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Abstract. Over the past few years, several adversarial training methods have been pro-
posed to improve the robustness of machine learning models against adversarial perturba-
tions in the input. Despite remarkable progress in this regard, adversarial training is often
observed to drop the standard test accuracy. This phenomenon has intrigued the research
community to investigate the potential tradeoff between standard accuracy (a.k.a generali-
zation) and robust accuracy (a.k.a robust generalization) as two performance measures. In
this paper, we revisit this tradeoff for latent models and argue that this tradeoff is mitigated
when the data enjoys a low-dimensional structure. In particular, we consider binary classi-
fication under two data generative models, namely Gaussian mixture model and general-
ized linear model, where the features data lie on a low-dimensional manifold. We develop
a theory to show that the low-dimensional manifold structure allows one to obtain models
that are nearly optimal with respect to both, the standard accuracy and the robust accuracy
measures. We further corroborate our theory with several numerical experiments, includ-
ing Mixture of Factor Analyzers (MFA) model trained on the MNIST data set.
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1. Introduction

We are witnessing an unparalleled growth of machine
learning tools in various applications domain, where
these tools are deployed to inform decisions that directly
impact human'’s lives, from health interventions to credit
decisions, sentencing and autonomous driving. Given
the safety-critical nature of these applications, reliability
and robustness of machine learning systems have
become one of the paramount goals of today’s AL

Robust estimation has been one of the central topics in
statistics, notably by the seminal work of Tukey (1960),
Huber (1992), and Hampel (1968), among others. The
majority of work in this area has focused on robustness
with respect to outliers (a small fraction of predictors
and/or response variables, which are contaminated by
gross errors).

Another relevant notion that has spurred a surge of
interest in recent years is that of adversarial robustness.
While machine learning models, and deep learning in
particular, have shown remarkable empirical perfor-
mance, many of these models are known to be highly
vulnerable to adversarially chosen perturbations to the
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input data at test time, known as adversarial attacks. Even
more surprisingly, many of such adversarial attacks
can be designed to be slight modifications of the input
which are seemingly innocuous and imperceptible. For
example, in image processing and video analysis there
are several examples of adversarial attacks in form of
indiscernible pixel-wise perturbations which can signifi-
cantly degrade the performance of the state-of-the-art
classifiers (Biggio et al. 2013, Szegedy et al. 2014). Other
examples include well-designed malicious contents like
malware which can pass the scanning classifiers and yet
harm the system, or adversarial attacks on speech recog-
nition systems, such as GoogleNow or Siri, which are in-
comprehensible or even completely inaudible to human
and can still control the virtual assistant software (Vai-
dya et al. 2015, Carlini et al. 2016, Zhang et al. 2017).

In response to this fragility, a growing body of work
in the past few years has sought to improve the robust-
ness of machine learning systems against adversarial
attacks. Despite remarkable progress in designing robust
training algorithms and certifiable defenses, it is often
observed that these methods compromise the statistical
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accuracy on unperturbed test data (i.e., test data drawn
from the same distribution as training data). Such ob-
servation had led prior work to speculate a tradeoff
between the two fundamental notions of robustness and
generalization (for a nonexhaustive list see, e.g., Madry
et al. 2018, Raghunathan et al. 2019, Min et al. 2020, Meh-
rabi et al. 2021). For example, the highest obtained
{o-robust accuracy on CIFARI0 (without using addi-
tional data) with e, = 8/255 is 60%, with standard accu-
racy of 85% (which is 10% less than state-of-the-art
standard accuracy for ¢, = 0).

Some of the promising adversarial training methods,
such as TRADES (Zhang et al. 2019) acknowledge such
tradeoff by including a regularization parameter which
allows to tune between these two measures of perfor-
mance. There has been also recent line of work (Javan-
mard et al. 2020, Javanmard and Soltanolkotabi 2022)
which provides precise asymptotic theory for this trade-
off and how it is quantitively shaped by different compo-
nents of the learning problem (e.g., adversary’s power,
geometry of perturbations set, overparameterization,
noise level in training data, etc.) For the setting of linear
regression and binary classification it is proved that there
is an inherent tradeoff between robustness and stand-
ard accuracy (generalization) which holds at population
level and for any (potentially computationally intensive)
training algorithms (Dobriban et al. 2020, Javanmard
et al. 2020, Mehrabi et al. 2021). Nonetheless, these work
make strong assumptions on the distribution of data
(e.g., Gaussian or Gaussian mixture models), which fail
to capture various natural structures in data. This stimu-
lates the following tantalizing question:

(*) Are there natural data generative models under which
the tradeoff between robustness and the standard accuracy
(generalization) vanishes, in the sense that one can find
models which are performing well (or even optimal) with
respect to both measures?

As a step toward answering this question, Yang et al.
(2020) show that when data are well separated, there is
no inherent conflict between standard accuracy and
robustness. It also provides numerical experiments on a
few image datasets to argue that these data are indeed
r-well separated for some value r larger than the pertur-
bation radii used in adversarial attacks (i.e., data from
different classes are at least r distance apart in the pixel
domain). In Xing et al. (2021), adversarially robust esti-
mators are studied for the setup of linear regression and a
lower bound on their statistical minimax rate is derived.
The minimax rate lower bound for sparse model is much
smaller than the one for dense model, whereby Xing et al.
(2021) argues the importance of incorporating sparsity
structure in improving robustness.

The current work takes another perspective toward
question (¥) by considering the low-dimensional manifold
structures in data. Many high-dimensional real-world

data sets enjoy low-dimensional structures, and learning
low-dimensional representations of raw data are a com-
mon task in information processing. In fact, the entire field
of dimensionality reduction and manifold learning has
been developed around this task. To give concrete exam-
ples, the MNIST database of handwritten digits consists
of images of size 28 x 28 (i.e., ambient dimension of 784),
while its intrinsic (manifold) dimension is estimated to be
=~ 14, based on local neighborhoods of data. Likewise, the
CIFAR10 database consists of color images of size 32 x 32
(i.e., ambient dimension of 3,072), but its intrinsic dimen-
sion is estimated to be = 35 (Costa and Hero 2004, Rozza
et al. 2012, Spigler et al. 2020). The high-level message of
the current work is that the low-dimensional structures in
data can mitigate the tradeoff between standard accuracy
and robustness, and potentially enable training models
that perform gracefully (or even optimal) with respect to
both measures.

1.1. Summary of Contributions

In this work we focus on two widely used models for
binary classification, namely Gaussian-mixture model
and the generalized linear model, where we also assume
that the feature vectors lie on a k-dimensional manifold
in a d-dimensional space (k < d). We consider adversarial
setting with norm-bounded perturbation (in £, norm),
for general p > 2.

We use the minimum nonzero singular value of the
“lifting matrix” W € R”* (between the manifold and the
ambient space) as a measure of low-dimensional struc-
ture of data; cf. (5) and (6). We assess the generaliza-
tion property of a model through the notion of standard
risk, and its robustness against adversarial perturbation
through the notion of adversarial risk (See Section 2 for for-
mal definition.) Our main contributions are summarized
as follows:

e Under both data generative models, we derive the
Bayes-optimal estimators, which provably attain the
minimum standard risk. We prove that as long as
omin(W) diverges as d — oo, with a growth rate that
depends on the adversary’s power ¢, and the perturba-
tion norm ¢, then the Bayes-optimal estimator asymp-
totically achieves the minimum adversarial risk as
well. This implies that the tradeoff between robustness
and generalization asymptotically disappears as data
becomes more structured.

e While the gap between the optimal standard risk
and optimal adversarial risk shrinks for data with low-
dimensional structure, we show that these two risk
measures (as functions of estimators) stay away from
each other. Specifically, we come up with an estimator
for which the standard and adversarial risks remain
away from each other by a constant ¢ >0 independent
of k, d.

o In Section 4.1, we consider an adversarial training
method based on robust empirical loss minimization.
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While this algorithm is structure-agnostic we provably
show that it results in models that are robust and also
generalize well, under low-dimensional data structure.
Note that the data structures (distribution), even if not
deployed by the training procedure, still comes into
picture as the adversarial risk and standard risk are
defined with respect to this data distribution.

e We corroborate our theoretical findings with sev-
eral synthetic simulations. We also train Mixture of
Factor Analyzers (MFA) models on the MNIST image
data set. This results in low-rank models from which
we can generate new images. Furthermore, the Bayes-
optimal classifier can be precisely computed for the
MFA model. We show empirically that as the ratio of
ambient dimension to the rank diverges (data becomes
more structured) the gap between standard risk and
adversarial risk vanishes for the Bayes-optimal classi-
fier. In other words, Bayes-optimal estimator becomes
optimal with respect to both risks.

1.2. Related Work

There is a growing body of work on the tradeoff between
robustness and generalization (see e.g., Madry et al.
2018, Tsipras et al. 2018, Raghunathan et al. 2019, Zhang
et al. 2019, Min et al. 2020, Yang et al. 2020, Mehrabi et al.
2021). In particular, Dobriban et al. (2020) consider the
isotropic Gaussian-mixture model with two and three
classes, and derive Bayes-optimal robust classifiers for £;
and {, adversaries. This work proves a tradeoff between
the standard and the robust risks, which grows when the
classes are imbalanced.

The prior work (Jalal et al. 2017, Song et al. 2018, Stutz
et al. 2019) proposed the concept of on-manifold attack,
where the adversarial perturbations are done in the
latent low-dimensional space. In Stutz et al. (2019), it is
argued that on-manifold adversarial examples are acting
as generalization error and adversarial training against
such attacks improve the generalization of the model as
well. In addition, a so-called on-manifold adversarial
training (based on minimax formulation) has been pro-
posed which is similar to the adversarial training method
of Madry et al. (2018) but tailored to perturbations in the
manifold space. The subsequent work (Lin et al. 2020)
proposes dual manifold adversarial training (DMAT)
method which considers adversarial perturbations in
both the manifold and the image space to robustify mod-
els against a broader class of adversarial attacks. In this
terminology, in our current work we consider out-of-
manifold perturbations (in the ambient space). Also let us
emphasize that Stutz et al. (2019) and Lin et al. (2020) are
based on empirical studies on image databases and more
on an algorithmic front. The current work contributes to
this literature by developing a theory for the role of mani-
fold structure of data in the interplay between robustness
and generalization, under specific binary classification

setups (viz. Gaussian-mixture model and generalized lin-
ear model).

2. Problem Formulation

In this section we discuss the problem setting and formu-
lation of this paper in greater detail. After adopting some
notations, we give a brief overview of adversarial setting
and describe two data generative models, namely the
Gaussian mixture models (GMMs) and generalized
linear models (GLMs), which incorporate latent low-
dimensional manifold structure. We then conclude this
section by a short background on the Bayes-optimal
binary classifiers.

2.1. Notations

For a matrix W € R?¥, let ||W|| denote its operator norm,
W' stand for the Moore-Penrose inverse, and o yin (W)
denote its smallest “nonzero” singular value. For a vec-
tor xe R? and p=1, we define the £, norm ||x||€p =

(XL, ) "7 In addition, let B, (x) denote the £,-ball cen-
tered at x with radius ¢. Throughout the paper, for two
functions f, g from integers to positive real numbers, we
say f(d) =o04(g(d)), as d grows to infinity, if for every
0> 0, we can find a positive integer ¢ such that for d > ¢,
we have f(d)/g(d) < 6. In addition, let N(u, ) denote the
probability density of a multivariate normal distribution
with mean p and covariance X.

2.2. Adversarial Setting

In the binary classification problem, we are given a set of
labeled data points {(x; y:)}i=1.,, which are drawn ii.d.
from a common law P, where x € X Cc R is the feature
vector and y € {+1, —1} is the label associated to the fea-
ture x. The goal is to predict the label of a new test data
point with a feature vector drawn from the similar popu-
lation. To this end, the learner tries to fit a binary classifi-
cation model to the training set, which results in an
estimated model /: X — {1, +1}. The conventional
metric to measure the accuracy of a classifier  is its aver-
age error probability on an unseen data point (x,y) ~ P.
This is often referred to as the standard risk of the classi-
fier, a.k.a. generalization error. Concretely, standard risk
of a classifier / is defined as the following;:

SR(h) := P(h(x)y < 0). 1)

Despite the remarkable success in deriving classifiers
with high accuracy (low standard risk) during the past
decades, it has been observed that even the state-of-the-
art classifiers are vulnerable to minute but adversarially
chosen perturbations on test data points.

The adversarial setting is often formulated as a game
between the learner and the adversary. Given access
to unperturbed training data, the learner fits a model
h: X — {-1, +1}. After observing the model  and each
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test data point (x, y) generated from the distribution P,
the adversary perturbs the data point arbitrarily as far as
its within its budget. A common and widely-used adver-
sarial model is that of norm-bounded perturbations,
where for each test data point (x,y) the adversary
chooses an arbitrary perturbation 6 from the ¢, ball
of radius ¢, and replaces x by x + 6. Here, ¢, is a parame-
ter of the setting which quantifies adversary’s power."
The adversarial risk of the classifier h is defined as the
following:

AR<h>=E(x,y)~p< sup f<h<x+6>,y>>, @)

1ol <z

for some loss function ¢. For the 0-1 loss £(s, t) = I(st < 0),
this measure amounts to

bl <é,

AR(h) = 1@( inf  h(x')y < o) . 3)

Remark 1. A couple points are worth noting regard-
ing the adversarial setting:

e The adversary chooses perturbation “after” ob-
serving the test data point. The perturbation 6 can in
general depend on x, that is, different data points can
be perturbed differently. Therefore, in the definition
(2), the supremum is taken inside the expectation.

e In the above setting, the perturbations are added
in the test time, while the learner is given access to
unperturbed training data. Other adversarial setups
are also studied in the literature; see for example,
where an attacker can observe and modify all training
data samples adversarially so as to maximize the esti-
mation error caused by his attack.

e Another popular adversarial model is the so-
called distribution shift. In this model, in contrast to
norm bounded perturbations as discussed above, the
adversary can shift the test data distribution. The
adversary’s power is measured in terms of the Wasser-
stein distance between the test and the training distri-
butions; see Staib and Jegelka (2017), Dong et al. (2020),
Pydi and Jog (2020), and Mehrabi et al. (2021) for a non-
exhaustive list of references. That said, our focus in this
paper is on the norm-bounded perturbations.

From the definition of standard risk and adversarial
risk given by (1) and (3), it can be seen that the adversar-
ial risk is always at least as large as the standard risk. We
refer to the nonnegative difference of adversarial risk
and standard risk as the boundary risk, formulated by

BR(h) := AR(h) — SR(h)
x’fxllfl)Sep

_ P(h(x)y 20, inf_ hh(x) < o) )

The boundary risk can be considered as the average
vulnerability of the classifier with respect to small

perturbations on successfully labeled data points. In
other words, it measures the likelihood that the classi-
fier correctly determines the label of a data point, but
fails to label another test input very close to the pri-
mary data point. In the main result section, we study
the boundary risk of optimal classifiers (having the
lowest standard risk) in scenarios that features vectors
lie on a low-dimensional manifold. We next discuss
the data generative models.

2.3. Data Generative Model
2.3.1. Latent Low-Dimensional Manifold Models. We
focus on the binary classification problem with high-
dimensional features generated from a low-dimensional
latent manifold. Specifically, we assume that for the fea-
tures vector x € R?, and the binary label y € {+1, —1},
there exists an inherent low-dimensional link z € R¥
such that x 1y |z. This structure can be perceived as a
transformed binary classification model, where low-
dimensional features z € R* of a hidden classification
problem with labels y € {+1, —1}, are embedded in a
high-dimensional space by a mapping G : R* — R?. The
learner observes the embedded high-dimensional fea-
tures x; = G(z;) and the primary binary labels y;, while
being oblivious to the low-dimensional latent vector z;.
Throughout the paper, we consider a special case of
this model, where G(z) = p(Wz) with W e R a tall
full-rank weight matrix, and ¢ acting entry-wise on vec-
tor inputs with a derivative d¢g/dt > c, for some positive
constant ¢ > 30.

2.3.2. Classification Settings. The focus of this paper is
on two widely used binary classification settings: (i)
Gaussian mixture models (ii) generalized linear models
which we briefly explain below.

e Gaussian mixture models. In the Gaussian mix-
ture model, the binary response value vy accepts the
positive label with probability 77, and the negative label
with probability 1 — 7. In this setting, labels are as-
signed independently from the feature vector z, while
feature vectors are generated from a multivariate Gau-
ssian distribution with the mean vector yu, and a cer-
tain covariance matrix. Concretely, the data generating
law for the Gaussian mixture problem with features
coming from a low-dimensional manifold can be writ-
ten as the following:

y~Bern(m,{+1, —1}), x=¢9(Wz), z~N(yu,L). (5)

In this model, we consider low-dimensional isotropic
Gaussian features. In other words, manifold features z
are drawn from a Gaussian distribution with identity
covariance matrix.

e Generalized linear models. In binary classifi-
cation under a generalized linear model, there is an
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increasing function f:R:— [0,1], ak.a. link function,
along with a linear predictor § € R¥, where the score
function f(z"B) denotes the likelihood of feature vector
z accepting the positive label. Formally, the data gener-
ating law for this classification problem under the low-
dimensional manifold model can be formulated as the
following:

[+l wp. fz'B), ~ )
Y ‘{_1 wp. 1-f@p. =P 2-NOL).

(6)

Popular choices of the link function f are the logistic
model f(f) =1/(1 + exp(—t)), and the probit model f(t) =
D(t) with d(t) being the standard normal cumulative
distribution function.

2.4. Background on Optimal Classifiers

For each classification setup described in the previous
section, we want to identify the classifiers that are opti-
mal with respect to the standard risk. To this end, we
provide a summary of the Bayes-optimal classifiers. For
a data point (x,y) ~ P, consider the conditional distribu-
tion function 1(x) :=P(y = +1 | X = x). This distribution
function can be perceived as the likelihood of assigning
the positive label to a data point with feature vector x.
The Bayes-optimal classifier simply assigns label y = +1
to the feature vector x, if for this feature there is a higher
likelihood to accept the label + 1 than —1. In other words,
hBayes(x) = sign(n(x) —1/2). We formalize it in the next
proposition, which is a standard result (see e.g., Devroye
etal. 2013, theorem 2.1).

Proposition 2.1. (Devroye et al. 2013, theorem 2.1)
Among all the classifiers h: R? — {+1, —1}, such that h is
a Borel function, the Bayes-optimal classifier hpayes(x) =
sign(n(x) — 1/2) has the lowest standard risk.

The next corollary uses Proposition 2.1 to characterize
the Bayes-optimal classifier under each of the binary clas-
sification settings described earlier in Section 2.3.

Corollary 1. Under the Gaussian mixture model (5), the
Bayes-optimal classifier can be formulated by

I (x) = sign(p ™" (x) " (WWT) Wy — q/2),

with q=log(=%). Moreover, under the generalized linear
model (6), the Bayes-optimal classifier is given by

I (x) = sign(f(BT(WTW) "W (x)) — 1/2).

It is worth noting that in the described manifold latent
model of Section 2.3, the weight matrix W is tall and full-
rank, and ¢ is strictly increasing hence both WTW and ¢
are invertible.

3. Main Results

We will focus on the described binary classification set-
tings of Section 2.3. In each setting, we characterize the
asymptotic behavior of the associated boundary risk of
Bayes-optimal classifiers, when the ambient dimension d
grows to infinity. We aim at studying the role of low-
dimensional latent structure of data in obtaining a van-
ishing boundary risk for the Bayes-optimal classifiers. In
this case, the Bayes-optimal classifiers are optimal with
respect to both measures of standard accuracy and the
robust accuracy.

3.1. Gaussian Mixture Model

Consider the Gaussian mixture model with features
lying on a low-dimensional manifold, cf. (5). Recall that
the learner only observes the ambient d—dimensional
features x, and is oblivious to the original k-dimensional
manifold features z. The next result states that under this
setup, the boundary risk of the Bayes-optimal classifier
will converge to zero, when the minimum nonzero sin-
gular value of the weight matrix W grows at a sufficient
rate, which depends on adversary’s power ¢, and the
choice of perturbations norm ¢,,.

Theorem 1. Consider the binary classification problem
under the Gaussian mixture model (5) in the presence of an
adversary with {,-norm bounded adversary power &, for
p > 2. By letting the ambient dimension d grow to infinity,
under the condition that the weight matrix W satisfies

= Od(l)r (7)

the boundary risk of the Bayes-optimal classifier converges to
zero.

The proof of Theorem 1 is given in the appendix.

We proceed by discussing condition (7). As ¢, gets
larger, the condition becomes more strict which is expec-
ted; larger value of ¢, indicates a stronger adversary which
makes the boundary risk larger. In addition, omimn(W)
somewhat measures the extent of low-dimensional struc-
ture in data; small 0, (W) indicates that there are direc-
tions in the low-dimensional space along which the energy
of the signal is not scaled sulfficiently large when trans-
formed into the ambient space. Therefore, the adversary
can perturb feature x along those dimensions as the existent
signal is weak. In particular, if the means of mixture com-
ponents are close to the space of small eigenvalues of W,
then they are collapsed in the embedding from the latent
space to the ambient space, making the Bayes-optimal clas-
sifier less robust. Finally, since ||6||[ﬂ <loll,, for p>2, an
adversary with power ¢ in £, norm is stronger than an
adversary with power ¢ in £, norm. This is consistent with
the fact that 7 is increasing in p and so the condition
becomes stronger for larger p.
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Example. Consider the case of ¢(-) being the identity
function and p=2. We observe that for feature x with
label y, x; ~ N(yw] , |lwill7,). To be definite, we fix
llwill,, =1, which implies in particular [W|Z=d. To
simplify further, we assume that all the nonzero sin-
gular values of W to be equal, whence WTW = (d/k)I.
In this case, condition (7) reduces to & = o(y/d/k). In
particular, if &, = O(1) and the dimension ratio d/k — oo
the boundary risk converges to zero.

Figure 1 validates the result of Theorem 1 under the
Gaussian mixture model (5) with m=1/2, u=N(0,
I /k), in the presence of an adversary with ¢, bounded
adversarial attacks of power ¢;. In this example, we
fix the high-dimensional feature dimension d=2300,
and vary the dimensions ratio d/k from 1 to 300. Fur-
ther, we consider the identical function ¢(t) =t, and
let the feature matrix W have independent Gaussian
entries N(0,1/k). Figure 1(a) shows the effect of di-
mensions ratio d/k on the standard risk, adversarial
risk, and the boundary risk of the Bayes-optimal clas-
sifier. For each fixed values (k, d), we generate M =100
independent realizations and compute the risks. The
shaded area around each curve denotes one standard
deviation (computed over M realizations) above and
below the average curve. As it can be seen, the bound-
ary risk will eventually converge to zero. Finally, in
Figure 1(b), we consider several values for adversary’s
power, where it can be observed that for all adver-
sary’s power &, the boundary risk decays to zero as
the feature dimensions d/k grows.

The standard risk and the robust risk in Figure 1(a)
are calculated using the following proposition.

Proposition 3.1. Consider the mixture of Gaussian classi-
fication setup (5) with the identity mapping @(t) =t and
balanced classes (i.e., 1 = 1/2). For a linear classifier h(x) =
sign(x'a) under Cy-bounded adversarial setup, adversarial
and standard risks are given by

epllall, —a"Wu —a' Wy
AR() = o T T Y - gRp :(1)(_ )
" ( W, =2\ wral,

where |||, is the dual norm of ||.||,, that is,ll—,+ % =1.

We refer to the appendix for the proof of Proposi-
tion 3.1.

In Theorem 1, we showed that when features lie on a
low-dimensional manifold, the Bayes-optimal classifier
is also optimal with respect to the adversarial risk. In
other words, the adversarial risk is always at least as
large as the standard risk, for any classifier, and the gap
between the “minimum” of these two risks converges to
zero. This result raises the below natural question:

“Does the boundary risk of any classifier vanish under the
low-dimensional latent structure?”

In the next proposition, we provide a simple example
to show that such behavior (vanishing boundary risk)
does not necessarily happen for all classifiers.

Proposition 3.2. Consider the Gaussian mixture model
(5) with y having i.i.d. N(0,1/k) entries with class proba-
bility 7 = 1/2 in the presence of an adversary with bounded
, perturbations of size ¢,. In addition, suppose that the
rows of the feature matrix W are sampled from the k-
dimensional unit sphere and consider @ being the identity

Figure 1. (Color online) Effect of the Dimensions Ratio d/k on the Standard, Adversarial, and the Boundary Risk of the Bayes-
Optimal Classifier with ¢, Perturbations Under the Gaussian Mixture Model (5), Where Features Lie on a Low-Dimensional

Manifold
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Notes. Solid curves represent the average values, and the shaded area around each curve represents one standard deviation above and below the
computed average curve over the M = 100 realizations. (a) Behavior of the standard and adversarial risks of the Bayes-optimal classifier for the
adversary’s power ¢, = 1. (b) Behavior of the boundary risk of the Bayes-optimal classifier for the several values of adversary’s power ¢;.
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function. Then, the boundary risk of the classifier h(x) =
sign(e]x) with e; =(1,0,0,...,0) is lower bounded by
some constant c.,, where c, depends only on &, (indepen-
dent of dimensions k, d), and is strictly positive for positive
values of €.

We refer to the appendix for proof of this proposition.

3.2. Binary Classification Under Generalized
Linear Models

Consider a binary classification problem under a gen-
eralized linear model with features enjoying a low-
dimensional latent structure, cf. (6). The next result states
that under certain conditions on the weight matrix, the
boundary risk of the Bayes-optimal classifier will con-
verge to zero, as the ambient dimension grows to infinity.

Theorem 2. Consider the binary classification problem
under the generalized linear model (6) in the presence of an
adversary with €,-bounded perturbations of power ¢, for
some p > 2. Assume that as the ambient dimension d grows
to infinity, the weight matrix W satisfies the following
condition:

epdt
m = 04(1). 8)
Then the boundary risk of the Bayes-optimal classifier
converges to zero.

The proof of Theorem 2 is given in the appendix. Note
that the condition (8) is similar to condition (7) for the
Gaussian mixture model.

Figure 2 validates the result of Theorem 2 for bin-
ary classification under the generalized linear model (6)
with identity ¢ mapping and ¢, perturbations. In this

example, the ambient dimension d is fixed at 300, and
the manifold dimension k varies from 1 to 300. In addi-
tion, the linear predictor § and the weight matrix W have
iid. N(0,1/k) entries. For each fixed values (k,d), we
generate M =100 independent realizations, and we com-
pute the average and the standard deviation of total M
obtained values. In each figure, the shaded areas are
obtained by moving the average values one standard
deviation above and below. Figure 2(a) denotes the be-
havior of the standard risk, adversarial risk, and the
boundary risk of the Bayes-optimal classifier, as the di-
mensions ratio d/k grows. Further, Figure 2(b) exhibits a
similar behavior for several values of adversary’s power
¢, in which it can be observed that the boundary risk
decays to zero.

The standard risk and the robust risk in Figure 2(a) are
calculated using the following proposition.

Proposition 3.3. Consider the generalized linear model (6)
with the identity mapping @(t) = t. Under this setup, the
adversarial and standard risks of linear classifier h(x) =

sign(f (GTx) —1/2) are given by
AR(R) = Euy, up1-Neo, 2 [f (1)I(u2 < ¢+ &]16]],)
+(1 = f(u) L2 = c — &ll6ll,)],
SR(h) = Efuy, uy]-No, 2 If (1)I(u2 < )
+(1—f(u1)l(uz = 0)],
IBl;  BTWTe
BTWTo |[WTel;3 ]’
c=f11/2),and ||.||q is the dual norm 0f||.||p.

In addition, for the Bayes-optimal classifier h*(x) = sign
(f(xT0") —1/2) with 6" = W(WTW) ' (see Corollary 1)

where the covariance matrix Y, =

Figure 2. (Color online) Effect of the Dimensions Ratio d/k on the Standard, Adversarial, and the Boundary Risk of the
Bayes-Optimal Classifier of the Generalized Linear Model (6) with ¢, Perturbations, in Which Features Are Coming From a

Low-Dimensional Manifold
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Notes. Solid curves represent the average values, and the shaded areas represent one standard deviation above and below the corresponding
curves over M = 100 realizations. (a) Behavior of the standard and adversarial risks of the Bayes-optimal classifier for the adversary’s power
& = 1. (b) Behavior of the boundary risk of the Bayes-optimal classifier for the several values of adversary’s power ¢;.
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we have
AR(I) = E, o, 1) f (I < ¢+ &,167],)
+(1 = f(u)(u = c — &,[167]],)],
SR(") = E,,_y o 2 )1 <€) + (1= f(u))(u > c)].

We refer to the appendix for the proof of this
proposition.

4. Discussion
1. Is it Necessary to Learn the Latent Structure
to Obtain a Vanishing Boundary Risk? A
Simple Case

In the previous sections, for the two binary classification
settings, we showed that when the features inherently
have a low-dimensional structure, the boundary risk of
the Bayes-optimal classifiers will converge to zero, as the
ambient dimension grows to infinity. A closer look at the
Bayes-optimal classifier of each setting (can be seen in
Corollary 1) reveals the fact that these classifiers directly
use the knowledge of the nonlinear mapping from the
low-dimensional manifold to the ambient space. In other
words, the Bayes-optimal classifiers explicitly draw
upon the generative components ¢ and W. In this sec-
tion, we investigate the existence of classifiers that are
agnostic to the mapping between the low-dimensional
and the high-dimensional space, while they have asymp-
totically vanishing boundary risk. For this purpose, con-
sider binary classification under the Gaussian mixture
model (5). In addition, assume a training set {(x;,v;)}i;
sampled from (5). We focus on the class of linear classi-
fiers hg(x) = sign(xT0) with 0 € RY and ¢, perturbation
(p=2).

We consider the logistic loss £(t) =log(1 + exp(—t)),
and assume that the adversary’s power is bounded by «.
We consider the minimax approach of Madry et al.
(2018) to adversarially train a model 0 by solving the fol-
lowing robust empirical risk minimization (ERM):

“=agmin. > Z mavx fyiu”
This is a convex optimization problem, as it can be cast
as a point-wise maximization of the convex functions
{(y;u"6). Further, when perturbations are from the ¢,
ball, the inner maximization problem can be solved
explicitly (see e.g., Javanmard and Soltanolkotabi 2022),
which leads to the following equivalent problem:

A

e 1
6 =aremin=Y £(y;x] 0 — €||6||,.). 9
gmin, > yaf0 — eloll) ©)

Figure 3 demonstrates the effect of the dimensions ratio
d/k on the standard, adversarial, and the boundary risk
of the classifier hye for four different choices of the

feature mapping ¢: (i) ¢, (t) =t, (ii) @,(t) = t/4 + sign(f)
3t/4, (iii) ¢4(t) = t + sign(t)?, and (iv) ¢,(t) = tanh(t). In
this example, we consider the ambient dimension
d=100, and number of samples n=300. In addition,
k varies from 1 to 100, and u, W have ii.d. entries N(0,
1/k). Further, we consider balanced classes (each label
+1 occurs with probability 7 = 1/2). The plots in Figure 3
exhibit the behavior of the standard, adversarial, and the
boundary risks of the classifier /15:, for each of these
mappings and for the adversary’s power ¢ = 1. For each
fixed value of k, d, we consider M =20 trials of the setup.
The solid curve denote the average values over these M
trials. The shaded areas are obtained by plotting one
standard deviation above and below the main curves.
The plots in Figure 4 showcase the boundary risk for dif-
ferent choices of €. As we observe, the boundary risk
decreases to zero, when the dimensions ratio d/k grows
to infinity. Our next theorem proves this behavior for the
special case of ¢(t) = t.

Theorem 3. Consider binary classification under the Gau-
ssian mixture model (5) with identity mapping @(t) =t in
the presence of an adversary with £, norm bounded pertur-
bations of size ¢, for some p > 2. In addition, Let hg(x) =
sign(x"0) be a linear classifier with 6 € R? and assume
that as the ambient dimension d grows to infinity, the fol-
lowing condition on the weight matrix W and the decision
parameter O hold:

epd%_l% 3
Gmin () = 0a(1),
(10)

where Pyerw)(0) stands for the €-projection of vector 6 onto
the kernel of the matrix W. Then the boundary risk of the classi-
fier hg will converge to zero.

In particular, assume that 0° is the solution of the fol-
lowing adversarial empirical risk minimization (ERM)
problem:

-1/2
(1= IPkerinr (O, /1611, )

n

6 = .aurgmm1 Z sup £(yu'0),

0eR’ M =7 ueB. (x;)

with € : R — R being a strictly decreasing loss function. In

this case, with the weight matrix W satisfying -2 - ) =04(1),

the boundary risk of h e converges to zero.

We refer to the appendix for the proof of Theorem 3.

4.2. Effect of Perturbation in the Lifting Matrix W

The Bayes-optimal classifiers in previous sections were
computed using the true lifting matrix W. In practice,
this matrix (or in general the embedding from the latent
to ambient space) should be learned and therefore devi-
ates from the true W. Our goal in this section is to show
through numerical experiments that our result about the
boundary risk being decreasing as d/k grows, remains
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Figure 3. (Color online) Effect of Dimensions Ratio d/k on the Standard, Adversarial, and Boundary Risks of the Linear Classi-
fier hp(x) = sign(x" 0) with 6 Being the Robust Empirical Risk Minimizer (9)
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Notes. Samples are generated from the Gaussian mixture model (5) with balanced classes (1 = 1/2), and with four choices of feature mapping ¢:
(@) p(t) =t, (b) p(t) = 3t/4 +sign(H)t/4, (c) @(t) = t + sign(t)t? and (d) ¢(t) = tanh(t). In these experiments, the ambient dimension d is fixed at 100,
and the manifold dimension k varies from 1 to 100. The sample size is n = 300 the classes average u and the weight matrix W have ii.d. entries
from N(0,1/k). The adversary’s power is fixed at ¢ = 1. For each fixed values of k and d, we consider M = 20 trials of the setup. Solid curves repre-
sent the average results across these trials, and the shaded areas represent one standard deviation above and below the corresponding curves. (a)
Feature mapping ¢(t) =t and adversary’s power ¢ = 1. (b) Feature mapping ¢(t) = t/4 + sign(t)3t/4 and adversary’s power ¢ = 1. (c) Feature
mapping ¢(t) = t + sign(t)#* and adversary’s power ¢ = 1. (d) Feature mapping ¢(f) = tanh(t) and adversary’s power ¢ = 1.

valid even if a perturbed lifting matrix W is used in the
Bayes-optimal classifier.

Consider the perturbed matrix W = W + N where N
has ii.d Gaussian entries N(0,0%;). We start by the Ga-
ussian mixture mode. Using Corollary 1 with mapping
@(f) =t and balanced class probabilities (1 =1/2), the
Bayes-optimal classifier reads

hi(x) = sign (xT(WWT)+Wp>. (11)
We first characterize the adversarial and standard risk of
classifier /1 using Proposition 3.1 and then compute the
boundary risk BR(/) = AR(/1) — SR(h).

We generate W and y similar to the previous experi-
ments setup (results in Figure 1) with d=300. In Figure
5(a), we fix oy = 1 and plot the adversarial, standard and
boundary risks, averaged over 200 independent in-
stances of the problem. The shaded areas around each

curve represent the one standard deviation (computed
over 200 experiments) above and below the mean curve.
As can be observed, the boundary risk vanishes as the
dimension ratio d/k grows to infinity. In Figure 5(b), we
plot the boundary risk for oy € {1,2,3,4,5}. As can be
seen, even for large perturbation levels oy, the boundary
risk converges to zero, albeit at a slower rate.

We next conduct similar experiments for the general-
ized linear model. In this setting, the Bayes-optimal clas-
sifier is given by

hi(x) = sign(f(ﬁT(WTW)_lex) -1 /2). (12)
By an application of Proposition 3.3 for 6 = W(WT
W) ' we compute the adversarial and the standard
risks of /1. For our numerical experiment, we consider
the logistic model f(t) = m In Figure 6(a), we fix
& =1 (under ¢, adversarial setup), oy =1 and d =300,
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Figure 4. (Color online) Effect of Dimensions Ratio d/k on the Boundary Risk of the Linear Classifier /g(x) = sign(x"0) with 0

Being the Robust Empirical Risk Minimizer (9)
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Notes. Samples are generated from the Gaussian mixture model (5) with balances classes (p = 1/2), and with four choices of feature mapping ¢:
(@) p(t) =t, (b) @(t) = 3t/4 +sign(t)t/4, (c) p(t) = t + sign(t)t* and (d) ¢(t) = tanh(t). In these experiments, the ambient dimension d is fixed at 100,
and the manifold dimension k varies from 1 to 100. The sample size is n = 300 the classes average i and the weight matrix W have i.i.d. entries
from N(0,1/k). We consider different levels of the adversary’s power ¢ € {1,2,4}. For each fixed values of k and d, we consider M = 20 trials of
the setup. Solid curves represent the average results across these trials, and the shaded areas represent one standard deviation above and below
the corresponding curves. (a) Boundary risk with the feature mapping ¢(t) = t and for multiple values of adversary’s power ¢. (b) Boundary risk
with the feature mapping ¢(t) = t/4 + sign(t)3f/4 and for multiple values of adversary’s power ¢. (c) Boundary risk with the feature mapping
@(t) = t + sign()* and for multiple values of adversary’s power ¢. (d) Boundary risk with the feature mapping ¢(t) = tanh(t) and for multiple

values of adversary’s power ¢.

and vary k. The reported results are averaged over 50
independent experiments with shaded curves showing
one standard deviation above and below the averaged
values (computed over 50 realizations). As can be seen,
even though the Bayes-optimal classifier is computed
using the perturbed matrix W, the boundary risk con-
verges to zero as d/k grows to infinity. In Figure 6(b),
we repeat similar experiments for different values of
on €1{1,2,3,4,5}. As we see, even for large perturbation
levels oy, the boundary risk converges to zero, albeit at a
slower rate.

The above experiments demonstrate that for the Bayes-
optimal classifier, constructed using a perturbed lifting
matrix W, the robust-standard risks tradeoff is attenuated
as the low-dimensional structure of data becomes stronger.

5. Boundary Risk of Bayes-Optimal Image
Classifiers

We next provide several numerical experiments on the
MNIST image data to corroborate our findings regarding
the role of low-dimensional structure of data on the
boundary risk of Bayes-optimal classifiers. Of course, the
evaluation of this finding on image data are challenging
since learning particular structure of the underlying
image distribution is notoriously a difficult problem.
There have been a few well-established techniques for
this task that we briefly discuss below.

Generative Adversarial Net (GAN) (Goodfellow et al.
2014) is among the most successful methods in modeling
the statistical structure of image data. Despite the re-
markable success of GANs in generating realistic high
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Figure 5. (Color online) Effect of the Dimensions Ratio d/k on the Standard, Adversarial, and the Boundary Risk of the Bayes-
Optimal Classifier Obtained From a Noisy Weight Matrix W with ¢, Perturbations Under the Gaussian Mixture Model (5),
Where Features Lie on a Low-Dimensional Manifold
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Notes. Solid curves represent the average values, and the shaded area around each curve represents one standard deviation above and below the
computed average curve over the M = 200 realizations. (a) Behavior of the standard and adversarial risks of the Bayes-optimal classifier (11) com-
puted with noisy weight matrix W = W + N with N having i.i.d entries  N(0, 1) for the adversary’s power ¢, = 1. (b) Behavior of the boundary risk
of Bayes-optimal classifier (11) computed with noisy weight matrix W = W + N with N having i.i.d entries N(0,0%) for the adversary’s power

e =1land oy €1{1,2,3,4,5}.

resolution images, it has been observed that they may
fail in capturing the full data distribution, which is
referred to as model collapse. In addition, computing the
likelihood of image data with GANs requires to perform
complex computations. As a direct implication of these
observations, it is not statistically accurate and efficient
to deploy GANs to formulate the Bayes optimal classi-
fiers (Richardson and Weiss 2018, 2021).

Fitting elementary statistical models can mitigate the
statistical inaccuracies of GANSs. (Richardson and Weiss
2018) learns the statistical structure of image data by
using the class of Gaussian Mixture Models (GMM). This
choice is motivated by the statistical power of GMMs
that they are universal approximators of probability
densities (Goodfellow et al. 2016). On the other hand,
working with general Gaussian covariance matrices can

Figure 6. (Color online) Effect of the Dimensions Ratio d/ kA on the Standard, Adversarial, and the Boundary Risk of the Bayes-
Optimal Classifier Obtained From a Noisy Weight Matrix W with {,-Perturbations Under the Generalized Linear Model (6)
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Notes. Solid curves represent the average values, and the shaded area around each curve represents one standard deviation above and below the
computed average curve over the M = 50 realizations. (a) Behavior of the standard and adversarial risks of the Bayes-optimal classifier (12) under
generalized linear model (6) computed with noisy weight matrix W = W + N with N having i.i.d entries N(0,1) for the adversary’s power &, = 1.
(b) Behavior of the boundary risk of Bayes-optimal classifier (12) under generalized linear model (6) computed with noisy weight matrix W =
W + N with N having i.i.d entries N(0, 0%,) for the adversary’s power ¢; = 1 and oy € {1,2,3,4,5}.
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make the estimation problem both in terms of computa-
tional cost and memory storage extremely prohibitive.
(Richardson and Weiss 2018) deployed Mixture of Factor
Analyzers (MFA) (Ghahramani and Hinton 1996) to avoid
storage and computation with such high-dimensional
matrices. This deployment is aligned with the former
intuition that the space of meaningful images is indeed a
small portion of the entire high-dimensional space. In
addition, they show that with moderate number of com-
ponents in the GMM one can produce adequately realis-
tic images, and further reduce the computational burden.
We will adopt the MFA procedure introduced in
(Richardson and Weiss 2018) to generate realistic image
data for our numerical experiments. The main reasons
for this adoption are: (i) this framework is flexible for
generating realistic images from a low-dimensional sub-
space, and (ii) it enables us to accurately and efficiently
calculate the log-likelihood of images, which can be used
later to formulate the Bayes-optimal classifier. It is worth
noting that, using a class of less complex models, in this
case GMMs rather than GANSs, will output images with
lower resolution, which is not a major concern for the
main purpose of this numerical study. In the next sec-
tions, we first provide a brief overview of the GMM esti-
mation steps and then review some of the standard
frameworks to produce adversarially crafted examples.

5.1. Learning Image Data with Gaussian Mixture
Models (GMM)

A general setup for fitting a GMM to image data {x;},., €

R? is based on the following model

K
x~> N, L), Ly eR™, p eRY,
k=1

where K denotes the number of components in GMM
and «; are mixing weights. This problem, without impos-
ing any extra structure on image data, involves learning
O(Kd?) parameters which can be extremely difficult for
high-dimensional images. (Richardson and Weiss 2018)
deployed a mixture of factor analyzers (MFA), where
they use tall matrices Ay, to embed a low-dimensional
subspace in the full data space. In this case, the following
model is considered

K
X~ Z axN(,, AkA] + Dy),
=1

A €R™C, Dy eR™ 1 eRY,

where Dy is a diagonal matrix showing the variance on
each single pixel. This model ameliorates the previous
high storage and computational cost, as in this case
Kd(¢ + 2) learning parameters exist, which scales linearly
with image dimension d. This model is intimately related
to the specific case of the low-dimensional manifold

models on features in (5) and (6) with the identity map-
ping @(f) = t. The only difference is in the entrywise inde-
pendent Gaussian noise coming from diagonal matrix Dy,
however in the numerical experiments we observed that
indeed the estimated values of Dj. entries are extremely
small, which makes this difference negligible. We use the
maximum likelihood estimator to compute the model
parameters. For this purpose, we need to compute the
log-probabilities. For a single component of GMM we
first compute the likelihood p(x | A, D, 1) given by

p(x|A,D,u) = —% [dlog(2m) +log det(AAT + D)

+(x— ) (D+AAT) " (x — p)].
(13)

Richardson and Weiss (2018) used the following alge-
braic identities with u = x — i, L = ATDA € R™ to avoid
large matrix storage and multiplications:

Wy =u"[D'u—D ALY (ATD )],
d

log det(AAT + D) = log detL + Zlog(dj),
=)

where d; denotes the i-th entry on the diagonal of matrix
D. In addition, Richardson and Weiss (2018) employed
differentiable programming framework to efficiently solve
the corresponding Maximum-likelihood optimization
problem on GPU. We use their publicly available code at
https: // github.com/eitanrich / gans-n-gmm:s to fit GMMSs
on full image data sets. As a simple example, we consider
models with K= 10 components and the manifold dimen-
sions ¢ =1,10,100. We fit these three models to the train-
ing samples of the MNIST data set (Deng 2012) that are
labeled “6”. Figure 7 exhibits sample images generated
from the learned GMM models.

5.2. PGD and FGM Adversarial Attacks
Recall that adversarial examples are meant to be close
enough to original samples, yet be able to degrade the
classifier performance. For a loss function £ consider the
adversarial optimization problem

| mﬁx L(h(x"),y).

x—x’ 6 SE
Using the 0-1 loss L(h(x"),y) =1(y # h(x")) yields the
inner optimization problem (3). A large body of pro-
posed methods to produce adversarial examples con-
sider the first-order linear approximation of the loss
function around the original sample. More precisely, x’
is written as x + 0, and then single/multi steps of gradi-
ent descent (GD) of the negative loss function is consid-
ered. In this framework, first a powerful predictive
model, for example, a neural network, is fit to the train-
ing samples, which will be used as a surrogate for the
learner’s model k. For £»-bounded adversary’s budget ¢,


https://github.com/eitanrich/gans-n-gmms
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Figure 7. Sample Generated Images From a GMM Model Fit on MNIST Training Set Images with Label Six
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the Fast Gradient Method (FGM) performs a single step of
normalized GD which yields

IV L), e,

This method is first introduced in Goodfellow et al.
(2015) for £w-bounded attacks under the name Fast Gra-
dient Sign Method (FGSM). Other variants for other
{,-bounded adversarial attacks are introduced in Tramer
et al. (2017), generally called the FGM (removing “sign”
from FGSM). A more general scheme to produce adver-
sarial examples is via a multistep implementation of the
above procedure with the projected gradient descent
(PGD). This attack is introduced in Madry et al. (2018),
with iterative updates given by

Vi L(h(x"),y) )
VL), Y)lle,)”

where ITp (,) stands for the projection operator to the
{>-ball centered at x with radius ¢. For our image classifi-
cation numerical experiments, we will use FGM and
PGD attacks to produce adversarial examples. We follow
the same implementation of PGD and FGM adversarial
attacks provided in CleverHans library v4.0.0 (Papernot
et al. 2016). The code for this implementation can be ac-
cessed at https:// github.com/cleverhans-lab/cleverhans.
In our implementation, the original image values are nor-
malized to be in the interval [0, 1], and we clip perturbed
pixel values to be in the same interval. We next present
key findings from our numerical experiments.

X' =x+e¢

XH-l = HBé(x) (Xt + &

5.3. Main Experiments and Key Findings

In this section, we connect the previously described
parts. Put all together, these are the three main steps of
our experiments:

1. For several choices of K (number of components)
and latent dimensions ¢, we first fit two GMM models
to zeros and sixes of the training set of MNIST data set.
By deploying the learned models, we generate 5,000
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models with number of components K = 10, and manifold dimensions ¢ = 1,10,100 (from left to right) are considered.

new images with uniform probability on labels 6 or 0,
that is, at the beginning of generating an image, with
equal chance we decide to use either of the models. In
addition, for the defined binary classification problem
(0 versus 6), we deploy (13) to obtain two likelihood

Figure 8. Attacks and Perturbed Images for Three Different
Latent Dimensions ¢ =1,10,100, Respectively From Top to
Bottom

Notes. In each row, from left to right, the original sample, the adver-
sarially crafted perturbation, and the perturbed image is exhibited.
The original images are generated from a GMM with the number of
components K = 10. In all images under the PGD adversarial pertur-
bation, we start with the {,—bounded adversarial power ¢ =0, and
incrementally increase it to the point that the Bayes-optimal classifier
fails to infer the correct label. In this experiment, the Bayes-optimal
misclassification on sampled images with ¢=1,10,100 occurs at
{>—bounded adversarial power ¢ =22.6,11,7, respectively. It can be
seen that samples coming from smaller latent dimension ¢ require stron-
ger perturbation to get misclassified by the Bayes-optimal classifier.
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Figure 9. (Color online) Boundary Risk of the Bayes-Optimal Classifier on 1,000 Test Images Generated From GMM Models
with Number of Components K = 1 and K = 10 (From Left to Right)
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Notes. In each experiment, the adversary’s {>-bounded perturbation power is fixed at ¢ = 12, and both adversarial attacks PGD and FGM are
considered. It can be observed that the boundary risk of the Bayes-optimal classifier will converge to zero as the dimension ratio d /¢ grows.

models po(x), p1(x). This can be used to formulate the
Bayes-optimal classifier I(p1(x) > po(x)).

2. In this step, we adversarially attack the generated
images. To this end, the data set is split into 80%-20%
training-test samples. The training set is used to train a
neural network for PGD and FGM attacks. The ob-
tained model will be used later to craft adversarial
examples for the 1,000 test images.

3. Finally, the performance of the Bayes-optimal
classifier on adversarially perturbed test images (size
1,000) is evaluated.

In our first experiment, we consider a fixed number of
components K=10 along with three different latent
dimensions ¢ = 1,10, and 100. For each pair of (K, ¢), we
randomly select one sample with label 6 among the origi-
nal 1000 test images. For PGD adversarial attacks, we
start from ¢ =0, and incrementally increase the adver-
sary’s {»-bounded power ¢ until to the point that the
Bayes-optimal classifier fails to correctly label the sam-
ple. Figure 8 displays the original, adversarial attack, and
the perturbed images for each ¢ value. The Bayes-
optimal classifier fails at adversarial power ¢ = 22.6,11,7
for £ =1,10,100 respectively. The result conforms to the
fact that samples coming from a higher value of dimen-
sion ratio d/¢ (here d=784) indeed require stronger
adversarial attacks (larger ¢).

In the second experiment, we consider the two choices
of K=1 and K=10 and vary the latent dimension ¢. For
each pair of (K, £), we repeat the above three-step proce-
dure for adversary’s {,-bounded power ¢ = 12 and com-
pute the boundary risk of the Bayes-optimal classifier on
the PGD and FGM perturbed images. The plots are
included in Figure 9. As observed, by increasing the
dimension ratio d/¢, the boundary risk of the Bayes-
optimal classifier decreases to zero.

6. Conclusion
In this paper, we studied the role of data distribution (in
particular latent low-dimensional manifold structures of

data) on the tradeoff between robustness (against ad-
versarial perturbations in the input, at test time) and gen-
eralization (performance on test data drawn from the
same distribution as training data). We developed a the-
ory for two widely used classification setups (Gaussian-
mixture model and generalized linear model), showing
that as the ratio of the ambient dimension to the mani-
fold dimension grows, one can obtain models which
both are robust and generalize well. This highlights the
role of exploiting underlying data structures in improv-
ing robustness and also in mitigating the tradeoff bet-
ween generalization and robustness. Through numerical
experiments, we demonstrate that low-dimensional mani-
fold structure of data, even if not exploited by the training
method, can still weaken the robustness-generalization
tradeoff.

Endnote

" We will drop the index p and write ¢ for the adversary’s power
when it is clear from the context.
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