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Abstract. Over the past few years, several adversarial training methods have been pro-
posed to improve the robustness of machine learning models against adversarial perturba-
tions in the input. Despite remarkable progress in this regard, adversarial training is often 
observed to drop the standard test accuracy. This phenomenon has intrigued the research 
community to investigate the potential tradeoff between standard accuracy (a.k.a generali-
zation) and robust accuracy (a.k.a robust generalization) as two performance measures. In 
this paper, we revisit this tradeoff for latent models and argue that this tradeoff is mitigated 
when the data enjoys a low-dimensional structure. In particular, we consider binary classi-
fication under two data generative models, namely Gaussian mixture model and general-
ized linear model, where the features data lie on a low-dimensional manifold. We develop 
a theory to show that the low-dimensional manifold structure allows one to obtain models 
that are nearly optimal with respect to both, the standard accuracy and the robust accuracy 
measures. We further corroborate our theory with several numerical experiments, includ-
ing Mixture of Factor Analyzers (MFA) model trained on the MNIST data set.
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1. Introduction
We are witnessing an unparalleled growth of machine 
learning tools in various applications domain, where 
these tools are deployed to inform decisions that directly 
impact human’s lives, from health interventions to credit 
decisions, sentencing and autonomous driving. Given 
the safety-critical nature of these applications, reliability 
and robustness of machine learning systems have 
become one of the paramount goals of today’s AI.

Robust estimation has been one of the central topics in 
statistics, notably by the seminal work of Tukey (1960), 
Huber (1992), and Hampel (1968), among others. The 
majority of work in this area has focused on robustness 
with respect to outliers (a small fraction of predictors 
and/or response variables, which are contaminated by 
gross errors).

Another relevant notion that has spurred a surge of 
interest in recent years is that of adversarial robustness. 
While machine learning models, and deep learning in 
particular, have shown remarkable empirical perfor-
mance, many of these models are known to be highly 
vulnerable to adversarially chosen perturbations to the 

input data at test time, known as adversarial attacks. Even 
more surprisingly, many of such adversarial attacks 
can be designed to be slight modifications of the input 
which are seemingly innocuous and imperceptible. For 
example, in image processing and video analysis there 
are several examples of adversarial attacks in form of 
indiscernible pixel-wise perturbations which can signifi-
cantly degrade the performance of the state-of-the-art 
classifiers (Biggio et al. 2013, Szegedy et al. 2014). Other 
examples include well-designed malicious contents like 
malware which can pass the scanning classifiers and yet 
harm the system, or adversarial attacks on speech recog-
nition systems, such as GoogleNow or Siri, which are in-
comprehensible or even completely inaudible to human 
and can still control the virtual assistant software (Vai-
dya et al. 2015, Carlini et al. 2016, Zhang et al. 2017).

In response to this fragility, a growing body of work 
in the past few years has sought to improve the robust-
ness of machine learning systems against adversarial 
attacks. Despite remarkable progress in designing robust 
training algorithms and certifiable defenses, it is often 
observed that these methods compromise the statistical 
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accuracy on unperturbed test data (i.e., test data drawn 
from the same distribution as training data). Such ob-
servation had led prior work to speculate a tradeoff 
between the two fundamental notions of robustness and 
generalization (for a nonexhaustive list see, e.g., Madry 
et al. 2018, Raghunathan et al. 2019, Min et al. 2020, Meh-
rabi et al. 2021). For example, the highest obtained 
ℓ∞-robust accuracy on CIFAR10 (without using addi-
tional data) with ε∞ � 8=255 is 60%, with standard accu-
racy of 85% (which is 10% less than state-of-the-art 
standard accuracy for ε∞ � 0).

Some of the promising adversarial training methods, 
such as TRADES (Zhang et al. 2019) acknowledge such 
tradeoff by including a regularization parameter which 
allows to tune between these two measures of perfor-
mance. There has been also recent line of work (Javan-
mard et al. 2020, Javanmard and Soltanolkotabi 2022) 
which provides precise asymptotic theory for this trade-
off and how it is quantitively shaped by different compo-
nents of the learning problem (e.g., adversary’s power, 
geometry of perturbations set, overparameterization, 
noise level in training data, etc.) For the setting of linear 
regression and binary classification it is proved that there 
is an inherent tradeoff between robustness and stand-
ard accuracy (generalization) which holds at population 
level and for any (potentially computationally intensive) 
training algorithms (Dobriban et al. 2020, Javanmard 
et al. 2020, Mehrabi et al. 2021). Nonetheless, these work 
make strong assumptions on the distribution of data 
(e.g., Gaussian or Gaussian mixture models), which fail 
to capture various natural structures in data. This stimu-
lates the following tantalizing question:

(*) Are there natural data generative models under which 
the tradeoff between robustness and the standard accuracy 
(generalization) vanishes, in the sense that one can find 
models which are performing well (or even optimal) with 
respect to both measures?

As a step toward answering this question, Yang et al. 
(2020) show that when data are well separated, there is 
no inherent conflict between standard accuracy and 
robustness. It also provides numerical experiments on a 
few image datasets to argue that these data are indeed 
r-well separated for some value r larger than the pertur-
bation radii used in adversarial attacks (i.e., data from 
different classes are at least r distance apart in the pixel 
domain). In Xing et al. (2021), adversarially robust esti-
mators are studied for the setup of linear regression and a 
lower bound on their statistical minimax rate is derived. 
The minimax rate lower bound for sparse model is much 
smaller than the one for dense model, whereby Xing et al. 
(2021) argues the importance of incorporating sparsity 
structure in improving robustness.

The current work takes another perspective toward 
question (*) by considering the low-dimensional manifold 
structures in data. Many high-dimensional real-world 

data sets enjoy low-dimensional structures, and learning 
low-dimensional representations of raw data are a com-
mon task in information processing. In fact, the entire field 
of dimensionality reduction and manifold learning has 
been developed around this task. To give concrete exam-
ples, the MNIST database of handwritten digits consists 
of images of size 28× 28 (i.e., ambient dimension of 784), 
while its intrinsic (manifold) dimension is estimated to be 
≈ 14, based on local neighborhoods of data. Likewise, the 
CIFAR10 database consists of color images of size 32×32 
(i.e., ambient dimension of 3,072), but its intrinsic dimen-
sion is estimated to be ≈ 35 (Costa and Hero 2004, Rozza 
et al. 2012, Spigler et al. 2020). The high-level message of 
the current work is that the low-dimensional structures in 
data can mitigate the tradeoff between standard accuracy 
and robustness, and potentially enable training models 
that perform gracefully (or even optimal) with respect to 
both measures.

1.1. Summary of Contributions
In this work we focus on two widely used models for 
binary classification, namely Gaussian-mixture model 
and the generalized linear model, where we also assume 
that the feature vectors lie on a k-dimensional manifold 
in a d-dimensional space (k< d). We consider adversarial 
setting with norm-bounded perturbation (in ℓp norm), 
for general p ≥ 2.

We use the minimum nonzero singular value of the 
“lifting matrix” W ∈ Rd×k (between the manifold and the 
ambient space) as a measure of low-dimensional struc-
ture of data; cf. (5) and (6). We assess the generaliza-
tion property of a model through the notion of standard 
risk, and its robustness against adversarial perturbation 
through the notion of adversarial risk (See Section 2 for for-
mal definition.) Our main contributions are summarized 
as follows: 

• Under both data generative models, we derive the 
Bayes-optimal estimators, which provably attain the 
minimum standard risk. We prove that as long as 
σmin(W) diverges as d →∞, with a growth rate that 
depends on the adversary’s power εp and the perturba-
tion norm ℓp, then the Bayes-optimal estimator asymp-
totically achieves the minimum adversarial risk as 
well. This implies that the tradeoff between robustness 
and generalization asymptotically disappears as data 
becomes more structured.

• While the gap between the optimal standard risk 
and optimal adversarial risk shrinks for data with low- 
dimensional structure, we show that these two risk 
measures (as functions of estimators) stay away from 
each other. Specifically, we come up with an estimator 
for which the standard and adversarial risks remain 
away from each other by a constant c> 0 independent 
of k, d.

• In Section 4.1, we consider an adversarial training 
method based on robust empirical loss minimization. 
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While this algorithm is structure-agnostic we provably 
show that it results in models that are robust and also 
generalize well, under low-dimensional data structure. 
Note that the data structures (distribution), even if not 
deployed by the training procedure, still comes into 
picture as the adversarial risk and standard risk are 
defined with respect to this data distribution.

• We corroborate our theoretical findings with sev-
eral synthetic simulations. We also train Mixture of 
Factor Analyzers (MFA) models on the MNIST image 
data set. This results in low-rank models from which 
we can generate new images. Furthermore, the Bayes- 
optimal classifier can be precisely computed for the 
MFA model. We show empirically that as the ratio of 
ambient dimension to the rank diverges (data becomes 
more structured) the gap between standard risk and 
adversarial risk vanishes for the Bayes-optimal classi-
fier. In other words, Bayes-optimal estimator becomes 
optimal with respect to both risks.

1.2. Related Work
There is a growing body of work on the tradeoff between 
robustness and generalization (see e.g., Madry et al. 
2018, Tsipras et al. 2018, Raghunathan et al. 2019, Zhang 
et al. 2019, Min et al. 2020, Yang et al. 2020, Mehrabi et al. 
2021). In particular, Dobriban et al. (2020) consider the 
isotropic Gaussian-mixture model with two and three 
classes, and derive Bayes-optimal robust classifiers for ℓ2 

and ℓ∞ adversaries. This work proves a tradeoff between 
the standard and the robust risks, which grows when the 
classes are imbalanced.

The prior work (Jalal et al. 2017, Song et al. 2018, Stutz 
et al. 2019) proposed the concept of on-manifold attack, 
where the adversarial perturbations are done in the 
latent low-dimensional space. In Stutz et al. (2019), it is 
argued that on-manifold adversarial examples are acting 
as generalization error and adversarial training against 
such attacks improve the generalization of the model as 
well. In addition, a so-called on-manifold adversarial 
training (based on minimax formulation) has been pro-
posed which is similar to the adversarial training method 
of Madry et al. (2018) but tailored to perturbations in the 
manifold space. The subsequent work (Lin et al. 2020) 
proposes dual manifold adversarial training (DMAT) 
method which considers adversarial perturbations in 
both the manifold and the image space to robustify mod-
els against a broader class of adversarial attacks. In this 
terminology, in our current work we consider out-of- 
manifold perturbations (in the ambient space). Also let us 
emphasize that Stutz et al. (2019) and Lin et al. (2020) are 
based on empirical studies on image databases and more 
on an algorithmic front. The current work contributes to 
this literature by developing a theory for the role of mani-
fold structure of data in the interplay between robustness 
and generalization, under specific binary classification 

setups (viz. Gaussian-mixture model and generalized lin-
ear model).

2. Problem Formulation
In this section we discuss the problem setting and formu-
lation of this paper in greater detail. After adopting some 
notations, we give a brief overview of adversarial setting 
and describe two data generative models, namely the 
Gaussian mixture models (GMMs) and generalized 
linear models (GLMs), which incorporate latent low- 
dimensional manifold structure. We then conclude this 
section by a short background on the Bayes-optimal 
binary classifiers.

2.1. Notations
For a matrix W ∈ Rd×k, let ‖W‖ denote its operator norm, 
W† stand for the Moore-Penrose inverse, and σmin(W)

denote its smallest “nonzero” singular value. For a vec-
tor x ∈ Rd and p ≥ 1, we define the ℓp norm ‖x‖ℓp �
�
Pd

i�1 x
p
i

�1=p
. In addition, let Bε(x) denote the ℓ2-ball cen-

tered at x with radius ε. Throughout the paper, for two 
functions f, g from integers to positive real numbers, we 
say f (d) � od(g(d)), as d grows to infinity, if for every 
δ > 0, we can find a positive integer ℓ�such that for d ≥ ℓ, 
we have f (d)=g(d) ≤ δ. In addition, let N(µ,Σ) denote the 
probability density of a multivariate normal distribution 
with mean µ and covariance Σ.

2.2. Adversarial Setting

In the binary classification problem, we are given a set of 

labeled data points {(xi, yi)}i�1:n which are drawn i.i.d. 

from a common law P, where x ∈ X ⊂ Rd is the feature 

vector and y ∈ {+1, �1} is the label associated to the fea-

ture x. The goal is to predict the label of a new test data 

point with a feature vector drawn from the similar popu-

lation. To this end, the learner tries to fit a binary classifi-

cation model to the training set, which results in an 

estimated model ĥ : X → {�1, + 1}. The conventional 

metric to measure the accuracy of a classifier h is its aver-

age error probability on an unseen data point (x, y) ~ P. 

This is often referred to as the standard risk of the classi-

fier, a.k.a. generalization error. Concretely, standard risk 

of a classifier h is defined as the following:

SR(h) :� P(h(x)y ≤ 0): (1) 

Despite the remarkable success in deriving classifiers 
with high accuracy (low standard risk) during the past 
decades, it has been observed that even the state-of-the- 
art classifiers are vulnerable to minute but adversarially 
chosen perturbations on test data points.

The adversarial setting is often formulated as a game 
between the learner and the adversary. Given access 
to unperturbed training data, the learner fits a model 
h : X →{�1, + 1}. After observing the model h and each 
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test data point (x, y) generated from the distribution P, 
the adversary perturbs the data point arbitrarily as far as 
its within its budget. A common and widely-used adver-
sarial model is that of norm-bounded perturbations, 
where for each test data point (x,y) the adversary 
chooses an arbitrary perturbation δ�from the ℓp ball 
of radius εp and replaces x by x+ δ. Here, εp is a parame-
ter of the setting which quantifies adversary’s power.1

The adversarial risk of the classifier h is defined as the 
following:

AR(h) � E(x, y)~P

 

sup
‖δ‖ℓp≤εp

ℓ(h(x+ δ), y)

!

, (2) 

for some loss function ℓ. For the 0-1 loss ℓ(s, t) � I(st ≤ 0), 
this measure amounts to

AR(h) � P

 

inf
‖x′�x‖ℓp≤εp

h(x′)y ≤ 0

!

: (3) 

Remark 1. A couple points are worth noting regard-
ing the adversarial setting: 

• The adversary chooses perturbation “after” ob-
serving the test data point. The perturbation δ�can in 
general depend on x, that is, different data points can 
be perturbed differently. Therefore, in the definition 
(2), the supremum is taken inside the expectation.

• In the above setting, the perturbations are added 
in the test time, while the learner is given access to 
unperturbed training data. Other adversarial setups 
are also studied in the literature; see for example, 
where an attacker can observe and modify all training 
data samples adversarially so as to maximize the esti-
mation error caused by his attack.

• Another popular adversarial model is the so- 
called distribution shift. In this model, in contrast to 
norm bounded perturbations as discussed above, the 
adversary can shift the test data distribution. The 
adversary’s power is measured in terms of the Wasser-
stein distance between the test and the training distri-
butions; see Staib and Jegelka (2017), Dong et al. (2020), 
Pydi and Jog (2020), and Mehrabi et al. (2021) for a non-
exhaustive list of references. That said, our focus in this 
paper is on the norm-bounded perturbations.

From the definition of standard risk and adversarial 
risk given by (1) and (3), it can be seen that the adversar-
ial risk is always at least as large as the standard risk. We 
refer to the nonnegative difference of adversarial risk 
and standard risk as the boundary risk, formulated by

BR(h) :� AR(h)� SR(h)

� P

 

h(x)y ≥ 0, inf
‖x′�x‖ℓp≤εp

h(x)h(x′) ≤ 0

!

: (4) 

The boundary risk can be considered as the average 
vulnerability of the classifier with respect to small 

perturbations on successfully labeled data points. In 
other words, it measures the likelihood that the classi-
fier correctly determines the label of a data point, but 
fails to label another test input very close to the pri-
mary data point. In the main result section, we study 
the boundary risk of optimal classifiers (having the 
lowest standard risk) in scenarios that features vectors 
lie on a low-dimensional manifold. We next discuss 
the data generative models.

2.3. Data Generative Model
2.3.1. Latent Low-Dimensional Manifold Models. We 
focus on the binary classification problem with high- 

dimensional features generated from a low-dimensional 

latent manifold. Specifically, we assume that for the fea-

tures vector x ∈ Rd, and the binary label y ∈ {+1, �1}, 
there exists an inherent low-dimensional link z ∈ Rk 

such that x⫫y | z. This structure can be perceived as a 

transformed binary classification model, where low- 
dimensional features z ∈ Rk of a hidden classification 

problem with labels y ∈ {+1, �1}, are embedded in a 

high-dimensional space by a mapping G : Rk → Rd. The 
learner observes the embedded high-dimensional fea-

tures xi � G(zi) and the primary binary labels yi, while 

being oblivious to the low-dimensional latent vector zi.
Throughout the paper, we consider a special case of 

this model, where G(z) � φ(Wz) with W ∈ Rd×k a tall 
full-rank weight matrix, and φ acting entry-wise on vec-
tor inputs with a derivative dφ=dt ≥ c, for some positive 
constant c>30.

2.3.2. Classification Settings. The focus of this paper is 
on two widely used binary classification settings: (i) 
Gaussian mixture models (ii) generalized linear models 
which we briefly explain below. 

• Gaussian mixture models. In the Gaussian mix-
ture model, the binary response value y accepts the 
positive label with probability π, and the negative label 
with probability 1�π. In this setting, labels are as-
signed independently from the feature vector z, while 
feature vectors are generated from a multivariate Gau-
ssian distribution with the mean vector yµ, and a cer-
tain covariance matrix. Concretely, the data generating 
law for the Gaussian mixture problem with features 
coming from a low-dimensional manifold can be writ-
ten as the following:

y ~ Bern(π,{+1, �1}), x�φ(Wz), z ~ N(yµ,Ik): (5) 

In this model, we consider low-dimensional isotropic 
Gaussian features. In other words, manifold features z 
are drawn from a Gaussian distribution with identity 
covariance matrix.

• Generalized linear models. In binary classifi-
cation under a generalized linear model, there is an 
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increasing function f : R :→ [0, 1], a.k.a. link function, 
along with a linear predictor β ∈ Rk, where the score 
function f (zTβ) denotes the likelihood of feature vector 
z accepting the positive label. Formally, the data gener-
ating law for this classification problem under the low- 
dimensional manifold model can be formulated as the 
following:

y �

�

+1 w:p: f (zTβ),

�1 w:p: 1� f (zTβ):
, x � φ(Wz), z ~ N(0, Ik):

(6) 

Popular choices of the link function f are the logistic 
model f (t) � 1=(1+ exp(�t)), and the probit model f (t) �
Φ(t) with Φ(t) being the standard normal cumulative 
distribution function.

2.4. Background on Optimal Classifiers
For each classification setup described in the previous 
section, we want to identify the classifiers that are opti-
mal with respect to the standard risk. To this end, we 
provide a summary of the Bayes-optimal classifiers. For 
a data point (x, y) ~ P, consider the conditional distribu-
tion function η(x) :� P(y � +1 | X � x). This distribution 
function can be perceived as the likelihood of assigning 
the positive label to a data point with feature vector x. 
The Bayes-optimal classifier simply assigns label y � +1 
to the feature vector x, if for this feature there is a higher 
likelihood to accept the label+1 than �1. In other words, 
hBayes(x) � sign(η(x)� 1=2). We formalize it in the next 
proposition, which is a standard result (see e.g., Devroye 
et al. 2013, theorem 2.1).

Proposition 2.1. (Devroye et al. 2013, theorem 2.1) 
Among all the classifiers h : Rd → {+1, �1}, such that h is 
a Borel function, the Bayes-optimal classifier hBayes(x) �
sign(η(x)� 1=2) has the lowest standard risk.

The next corollary uses Proposition 2.1 to characterize 
the Bayes-optimal classifier under each of the binary clas-
sification settings described earlier in Section 2.3.

Corollary 1. Under the Gaussian mixture model (5), the 
Bayes-optimal classifier can be formulated by

h∗(x) � sign(φ�1(x)T(WWT)†Wµ� q=2), 

with q � log 1�π
π

� �

. Moreover, under the generalized linear 
model (6), the Bayes-optimal classifier is given by

h∗(x) � sign(f (βT(WTW)�1WTφ�1(x))� 1=2):

It is worth noting that in the described manifold latent 
model of Section 2.3, the weight matrix W is tall and full- 
rank, and φ is strictly increasing hence both WTW and φ
are invertible.

3. Main Results
We will focus on the described binary classification set-
tings of Section 2.3. In each setting, we characterize the 
asymptotic behavior of the associated boundary risk of 
Bayes-optimal classifiers, when the ambient dimension d 
grows to infinity. We aim at studying the role of low- 
dimensional latent structure of data in obtaining a van-
ishing boundary risk for the Bayes-optimal classifiers. In 
this case, the Bayes-optimal classifiers are optimal with 
respect to both measures of standard accuracy and the 
robust accuracy.

3.1. Gaussian Mixture Model
Consider the Gaussian mixture model with features 
lying on a low-dimensional manifold, cf. (5). Recall that 
the learner only observes the ambient d�dimensional 
features x, and is oblivious to the original k-dimensional 
manifold features z. The next result states that under this 
setup, the boundary risk of the Bayes-optimal classifier 
will converge to zero, when the minimum nonzero sin-
gular value of the weight matrix W grows at a sufficient 
rate, which depends on adversary’s power εp and the 
choice of perturbations norm ℓp.

Theorem 1. Consider the binary classification problem 
under the Gaussian mixture model (5) in the presence of an 
adversary with ℓp-norm bounded adversary power εp, for 
p ≥ 2. By letting the ambient dimension d grow to infinity, 
under the condition that the weight matrix W satisfies

εpd
1
2�

1
p

σmin(W)
� od(1), (7) 

the boundary risk of the Bayes-optimal classifier converges to 
zero.

The proof of Theorem 1 is given in the appendix.
We proceed by discussing condition (7). As εp gets 

larger, the condition becomes more strict which is expec-
ted; larger value of εp indicates a stronger adversary which 
makes the boundary risk larger. In addition, σmin(W)

somewhat measures the extent of low-dimensional struc-
ture in data; small σmin(W) indicates that there are direc-
tions in the low-dimensional space along which the energy 
of the signal is not scaled sufficiently large when trans-
formed into the ambient space. Therefore, the adversary 
can perturb feature x along those dimensions as the existent 
signal is weak. In particular, if the means of mixture com-
ponents are close to the space of small eigenvalues of W, 
then they are collapsed in the embedding from the latent 
space to the ambient space, making the Bayes-optimal clas-
sifier less robust. Finally, since ‖δ‖ℓp ≤ ‖δ‖ℓ2 

for p ≥ 2, an 
adversary with power ε�in ℓp norm is stronger than an 
adversary with power ε�in ℓ2 norm. This is consistent with 
the fact that d

1
2�

1
p is increasing in p and so the condition 

becomes stronger for larger p.
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Example. Consider the case of φ(·) being the identity 
function and p�2. We observe that for feature x with 
label y, xi ~ N(ywT

i µ, ‖wi‖
2
ℓ2
). To be definite, we fix 

‖wi‖ℓ2 � 1, which implies in particular ‖W‖2
F � d. To 

simplify further, we assume that all the nonzero sin-
gular values of W to be equal, whence WTW � (d=k)I. 
In this case, condition (7) reduces to ε2 � o(

ffiffiffiffiffiffiffi

d=k
p

). In 
particular, if ε2 � O(1) and the dimension ratio d=k →∞
the boundary risk converges to zero.

Figure 1 validates the result of Theorem 1 under the 
Gaussian mixture model (5) with π � 1=2, µ � N(0, 
Ik=k), in the presence of an adversary with ℓ2 bounded 
adversarial attacks of power ε2. In this example, we 
fix the high-dimensional feature dimension d�300, 
and vary the dimensions ratio d/k from 1 to 300. Fur-
ther, we consider the identical function φ(t) � t, and 
let the feature matrix W have independent Gaussian 
entries N(0, 1=k). Figure 1(a) shows the effect of di-
mensions ratio d/k on the standard risk, adversarial 
risk, and the boundary risk of the Bayes-optimal clas-
sifier. For each fixed values (k, d), we generate M�100 
independent realizations and compute the risks. The 
shaded area around each curve denotes one standard 
deviation (computed over M realizations) above and 
below the average curve. As it can be seen, the bound-
ary risk will eventually converge to zero. Finally, in 
Figure 1(b), we consider several values for adversary’s 
power, where it can be observed that for all adver-
sary’s power ε2, the boundary risk decays to zero as 
the feature dimensions d/k grows.

The standard risk and the robust risk in Figure 1(a)
are calculated using the following proposition.

Proposition 3.1. Consider the mixture of Gaussian classi-
fication setup (5) with the identity mapping φ(t) � t and 
balanced classes (i.e., π � 1=2). For a linear classifier h(x) �
sign(xTa) under ℓp-bounded adversarial setup, adversarial 
and standard risks are given by

AR(h) � Φ
εp‖a‖q � aTWµ

‖WTa‖2

 !

, SR(h) � Φ
�aTWµ

‖WTa‖2

� �

, 

where ‖:‖q is the dual norm of ‖:‖p, that is, 1p +
1
q � 1.

We refer to the appendix for the proof of Proposi-
tion 3.1.

In Theorem 1, we showed that when features lie on a 
low-dimensional manifold, the Bayes-optimal classifier 
is also optimal with respect to the adversarial risk. In 
other words, the adversarial risk is always at least as 
large as the standard risk, for any classifier, and the gap 
between the “minimum” of these two risks converges to 
zero. This result raises the below natural question:

“Does the boundary risk of any classifier vanish under the 
low-dimensional latent structure?”

In the next proposition, we provide a simple example 
to show that such behavior (vanishing boundary risk) 
does not necessarily happen for all classifiers.

Proposition 3.2. Consider the Gaussian mixture model 
(5) with µ having i.i.d. N(0, 1=k) entries with class proba-
bility π � 1=2 in the presence of an adversary with bounded 
ℓp perturbations of size εp. In addition, suppose that the 
rows of the feature matrix W are sampled from the k- 
dimensional unit sphere and consider φ being the identity 

Figure 1. (Color online) Effect of the Dimensions Ratio d/k on the Standard, Adversarial, and the Boundary Risk of the Bayes- 
Optimal Classifier with ℓ2 Perturbations Under the Gaussian Mixture Model (5), Where Features Lie on a Low-Dimensional 
Manifold 
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Notes. Solid curves represent the average values, and the shaded area around each curve represents one standard deviation above and below the 
computed average curve over the M � 100 realizations. (a) Behavior of the standard and adversarial risks of the Bayes-optimal classifier for the 
adversary’s power ε2 � 1. (b) Behavior of the boundary risk of the Bayes-optimal classifier for the several values of adversary’s power ε2.
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function. Then, the boundary risk of the classifier h(x) �
sign(eT

1 x) with e1 � (1, 0, 0, : : : , 0) is lower bounded by 
some constant cεp

, where cεp 
depends only on εp (indepen-

dent of dimensions k, d), and is strictly positive for positive 
values of εp.

We refer to the appendix for proof of this proposition.

3.2. Binary Classification Under Generalized 

Linear Models
Consider a binary classification problem under a gen-
eralized linear model with features enjoying a low- 
dimensional latent structure, cf. (6). The next result states 
that under certain conditions on the weight matrix, the 
boundary risk of the Bayes-optimal classifier will con-
verge to zero, as the ambient dimension grows to infinity.

Theorem 2. Consider the binary classification problem 
under the generalized linear model (6) in the presence of an 
adversary with ℓp-bounded perturbations of power εp for 
some p ≥ 2. Assume that as the ambient dimension d grows 
to infinity, the weight matrix W satisfies the following 
condition:

εpd
1
2�

1
p

σmin(W)
� od(1): (8) 

Then the boundary risk of the Bayes-optimal classifier 
converges to zero.

The proof of Theorem 2 is given in the appendix. Note 
that the condition (8) is similar to condition (7) for the 
Gaussian mixture model.

Figure 2 validates the result of Theorem 2 for bin-
ary classification under the generalized linear model (6) 
with identity φ mapping and ℓ2 perturbations. In this 

example, the ambient dimension d is fixed at 300, and 
the manifold dimension k varies from 1 to 300. In addi-
tion, the linear predictor β�and the weight matrix W have 
i.i.d. N(0, 1=k) entries. For each fixed values (k,d), we 
generate M�100 independent realizations, and we com-
pute the average and the standard deviation of total M 
obtained values. In each figure, the shaded areas are 
obtained by moving the average values one standard 
deviation above and below. Figure 2(a) denotes the be-
havior of the standard risk, adversarial risk, and the 
boundary risk of the Bayes-optimal classifier, as the di-
mensions ratio d/k grows. Further, Figure 2(b) exhibits a 
similar behavior for several values of adversary’s power 
ε, in which it can be observed that the boundary risk 
decays to zero.

The standard risk and the robust risk in Figure 2(a) are 
calculated using the following proposition.

Proposition 3.3. Consider the generalized linear model (6) 
with the identity mapping φ(t) � t. Under this setup, the 
adversarial and standard risks of linear classifier h(x) �
sign(f (θTx)� 1=2) are given by

AR(h) � E[u1, u2]~N(0,Σu)[f (u1)I(u2 ≤ c+ εp‖θ‖q)

+ (1� f (u1))I(u2 ≥ c� εp‖θ‖q)],

SR(h) � E[u1, u2]~N(0,Σu)[f (u1)I(u2 ≤ c)

+ (1� f (u1))I(u2 ≥ c)], 

where the covariance matrix Σu �

�

‖β‖2
2 βTWTθ

βTWTθ ‖WTθ‖2
2

�

, 

c � f�1(1=2), and ‖:‖q is the dual norm of ‖:‖p.
In addition, for the Bayes-optimal classifier h∗(x) � sign 

(f (xTθ∗)� 1=2) with θ∗ � W(WTW)
�1β�(see Corollary 1) 

Figure 2. (Color online) Effect of the Dimensions Ratio d/k on the Standard, Adversarial, and the Boundary Risk of the 
Bayes-Optimal Classifier of the Generalized Linear Model (6) with ℓ2 Perturbations, in Which Features Are Coming From a 
Low-Dimensional Manifold 
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Notes. Solid curves represent the average values, and the shaded areas represent one standard deviation above and below the corresponding 
curves over M � 100 realizations. (a) Behavior of the standard and adversarial risks of the Bayes-optimal classifier for the adversary’s power 
ε2 � 1. (b) Behavior of the boundary risk of the Bayes-optimal classifier for the several values of adversary’s power ε2.
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we have

AR(h∗) � Eu~N(0, ‖β‖2
2)
[f (u)I(u ≤ c+ εp‖θ

∗‖q)

+ (1� f (u))I(u ≥ c� εp‖θ
∗‖q)],

SR(h∗) � Eu~N(0, ‖β‖2
2)
[f (u)I(u ≤ c) + (1� f (u))I(u ≥ c)]:

We refer to the appendix for the proof of this 
proposition.

4. Discussion
4.1. Is it Necessary to Learn the Latent Structure 

to Obtain a Vanishing Boundary Risk? A 

Simple Case
In the previous sections, for the two binary classification 
settings, we showed that when the features inherently 
have a low-dimensional structure, the boundary risk of 
the Bayes-optimal classifiers will converge to zero, as the 
ambient dimension grows to infinity. A closer look at the 
Bayes-optimal classifier of each setting (can be seen in 
Corollary 1) reveals the fact that these classifiers directly 
use the knowledge of the nonlinear mapping from the 
low-dimensional manifold to the ambient space. In other 
words, the Bayes-optimal classifiers explicitly draw 
upon the generative components φ and W. In this sec-
tion, we investigate the existence of classifiers that are 
agnostic to the mapping between the low-dimensional 
and the high-dimensional space, while they have asymp-
totically vanishing boundary risk. For this purpose, con-
sider binary classification under the Gaussian mixture 
model (5). In addition, assume a training set {(xi, yi)}

n
i�1 

sampled from (5). We focus on the class of linear classi-
fiers hθ(x) � sign(xTθ) with θ ∈ Rd and ℓ2 perturbation 
(p�2).

We consider the logistic loss ℓ(t) � log(1+ exp(�t)), 
and assume that the adversary’s power is bounded by ε. 
We consider the minimax approach of Madry et al. 
(2018) to adversarially train a model θ�by solving the fol-
lowing robust empirical risk minimization (ERM):

θ̂
ε
� arg min

θ∈Rd

1

n

X

n

i�1

max
u∈Bε(xi)

ℓ(yiu
Tθ):

This is a convex optimization problem, as it can be cast 
as a point-wise maximization of the convex functions 
ℓ(yiu

Tθ). Further, when perturbations are from the ℓ2 

ball, the inner maximization problem can be solved 
explicitly (see e.g., Javanmard and Soltanolkotabi 2022), 
which leads to the following equivalent problem:

θ̂
ε
� arg min

θ∈Rd

1

n

X

n

i�1

ℓ(yix
T

i θ� ε‖θ‖ℓ2): (9) 

Figure 3 demonstrates the effect of the dimensions ratio 
d/k on the standard, adversarial, and the boundary risk 
of the classifier h

θ̂
ε� for four different choices of the 

feature mapping φ: (i) φ1(t) � t, (ii) φ2(t) � t=4+ sign(t)
3t=4, (iii) φ3(t) � t+ sign(t)t2, and (iv) φ4(t) � tanh(t). In 
this example, we consider the ambient dimension 
d�100, and number of samples n�300. In addition, 
k varies from 1 to 100, and µ, W have i.i.d. entries N(0, 
1=k). Further, we consider balanced classes (each label 
61 occurs with probability π � 1=2). The plots in Figure 3
exhibit the behavior of the standard, adversarial, and the 
boundary risks of the classifier h

θ̂
ε , for each of these 

mappings and for the adversary’s power ε � 1. For each 
fixed value of k, d, we consider M�20 trials of the setup. 
The solid curve denote the average values over these M 
trials. The shaded areas are obtained by plotting one 
standard deviation above and below the main curves. 
The plots in Figure 4 showcase the boundary risk for dif-
ferent choices of ε. As we observe, the boundary risk 
decreases to zero, when the dimensions ratio d/k grows 
to infinity. Our next theorem proves this behavior for the 
special case of φ(t) � t.

Theorem 3. Consider binary classification under the Gau-
ssian mixture model (5) with identity mapping φ(t) � t in 
the presence of an adversary with ℓp norm bounded pertur-
bations of size εp for some p ≥ 2. In addition, Let hθ(x) �
sign(xTθ) be a linear classifier with θ ∈ Rd and assume 
that as the ambient dimension d grows to infinity, the fol-
lowing condition on the weight matrix W and the decision 
parameter θ�hold:

εpd
1
2�

1
p

σmin(W)

�

1� ‖PKer(WT)(θ)‖
2
ℓ2
=‖θ‖2

ℓ2

�

�1=2
� od(1),

(10) 

where PKer(W)(θ) stands for the ℓ2-projection of vector θ�onto 
the kernel of the matrix W. Then the boundary risk of the classi-
fier hθ�will converge to zero.

In particular, assume that θ̂
ε�

is the solution of the fol-
lowing adversarial empirical risk minimization (ERM) 
problem:

θ̂
ε
� arg min

θ∈Rd

1

n

X

n

i�1

sup
u∈Bε(xi)

ℓ(yiu
Tθ), 

with ℓ : R→ R≥0 being a strictly decreasing loss function. In 

this case, with the weight matrix W satisfying 
εpd

1
2
�

1
p

σmin(W)
� od(1), 

the boundary risk of h
θ̂
ε�converges to zero.

We refer to the appendix for the proof of Theorem 3.

4.2. Effect of Perturbation in the Lifting Matrix W
The Bayes-optimal classifiers in previous sections were 
computed using the true lifting matrix W. In practice, 
this matrix (or in general the embedding from the latent 
to ambient space) should be learned and therefore devi-
ates from the true W. Our goal in this section is to show 
through numerical experiments that our result about the 
boundary risk being decreasing as d/k grows, remains 
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valid even if a perturbed lifting matrix Ŵ is used in the 
Bayes-optimal classifier.

Consider the perturbed matrix Ŵ � W +N where N 
has i.i.d Gaussian entries N(0,σ2

N). We start by the Ga-
ussian mixture mode. Using Corollary 1 with mapping 
φ(t) � t and balanced class probabilities (π � 1=2), the 
Bayes-optimal classifier reads

ĥ(x) � sign
�

xT(ŴŴ
T

)†Ŵµ

�

: (11) 

We first characterize the adversarial and standard risk of 
classifier ĥ using Proposition 3.1 and then compute the 
boundary risk BR(ĥ) � AR(ĥ)�SR(ĥ).

We generate W and µ similar to the previous experi-
ments setup (results in Figure 1) with d� 300. In Figure 
5(a), we fix σN � 1 and plot the adversarial, standard and 
boundary risks, averaged over 200 independent in-
stances of the problem. The shaded areas around each 

curve represent the one standard deviation (computed 
over 200 experiments) above and below the mean curve. 
As can be observed, the boundary risk vanishes as the 
dimension ratio d/k grows to infinity. In Figure 5(b), we 
plot the boundary risk for σN ∈ {1, 2, 3, 4, 5}. As can be 
seen, even for large perturbation levels σN, the boundary 
risk converges to zero, albeit at a slower rate.

We next conduct similar experiments for the general-
ized linear model. In this setting, the Bayes-optimal clas-
sifier is given by

ĥ(x) � sign
�

f
�

βT(Ŵ
T

Ŵ)
�1Ŵ

T

x
�

� 1=2
�

: (12) 

By an application of Proposition 3.3 for θ̂ � Ŵ(Ŵ
T 

Ŵ)�1β�we compute the adversarial and the standard 

risks of ĥ. For our numerical experiment, we consider 
the logistic model f (t) � 1

1+exp(�t). In Figure 6(a), we fix 

ε2 � 1 (under ℓ2 adversarial setup), σN � 1 and d�300, 

Figure 3. (Color online) Effect of Dimensions Ratio d/k on the Standard, Adversarial, and Boundary Risks of the Linear Classi-
fier hθ(x) � sign(xTθ) with θ�Being the Robust Empirical Risk Minimizer (9) 
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Notes. Samples are generated from the Gaussian mixture model (5) with balanced classes (π � 1=2), and with four choices of feature mapping φ: 
(a) φ(t) � t, (b) φ(t) � 3t=4+ sign(t)t=4, (c) φ(t) � t+ sign(t)t2 and (d) φ(t) � tanh(t). In these experiments, the ambient dimension d is fixed at 100, 
and the manifold dimension k varies from 1 to 100. The sample size is n � 300 the classes average µ and the weight matrix W have i.i.d. entries 
from N(0, 1=k). The adversary’s power is fixed at ε � 1. For each fixed values of k and d, we consider M � 20 trials of the setup. Solid curves repre-
sent the average results across these trials, and the shaded areas represent one standard deviation above and below the corresponding curves. (a) 
Feature mapping φ(t) � t and adversary’s power ε � 1. (b) Feature mapping φ(t) � t=4+ sign(t)3t=4 and adversary’s power ε � 1. (c) Feature 
mapping φ(t) � t+ sign(t)t2 and adversary’s power ε � 1. (d) Feature mapping φ(t) � tanh(t) and adversary’s power ε � 1.
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and vary k. The reported results are averaged over 50 
independent experiments with shaded curves showing 
one standard deviation above and below the averaged 
values (computed over 50 realizations). As can be seen, 
even though the Bayes-optimal classifier is computed 
using the perturbed matrix Ŵ , the boundary risk con-
verges to zero as d/k grows to infinity. In Figure 6(b), 
we repeat similar experiments for different values of 
σN ∈ {1, 2, 3, 4, 5}. As we see, even for large perturbation 
levels σN, the boundary risk converges to zero, albeit at a 
slower rate.

The above experiments demonstrate that for the Bayes- 
optimal classifier, constructed using a perturbed lifting 
matrix Ŵ , the robust-standard risks tradeoff is attenuated 
as the low-dimensional structure of data becomes stronger.

5. Boundary Risk of Bayes-Optimal Image 
Classifiers

We next provide several numerical experiments on the 
MNIST image data to corroborate our findings regarding 
the role of low-dimensional structure of data on the 
boundary risk of Bayes-optimal classifiers. Of course, the 
evaluation of this finding on image data are challenging 
since learning particular structure of the underlying 
image distribution is notoriously a difficult problem. 
There have been a few well-established techniques for 
this task that we briefly discuss below.

Generative Adversarial Net (GAN) (Goodfellow et al. 
2014) is among the most successful methods in modeling 
the statistical structure of image data. Despite the re-
markable success of GANs in generating realistic high 

Figure 4. (Color online) Effect of Dimensions Ratio d/k on the Boundary Risk of the Linear Classifier hθ(x) � sign(xTθ) with θ�
Being the Robust Empirical Risk Minimizer (9) 
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Notes. Samples are generated from the Gaussian mixture model (5) with balances classes (p � 1/2), and with four choices of feature mapping φ: 
(a) φ(t) � t, (b) φ(t) � 3t=4+ sign(t)t=4, (c) φ(t) � t+ sign(t)t2 and (d) φ(t) � tanh(t). In these experiments, the ambient dimension d is fixed at 100, 
and the manifold dimension k varies from 1 to 100. The sample size is n � 300 the classes average µ and the weight matrix W have i.i.d. entries 
from N(0, 1=k). We consider different levels of the adversary’s power ε ∈ {1, 2, 4}. For each fixed values of k and d, we consider M � 20 trials of 
the setup. Solid curves represent the average results across these trials, and the shaded areas represent one standard deviation above and below 
the corresponding curves. (a) Boundary risk with the feature mapping φ(t) � t and for multiple values of adversary’s power ε. (b) Boundary risk 
with the feature mapping φ(t) � t=4+ sign(t)3t=4 and for multiple values of adversary’s power ε. (c) Boundary risk with the feature mapping 
φ(t) � t+ sign(t)t2 and for multiple values of adversary’s power ε. (d) Boundary risk with the feature mapping φ(t) � tanh(t) and for multiple 
values of adversary’s power ε.
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resolution images, it has been observed that they may 
fail in capturing the full data distribution, which is 
referred to as model collapse. In addition, computing the 
likelihood of image data with GANs requires to perform 
complex computations. As a direct implication of these 
observations, it is not statistically accurate and efficient 
to deploy GANs to formulate the Bayes optimal classi-
fiers (Richardson and Weiss 2018, 2021).

Fitting elementary statistical models can mitigate the 
statistical inaccuracies of GANs. (Richardson and Weiss 
2018) learns the statistical structure of image data by 
using the class of Gaussian Mixture Models (GMM). This 
choice is motivated by the statistical power of GMMs 
that they are universal approximators of probability 
densities (Goodfellow et al. 2016). On the other hand, 
working with general Gaussian covariance matrices can 

Figure 5. (Color online) Effect of the Dimensions Ratio d/k on the Standard, Adversarial, and the Boundary Risk of the Bayes- 
Optimal Classifier Obtained From a Noisy Weight Matrix Ŵ with ℓ2 Perturbations Under the Gaussian Mixture Model (5), 
Where Features Lie on a Low-Dimensional Manifold 
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Notes. Solid curves represent the average values, and the shaded area around each curve represents one standard deviation above and below the 
computed average curve over the M � 200 realizations. (a) Behavior of the standard and adversarial risks of the Bayes-optimal classifier (11) com-
puted with noisy weight matrix Ŵ � W +N with N having i.i.d entries N(0, 1) for the adversary’s power ε2 � 1. (b) Behavior of the boundary risk 
of Bayes-optimal classifier (11) computed with noisy weight matrix Ŵ � W +N with N having i.i.d entries N(0,σ2

N) for the adversary’s power 
ε2 � 1 and σN ∈ {1, 2, 3, 4, 5}.

Figure 6. (Color online) Effect of the Dimensions Ratio d/k on the Standard, Adversarial, and the Boundary Risk of the Bayes- 
Optimal Classifier Obtained From a Noisy Weight Matrix Ŵ with ℓ2-Perturbations Under the Generalized Linear Model (6) 

(a) (b)

Notes. Solid curves represent the average values, and the shaded area around each curve represents one standard deviation above and below the 
computed average curve over the M � 50 realizations. (a) Behavior of the standard and adversarial risks of the Bayes-optimal classifier (12) under 
generalized linear model (6) computed with noisy weight matrix Ŵ � W +N with N having i.i.d entries N(0, 1) for the adversary’s power ε2 � 1. 
(b) Behavior of the boundary risk of Bayes-optimal classifier (12) under generalized linear model (6) computed with noisy weight matrix Ŵ �
W +N with N having i.i.d entries N(0,σ2

N) for the adversary’s power ε2 � 1 and σN ∈ {1, 2, 3, 4, 5}.
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make the estimation problem both in terms of computa-
tional cost and memory storage extremely prohibitive. 
(Richardson and Weiss 2018) deployed Mixture of Factor 
Analyzers (MFA) (Ghahramani and Hinton 1996) to avoid 
storage and computation with such high-dimensional 
matrices. This deployment is aligned with the former 
intuition that the space of meaningful images is indeed a 
small portion of the entire high-dimensional space. In 
addition, they show that with moderate number of com-
ponents in the GMM one can produce adequately realis-
tic images, and further reduce the computational burden.

We will adopt the MFA procedure introduced in 
(Richardson and Weiss 2018) to generate realistic image 
data for our numerical experiments. The main reasons 
for this adoption are: (i) this framework is flexible for 
generating realistic images from a low-dimensional sub-
space, and (ii) it enables us to accurately and efficiently 
calculate the log-likelihood of images, which can be used 
later to formulate the Bayes-optimal classifier. It is worth 
noting that, using a class of less complex models, in this 
case GMMs rather than GANs, will output images with 
lower resolution, which is not a major concern for the 
main purpose of this numerical study. In the next sec-
tions, we first provide a brief overview of the GMM esti-
mation steps and then review some of the standard 
frameworks to produce adversarially crafted examples.

5.1. Learning Image Data with Gaussian Mixture 

Models (GMM)
A general setup for fitting a GMM to image data {xi}1:n ∈

Rd is based on the following model

x ~
X

K

k�1

αkN(µk,Σk), Σk ∈ Rd×d, µk ∈ R
d, 

where K denotes the number of components in GMM 
and αi are mixing weights. This problem, without impos-
ing any extra structure on image data, involves learning 
O(Kd2) parameters which can be extremely difficult for 
high-dimensional images. (Richardson and Weiss 2018) 
deployed a mixture of factor analyzers (MFA), where 
they use tall matrices Ad×ℓ�to embed a low-dimensional 
subspace in the full data space. In this case, the following 
model is considered

x ~
X

K

k�1

αkN(µk, AkAT

k +Dk),

Ak ∈ Rd×ℓ, Dk ∈ Rd×d, µk ∈ R
d, 

where Dk is a diagonal matrix showing the variance on 
each single pixel. This model ameliorates the previous 
high storage and computational cost, as in this case 
Kd(ℓ+ 2) learning parameters exist, which scales linearly 
with image dimension d. This model is intimately related 
to the specific case of the low-dimensional manifold 

models on features in (5) and (6) with the identity map-
ping φ(t) � t. The only difference is in the entrywise inde-
pendent Gaussian noise coming from diagonal matrix Dk, 
however in the numerical experiments we observed that 
indeed the estimated values of Dk entries are extremely 
small, which makes this difference negligible. We use the 
maximum likelihood estimator to compute the model 
parameters. For this purpose, we need to compute the 
log-probabilities. For a single component of GMM we 
first compute the likelihood p(x | A, D,µ) given by

p(x | A, D,µ) ��

1

2
[d log(2π) + log det(AAT +D)

+ (x�µ)T(D+AAT)�1(x�µ)]:

(13) 

Richardson and Weiss (2018) used the following alge-
braic identities with u � x�µ, L � ATDA ∈ Rℓ×ℓ�to avoid 
large matrix storage and multiplications:

uT
Σ
�1u � uT[D�1u�D�1AL�1(ATD�1u)],

log det(AAT +D) � log det L+
X

d

j�1

log(dj), 

where di denotes the i-th entry on the diagonal of matrix 
D. In addition, Richardson and Weiss (2018) employed 
differentiable programming framework to efficiently solve 
the corresponding Maximum-likelihood optimization 
problem on GPU. We use their publicly available code at 
https://github.com/eitanrich/gans-n-gmms to fit GMMs 
on full image data sets. As a simple example, we consider 
models with K�10 components and the manifold dimen-
sions ℓ � 1, 10, 100. We fit these three models to the train-
ing samples of the MNIST data set (Deng 2012) that are 
labeled “6”. Figure 7 exhibits sample images generated 
from the learned GMM models.

5.2. PGD and FGM Adversarial Attacks
Recall that adversarial examples are meant to be close 
enough to original samples, yet be able to degrade the 
classifier performance. For a loss function L consider the 
adversarial optimization problem

max
‖x�x′‖ℓ2≤ε

L(h(x′), y):

Using the 0-1 loss L(h(x′), y) � I(y ≠ h(x′)) yields the 
inner optimization problem (3). A large body of pro-
posed methods to produce adversarial examples con-
sider the first-order linear approximation of the loss 
function around the original sample. More precisely, x′

is written as x+ δ, and then single/multi steps of gradi-
ent descent (GD) of the negative loss function is consid-
ered. In this framework, first a powerful predictive 
model, for example, a neural network, is fit to the train-
ing samples, which will be used as a surrogate for the 
learner’s model h. For ℓ2-bounded adversary’s budget ε, 
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the Fast Gradient Method (FGM) performs a single step of 
normalized GD which yields

x′ � x+ ε
∇xL(h(x), y)

‖∇xL(h(x), y)‖ℓ2
:

This method is first introduced in Goodfellow et al. 
(2015) for ℓ∞-bounded attacks under the name Fast Gra-
dient Sign Method (FGSM). Other variants for other 
ℓp-bounded adversarial attacks are introduced in Tramèr 
et al. (2017), generally called the FGM (removing “sign” 
from FGSM). A more general scheme to produce adver-
sarial examples is via a multistep implementation of the 
above procedure with the projected gradient descent 
(PGD). This attack is introduced in Madry et al. (2018), 
with iterative updates given by

xt+1 �ΠBε(x) xt + ε
∇xL(h(x

t), y)

‖∇xL(h(xt), y)‖ℓ2

� �

, 

where ΠBε(x) stands for the projection operator to the 
ℓ2-ball centered at x with radius ε. For our image classifi-
cation numerical experiments, we will use FGM and 
PGD attacks to produce adversarial examples. We follow 
the same implementation of PGD and FGM adversarial 
attacks provided in CleverHans library v4.0.0 (Papernot 
et al. 2016). The code for this implementation can be ac-
cessed at https://github.com/cleverhans-lab/cleverhans. 
In our implementation, the original image values are nor-
malized to be in the interval [0, 1], and we clip perturbed 
pixel values to be in the same interval. We next present 
key findings from our numerical experiments.

5.3. Main Experiments and Key Findings
In this section, we connect the previously described 
parts. Put all together, these are the three main steps of 
our experiments: 

1. For several choices of K (number of components) 
and latent dimensions ℓ, we first fit two GMM models 
to zeros and sixes of the training set of MNIST data set. 
By deploying the learned models, we generate 5,000 

new images with uniform probability on labels 6 or 0, 
that is, at the beginning of generating an image, with 
equal chance we decide to use either of the models. In 
addition, for the defined binary classification problem 
(0 versus 6), we deploy (13) to obtain two likelihood 

Figure 7. Sample Generated Images From a GMM Model Fit on MNIST Training Set Images with Label Six 

Note. Three GMM models with number of components K � 10, and manifold dimensions ℓ � 1, 10, 100 (from left to right) are considered.

Figure 8. Attacks and Perturbed Images for Three Different 
Latent Dimensions ℓ � 1, 10, 100, Respectively From Top to 
Bottom 

Notes. In each row, from left to right, the original sample, the adver-
sarially crafted perturbation, and the perturbed image is exhibited. 
The original images are generated from a GMM with the number of 
components K � 10. In all images under the PGD adversarial pertur-
bation, we start with the ℓ2�bounded adversarial power ε � 0, and 
incrementally increase it to the point that the Bayes-optimal classifier 
fails to infer the correct label. In this experiment, the Bayes-optimal 
misclassification on sampled images with ℓ � 1, 10, 100 occurs at 
ℓ2�bounded adversarial power ε � 22:6, 11, 7, respectively. It can be 
seen that samples coming from smaller latent dimension ℓ�require stron-
ger perturbation to get misclassified by the Bayes-optimal classifier.
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models p0(x), p1(x). This can be used to formulate the 
Bayes-optimal classifier I(p1(x) > p0(x)).

2. In this step, we adversarially attack the generated 
images. To this end, the data set is split into 80%–20% 
training-test samples. The training set is used to train a 
neural network for PGD and FGM attacks. The ob-
tained model will be used later to craft adversarial 
examples for the 1,000 test images.

3. Finally, the performance of the Bayes-optimal 
classifier on adversarially perturbed test images (size 
1,000) is evaluated.

In our first experiment, we consider a fixed number of 
components K� 10 along with three different latent 
dimensions ℓ � 1, 10, and 100. For each pair of (K, ℓ), we 
randomly select one sample with label 6 among the origi-
nal 1000 test images. For PGD adversarial attacks, we 
start from ε � 0, and incrementally increase the adver-
sary’s ℓ2-bounded power ε�until to the point that the 
Bayes-optimal classifier fails to correctly label the sam-
ple. Figure 8 displays the original, adversarial attack, and 
the perturbed images for each ℓ�value. The Bayes- 
optimal classifier fails at adversarial power ε � 22:6, 11, 7 
for ℓ � 1, 10, 100 respectively. The result conforms to the 
fact that samples coming from a higher value of dimen-
sion ratio d=ℓ�(here d�784) indeed require stronger 
adversarial attacks (larger ε).

In the second experiment, we consider the two choices 
of K� 1 and K� 10 and vary the latent dimension ℓ. For 
each pair of (K,ℓ), we repeat the above three-step proce-
dure for adversary’s ℓ2-bounded power ε � 12 and com-
pute the boundary risk of the Bayes-optimal classifier on 
the PGD and FGM perturbed images. The plots are 
included in Figure 9. As observed, by increasing the 
dimension ratio d=ℓ, the boundary risk of the Bayes- 
optimal classifier decreases to zero.

6. Conclusion
In this paper, we studied the role of data distribution (in 
particular latent low-dimensional manifold structures of 

data) on the tradeoff between robustness (against ad-
versarial perturbations in the input, at test time) and gen-
eralization (performance on test data drawn from the 
same distribution as training data). We developed a the-
ory for two widely used classification setups (Gaussian- 
mixture model and generalized linear model), showing 
that as the ratio of the ambient dimension to the mani-
fold dimension grows, one can obtain models which 
both are robust and generalize well. This highlights the 
role of exploiting underlying data structures in improv-
ing robustness and also in mitigating the tradeoff bet-
ween generalization and robustness. Through numerical 
experiments, we demonstrate that low-dimensional mani-
fold structure of data, even if not exploited by the training 
method, can still weaken the robustness-generalization 
tradeoff.

Endnote
1 We will drop the index p and write ε�for the adversary’s power 

when it is clear from the context.
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