apply to IoT
device manufacturers like NISTIR 8259 [4] and NISTIR 8228
[5]. These regulations are encapsulated in complex documents,
and as part of this research, we focus on NIST Standard
8259 [4], which outlines specific requirements for IoT device
security.

Internet of Things (IoT) and non-loT active device connections
worldwide from 2010 to 2025 (in billions)
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Fig. 1: Global IoT and non-IoT connections 2010-2025 [6]

For the IoT device manufacturing companies, ensuring com-
pliance with these regulations is a daunting task, particularly
when it comes to understanding and integrating the relevant
rules into their privacy policies. Many companies struggle
to interpret and implement these regulations effectively. The
complexity of cybersecurity laws and the diversity of IoT
devices make manual compliance checks difficult, error-prone
and inefficient, thus highlighting the need for an automated
system that can facilitate compliance checks. Hence, com-
pliance with cybersecurity standards such as NIST 8259 is
essential but a big challenge for IoT vendors.

Thus, with the expanding IoT ecosystem, automation is
increasingly needed for cybersecurity compliance. Automated
systems can quickly verify adherence to standards, reducing
non-compliance risks. Leveraging technologies like KGs and
LLMs can ensure timely and thorough compliance across IoT
systems. A KG is a structured representation of entities and
their relationships, enabling rich connections between data. It
supports efficient querying and reasoning by modeling real-
world concepts and their interactions. Additionally, KGs play
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a vital role in Artificial Intelligence (AI) by enabling semantic
processing and open interconnection for intelligent services
like search and personalized recommendations [7]. While there
are attempts to use KGs in sectors such as finance and
healthcare, their application in the domain of IoT cybersecurity
compliance, particularly in automating the cross-verification of
Business Requirement Documents (BRDs) against regulatory
standards, has not been explored yet.

LLMs are Al systems trained on vast amounts of text to gen-
erate human-like language, answer questions, and assist with
tasks like summarization or translation. Retrieval-augmented
generation (RAG) combines LLMs with external data sources,
retrieving relevant information during inference to enhance the
model’s accuracy and relevance.

In this work we present a novel approach to interpret and
apply the guidelines in the policy documents. Essentially,
we propose a framework that extracts knowledge from NIST
8259 and related IoT cybersecurity regulations, creating se-
mantically rich ontology mappings. These ontologies capture
key compliance rules, which are stored in a KG that allows
organizations to crosscheck and update privacy policy docu-
ments with ease. The KG enables real-time querying of the
system using SPARQL [8] and also offers a transparent view
of regulatory adherence for IoT manufacturers and users. This
framework automates the process of verifying cybersecurity
compliance, thereby ensuring that companies remain aligned
with NIST standards, eliminating manual checks and reducing
the risk of non-compliance.

The key contributions of our work are as follows:

o Ontology-Based Knowledge Extraction: This structures
NIST standards and data protection regulations into a KG.

o Integration with Semantic Web Technologies: SPARQL
queries allow organizations to update privacy policies
based on regulatory changes, ensuring continuous com-
pliance with minimal manual effort.

o Automated Compliance Verification: Leverages LLMs to
help automate compliance checks via the KG.

o Publishing KGs: It is publicly accessible and helps IoT
manufacturers and users easily comprehend compliance
without reading complex documents.

In this paper, in Section II we review related works on KG,
LLMs, and IoT cybersecurity compliance. Next, in Section III,
we present our methodology, detailing ontology development,
LLM-based triple extraction, and KG construction. In Section
IV we present a comparative analysis of the proposed KG-
enhanced RAG system and experimentally evaluate the sys-
tem’s performance. Finally, in Section V, we conclude with
suggestions for future work.

II. RELATED WORK

A. Interoperability of Web of Things

The Web of Things (WoT) paradigm, introduced in the
late 2000s, aims to address the interoperability challenge by
leveraging web standards for the interconnection of embedded
devices. This situation poses significant challenges regarding
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interoperability, and to mitigate these issues, semantic web
technologies have been proposed as a viable solution to
enrich raw [oT data, thereby facilitating better integration and
communication among diverse IoT systems [1]. The fragmen-
tation within the IoT landscape has intensified, necessitating
systematic approaches to integrate web technologies into IoT
scenarios [9]. Their literature presents a comprehensive taxon-
omy of WoT software architectures and enabling technologies.
Furthermore, as the IoT ecosystem grows, the security of con-
nected devices becomes increasingly critical. Another research
[10], emphasizes the importance of defining the intended
behavior of IoT devices to enhance cybersecurity measures.
Manufacturer Usage Description (MUD) standard, established
to describe the network behavioral profiles of IoT devices,
offers a framework for understanding and managing potential
security threats [10]. Despite its promise, the adoption of
MUD in practical applications remains limited, indicating a
need for further research to facilitate its implementation. Thus,
the intersection of semantic technologies, web standards, and
security frameworks presents a rich area of exploration for
improving interoperability and enhancing the robustness of IoT
systems. These studies underscore the necessity for ongoing
collaboration between academia and industry to advance the
state of IoT technologies and compliance.

B. NIST 8259

The National Institute of Standards and Technology (NIST)
has addressed the security and privacy related challenges of
IoT devices through publications like NISTIR 8259, which
offers a framework for ensuring the security of IoT devices.
NISTIR 8259 provides a baseline of recommended security
features that manufacturers should implement during the de-
sign and production of IoT devices to minimize vulnerabilities
[4]. In contrast to previous broader guidelines such as NIST SP
800-53 [11], which primarily focuses on security controls for
federal systems, NISTIR 8259 is tailored specifically for the
IoT environment. It emphasizes key areas like device identity,
secure communications, and lifecycle management, addressing
the unique challenges posed by the wide variety of 10T devices
[4].

In this paper, we incorporate these guidelines into our
ontology by representing NIST 8259 classes that map onto es-
sential IoT security and privacy practices, particularly around
manufacturer responsibilities. Next, we use KGs (which is a
Semantic Web technology) [12]-[14] to aid in the management
of this complex data. By embedding NISTIR 8259 within our
ontology, we create a framework that not only addresses in-
teroperability challenges but also enhances the overall security
of IoT systems. This allows for more effective communication
and integration of IoT device security standards into a wide
range of deployment environments.

C. Knowledge Graphs in Regulatory Compliance

KGs provide a structured way to represent the relationships
between various entities and rules within a domain, allowing
for more effective querying and reasoning. Various studies
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Fig. 2: Methodology Pipeline Overview

have shown the utility of KGs in sectors such as finance and
healthcare, where regulatory compliance is critical. Some have
also advocated for the leveraging of KG’s databases for data
compliance, however, the application of KGs in the domain
of IoT cybersecurity compliance, particularly in automating
the cross-verification of BRDs against regulatory standards,
remains underexplored.

Several studies have highlighted the importance of automat-
ing compliance processes by leveraging KGs, which will allow
for a structured representation of the intricate relationships
between legal regulations and IoT security standards. For
instance, Echenim et al. [15] developed IoT-Reg, a com-
prehensive ontology to ensure IoT data privacy compliance
by integrating regulatory standards into a unified framework.
The paper highlights how IoT-Reg assists manufacturers and
users in understanding and adhering to regulations such as
NISTIR 8228, HIPAA, and GDPR. Thus, IoT-Reg ontol-
ogy aggregates privacy regulations and automates IoT data
compliance checks through structured semantic relationships.
Thus, KGs have emerged as powerful tools for managing
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and modeling complex regulatory environments. Previous
research [16]-[20] introduced a semantically rich KG that
integrates data compliance regulations in cloud environments,
automating compliance for cloud service providers such as
AWS and Google. Similarly, Kim et al. [21] developed a
KG that automates HIPAA regulations for cloud-based health
IT services, enabling healthcare organizations to maintain
compliance with privacy rules through machine-processable
formats. Further exploration of KG applications in unstruc-
tured document compliance was presented by [22], through
their Deep Semantic Compliance Advisor (DSCA), which
uses GNN-based models to compare complex contract clauses
semantically. This approach has been particularly effective in
domains like banking, where large volumes of unstructured
data require interpretation. Chen et al. advanced the inte-
gration of KGs with LLMs to enhance decision-making in
emergency management, demonstrating improved evidence-
based decision-making through the structured knowledge of
KGs [23].

The use of KGs for cyber defense exercises was examined
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by [24], who developed an ontology for managing data within
cyber defense scenarios, enhancing integration and knowledge
sharing in security contexts. Ontology Development for Cy-
bersecurity Ontologies are essential for organizing domain
knowledge in a structured and interoperable format, particu-
larly in cybersecurity, where they can model threat detection,
incident response, and compliance processes. Mozzaqua et al.
[25] proposed an ontology-based cybersecurity framework for
the IoT, which facilitates threat identification and dynamic
security adaptation in real time. Ontologies are also critical in
smart city applications, where IoT solutions are susceptible to
cybersecurity risks. Andrade et al. [26] analyzed cybersecurity
maturity in smart cities by proposing a model to assess risk
levels and improve IoT cybersecurity practices. In the EU
regulatory landscape, [27] reviewed the impact of evolving
cybersecurity regulations on the IoT domain, particularly the
EU’s Cybersecurity Act and its implications for IoT supply
chains. This work underlined the importance of ontologies and
structured knowledge in automating compliance across sectors.

D. Retrieval-Augmented Generation (RAG) models with KGs

Retrieval-Augmented Generation (RAG) models combine
LLMs with external knowledge sources like KGs to improve
the generation of contextually relevant text and automate
compliance checks. Xu et al. [28] proposed a novel dual-
pathway approach that integrates KGs into RAG models to im-
prove retrieval accuracy and mitigate hallucination during text
generation. This method enhances the ability of RAG models
to process domain-specific knowledge, making them more
applicable to regulatory compliance tasks. In a similar vein,
[29] demonstrated the integration of KGs with RAG models
in customer service environments, showing how structured
retrieval from a KG improves accuracy in answering customer
queries. These studies underscore the potential of combining
KGs with LLMs to address complex compliance challenges
in highly regulated environments, including IoT cybersecurity.
By integrating KGs into RAG models, organizations can
leverage structured, domain-specific knowledge to automate
and streamline compliance checks, making them more efficient
and accurate.

I[II. METHODOLOGY

In this section, we present our methodology as illustrated
in Figure 2, which involves four key stages:

1) Triple extraction,

2) Ontology development,

3) KG construction,

4) KG query and automated compliance verification using

a KG-enhanced RAG model.

These stages collectively facilitate the extraction, structur-
ing, and utilization of regulatory knowledge to verify IoT
cybersecurity compliance.

A. Triple Extraction Using LLMs

LLMs have revolutionized natural language processing
tasks, including text summarization, translation, and informa-
tion extraction. Recent advancements have enabled LLMs to
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perform triple extraction, identifying subject-predicate-object
relationships within text. These triples can then be directly
mapped to an ontology, forming the basis of a KG. However,
traditional LLM applications in compliance have been limited
to document analysis rather than structured knowledge repre-
sentation. Our work leverages LLMs to automate the extraction
of triples from regulatory texts, a crucial step in building a
compliance-focused KG. The extraction of subject-predicate-
object triples from regulatory texts is performed using an
LLM. We evaluate various LLMs to determine the most
suitable for handling large volumes of data, balancing speed
and accuracy. The LLM is guided by a prompt engineered to
focus on identifying relationships relevant to IoT cybersecurity
compliance. This automated process ensures that the KG is
populated with accurate and relevant triples that reflect the
content of the regulatory documents, as shown in Fig. 3.
Effective Prompt Engineering for Triple Extraction—is crucial
for maximizing the accuracy of triple extraction. The prompt
is iteratively refined to improve the LLM’s ability to identify
entities and relationships that are critical for compliance veri-
fication. For example, prompts are designed to target specific
sections of NIST standards that outline security requirements
for IoT devices. The extracted triples are then validated to
ensure their relevance and accuracy before being mapped to
the ontology.
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B. Ontology Development

The ontology is the backbone of our KG, and our Domain-
Specific Ontology Design (DSOD) and it captures the semantic
relationships between entities defined in USA cybersecurity
IoT laws, NIST standards (specifically NIST 8259), and other
relevant regulations. It provides a structured representation of
compliance processes, enabling more effective querying, rea-
soning, and automation for IoT cybersecurity compliance. Our
ontology development process was heavily guided by LLMs
using structured prompts to extract the relevant information
from NIST 8259. The prompts were designed to capture:

1) Entities:- stakeholders, processes, and components central
to IoT security. The key entities in NIST 8259 are:

o Stakeholders: represent the different actors involved in
NIST 8259 such as IoT device manufacturers, users, and
regulatory bodies like NIST. Each stakeholder has unique
responsibilities and actions to ensure IoT cybersecurity
compliance.
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e Processes: represent actions or procedures related to man-
aging, verifying, and ensuring loT security. For example,
configuration management ensures that IoT devices are
configured securely, and compliance check represents the
ongoing process of verifying adherence to regulatory
standards.

o Means: represent the tools, mechanisms, or devices that
are critical to the cybersecurity of IoT ecosystems. For
instance, SecurityFeature refers to any component or
feature that is implemented to enhance device security,
while IoTDevice represents the actual devices that must
comply with these standards.

2) Relationships:- connect these entities, reflecting the real-
world responsibilities and interactions outlined in NIST 8259.
3) Data Properties:- defines the attributes of the entities, and
key stakeholders relevant to NIST 8259, as shown in Fig. 4
and Fig. 5.

4) Object Properties:- define how entities interact with one
another as represented in Fig. 6, ensuring that the relationships
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outlined in NIST 8259 are accurately represented. Here are
some key object properties:

o performs: defines the actions that a stakeholder, like a
manufacturer, must carry out. For example, a Manufac-
turer may perform configuration management to ensure
that IoT devices are securely set up. Thus, this property
links Stakeholders like Manufacturer to Processes like
configuration management, showing the responsibility of
manufacturers to actively manage IoT security.

« isResponsibleFor: indicates responsibility for specific
tasks or processes. For example, a RegulatoryBody such
as NIST isResponsibleFor ensuring that standards like
NIST 8259 are implemented and adhered to. Hence
this property links Stakeholders like RegulatoryBody to
Processes like compliance check, specifying regulatory
oversight and enforcement.

o update: represents the process of updating IoT devices
or their security measures over time. For example, a
Manufacturer may update SecurityFeature as new threats
emerge. This property connects Stakeholders (e.g., Manu-
facturer) to Means (e.g., SecurityFeature), indicating that
manufacturers have a duty to continually enhance and
update the security features of their devices.

Thus, our use of LLMs allowed for a semi-automated
approach to building the ontology, speeding up the extraction
of complex relationships from dense regulatory text. These
extracted relationships were then formalized into an ontology
framework that not only structures knowledge about the enti-
ties involved but also defines the interactions between them,
to enable the KG serve as a reliable source for querying and
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# retrieve data properties of the Manufacturer class
PREFIX rdf. <http:/www.w3.0rg/1999/02/22-rdf-syntax-ns#=
PREFIX owl: <http:/mww.w3.0rg/2002/07/owl#>
PREFIX rdfs: <http://iwww.w3.0rg/2000/01/rdf-schema#>
PREFIX xsd: <http://ivww.w3.0rg/2001/XMLSchema#>
PREFIX ex: <http://lexample.org/onto.owl#=
SELECT DISTINCT?manufacturer ?property ?value
WHERE {
2?manufacturer rdfitype ex:Manufacturer .
?manufacturer ?property 2value .
}
manufacturer property value

Manufacturer-1 identify Customer-1
Manufacturer-1 rdf-type owl:Namedindividual
Manufacturer-1 shouldimplement NetworkSecurityMeasures
Manufacturer-1 determines customer_cybersecurity_nee
Manufacturer-1 define approaches_for_communic:
Manufacturer-1 define expected_use_cases
Manufacturer-1 considers CustomerSupport
Manufacturer-1 plansFor CustomerSupport
Manufacturer-1 shouldEstablish SecureDevelopmentProcess
Manufacturer-1 researches customer_cybersecurity_nee
Manufacturer-1 provides Cybersecurity_Capability
Manufacturer-1 understands customers_risks
Manufacturer-1 provisions secure_software_architectur
Manufacturer-1 description “Decide what to communical
Manufacturer-1 decides what_to_communicate_to_c

earnra anftware architartir

Fig. 8: Sample Manufacturer Query 1

reasoning about regulatory compliance.

C. Knowledge Graph Construction

Once the triples are extracted, they are mapped to the prede-
fined ontology, forming a structured KG as depicted in Fig. (7)
that captures the regulatory knowledge from the documents.
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SPARQL query: [ME® [ § SPARQL query: L= ]0]Es)

# Object Properties for AWS

PREFIX rdf: <http:/mwww.w3.0rg/1999/02/22-rdf-syntax-ns#=
PREFIX rdfs: <http:/iwww.w3.0rg/2000/01/rdf-schema#=>
PREFIX ex: <http://lexample.org/onto.owl#=

SELECT DISTINCT?property?range
WHERE {
?property rdftype owl:ObjectProperty .
?property rdfs:domain exAWS .
OPTIONAL { ?property rdfs:range ?range . }

property range
loTDevice
Process

loTDevice

usesData
sharesData
collectsData

Execute

# Object Properties for Manufacturer
PREFIX ex: <http:/example.org/onto.owl#>

SELECT DISTINCT ?property ?range
WHERE {
?property rdf.type owl:ObjectProperty .
?property rdfs:domain ex:Manufacturer .
OPTIONAL { ?property rdfs:range ?range . }
}

property range
Process
Process
Process
Process
Process
Process
Process
Process
Process
Customer
Process
Process
Process
Customer
Process

plansFor

provides

decides
determines
shouldEstablish
understands
provisions
performs

define

identify
shouldimplement
considers
determinesContent
researches
developsStrategies

Execute

Fig. 9: Sample Manufacturer Compliance check

This KG is then stored in a format compatible with Semantic
Web technologies, OWL [30] or RDF [31] preferably, enabling
efficient querying and reasoning. The construction of the
KG involves aligning each triple with the appropriate classes
and properties defined in the ontology, ensuring that the KG
accurately reflects the regulatory landscape.

D. KG query and Compliance Verification using KG-
Enhanced RAG

The final stages of the methodology involve querying the
KG for compliance checks using SPARQL, then integrating
the KG into an LLM with RAG capabilities. This integration
allows the model to retrieve relevant regulatory information
from the KG during the generation of compliance verification
reports. By leveraging the structured knowledge in the KG,
the RAG model can provide accurate and contextually rel-
evant answers when cross-checking BRD against Functional
Requirement Documents (FRD), as shown in Figures 10 and
8 respectively.

Eventually, we unit test an instance of manufacturer and
their processes, querying the ontology to see if there is
compliance, as shown in Fig. 9. Then we compare an instance
of a customer and processes in their policy against the manu-
facturers to check for compliance as shown in Fig. 11.

RAG implementation and workflow help ensure seamless
interaction with the KG. When a compliance check is re-
quested, the model retrieves relevant triples from the KG,
which are then used to inform the generative process. This
workflow ensures that the outputs of the RAG model are not
only accurate but also grounded in the structured regulatory
knowledge stored in the KG. The result is a comprehensive
compliance verification system that automates the process
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of cross-referencing BRD with applicable IoT cybersecurity
standards.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

Our experimental setup involves testing the KG-enhanced
RAG system on a dataset of BRDs and FRDs derived from
real-world IoT cybersecurity scenarios. The documents used in
the experiments cover a wide range of regulations, including
NIST standards and USA data protection laws. The LLM is
fine-tuned on domain-specific texts to ensure that it is well-
equipped to handle the nuances of IoT cybersecurity compli-
ance. The KG is constructed using the ontology developed in
the earlier stages, and SPARQL queries are used to evaluate
the system’s performance in retrieving relevant regulatory
information.

B. Performance Metrics

To assess the effectiveness of the KG-enhanced RAG sys-
tem, we employ several performance metrics:

o Compliance Accuracy: The percentage of correct com-
pliance checks performed by the system, indicating its
ability to accurately cross-reference BRD with relevant
regulations.

Query Relevance: Measures the relevance of the infor-
mation retrieved from the KG during the RAG process,
ensuring that the outputs are contextually accurate.
Efficiency: Evaluates the time taken to perform com-
pliance checks, with the KG-enhanced system showing
faster results due to the structured nature of the KG.
Scalability: Assesses the system’s ability to handle in-
creasingly complex KGs without a significant drop in
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SPARQL query: =10

# Object Properties for Customer
PREFIX ex: <http://lexample.org/onto.owl#=

SELECT DISTINCT ?property ?range
WHERE {
?property rdf:type owl:ObjectProperty .
?property rdfs:domain ex:Customer .
OPTIONAL { ?property rdfs:range ?range . }
}

property
mayBenefitFrom
use
canRequest
canBetterPlanFor
canSelectAndimplement

range
Updates

Means

Process

Updates

Process

Execute

Fig. 10: Sample Customer Query 1

performance, ensuring that the methodology can adapt
to future regulatory changes.

C. Results and Discussion

Here, we discuss our results, the quantitative and qualita-
tive approaches we undertake to evaluate the impact of an
enhanced KG + LLM pipeline for compliance verification.
Our quantitative approach focuses on measuring the perfor-
mance improvements in compliance accuracy and efficiency
before and after KG integration. Then our qualitative approach
examines the unique integration of querying and compliance
verification features tailored to IoT device manufacturers,
highlighting the advantages of using a KG built from regu-
latory documents.

1) Quantitative Analysis Discussion:

To evaluate the impact of KG integration, we compare
the performance of LLMs in compliance verification
tasks Pre and Post KG + LLM integration. The baseline
LLM, without KG support, relies solely on its pre-
trained knowledge, leading to potential gaps in domain-
specific understanding. Specifically, the KG-enhanced
system achieved a compliance accuracy of 93%, com-
pared to 75% for the baseline model. Query relevance
also improved, with the KG-enhanced system consis-
tently retrieving information that was directly applicable
to the compliance checks. Thus, after integrating the
KG, the LLM is able to retrieve precise regulatory
information, significantly improving the accuracy and
relevance of its compliance checks.

The efficiency of the system was evident in the reduced
time required to perform compliance checks, highlight-
ing the benefits of using structured data.
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Scalability tests also showed the system could handle
increasingly complex KGs without a significant drop in
performance, making it a robust solution for ongoing
compliance verification.

Overall, our analysis shows that the KG-enhanced RAG
model outperforms the baseline LLM in terms of both
compliance accuracy and efficiency. While KGs have
been used in other domains such as finance and legal
compliance, our approach is unique in its application
to IoT cybersecurity. Existing systems often lack the
flexibility and scalability needed to handle the rapidly
evolving regulatory landscape of IoT. Our methodol-
ogy addresses these challenges by leveraging LLMs
for automated triple extraction and by designing an
ontology that is specifically tailored to the intricacies
of the adaptability and precision of IoT cybersecurity
standards.

Qualitative Analysis Discussion:

To the best of our knowledge, this is the first work
that not only creates a KG from the FRD (in our
case NIST 8259 document) for IOT device companies,
but also provides querying and compliance verification
features to the users so that they can find gaps in
their BRDs. There are no previous works that provide
all these functionalities end-to-end to the IoT device
manufacturers/companies. For instance, Echenim et. al
[32] create IoT-Reg, (Internet of Things - Regulations),
an ontology that encapsulates regulations and guidelines
from NISTIR 8228, GDPR, and HIPAA and covers
compliance and risk mitigation areas affecting various
devices. While they have created the KG, we take the
process further by adding the querying and compliance
verification to our framework. Moreover, use of LLMs
in our framework has enabled retrieval of precise regu-
latory information, significantly improving the accuracy
and relevance of its compliance checks.

2)

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach to automating IoT
cybersecurity compliance checks by integrating a KG with an
LLM using RAG. The methodology effectively addresses the
challenges of understanding and applying complex regulatory
standards by leveraging ontology-based knowledge extraction
and structured querying. Our experimental results and case
study demonstrate the significant improvements in compliance
accuracy, query relevance, and efficiency provided by the
KG-enhanced system. The system has demonstrated big data
scalability and can handle complex KGs. A limitation of our
work is that the accuracy of triple extraction is dependent on
the quality of LLM and effectiveness of prompt engineering.
Therefore, further optimization may be needed to ensure that
performance remains consistent as the regulatory landscape
evolves.

In the future, we will focus on scaling up the system to
meet its big data potential, including optimizing data storage
and retrieval mechanisms for even larger datasets. We plan to
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SPARQL query: M= m & | SPARQL query: L=]0]Es]

# Object Properties for wyze

PREFIX rdf. <http://iwww.w3.0rg/1999/02/22-rdf-syntax-ns#=
PREFIX rdfs: <http:/iww.w3.0rg/2000/01/rdf-schema#>
PREFIX ex: <http://example.org/onto.owl#>

SELECT DISTINCT?property?range
WHERE {
?property rdftype owl:ObjectProperty .
?property rdfs:domain ex:Wyze .
OPTIONAL { ?property rdfs:range ?range .}
}

property range
usesData loTDevice
sharesData Process
collectsData loTDevice
Execute

# Object Properties for Customer
PREFIX ex: <http://fexample.org/onto.owl#=

SELECT DISTINCT?property ?range
WHERE {
?property rdftype owl:ObjectProperty .
?property rdfs:domain ex:Customer .
OPTIONAL { ?property rdfs:range ?range . }
}

property range

mayBenefitFrom Updates

use Means

canRequest Process
canBetterPlanFor Updates
canSelectAndimplement Process
sharesloTDeviceData Process

collectsData loTDevice

usesData loTDevice

Execute

Fig. 11: Sample Customer Compliance check

host and deploy the system publicly, providing open access to
the KG and compliance verification tools.

Additionally, one potential area for future exploration is the
development of effective prompting strategies for LLMs in
the context of compliance verification. Given the complex-
ity and specificity of regulatory language, optimizing how
prompts are structured could lead to better performance in
retrieving relevant information and interpreting compliance
requirements. Techniques such as prompt engineering, few-
shot prompting, and chain-of-thought prompting have shown
promise in enhancing the reasoning and retrieval capabilities
of LLMs, as highlighted in recent studies by Brown et al.
[33], Wei et al. [34], Reynolds et al. [35] and Gao et al. [36].
Exploring these approaches in the context of IoT regulatory
compliance could provide a pathway to further improve the
accuracy and relevance of compliance checks. Thus, we plan
to investigate ways to improve the LLM’s reasoning capa-
bilities over the KG, enabling more sophisticated compliance
checks and broader applicability across different regulatory
frameworks.

ACKNOWLEDGMENT

This work was supported by NSF award #2348147. We ex-
press our gratitude to colleagues whose insights and expertise
significantly contributed to the research.

REFERENCES

[11 F. Z. Amara, M. Hemam, M. Djezzar, and M. Maimor, “Semantic web
and internet of things: Challenges, applications and perspectives,” ICOSI
Laboratory, Khenchela, Algeria, 2023.

[2] “Internet of things cybersecurity improvement act of 2020,” Congress
U.S. Government Publishing Office, Tech. Rep., 2020.

[3] T. W. House, “Improving the nation’s cybersecurity,” Executive Office
of the President, Tech. Rep., 2021.

6344

8259: Foundational
2020.

[4] J. T. Force, “Nistir
for iot device manufacturers,”
//doi.org/10.6028/NIST.IR.8259
K. Boeckl, K. Boeckl, M. Fagan, W. Fisher, N. Lefkovitz, K. N.
Megas, E. Nadeau, D. G. O’Rourke, B. Piccarreta, and K. Scarfone,
Considerations for managing Internet of Things (IoT) cybersecurity and
privacy risks.  US Department of Commerce, National Institute of
Standards and Technology ..., 2019.

L. S. Vailshery, “Bar chart for internet of things (iot) and non-iot active
device connections worldwide from 2010 to 2025 (in billions) [chart],”
Statista, 2022, global IoT and non-IoT connections 2010-2025. Available
at: https://www.statista.com/statistics/1101442/iot-number-of-connected-
devices-worldwide/.

Z. Xu, Y. Sheng, L. He, and Y. Wang, “Review on knowledge graph
techniques,” Dianzi Keji Daxue Xuebao/Journal of the University of
Electronic Science and Technology of China, 07 2016.

W3C. (21 March, 2013) SPARQL 1.1 Overview. Accessed: August 23,
2023. [Online]. Available: https://www.w3.org/TR/sparqll 1-overview/
L. Sciullo, L. Gigli, F. Montori, A. Trotta, and M. D. Felice, “A survey
on the web of things,” Journal of Internet of Things, vol. 1, pp. 1-10,
2022.

J. L. Hernandez-Ramos, S. N. Matheu, A. Feraudo, G. Baldini, and
J. Bern, “Defining the behavior of iot devices through the mud standard:
Review, challenges, and research directions,” IEEE Internet of Things
Journal, vol. 8, no. 5, pp. 3921-3935, 2021.

J. T. Force, “Nist special publication 800-53 revision 5,” 2020. [Online].
Available: https://doi.org/10.6028/NIST.SP.800-53r5

J. Hebeler, M. Fisher, R. Blace, and A. Perez-Lopez, Semantic web
programming. John Wiley & Sons, 2011.

G. Antoniou and F. Van Harmelen, A semantic web primer. MIT press,
2004.

T. B. Passin, Explorer’s guide to the semantic web. Manning Publica-
tions Co., 2004.

K. Uzoma Echenim and K. P. Joshi, “Iot-reg: A comprehensive knowl-
edge graph for real-time iot data privacy compliance,” in Proceedings of
the 3rd Workshop on Knowledge Graphs and Big Data in Conjunction
with IEEE BigData 2023, 2023.

K. Joshi, L. Elluri, and A. Nagar, “An integrated knowledge graph to
automate cloud data compliance,” IEEE Access, vol. 8, pp. 148 541—
148 555, 2020.

A. Kotal, L. Elluri, D. Gupta, V. Mandalapu, and A. Joshi, “Privacy-
preserving data sharing in agriculture: Enforcing policy rules for secure

cybersecurity activities
[Online]. Available: https:

[5]

[6]

[7]

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

Authorized licensed use limited to: Texas A M University. Downloaded on May 31,2025 at 17:38:01 UTC from IEEE Xplore. Restrictions apply.



and confidential data synthesis,” in 2023 IEEE International Conference
on Big Data (BigData). 1EEE, 2023, pp. 5519-5528.

[18] R. Walid, K. P. Joshi, and L. Elluri, “Secure and privacy-compliant
data sharing: An essential framework for healthcare organizations,” in
International Conference on Mathematics and Computing.  Springer,
2024, pp. 15-26.

[19] L. Garza, L. Elluri, A. Kotal, A. Piplai, D. Gupta, and A. Joshi,
“Privcomp-kg: Leveraging knowledge graph and large language
models for privacy policy compliance verification,” arXiv preprint
arXiv:2404.19744, 2024.

[20] D.-y. Kim, L. Elluri, and K. P. Joshi, “Trusted compliance enforcement
framework for sharing health big data,” in 202/ IEEE International
Conference on Big Data (Big Data). 1EEE, 2021, pp. 4715-4724.

[21] D.-Y. Kim and K. Joshi, “A semantically rich knowledge graph to
automate hipaa regulations for cloud health it services,” in 2021 7th
IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity),
IEEE Intl Conference on High Performance and Smart Computing
(HPSC) and IEEE Intl Conference on Intelligent Data and Security
(IDS). IEEE, 2021, pp. 7-12.

[22] H. Guo, B. An, Z. Guo, and Z. Su, “Deep semantic compliance advisor
for unstructured document compliance checking,” IBM Research China,
2021.

[23] M. Chen, Z. Tao, W. Tang, T. Qin, R. Yang, and C. Zhu, “Enhancing
emergency decision-making with knowledge graphs and large language
models,” 2022.

[24] G. Babayeva, K. Maennel, and O. Maennel, “Building an ontology
for cyber defence exercises,” in 2022 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). 1EEE, 2022, pp. 423—
432.

[25] B. A. Mozzaquatro, C. Agostinho, D. Goncalves, J. Martins, and
R. Jardim-Goncalves, “An ontology-based cybersecurity framework for
the internet of things,” 2021.

[26] R. O. Andrade, L. Tello-Oquendo, S. G. Yoo, and I. Ortiz-Garcés, “A
comprehensive study of the iot cybersecurity in smart cities,” IEEE
Access, 2021.

[27] P. G. Chiara, “The iot and the new eu cybersecurity regulatory land-
scape,” 2021.

[28] S. Xu, M. Chen, and S. Chen, “Enhancing retrieval-augmented gen-
eration models with knowledge graphs: Innovative practices through a
dual-pathway approach,” 2021.

[29] Z. Xu, M. J. Cruz, M. Guevara, T. Wang, M. Deshpande, and X. Wang,
“Retrieval-augmented generation with knowledge graphs for customer
service question answering,” 2022.

[30] W3C. (10 February, 2004) Web Ontology Language. Accessed: August
23, 2023. [Online]. Available: https://www.w3.org/TR/owl-features/

[31] W3C. (15 March, 2014) Resource Description Framework. Accessed:
August 23, 2023. [Online]. Available: https://www.w3.org/RDF/

[32] K. U. Echenim and K. P. Joshi, “Iot-reg: A comprehensive knowledge
graph for real-time iot data privacy compliance,” in 2023 IEEE Interna-
tional Conference on Big Data (BigData). 1EEE, 2023, pp. 2897-2906.

[33] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell ef al., “Language models
are few-shot learners,” Advances in Neural Information Processing
Systems, vol. 33, pp. 1877-1901, 2020

[34] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou,
“Chain-of-thought prompting elicits reasoning in large language mod-
els,” arXiv preprint arXiv:2201.11903, 2022.

[35] L. Reynolds and K. McDonell, “Prompt programming for large
language models: Beyond the few-shot paradigm,” arXiv preprint
arXiv:2102.07350, 2021.

[36] T. Gao, A. Fisch, and D. Chen, “Making pre-trained language models
better few-shot learners,” Association for Computational Linguistics
(ACL), pp. 3816-3830, 2021.

6345
Authorized licensed use limited to: Texas A M University. Downloaded on May 31,2025 at 17:38:01 UTC from IEEE Xplore. Restrictions apply.



