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Successful deep learning models often involve training neural network ar-
chitectures that contain more parameters than the number of training samples.
Such overparametrized models have recently been extensively studied, and the
virtues of overparametrization have been established from both the statistical
perspective, via the double-descent phenomenon, and the computational per-
spective via the structural properties of the optimization landscape. Despite
this success, it is also well known that these models are highly vulnerable
to small adversarial perturbations in their inputs. Even when adversarially
trained, their performance on perturbed inputs (robust generalization) is consid-
erably worse than their best attainable performance on benign inputs (standard
generalization). It is thus imperative to understand how overparametrization
fundamentally affects robustness.

In this paper, we will provide a precise characterization of the role of
overparametrization on robustness by focusing on random features regression
models (two-layer neural networks with random first layer weights). We
consider a regime where the sample size, the input dimension and the number
of parameters grow proportionally, and derive an asymptotically exact formula
for the robust generalization error when the model is adversarially trained.
Our developed theory reveals the nontrivial effect of overparametrization
on robustness and indicates that high overparametrization can hurt robust
generalization.

1. Introduction The success of deep learning models is often reliant on training highly
complex neural networks whose number of parameters is much larger than the number of data
points. Even though the large complexity of such models allows for perfect interpolation of
the data, they often achieve low generalization error. This behavior has resulted in a growing
body of work aiming to analyze such so-called overparametrized models.

Recent work has demonstrated the virtues of overparametrization from statistical and
optimization-based perspectives. From the statistical viewpoint, it is now well-documented
that many overparametrized models exhibit a ‘double-descent’ property [5, 4, 61]: As the
model complexity increases, the generalization error first follows the traditional U-shaped
curve until a specific point, after which the error decreases, and attains a global minimum in
the overparametrized regime. In fact, the minimum generalization error often appears to be at
infinite complexity – the more overparametrized is the model, the smaller is the error. It is often
argued that the good generalization behavior of highly overparametrized models is due to the
inductive bias of gradient-based algorithms which helps with selecting models that generalize
well –see e.g, [3, 37, 79, 35]. From the optimization viewpoint, training deep neural networks
in general involves optimizing highly non-convex functions, but it has been conjectured that
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highly overparametrized models are easy to optimize despite non-convexity. Instances of this
observation has been formally proved, e.g. in [77, 44, 41, 3, 64]. The high-level intuition here
is that in the highly overparametrized regimes, a model that perfectly interpolates the training
data (and so is a global minimizer of the empirical risk) is found in the neighborhood of most
initializations.

Despite the remarkable success of deep neural networks, and the crucial role of over-
parametrization in both the generalization and the tractability aspects, these models are known
to be highly vulnerable to perturbations in the input [6, 84]. With an unguarded training
approach, these models show unsatisfactory robust generalization error in the presence of
“small” worst-case perturbations to their inputs, a.k.a asdversarial examples. This suggests that
learning algorithms, even those with excellent performance on test data, may not be learning
the true underlying concepts that determine the response; although they work well on naturally
occurring data, adversarial examples have low probability in the data distribution and expose
fundamental blind spots in the learning algorithms.

This observation stimulated significant effort to improve robustness using a wide variety of
adversarial training methods which often involve augmenting the training loss so as to become
more robust to input perturbations (see e.g. [32, 47, 43, 57, 93, 97, 13]). However, there is still
a large gap between the robust generalization error and the (standard) generalization error in
adversarially-trained models. In summary, while modern overparametrized machine learning
models perform very well on benign inputs, they still remain fragile to perturbations in the
input. These findings raise a fundamental question:

How does overparametrization affect robustness to perturbations in the input?

A few recent papers have begun to answer the above question in specific settings with rather
conflicting messages:

• [46] and [23] have studied high-dimensional linear models and showed that the robust
generalization error of adversarially-trained models becomes worse as the models be-
come more overparametrized. It should be noted that for linear models, even in the case
where there is no adversary, the best generalization error is attained when the model is
underparametrized [37].

• Another line of work provably shows that in order to interpolate the training data smoothly,
while being robust, overparametrization is necessary [10, 9]. However, we note that, in
order to train robust models, it may not be beneficial to interpolate the training data as
robustness is measured with worst-case performance over all the points in a neighborhood
around the input data. Indeed, [22] study the tradeoffs between memorization (of training
data) and robustness of two-layer neural networks and established a lower-bound on the
non-robustness of the model (via the Sobolev-seminorm of the model) as an increasing
function of the amount of memorization.

We will provide a more detailed discussion of these points and other related works in
Section 3. Despite such interesting recent progress, a comprehensive understanding on how
overparametrization precisely affects robustness remains largely mysterious.

In this paper, we focus on random features regression models that are adversarially trained
using robust empirical risk minimization and provide a “precise characterization” of the
robust generalization. Our analysis is carried out in a high-dimensional regime where the
size of the training data n, the number of parameters N , and the dimension of the data d
grow proportional to each other, i.e. N/d→ ψ1 and n/d→ ψ2. We further assume that the
perturbations are bounded in terms of ℓ2 norm by a value ε > 0. Our developed theory allows
us to precisely characterize the effect of overparamterization on model robustness. One of the
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Fig 1: Random features regression with (shifted) ReLU activation (σ(x) =max(x,0) −
1/
√
2π). Data (xi, yi) is generated with d-dimensional normal covariates xi and yi =

βTxi + ξi, where the noise variables ξi ∼N(0,0.5) and ∥β∥ℓ2 = 1. Perturbations are
allowed within an Euclidean ball of radius ε, and the models are adversarially trained.
We plot the robust generalization error (using Theorem 4.2) versus the amount of
overparametrization N/n, where N is the number of parameters and n is the number of
training data points. The plots are obtained for different values of ε and ψ2 = n/d.

main consequences of our analysis is that, in general, higher overparametrization leads to a
worse robust generalization error for the adversarially-trained models. Figure 1 depicts how the
robust generalization error varies with respect to the amount of overparametrization N/n. The
left figure corresponds to the case where there is no adversary (i.e. ε ≈ 0). In this case, the robust
generalization coincides with the (standard) generalization error, and is minimized at infinite
overparametrization. However, as seen in the other two figures (for ε > 0), overparametrization
is in general hurting robustness. This is clearly seen in Figure 1(c) and (b) (for ψ2 ≥ 10)
where the minimum robust error is attained when the model is underparametrized. We refer to
Figure 4 for an extended version of Figure 1 with more choices of ε and signal-to-noise ratios.

We proceed by providing an informal overview of our results and their implications in
Section 2. Related works are discussed in Section 3. The main result of the paper, which
characterizes the robust generalization error for the random features model is explained in
Section 4. The architecture of the proof of the main result is sketched in Section 6. Our analysis
develops a set of techniques that are of independent interest: (i) We derive an asymptotic
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closed form for adversarial examples in trained random features models; (ii) While features
are highly non-Gaussian in random features models, we prove a Gaussian equivalence property
which relates robust generalization in these models to that of linear models with Gaussian
features under the same correlation structure; (iii) Our analysis of the equivalent Gaussian
model relies on the Convex Gaussian Min-max Theorem, which is a generalized and tight
version of Gordon’s Gaussian comparison inequalities.

2. Results and discussion: An informal overview

Problem setting. Consider a supervised learning scenario where we are given i.i.d data
{(xi, yi)}i≤n generated according to the following distribution:

yi = ⟨xi,β⟩ + ξi, with xi ∼iid N(0,Id), ξi ∼N(0, τ2) .(2.1)

The (linear) dependence between (xi, yi) is unknown and the goal is to fit a model to this data
which can be then used to predict labels for the unlabeled examples at test time.

We consider modeling the relation between label y and feature vector x using the class of
random features (RF) model, which can be described as

FRF(W ) = {f(x,θ,W ) =
N

∑
ℓ=1
θℓσ(⟨wℓ,x⟩) ∶ θ = (θ1,⋯, θN) ∈RN } ,(2.2)

where θ is the parameter vector to be learned and W ∈RN×d is a fixed matrix whose rows wℓ

are chosen randomly and independently of data. For simplicity we assume the normalization
∥wℓ∥ℓ2 = 1. Namely, the vectors wℓ are chosen uniformly at random from the unit sphere,
wℓ ∼ Unif(Sd−1), which implies that ⟨wℓ,xj⟩ is of order one. In addition, σ ∶ R↦ R is a
nonlinear activation function.

Note that in random features model training is only done on θ and not on W . In other
words, the random features model can be perceived as a two-layer neural network with the
weights of the first layer chosen randomly and independently from data, while the weights
in the second layer are learned during the training phase. The random features model was
introduced by [68] for scaling kernel methods to large datasets, and there has been a large
body of work drawing connections between random features models, kernel methods and
fully trained neural networks [15, 14, 42, 51]. The random features models are arguably
the simplest analytically tractable models that capture all the features of the double descent
phenomenon without assuming ad hoc misspecification structures [63]. In particular, they
allow to disentangle the number of parameters from the covariates dimension and hence isolate
the effects of overparametrization from the effects of the ambient dimension.

To quantify robust generalization, we consider an adversarial framework where at the test
time, the feature vector x is corrupted by additive perturbation, chosen adversarially, from
the Euclidean ball of radius ε. We measure the robust generalization via the adversarial risk
measure which is the expected test error of the model on perturbed test input. We train a
random features model, using a widely used adversarial training approach, which is based on
the robust empirical risk minimizer (robust-ERM estimator) [58, 90]:

θ̂ε = arg min
θ∈RN

max
∥δi∥ℓ2≤ε

1

2n

n

∑
i=1
(yi − θTσ(W (xi + δi))

2
.(2.3)

where δi is the norm-bounded adversarial perturbation on sample covariates xi and ε is the
“perceived” adversary’s power used in the training process.

Results and discussion. We study the asymptotic setting, where N,n,d→∞ with N/d→ψ1

and n/d→ψ2 for some positive constants ψ1,ψ2. We derive the precise characterization of
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Fig 2: Adversarial risk versus overparametrization ψ1/ψ2 =N/n for different values
of adversary’s power ε0. Solid curves are theoretical predictions and dots are results
obtained based on gradient descent on the robust ERM objective. Each dot represents
the average of 100 trials. The data is generated according to model (2.1), with d = 100,
n = 300, τ2 = 0.5, and β ∈Rd obtained by drawing a vector with i.i.d N(0,1) entries and
then normalizing it to have ∥β∥ℓ2 = 1.

the adversarial risk of the robust-ERM estimator, as an explicit function of the dimension
parameters ψ1,ψ2, the noise level τ2, and the adversarial power ε. We refer to Theorem 4.2
for the specific formulae.

Let us now discuss the behavior of the robust generalization curve under different settings.
We consider the data model (2.1) and the random features regression with shifted ReLU
activation:

σ(x) =max(x,0) − 1√
2π

.

The reason behind the intercept term is that since the response variable is zero mean, we
consider fitting a model using zero mean features. Note that ⟨wℓ,x⟩ ∼N(0,1) and for G ∼
N(0,1), we have E[σ(G)] = E[GI(G > 0) − 1/

√
2π] = 0.

We start by Figure 2 which shows our theoretical curve versus the overparametrization ratio
ψ1/ψ2 =N/n along with the corresponding empirical results. The solid lines depict theoretical
predictions with the dots representing the empirical performance of gradient descent in learning
the robust ERM for data model (2.1), with d = 100, n = 300, τ2 = 0.5. In addition, β ∈ Rd is
generated by first drawing a d-dimensional vector with i.i.d standard normal entries and then
normalizing it to have unit ℓ2 norm. Each dot represents the average of 20 trials. As we see,
even for moderate covariate dimensions (d), our theoretical curve is at excellent match with
the empirical results. We note that when ε→ 0 (we did not set ε = 0 exactly for numerical
stability), we are in non-adversarial regime and the robust generalization error reduces to
the usual test error (blue curve). In this case, we observe the double-descent phenomena and
recover the theoretical prediction of [61]. As ε grows the robust generalization curve starts
behaving differently. For ε large enough (ε = 1,2 in the figure), we see that overparametrization
hurts robust generalization.

For a more complete picture, in Figure 3 we consider similar setting with more choices of ε
and noise variance τ2, and also a larger range of overparametrization ψ2/ψ1 =N/n, as we fix
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Fig 3: Theoretical prediction curves for adversarial risk of robust ERM as a function of
overparametrization ψ1/ψ2 =N/n for different values of adversary’s power ε and noise
variance τ2, with the data model (2.1). Here we fix ∥β∥ℓ2 = 1 and ψ2 = 3.

ψ2 = 3. When N/n→ 0, we essentially have the risk of the zero estimator, which is ∥β∥2ℓ2 + τ
2.

Several intriguing observations can be made from these plots:

• In the noiseless case (Figure 3a) and for ε ≤ 0.5, the global minimizer of the adversarial risk
is at a finite overparametrization (N/n > 1), after which the risk becomes increasing as a
function of N/n (higher overparametrization hurst robust generalization). Similar behavior
is observed for τ2 = 0.5 and ε ≤ 0.05.

• In all three plots (corresponding to different SNR levels), when ε is large enough (ε ≥ 1),
the risk first goes up as overparametrization increases and after reaching its peak starts going
down, but it remains above 1+ τ2 which is the risk at the highly underparametrized regime
(N/n→ 0). Therefore, somewhat surprisingly, robust ERM estimator has larger adversarial
risk compared to the trivial zero estimator, for all the range of overparametrization.

• The peak of the adversarial risk occurs in the overparametrized regime; for the non-
adversarial case ε = 0, it occurs at the interpolation threshold N/n = 1 and for ε > 0 it
occurs at N/n > 1. The location of the peak and the value of risk at the peak vary with ε.
As ε grows, the peak shifts to the right and occurs at a higher overparametrization ratio.

In Figure 4 we depict our theoretical prediction curves for the adversarial risk of the robust
ERM estimator as a function of the overparametrization ratio ψ1/ψ2 =N/n for different values
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of ψ2 = n/d. The right panel corresponds to ε = 1 (strong adversary) and as we see for different
values of τ2 and ψ2, the adversarial risk is first an increasing function of overparametrization
ratio, until it reaches its peak (in the overparametrized regime, N/n > 1) and then becomes
decreasing. But it never falls below its initial value at N/n ≈ 0. The left panel corresponds to
ε = 0.1 (weak adversary) and as we see for large ψ2, overparametrization clearly has a negative
effect on robust generalization. For example, in Figure 4a, for ψ2 = 100,1000 the risk is an
increasing function of ψ1/ψ2 over the entire range. Also in Figure 4c, for ψ2 ≥ 10 the global
minimum of the adversarial risk is achieved in the underparametrized regime (N/n < 1).

3. Related Work Several recent works have focused on the robustness of over-
parametrized models. On the one hand, [9] shows that in order interpolate the training
data smoothly, the Lipschitz parameter of the resulting model should be at least of order√

nd
N . This applies to data distributions that satisfy a property called isometry–e.g. when the

data covariates xi are distributed on the unit sphere. For such data distributions, worst-case
perturbations are meaningful only if their ℓ2 norm is upper-bounded by ϵ√

d
. Otherwise, if the

size of the perturbation can be allowed to be much larger than O( 1√
d
), it can be shown that

the robust generalization error approaches one for any model–see [75, 29, 59, 60]. Putting
the above two results together, we can conclude that, in order to interpolate smoothly, while
guaranteeing robustness to norm-bounded perturbations, it is necessary that the ratio N/n is
bounded away from zero. This is indeed the regime studied in our paper. However, in this
regime, it is not clear why interpolation to training data is beneficial for obtaining robust
models. In fact, to obtain robust models, one may have to trade off the performance on the
original data points (i.e. interpolation to training data) with the performance on the points in a
ball around each data point (i.e. extrapolation to adversarial examples). In other words, we
may have underparametrized models that do not fit the training data perfectly, but have a small
Lipschitz constant. Indeed, this can be implied from the main messages of our paper.

On the other hand, the works in [46] and [23] have studied the performance of high-
dimensional linear models and showed that the robust generalization error of adversarially-
trained models becomes worse as the models become more overparametrized. In particular,
[23] provably shows that avoiding interpolation (and using underparametrized models) im-
proves the robust generalization error in both linear regression and classification–which leads
to the first theoretical result on robust overfitting. There are a few reasons on why we might
prefer to study non-linear models (such as the random features model) compared to linear mod-
els [61]: First of all, for linear models, we know that the best (standard) generalization error is
attained when the model is highly underparametrized. Second, the number of parameters in a
linear model is tied to the covariates dimension d and hence the effects of overparametrization
cannot be isolated from the effects of the ambient dimensions. Third, a hypothesis put forward
in [32] is that the origins and ubiquity of adversarial examples is due to the (approximately)
linear behavior of a model over large regions of the input space. Shallow linear models are not
able to become constant near training points while also assigning different outputs to different
training points. However, the setting of random features is significantly different since this
class can express any function to an arbitrary degree of accuracy so long as it has enough
number of random features [69].

In another recent work [94], an extensive study on the robustness of wide neural networks
with respect to norm-bounded perturbations is provided. By defining and analyzing a new
metric, called perturbation stability, it is shown that while the (standard) generalization error
is improved on wider models, the perturbation stability often worsens, leading to a potential
decrease in the overall model robustness. These empirical findings are aligned with the
messages of our paper.
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Fig 4: Theoretical prediction curves for adversarial risk of robust ERM as a function
of overparametrization ψ1/ψ2 =N/n for different values of ψ2 = n/d. Each plot corre-
sponds to a specific value of adversary’s power ε and noise variance τ2.

A somehow different line of work [96] studies the sample complexity of the robust interpo-
lation problem where the goal is to interpolate (noisy) training data by a Lipschitz function,
under generic covariate distribution (beyond isoperimetry distributions). This work measures
the (non)robustness of a model by its Lipschitz constant and similar to [22] establish a lower
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bound on Lipschitnzenss which is increasing with respect to the overfitting level. This re-
sult can be rephrased as an adverse effect of overparametrization (thorough overfitting) on
robustness. While these work study the effect of overparametrization on robustness via memo-
rization/interpolation, we will take a direct approach to study the effect of overparametrization
on ‘adversarially trained’ models.

Several works have shown a non-trivial tradeoff between the robust generalization error and
the standard generalization error for parametric models [90, 83, 67, 97, 46, 21]. It has also
been shown that using more data can improve this tradeoff [11, 62, 67, 74, 17, 95, 65, 34, 70].
Again, these findings are aligned with the messages of our paper as more data can mean less
overparametrization.

This paper provides, for the first time, an analysis for the adversarially-trained random
features model in the high-dimensional regime. For linear models, this analysis has been
carried out in [46] for the regression setting, and later on in [45, 85] for the classification
setting. A key ingredient of the analysis in these papers, as well as our paper, is a powerful
extension of a classical Gaussian process inequality [33], known as the Convex Gaussian
Minimax Theorem, developed in [88] and further extended in [87, 16]. Another key ingredient
of our analysis is the Gaussian Equivalence Property for the random features model which was
proposed and studied in [63] for maximum-margin linear classifiers in the overparametrized
regime, as well as [37, 1, 63, 61, 28, 19, 39, 31, 30] for the linear Gaussian model under other
settings. In particular, a part of our analysis, that establishes equivalence with the so-called
noisy linear model in the adversarial setting, is heavily based on the machinery which was
elegantly developed in [39] for the random features model. This machinery is itself based on
the Lindeberg principle [55] and the leave-one-out technique developed in [27, 1].

We conclude this section by a broad comparison between adversarial setting and the
literature of robust statistics.

Comparison with robust statistics. This area traditionally considers a setting where pertur-
bations are made to the training data; a small fraction of data samples are grossly corrupted
and the goal is to find estimators that are robust against outliers (via measures like influence
function, breakdown point, and change of variance, etc). In the adversarial training paradigm,
one considers the so-called test-time adversarial setting, in which the training data is uncor-
rupted (say (xi, yi) ∼ P for some distribution P). However, the adversary can perturb each
test data. In other words, the test data (x, y) is drawn from P and then x is perturbed by the
adversary (x→ x̃ with ∥x− x̃∥ℓ2 ≤ ε). The goal of adversarial training is to develop a model
that can still predict the response y from the perturbed feature x̃. With this view, adversarially
robust models are basically those that have good generalization and are also smooth enough
so that they do not change much on small neighborhoods (of radius at most ε).

That said, another line of work (see e.g. [48]) considers a different adversarial setup
in which an attacker can observe and modify all training data samples in an adversarial
manner so as to maximize the estimation error caused by his attack. This work introduces
the notion of adversarial influence function (AIF) to quantify the sensitivity of estimators
to such adversarial attacks, and further derive the optimal estimator, among a certain class
of estimator, that minimizes AIF. Related to this setting, there is also a line of work based
on the Median of Means approach, see e.g, [40, 18]), which concerns a data poisoning/ data
contamination adversarial setting. In data poisoning, the adversary can pick a (small) fraction
of the training data and alter it in a way that it hurts the training process, and ultimately the
generalization performance. However, in this paper we consider a different type of adversarial
act which has to do with adversarial perturbation (in a small ball) of the input data point at the
test time.
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4. Main results Recall the data distribution given in (2.1). Given n i.i.d pairs (xi, yi)
drawn from this distribution, we fit a random features model, defined as the function class (2.2),
with the shifted ReLU activation:

(4.1) σ(x) =max(x,0) − 1√
2π

.

We consider sequences of parameters (N,n,d) that diverge proportionally to each other
and sometimes, we index such sequences by d, with N =N(d) and n = n(d) functions of d.

Assumption 1 (Asymptotic setting.)

(a) Defining ψ1,d =N/d and ψ2,d = n/d, we assume that the following limits exist:

lim
d→∞

ψ1,d =ψ1, lim
d→∞

ψ2,d =ψ2 ,

for some positive finite constants ψ1 and ψ2.
(b) We assume that the ℓ2 norm of the signal β converges, as d→∞. For the sake of

normalization and without loss of generality, we assume limd→∞ ∥β∥ℓ2 = 1.

Recall that in the data model (2.1), xi ∼iid N(0,Id) and so its distribution is rotation-
invariant. Likewise, in the random features model (2.2), the rows wℓ are chosen uniformly at
random from the unit sphere, and so has a rotation-invariant distribution. In our adversarial
setting, we also focus on norm-bounded perturbations which is again a rotation-invariant
constraint. Using these properties, it is easy to see that the adversarial risk will be invariant if
we rotate the model β in (2.1) and hence only depends on ∥β∥ℓ2 . This justifies Assumption 1(b)
made above.

To study robust generalization of the estimated models, we consider an adversarial frame-
work with norm bounded perturbations. This can be formulated as a game between the learner
and the adversary. Given access to a training dataset consisting of n i.i.d. pairs (xi, yi) gen-
erated from (2.1), the learner chooses a model θ from the class of random features model
FRF(W ) (2.2). Adversarial perturbations occur at the test time. After observing the learner’s
model, for every test point x, the adversary perturbs it to x+ δ where δ is chosen from the
Euclidean ball of radius ε. Note that the choice of δ can in general depend on x and the
learner’s model. The robust generalization of the learner’s model is quantified via a measure
called adversarial risk, which is the expected prediction loss of the model on an adversarially
corrupted test data point according to the described attack model.

Definition 4.1 (Adversarial risk.) For a predictive model f and a loss of choice ℓ ∶R×R→R≥0,
the adversarial risk of model f is defined as:

AR(f) ∶= E[ max
∥δ∥ℓ2≤εtest

ℓ(f(x+ δ), y)] ,

where the expectation is with respect to randomness of (x, y).
In particular, for a random features model θ = (θ1,⋯, θN)T from FRF(W ), defined in

(2.2), and with the choice of squared loss, the adversarial risk of θ becomes:

AR(θ) ∶= E[ max
∥δ∥ℓ2≤εtest

(y − θTσ(W (x+ δ)))2 ] .(4.2)

Norm bounded adversarial attack models are widely used in the literature, motivated by a
plethora of safety-critical applications in machine learning, computer vision, natural language
processing, medical imaging, and robotics. A popular approach to adversarial training is by
considering the following robust empirical risk minimization (robust-ERM) problem [58, 90]:

θ̂ε = arg min
θ∈RN

max
∥δi∥ℓ2≤ε

1

2n

n

∑
i=1
(yi − θTσ(W (xi + δi))

2
.(4.3)
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Here, εtest is a measure of the adversary’s power and ε is the “perceived” adversary’s power
used by the algorithm. Our theory allows for ε to be different from εtest; cf Theorem 4.2.
In our numerical experiments in Section 2 we consider ε = εtest to focus on other relevant
quantities, namely ψ1, ψ2 on adversarial risk.

Note that the above objective is the empirical surrogate of the adversarial risk (4.2), where
the expectation is replaced by the empirical average over the training samples. This minimax
approach can also be viewed as an implicit smoothing that tries to fit the same response y to
all the covariate vectors in the ε-neighborhood of x simultaneously.

Our main result in this paper is a precise characterization of the adversarial risk of the
robust ERM model (4.3) under the asymptotic regime described in Assumption 1. Before
stating our result, we introduce another piece of notation.

For ψ1 ∈ (0,∞), we define function S(⋅;ψ1) ∶R<0→R<0:

S(z;ψ1) =
1−ψ1 − z −

√
(1−ψ1 − z)2 − 4ψ1z

−2ψ1z
.(4.4)

One may recognize that S(z;ψ1) is the Stieltjes transform of the Marchenko-Pastur distribu-
tion. We refer to Lemma F.2 (Appendix F) for more details.

We are now ready to state our main result.

Theorem 4.2 Let n i.i.d pairs (xi, yi) be drawn from the data model (2.1) and let θ̂ε be
the robust ERM fit (4.3) to this data using the class of random features models FRF(W ),
given by (2.2) with the shifted ReLU activation. Consider the asymptotic regime, described in
Assumption 1. With function S(⋅;ψ1) given by (4.4), define

σ2 = τ2 + 1−ψ1 (1+ (1−
2

π
)S( 2

π
− 1;ψ1)) .

(a) For ε > 0, the following convex-concave minimax scalar optimization has a unique
solution (α∗, τg∗,β∗, γ∗, τq∗):

max
0≤β,γ,τq

min
0≤α,τg

R(α,τg,β,γ, τq) ,(4.5)

where

R(α,τg,β,γ, τq) ∶=
τq

2α
(τ2 + 1− σ2) − ατq

2
+ βτg

2
ψ2 +

β

2(τg + β)
(σ2 +α2)

+1
{ γ(τg+β)

εβ
√

α2+σ2
>
√

2
π
}
β2(α2 +σ2)
2τg(τg + β)

(erf ( ν
∗
√
2
)− γ(τg + β)

εβ
√
α2 +σ2

ν∗)

− α
τq

sup
0≤λ<1

[λψ1

2
{
τ2q

α2
+ β2 + (

τ2q

α2
(1− 2

π
λ) + 2

π
(1−λ)β2)S( 2

π
λ− 1;ψ1)}−

λ

2(1−λ)γ
2] .

Here, ν∗ is the unique solution to

γ(τg + β)
εβ
√
α2 + σ2

− β
τg
ν − ν ⋅ erf ( ν√

2
)−
√

2

π
e−

ν2

2 = 0 .

(b) The adversarial risk of the robust ERM θ̂ε converges in probability

AR(θ̂ε) P→[1+ (εtestβ∗ν∗
ετg∗

)
2

+ 2
√

2

π

εtestβ∗ν∗
ετg∗

](α2
∗ + σ2) .(4.6)

Here, the probabilistic statement is with respect to the randomness in both the training data
{(xi, yi)}ni=1 and the random features W .
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We note that the robust ERM estimator is a random and rather complicated high-dimensional
function of the training data. However, in the asymptotic regime where N,n,d→∞ at the
same order, the adversarial risk of the robust ERM concentrates and the above theorem
provides an exact characterization of its limit as a deterministic formula. The derived formula
is based on a five dimensional convex-concave mini-max optimization problem and its optimal
solution can be easily derived via a simple low-dimensional gradient descent rather quickly and
accurately. Alternatively, one can form a system of equations by writing the KKT stationary
conditions corresponding to (4.5). The adversarial risk prediction can then be written in terms
of the fixed point of this system of deterministic equations.

Let us re-emphasize the contribution of theorem 4.2. Albeit its involved form, it describes
the behavior of a high-dimensional random problem in terms of a deterministic optimization
with a handful number of scalar variables. This theme of result is similar to state evolution
equation for approximate message passing algorithms [24], density evolution for LDPC
codes [71, Chapter 4], and characterizing the trajectory of SGD for training neural networks
in terms of partial differential equations [78, 44].

Remark 4.1 (Solving Optimization (4.5)) We find the solution to this optimization by solving
for the first-order optimality conditions (stationary equations). We set the (sub)gradient with
respect to the variables to zero since it is non-smooth, which results in a system of nonlinear
equations with seven variables, namely α,τg,β,γ, τq,λ,ν∗. In the numerical experiments, we
use fsolve command in Matlab to solve this system of equations, which is based on the
trust-region algorithm.

5. Discussion By virtue of Theorem 4.2 we characterize the adversarial risk of the robust
ERM in term of the solution of the deterministic optimization problem (4.5). Given that it does
not admit a closed-form solution in general, and is rather involved, in this section we discuss
some of the applications of this theorem including optimal choice of ε during training, trend
of adversarial risk with respect to different quantities, and implications for non-adversarial
setting.

5.1. Optimal ε for robust ERM estimator: An interesting application of our theory is
to derive the optimal ε (perceived adversary’s perturbation level) in the robust ERM, while
fixing the adversary’s (actual) perturbation level on test inputs to εtest. The optimal ε here
refers to the value which minimized the adversarial risk. An intriguing observation is that the
optimal ε is different than εtest in general, and depends on ψ1,ψ2 in a non-trivial way (There
is no universal solution, which underscores the significance of possessing a precise theory that
comprehends the impact of adversarial training, which constitutes the principal objective of
the present work.)

In Figure 5a, we fix ψ2 = 3, τ =
√
0.5, εtest = 0.3, and plot the adversarial risk of θ̂ε as we

vary ε for different values of ψ1. As we see the optimal value of ε (resulting in minimum
risk) changes with ψ1, it is in general different from the test adversary’s perturbation εtest. In
addition, the optimal ε increases with ψ1. In Figure 5b, we plot similar curves, fixing εtest = 0.
In this case, the adversarial risk reduces to the notion of standard risk defined as

SR(θ) ∶= E [(y − θTσ(Wx))2] .(5.1)

As we see form the plots, even though εtest = 0, adversarial training can help as minimum risk
is achieved at positive ε. The reason is that adversarial training acts as a regularization (It
becomes clearer after derivation (6.11), where adversarial training aims to find solution with
small ∥Jθ∥ℓ2 .) In particular, we observe that
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(a) εtest = 0.3, ψ2 = 3
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(c) εtest = 0.3, ψ1 = 3
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Fig 5: Behavior of adversarial/standard risk as we vary ε, the “perceived” adversary’s
power used in the adversarial training. In (a), (b), ψ2 = 3 is fixed and in (c), (d), we fix
ψ1 = 3. Also, (b), (d) correspond to εtest = 0, and so there is no perturbation at the test
time. In these cases, adversarial risk reduces to the standard risk. In these experiments,
we set τ2 = 0.5, ∥β∥ℓ2 = 1.

• The optimal ε is always greater than or equal to εtest, the true test perturbation magnitude.
This ‘additional’ regularization helps with minimizing the adversarial risk.

• At higher overparametrization measured by ψ1/ψ2 =N/n the benefit of this regularization
becomes stronger. This is also evident from Figure 5c, where with fixed ψ2. As we increase
ψ1, the optimal ε also increases. Likewise, in Figure 5d, with fixed ψ1, the optimal ε
increases as ψ2 decreases.

In summary, our theory allows to understand when adversarial training is beneficial and
what is the optimal value of ε to use in training (depending on ψ1,ψ2, εtest and τ .)

5.2. Dependence on ε, ψ1, ψ2: We discern the following trends in the analytical curves
for adversarial risk which are derived based on Theorem 4.2 (Equation (4.6)).

• From Figure 5, fixing εtest, ψ1 and ψ2, the adversarial risk is first decreasing in ε until it
gets to its minimum, after which it becomes increasing in ε indicating that the regularization
effect from adversarial training is larger than it should be, and then eventually it levels
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at σ2 + ∥θ0∥2 (the risk of model θ = 0, which is the ERM when the regularization is very
strong).

• For fixed ψ2, if SNR is large enough and ε is small enough, we observe a double descent
behavior in the adversarial risk (see Figure 3a, ε = 1e− 7 and ε = 0.05 and Figure 4c).

• Fixing εtest and ψ1, the adversarial risk becomes decreasing in ψ2 after some point. In the
next subsection, we characterize the adversarial risk in non-adversarial setting, by which
we see this trend for ψ2 >ψ1.

5.3. Non-adversarial training: An important special case of the result is when ε = εtest = 0.
In words, there is no adversarial-training and also there is no adversary during the test time.
Theorem 4.2 allows us to characterize the standard risk (generalization error) of the ERM
estimator.

We focus on the underparameterized regime (n >N or equivalently ψ2 >ψ1), since other-
wise at ε = 0 the problem is underdetermined. In this case the objectiveR in (4.5) significantly
simplifies and we can indeed obtain a closed-form expression for the risk.

Proposition 5.1 Let n i.i.d pairs (xi, yi) be drawn from the data model (2.1) and let θ̂ be the
ERM (4.3) fit to this data using the class of random features models FRF(W ), given by

θ̂ = arg min
θ∈RN

1

2n

n

∑
i=1
(yi − θTσ(Wxi))2 ,

with σ(⋅) the shifted ReLU activation. Consider the asymptotic regime, described in Assump-
tion 1. With function S(⋅;ψ1) given by (4.4), define

σ2 = τ2 + 1−ψ1 (1+ (1−
2

π
)S( 2

π
− 1;ψ1)) .

Then, the standard risk of the ERM θ̂ converges in probability to

SR(θ̂) P→ σ2( ψ2

ψ2 −ψ1
) .(5.2)

We refer to Section E.4 for the proof of this proposition.
We next use the result of Proposition 5.1 to discuss the role of ψ1 and ψ2 on the risk:

• Recall that σ only depends on τ and ψ1. Fixing ψ1 the dependence of risk on ψ2 is of
form ψ2/(ψ2 −ψ1). This is decreasing in ψ2 = n/d. For example if d,N are fixed, and we
increase the sample size n, the risk goes down which is expected.

• Dependence on ψ1 is more involved as the term σ2 also depends on ψ1 through the Stieltjes
transform S. In Figure 6 we plot the risk versus ψ1 for different values of ψ2. As we see
up to some threshold, it is decreasing in ψ1 but after that it becomes increasing. This is
expected because for example fixing n, d (and so ψ2), as we increase N (and so ψ1), first
the risk goes down because the model becomes richer to capture the data generative model,
but after some point it has a reverse effect, because we need to estimate larger number of
parameters N , from fixed sample size n, while this excess model complexity is not needed.
As we see in the plots, this threshold is increasing with ψ2.

• It is also worth comparing the standard risk of random features model with that of linear
models. For ψ2 ≥ 1, using the result of [37, Proposition 2], the risk of ridgeless least
squares is given by τ2ψ2/(ψ2 − 1). This is similar to our characterization (5.2), where the
noise variance τ2 is replaced with the effective noise variance σ2, and ψ2 is replaced by
ψ2/ψ1 = n/N . (Note that the number of parameters to be learnt in the linear model is d,
while in the random features model is N . So the sample size to parameter size ratio in the
linear regression is ψ2, while for the random features model it is ψ2/ψ1.)
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Fig 6: Behavior of the standard risk of the ERM estimator θ̂ versus ψ1 for different
values of ψ2. As observed, the risk is first decreasing in ψ1, up to some threshold
depending on ψ2, after which it becomes increasing. This threshold is increasing with
ψ2.

6. Architecture of the proof This section introduces the key steps underlying the proof
of our main result, Theorem 4.2. Our analysis is intricate and consists of a host of novel ideas
which could be of separate interest. Here we discuss the major steps, along with an overview
of the techniques and intermediate results.

Define the loss L(θ) given by

(6.1) L(θ) ∶= max
∥δi∥ℓ2≤ε

1

2n

n

∑
i=1
(yi − θTσ(W (xi + δi))

2 + ζ
2
θTΩθ ,

where Ω ∶= I +
√
log(d)
d 11T. Here, 1 = (1,1, . . . ,1) ∈ RN and ζ > 0 is an arbitrary small but

fixed constant. By definition, the robust ERM estimator (4.3) is the minimizer of L(θ) for
ζ = 0.

The regularization ζ
2(∥θ∥

2
ℓ2
+
√
log(d)
d ⟨1,θ⟩2) in the lossL(θ) is added for technical reasons.

In our analysis, we let ζ → 0, after letting d→∞ to characterize the adversarial risk of the
robust ERM θ̂ε. We refer to Section A in the supplementary for the justification of this step.

Before we outline the main steps of the proof, we note that since the rows of the matrix
W ∈RN×d are generated i.i.d. according to wℓ ∼Unif(Sd−1), then the matrix norm of W is
bounded with high probability and the rows of W are almost orthogonal. More precisely, we
define the event

EW ∶= {∥W ∥ ≤
√
ψ1,d +C, ∣wT

ℓ wk∣ ≤ log(d)/
√
d ∀ℓ ≠ k} ,(6.2)

for a large enough constant C (note that N/d ∶=ψ1,d – see Assumption 1). Using well-known
results on the norm of random matrices (see e.g. [91, Theorem 5.39]) as well as Hoeffding’s
inequality we have P(EW ) ≥ 1− cexp(− log2(d)/c) for some constant c > 0. In the following,
our statements are proven conditioned on the event EW which holds with high probability.

Notation. We need to define a few pieces of notation which will be used in the following.
We use Od(⋅), od(⋅) to denote the standard big-O and little-o notation, where we stress the
asymptotic variable d. Likewise, we use Od,P and od,P to indicate asymptotic behavior in
probability. Specifically, f(d) =Od,P(g(d)) if for any ε > 0, there exists Cε > 0 and large
enough dε such that P(∣f(d)/g(d)∣ >Cε) ≤ ε, for all d ≥ dε. Similarly, f(d) = od,P(g(d)) if
f(d)/g(d) converges to zero in probability. We write f(d) ≈ g(d) as d→∞, when f(d) −
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g(d)→ 0, in probability. Note that we consider the asymptotic regime where n,d,N grow at
the same scale, (limN/d→ψ1 and limn/d→ψ2 for some positive constants ψ1 and ψ2), the
expression d→∞ implies that n,N →∞, as well.

For a matrix A, we denote by ∥A∥ its operator norm, ∥A∥F = (∑ijA2
ij)1/2 the Frobenius

norm of A. For an integer n, we use the shorthand [n] = {1, . . . ,n}.
Finally, the indicator function is denoted by I(⋅) – i.e., I(A) = 1 only if the event A holds

true, and otherwise I(A) = 0.

6.1. An asymptotically-exact closed form for adversarial examples We start by simpli-
fying the loss L(θ). If the activation function σ was linear, then finding the worst-case
perturbations δi (maximizers in the definition of loss L(θ)) amounts to a trust-region sub-
problem that can be solved in closed form–see [46]. A major challenge here is the nonlinearity
of σ. In the first step we use the specific form of the activation to derive an asymptotically
equivalent but simpler form of L(θ).

Note that σ(z) =max(z,0)−1/
√
2π is linear on the positive z and constant on the negative

z. Also by the constraint on perturbation we have ∥⟨w,δ⟩∥ ≤ ∥w∥ℓ2 ∥δ∥ℓ2 ≤ ε. Therefore, if
∥⟨w,x⟩∥ ≥ ε, then ⟨w,x⟩ and the perturbed form ⟨w,x+ δ⟩ share the same sign. In this case,
the worst case δ can be solved exactly. One can also use the randomness in x to bound the
number of rows of W for which ∣⟨w,x⟩∣ < γ, where γ is some small constant, and show
that the contribution of these terms in the loss is asymptotically negligible. This argument is
formalized in the next proposition. All the proofs of the statements in this section are relegated
to Appendix B.

Proposition 6.1 Assume (x, y) generated according to (2.1). Further define

Cθ ∶= {θ ∈RN ∶ ∥θ∥ℓ∞ ≤C0

√
log(d)/d, ∥θ∥ℓ2 ≤C0},(6.3)

for an arbitrary but fixed constant C0 > 0. Then, we have

max
∥δ∥ℓ2≤ε

∣y − θTσ(W (x+ δ))∣ = ∣y − θTσ(Wx)∣ + ε∥W Tdiag (I(Wx > 0)) θ∥
ℓ2
+Od,P(

log(d)
d1/6

) ,

(6.4)

uniformly over θ ∈ Cθ . Here, the probability bound is with respect to the randomness in x. I.e.
W is fixed and event EW in (6.2) is assumed to hold.

To be able to use the result of above proposition, we show that the minimizer of L(θ) falls in
Cθ defined in (6.3).

Proposition 6.2 Assume (x, y) is generated according to (2.1), and recall that the rows of
W ∈ RN×d are drawn i.i.d. from Unif(Sd−1). Let θ̂ = argminL(θ). We have θ̂ ∈ Cθ , with
probability at least 1− 4e−cn for some absolute constant c > 0.

Motivated by Proposition 6.1 we define loss
○
L(θ) as follows:

○
L(θ) ∶= 1

2n

n

∑
i=1
(∣yi − θTσ(Wxi)∣ + ε∥W Tdiag (I(Wxi > 0)) θ∥ℓ2)

2
+ ζ
2
θTΩθ .(6.5)

By using Proposition 6.1, we can prove the following.

Proposition 6.3 Under the setting of Proposition 6.1 we have

sup
θ∈Cθ
∣L(θ) −

○
L(θ)∣ = od,P(1) .(6.6)
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6.2. Concentration of the adversarial effects As can be observed from the loss
○
L(θ), the

effect of adversarial perturbation in reflected via the terms ηi ∶= ∥W Tdiag(I(Wxi > 0)) θ∥ℓ2 .
In the next proposition, we show that apart from a negligible fraction of data points i ∈ [n],
the perturbation terms ηi(θ)2 concentrate around their expectation. All the proofs of the
statements in this section are relegated to Appendix C.

Proposition 6.4 Let ηi(θ) ∶= ∥W Tdiag(I(Wxi > 0)) θ∥ℓ2 and νi(θ, γ) ∶= I(∣ηi(θ)2 −E[ηi(θ)2]∣ > γ).
Under the setting of Proposition 6.1 and for any sequence γd such that 1/γd = eo(

√
log(d)), we

have

sup
θ∈Cθ

1

n

n

∑
i=1
νi(θ;γd) =Od,P(log(dγ2d)−0.5) .(6.7)

Corollary 6.5 By choosing sequence γd = 1/ log(d) we obtain

sup
θ∈Cθ

1

n

n

∑
i=1
νi(θ; 1

log(d)) = od,P(1) .(6.8)

By Corollary 6.5, other than at most an od(1) fraction of data points i ∈ [n], the terms ηi(θ)2
concentrate, in the sense ∣ηi(θ)2−E[ηi(θ)2]∣ ≤ 1/ log(d), uniformly over θ ∈ Cθ . This suggests
that in the loss function we can replace the terms ηi(θ) by

√
E[ηi(θ)2]. This observation will

be formally stated in the next lemma. Before proceeding to it, let us compute the expectation
of terms ηi(θ)2. We write

E[ηi(θ)2] = E[∥W Tdiag(I(Wxi > 0))θ∥
2

ℓ2
] = θTE[(WW T)⊙ (I(Wxi > 0)I(Wxi > 0)T)]θ ,

(6.9)

where the expectation is with respect to xi and W is fixed. Hence, this can be written as
E[ηi(θ)2] = ∥Jθ∥2ℓ2 with

J ∶= ((WW T)⊙E[I(Wxi > 0)I(Wxi > 0)T])
1/2

.

Note that the J is well-defined since the matrix under the square root is positive semidefinite.
(This follows from the observation that the expression (6.9) is positive for all θ.)

Since ∥wℓ∥ℓ2 = 1 and xi ∼N(0,Id), we have that ⟨wℓ,xi⟩ and ⟨wk,xi⟩ are jointly Gaussian
with

E(⟨wℓ,xi⟩2) = E(⟨wk,xi⟩2) = 1, E(⟨wℓ,xi⟩⟨wk,xi⟩) = ⟨wk,wℓ⟩ ,
and by using [15, Table 1] we get

E[I(Wxi > 0)I(Wxi > 0)T] =
π − cos−1(WW T)

2π
.

Therefore, we obtain the following explicit formulation for JW :

J = ((WW T)⊙ (π − cos
−1(WW T)
2π

))
1/2

.(6.10)

Motivated by Corollary 6.5 and the interpretation after it we define the loss function
○○
L(θ) ∶= 1

2n

n

∑
i=1
(∣yi − θTσ(Wxi)∣ + ε∥Jθ∥ℓ2)

2 + ζ
2
θTΩθ .(6.11)

By our next lemma, the minimizer of
○○
L(θ) converges to the minimizer of the original loss

L(θ) and therefore we can work with
○○
L(θ) for our asymptotic analysis.
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Lemma 6.6 We have

sup
θ∈Cθ

∣
○○
L(θ) −L(θ)∣

1+min(L(θ),
○○
L(θ))

= od,P(1) .

Also, by denoting by θ̂∗ and θ̂ the minimizers of
○○
L(θ) and L(θ), we have ∥θ̂∗ − θ̂∥

ℓ2
→ 0, in

probability.

Motivated by the result of Lemma 6.6, we define a notion of adversarial risk based on the

modified loss
○○
L(θ). Specifically, we define

○○
AR(θ) ∶= Ex,y [(∣y − θTσ(Wx)∣ + εtest ∥Jθ∥ℓ2)

2] .(6.12)

In the next lemma, we show that
○○
AR(θ) converges to AR(θ) uniformly over Cθ .

Lemma 6.7 Recall the adversarial risk of a model θ, denoted by AR(θ) and given by (4.2).

Let
○○
AR(θ) be defined as (6.12). We then have,

sup
θ∈Cθ

∣
○○
AR(θ) −AR(θ)∣√

AR(θ)
= od,P(1) .

6.3. The Gaussian equivalence property and the noisy linear model In this section, we
will show that in order to characterize the robust generalization error of the random features
model, we can equivalently consider the so-called Gaussian features model (a.k.a. the noisy
linear model). This equivalency is often termed as the Gaussian Equivalence Property (GEP),
and has recently been proven in several contexts [63, 39, 28, 19]. We prove this equivalency
for adversarially-trained random features models in this section.

We begin with decomposing the nonlinear activation function σ(z) as

(6.13) σ(z) = µ0 +µ1z +µ2σ⊥(z) ,

where for G ∼N(0,1),

µ0 ∶= E[σ(G)], µ1 = E[Gσ(G)], µ2 ∶=
√

E[σ2(G)] −µ20 −µ21 .

For the case of shifted ReLU activation, defined in (4.1), we have µ0 = 0, µ1 = 1
2 and

µ2 =
√

1
4 −

1
2π . Also, σ⊥(z) is the nonlinear component of the activation function which

is orthogonal to the constant and linear components in the following sense: E[σ⊥(G)] = 0 and
E[Gσ⊥(G)] = 0. We can then write the random features σ(Wx) as follows

σ(Wx) = µ01+µ1Wx+µ2σ⊥(Wx),(6.14)

Note that the random variables σ(wT
i x) have zero mean and unit variance, by construction.

Further, Ex{(wT
i x)σ⊥(wT

i x)} = 0 since by construction E[σ⊥(G)G] = 0. This suggests to
replace the variables σ⊥(wT

i x) by a set of i.i.d standard normal variables and consider the
following noisy linear model

(6.15) f ∶= µ01+µ1Wx+µ2u,

with f ,u ∈RN and u ∼N(0,IN) is generated independently from x.
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Consequently, we define the loss of the noisy linear model as

Lnl(θ) ∶=
1

2n

n

∑
i=1
(∣yi − θTfi∣ + ε∥Jθ∥ℓ2)

2 + ζ
2
θTΩθ ,(6.16)

where fi are generated i.i.d. according to (6.15). We note that compared to the loss
○○
L(θ)

defined in (6.11), we have only replaced the feature vectors σ(Wxi) with the noisy linear
features fi.

Let θ̂∗ and θ̂∗nl respectively denote the minimizers of
○○
L(θ) and Lnl(θ). Roughly speaking,

the Gaussian equivalence property (GEP) states that under certain conditions on W and the
activation function σ, we have

○○
AR(θ̂∗) ≈

○○
ARnl(θ̂∗nl) as d→∞ ,(6.17)

where
○○
AR(⋅) is defined by (6.12) and

○○
ARnl(⋅) is its counterpart defined based on the noisy

linear model, as follows:
○○
ARnl(θ) ∶= Ef ,y [(∣y − θTf ∣ + εtest ∥Jθ∥ℓ2)

2] .(6.18)

Therefore, by virtue of Lemma 6.7 and (6.17), we can henceforth focus on characterizing
○○
ARnl(θ̂∗nl).

In order to prove (6.17), we first show the asymptotic equality of
○○
ARnl(θ) and

○○
AR(θ). All

the proofs of the statements in this section are provided in Appendix D.

Proposition 6.8 Consider model (2.1) under the asymptotic setting in Assumption 1 and
define the set

C′θ ∶= {θ ∶ ∥θ∥ℓ∞ ≤C0

√
(log(d))/d and ∥θ∥ℓ2 ≤C0 and ∣1Tθ∣ ≤C0

√
d/(log(d))} ,

for an arbitrary but fixed constant C0 > 0. Let
○○
AR(θ) and

○○
ARnl(θ) be defined by (6.12)-(6.18).

Then, for any θ ∈ C′θ we have
○○
AR(θ) =

○○
ARnl(θ) + od(1) ,(6.19)

In addition, we have the following characterizations for
○○
ARnl(θ):

○○
ARnl(θ) =M(θ)2 + ε2test∥Jθ∥

2
ℓ2
+ 2
√

2

π
εtestM(θ)∥Jθ∥ℓ2 ,(6.20)

with M(θ) given by

M(θ)2 = τ2 + ∥1
2
W Tθ −β∥

2

ℓ2

+ (1
4
− 1

2π
)∥θ∥2ℓ2 .(6.21)

Proof of Proposition 6.8, i.e. equation (6.19), follows from a Central limit theorem (CLT) for
weakly correlated variables proved in [30]. Specifically, [30] shows that (θTσ(Wx),βTx)
converges in distribution to (θTf ,βTx), where β is a fixed vector with bounded norm. In [39],
the authors provide an alternative proof of this CLT using Stein’s method and the Lindeberg
approach. Their analysis assumes that the activation function σ(z) is an odd function with
bounded first derivatives. In addition, their analysis gives the convergence rate in terms of
∥θ∥ℓ∞ (a Berry-Esseen type result).
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By the characterizations (6.20), we know that, provided that θ ∈ C′θ , the quantity
○○
ARnl(θ)

depends on θ through the quantities M(θ) and ∥Jθ∥ℓ2 . As we show in Lemma F.3, ∥J2 −
K∥ → 0, in probability with K = (WW T + I)/4. Since by definition, for θ ∈ C′θ we have

∥θ∥ℓ2 ≤C0, therefore ∥Jθ∥2ℓ2 →(∥W
Tθ∥2

ℓ2
+ ∥θ∥2ℓ2)/4. So, in order to show the GEP relation

of the form (6.17), it suffices to show that the quantities ∥θ∥ℓ2 , ∥12W
Tθ −β∥

ℓ2
and ∥W Tθ∥

ℓ2
,

evaluated at θ̂∗ converge to the corresponding quantities evaluated at θ̂∗nl, and also θ̂∗, θ̂∗nl ∈ C′θ .

Theorem 6.9 Consider the quantities ΦA and ΦB defined as

ΦA ∶=min
θ

1

n

n

∑
i=1
(∣yi − θTσ(Wxi)∣ + ε∥Jθ∥ℓ2)

2 +λ∥θ∥2ℓ2 +λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,

ΦB ∶=min
θ

1

n

n

∑
i=1
(yi − θTfi + ε ∥Jθ∥ℓ2)

2 +λ∥θ∥2ℓ2 +λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,

where λ,λs,λw > 0, and (xi, yi) is generated i.i.d. according to (2.1). We further assume that
the event EW holds. Then, we have

(6.22) ΦA
PÐ→ c if and only if ΦB

PÐ→ c,

where
PÐ→ denotes convergence in probability.

Using this theorem, we can then prove the following proposition.

Proposition 6.10 Recall θ̂∗ and θ̂∗nl given by

θ̂∗ = arg min
θ∈RN

○○
L(θ) = arg min

θ∈RN

1

2n

n

∑
i=1
(∣yi − θTσ(Wxi)∣ + ε∥Jθ∥ℓ2)

2 + ζ
2
θTΩθ ,

θ̂∗nl = arg min
θ∈RN
Lnl(θ) = arg min

θ∈RN

1

2n

n

∑
i=1
(∣yi − θTfi∣ + ε∥Jθ∥ℓ2)

2 + ζ
2
θTΩθ .(6.23)

Then, under the asymptotic regime of Assumption 1 we have

θ̂∗, θ̂∗nl ∈ C′θ,
with probability 1− od(1), and

M(θ̂∗) −M(θ̂∗nl)
PÐ→ 0 , ∥Jθ̂∗∥

ℓ2
− ∥Jθ̂∗nl∥ℓ2

PÐ→ 0 ,(6.24)

where
PÐ→ denotes convergence in probability.

Therefore, the GEP (6.17) follows from combining Propositions 6.8 and 6.10.

Finally, the result of Theorem 4.2 follows by computing
○○
ARnl(θ̂∗nl) when we send ζ → 0

after d→∞. This characterization will be carried out in Step 4 of the proof which will be
described in the next section.

In non-adversarial contexts and for the standard risk (a.k.a. the generalization error) GEP
has been observed by several previous works (see, e.g. [37, 63, 1, 61, 39, 31, 28, 30] and
also [56, 12, 66] in the context of random kernel matrices). In [61] the authors provide a
precise characterization of the standard risk for the random features model (in non-adversarial
setting) and observed that it corresponds to that of its noisy linear counterpart model. A
similar GEP phenomena was conjectured for maximum-margin linear classifiers in binary
classification [63]. Subsequently, GEP has been proved for more general settings by [31] and
[39] for a teacher-student framework. In [31] the authors show GEP for learning with one-pass
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stochastic gradient descent (SGD). The work [39] considers the empirical risk minimization
(with all data), which results in complicated correlations between the estimator and the
samples, and proves the GEP for these settings. However, we cannot directly apply the result
of [39] since it assumes that the activation function is an odd function, thrice continuously
differentiable with bounded first three derivatives, which are violated for the ReLU activation.
Also, our adversarial loss function has additional terms that are beyond the setting considered
in [39]. Nevertheless, our proof of Theorem 6.9 is based on the machinery developed in [39].
Here we use a central limit theorem for weakly correlated random variables proved by [30] to
show GEP in the context of adversarial training.

6.4. Analysis of the Gaussian noisy linear model via convex Gaussian minimax framework

In our final step, we provide a sharp characterization of the adversarial risk
○○
ARnl(θ̂∗nl) using

the Convex Gaussian Minimax Theorem (CGMT), which is a powerful and tight extension of
Gordon’s Gaussian process inequality [33] with the presence of convexity. The underlying
idea of the CGMT framework dates back to [80, 81, 82] where the constrained LASSO was
analyzed in the high signal-to-noise ratio regimes. The seminal work [88, 87] significantly
extended these ideas and developed the CGMT framework to precisely characterize the
mean-squared errors of regularized M- estimators in high-dimensional linear models.

At a more technical level, the CGMT provides a principled machinery to characterize the
asymptotic behavior of certain mini-max optimization problems that are affine in a Gaussian
matrix X , namely problems of the form

min
θ

max
u

uTXθ +ϕ(θ,u)(6.25)

where ϕ(θ,u)is convex in θ and concave in u. The CGMT decouples the above objective into
a much simpler Gaussian process with essentially the same limit, yet much easier to analyze:

min
θ

max
u

∥θ∥ℓ2 g
Tu+ ∥u∥ℓ2 h

Tθ +ϕ(θ,u) ,(6.26)

where g and h are independent Gaussian vectors with i.i.d N(0,1) entries. We refer to [88,
Theorem 3] for a precise statement on the relation between the optimization (6.25), often
referred to as Primary Optimization (PO) and (6.26), called Auxiliary Optimization (AO).
The next step is to derive the point-wise limit of the AO objective in the large dimension
limit and showing that it concentrates around a deterministic function with a small number
of scalar variables (called scalarization step). By showing that this convergence is uniform
over a neighborhood of solution and using convexity-concavity of the function, we obtain a
precise characterization of the adversarial risk in terms of the solutions of the corresponding
convex-concave (deterministic) optimization (4.5).

Note that although the CGMT is a general machinery, the derivation and the study of the
AO problem is entirely problem-specific and is usually rather challenging, often requiring the
development of non-trivial probabilistic analysis. In relation to Approximate message passing
(AMP), which is another powerful tool for deriving asymptotically exact characterization of
high-dimensional estimators (see e.g. [25]), it is worth noting that both of these techniques
provide a deterministic equation (called state evolution in the AMP parlance) which describes
the large limit behavior of a random system.

The CGMT has been recently used in several contexts, e.g., to characterize the performance
of high-dimensional regularized logistic regression [73], SLOPE estimator in sparse linear
regression [38], boosting and min ℓ1 norm classifier [52], multi-class classification [89], and
phase retrieval [20]. More closely to our work, the CGMT has been used to study the effect of
adversarial training in the context of linear regression [46] and linear classifiers [45, 85]. On
a technical side, the CGMT analysis for our current problem is more involved and intricate
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than the analysis carried out in [46] for linear regression due to: (i) features fi in (6.23) being
correlated; (ii) the presence of the matrix J in the loss which introduces more interactions
among the model parameters.
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The supplementary materials contain the proofs of theorems and technical lemmas. It is
structured around the main four steps outlined in Section 6.

For the sake of completeness, we reintroduce the notation used throughout the proofs.
Notations. Throughout the paper, we use Od(⋅), od(⋅) to denote the standard big-O and
little-o notation, where we stress the asymptotic variable d. Likewise, we denote by Od,P
and od,P to indicate asymptotic behavior in probability. Specifically, f(d) =Od,P(g(d)) if
for any ε > 0, there exists Cε > 0 and large enough dε such that P(∣f(d)/g(d)∣ >Cε) ≤ ε, for
all d ≥ dε. Similarly, f(d) = od,P(g(d)) if f(d)/g(d) converges to zero in probability. We
write f(d) ≈ g(d) as d→∞, when f(d) − g(d)→ 0, in probability. Note that we consider the
asymptotic regime where n,d,N grow at the same scale, (limN/d→ψ1 and limn/d→ψ2

for some positive constants ψ1 and ψ2), the expression d→∞ implies that n,N →∞, as well.
For a matrix A, we denote by ∥A∥ its operator norm, ∥A∥F = (∑ijA2

ij)1/2 the Frobenius
norm of A. For two matrices A and B of same size, we let A⊙B be the element-wise product
of A and B. In addition, [A;B] concatenates the two matrices row-wise and [A,B] denotes
the column-wise concatenation. For an integer n, we use the shorthand [n] = {1, . . . ,n}.
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APPENDIX A: INTERCHANGING THE LIMITS OF d→∞ AND ζ → 0

Consider the loss function (5.1) given by

L(θ, ζ,d) = max
∥δi∥ℓ2≤ε

1

2n

n

∑
i=1
(yi − θTσ(W (xi + δi)))

2 + ζ
2
θTΩθ ,

where with a slight abuse of notation, we made the dependence on ζ and d explicit.
In the next lemma we show that the order of the two limits d→∞ and ζ → 0 can be

interchanged.

Lemma A.1 Under the assumptions of Theorem 4.2, we have

lim
d→∞

min
θ
L(θ,0, d) = lim

ζ→0
lim
d→∞

min
θ
L(θ, ζ,d) .

Proof (Proof of Lemma A.1) First note that

min
θ
L(θ,0, d) = min

θ,ζ≥0
L(θ, ζ,d) =min

ζ≥0
min
θ
L(θ, ζ,d) = lim

ζ→0
min
θ
L(θ, ζ,d) .(A.1)

The last step holds since L(θ, ζ,d) is increasing in ζ for all θ:

L(θ, ζ1, d) ≤ L(θ, ζ2, d), if ζ1 ≤ ζ2 .

Minimizing both sides over θ, we get that minθL(θ, ζ,d) is increasing in ζ .
We next show that

lim
d→∞

lim
ζ→0

min
θ
L(θ, ζ,d) = lim

ζ→0
lim
d→∞

min
θ
L(θ, ζ,d) ,(A.2)

where the limits are in probability. Without loss of generality we restrict the domain of ζ to
[0, ζ∗], for an arbitrary but fixed ζ∗. The reason is that in our proofs provided in the paper we
allow ζ to be an arbitrarily small fixed value (i.e. we need ζ to be arbitrarily small, but fixed).
We next use the Moore-Osgood theorem on exchanging limits, by which we need to verify
that

lim
d→∞

min
θ
L(θ, ζ,d) = f(ζ), uniformly on ζ ∈ (0, ζ∗],(A.3)

lim
ζ→0

min
θ
L(θ, ζ,d) =Ad, pointwise over d ∈N .(A.4)

The second identity follows from (A.1). To prove the first identity, note that L(θ, ζ,d) is
convex in (θ, ζ). Now, since partial minimization preserves convexity [8, Section 3.2.5],
minθL(θ, ζ,d) is convex in ζ . The point-wise limit of (A.3) is already established in the
paper, and we obtain uniform convergence using the convexity lemma [53, Lemma 7.75].
In words, the lemma states that pointwise convergence of convex functions implies uniform
convergence in compact subsets.

Combining (A.1) and (A.2) we obtain

lim
d→∞

min
θ
L(θ,0, d) = lim

ζ→0
lim
d→∞

min
θ
L(θ, ζ,d) .(A.5)
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Recall that our main goal in the paper is to characterize the in-probability limit of AR(θ̂ε),
with

θ̂ε = argmin
θ
L(θ,0, d).(A.6)

Define

θ̂εζ = argmin
θ
L(θ, ζ,d).(A.7)

Our next lemma relates AR(θ̂ε) to AR(θ̂εζ).

Proposition A.2 Let θ̂ε and θ̂εζ be respectively given by (A.6) and (A.7). Under assumptions
of Theorem 4.2, we have

lim
ζ→0

lim
d→∞

AR(θ̂εζ) = lim
d→∞

AR(θ̂ε) .

Proof (Proof of Proposition A.2) To proof the claim, we use a standard trick to translate the
question on the optimal solution of the minimization problem (i.e. θ̂ε, θ̂εζ ) to one regarding
the optimal costs.

Let B = limζ→0 limd→∞AR(θ̂εζ) (which exists and is calculated in Theorem 4.2). We need
to show that θ̂ε belongs to the following set Sδ ∶= {θ ∶ ∣AR(θ) −B∣ ≤ δ}, with probability
converging to one (as d→∞) for all δ > 0. Let Scδ denotes the complement set. If we show that

min
θ∈Sc

δ

L(θ,0, d) > L(θ̂ε,0, d),(A.8)

then θ̂ε must lie in Sδ . We formalize it in the next lemma.

Lemma A.3 Suppose that there exist constants ℓ, ℓ̃ and η > 0 such that

• ℓ̃ ≥ ℓ+ 2η,
• L(θ̂ε,0, d) < ℓ+ η with probability at least 1− p,
• minθ∈Sc

δ
L(θ,0, d) > ℓ̃− η with probability at least 1− p.

Then, P(θ̂ε ∈ Sδ) ≥ 1− 2p.

We then have the following corollary.

Corollary A.4 Suppose that there exist constants ℓ < ℓ̃ such that L(θ̂ε,0, d) p→ ℓ and
minθ∈Sc

δ
L(θ,0, d) p→ ℓ̃. Then, limd→∞P(θ̂ε ∈ Sδ) = 1, for every δ > 0.

In light of the above corollary, we compare the converging limits: Let ℓ ∶= limd→∞L(θ̂ε,0, d)
and ℓ̃ ∶= limd→∞minθ∈Sc

δ
L(θ,0, d). We need to show ℓ < ℓ̃. A similar trick has been used

in [86, Theorem 6.1 (iii)]. We next use (A.5), by which

ℓ = lim
ζ→0

lim
d→∞

min
θ
L(θ, ζ,d).

By a similar argument,

ℓ̃ = lim
ζ→0

lim
d→∞

min
θ∈Sc

δ

L(θ, ζ,d),

where the difference is the domain over which we optimize. Note that in Theorem 4.2 we
calculate ℓ as the optimal value of a deterministic convex-concave optimization problem and
show that it has a unique solution. Likewise, one can obtain a similar optimization for ℓ̃ with
the difference that its variables come from a restricted domain, which excludes the optimal
solution of the former. By uniqueness of the solution, we conclude that ℓ < ℓ̃, which completes
the proof of proposition.
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A.1. Proof of Lemma A.3 Define the event

E ∶= {min
θ∈Sc

δ

L(θ,0, d) > ℓ̃− η,L(θ̂ε,0, d) < ℓ+ η} .

On this event, using the first condition, we see that (A.8) holds and so θ̂ε ∈ Sδ . So we need to
show that P(E) ≥ 1− 2p, which follows easily from union bounding and using the second and
third conditions.

Remark A.2 In [61] the authors derive a precise characterization of the generalization of
random features regression in a non-adversarial setting. This work makes a conjecture (see
Remark 1 therein) that the generalization error of ridgeless estimator is the same as the
min-norm least square estimator. This conjecture amounts to showing that the limits λ→ 0 (λ
the ridge penalty parameter) and d→∞ can be exchanged. We believe that this conjecture
can be proved by following a similar argument of the proof of Lemma A.1.

APPENDIX B: PROOFS OF STEP 1: ASYMPTOTICALLY-EXACT CLOSED FORM OF
ADVERSARIAL EXAMPLES

Recall that x ∼N(0,Id). In the following we will show that conditioned on the event EW ,
defined in (6.2), with probability at least 1− c/(log(d))2 −N2d−C over the choice of x, we
have

(B.1) sup
θ∈Cθ,∥δ∥ℓ2≤ε

∣θTσ(W (x+ δ)) − θTσ(Wx) − θTdiag(I(Wx > 0))Wδ∣ =C log(d)
d

1
6

.

As a result, we can write

max
∥δ∥ℓ2≤ε

∣y − θTσ(W (x+ δ)∣ = max
∥δ∥ℓ2≤ε

∣y − θTσ(Wx) − ⟨W Tdiag(I(Wx > 0))θ,δ⟩∣ +C log(d)
d

1
6

,

(B.2)

for an absolute constant C > 0, uniformly over θ ∈ Cθ . The maximization problem in the
right-hand side of the above relation has a closed-form solution:

(B.3) δ = ε sign(y − θTσ(Wx)) W TdiagI(Wx > 0)θ
∥W TdiagI(Wx > 0)θ∥ℓ2

,

which gives us the desired result (6.4). It thus remains to prove (B.1).
Denote the rows of matrix W by {w1, . . . ,wN} with wℓ ∈Rd. Given x, we define the three

sets

A(x) = {ℓ ∶ ⟨wℓ,x⟩ > d−
1
3},

B(x) = {ℓ ∶ ⟨wℓ,x⟩ < −d−
1
3},

C(x) = {ℓ ∶ ⟨wℓ,x⟩ ∈ [−d−
1
3 , d−

1
3 ]}.

We first need to bound the cardinality of the set C(x).
Lemma B.1 With probability 1− c/(log(d))2 −N2d−C we have

∣C(x)∣ ≤Cd 2
3 log(d).
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The proof of this lemma is given in Section B.1.
Now, for a vector δ we define:

∆A(x,δ) = {ℓ ∶ ℓ ∈A(x) and ⟨wℓ,x+ δ⟩ < 0},

∆B(x,δ) = {ℓ ∶ ℓ ∈B(x) and ⟨wℓ,x+ δ⟩ > 0}.

In other words, the set ∆A(x,δ) (respectively ∆B(x,δ)) contains all the indices ℓ in A(x)
(respectively B(x)) in which the sign of ⟨wℓ,x⟩ and ⟨wℓ,x+ δ⟩ are different. We now prove
that when ∥δ∥ℓ2 ≤ ε we have

(B.4) ∣∆A(x,δ)∣, ∣∆B(x,δ)∣ ≤Cd 2
3 ,

for an absolute constant C > 0. By definition, on the event EW , W has bounded operator
norm, say at most C for some constant C > 0. In addition, ∥δ∥ℓ2 ≤ ε. Therefore, ∥Wδ∥ℓ2 ≤ εC .
As a result, the number of entries of the vector Wδ whose absolute value is larger than
d−

1
3 is bounded by ε2C2d

2
3 . But from the definitions of the sets A(x) and ∆A(x,δ) it is

immediate that for ℓ ∈∆A(x,δ) we have ∣⟨wℓ,δ⟩∣ > d−
1
3 . And this results in the fact that

∣∆A(x,δ)∣ ≤C ′d 2
3 with C ′ = ε2C2. The same argument holds for ∣∆B(x,δ)∣.

Let us now consider the two vectors σ(Wx) and σ(W (x+δ)). We would like to find out
how these vectors are different on the indices that belong to the set A(x) or B(x). Let us
start with the indices in B(x). Note that for any ℓ ∈B(x) we have ⟨wℓ,x⟩ < 0. For this entry,
it is easy to see that the two vectors σ(Wx) and σ(W (x+ δ)) take different values only if
we also have ℓ ∈∆B(x,δ). As a result, we can conclude that the two vectors σ(Wx) and
σ(W (x+ δ)) are the same on all the indices belonging to the set B(x) except at most Cd

2
3

indices. In other words, the difference σ(W (x + δ)) − σ(Wx) takes zero value on all the
indices belonging to the set B(x) except at most Cd

2
3 indices.

For the indices in the set A(x) the situation is different as we are operating in the non-
constant part of the ReLU function (note that for any ℓ ∈A(x) we have ⟨wℓ,x⟩ > 0). We first
claim the following: The two vectors σ(W (x+ δ)) and W (x+ δ) − 1/

√
2π are the same on

all the entries in the set A(x) except the indices in the set ∆A(x,δ). The justification is as
follows: Consider an index ℓ ∈A(x) such that σ(⟨wℓ,x+ δ⟩) ≠ ⟨wℓ,x+ δ⟩ − 1/

√
2π. Since

ℓ ∈A(x), we have σ(⟨wℓ,x⟩) = ⟨wℓ,x⟩ − 1/
√
2π. Now, since σ(⟨wℓ,x+δ⟩) ≠ ⟨wℓ,x+δ⟩ −

1/
√
2π only if ⟨wℓ,x+ δ⟩ < 0, we obtain that σ(⟨wℓ,x+ δ⟩) ≠ ⟨wℓ,x+ δ⟩ − 1/

√
2π only if

ℓ ∈∆A(x,δ).
In summary, we have shown that (i) On indices belonging to the set A(x)/∆A(x,δ): the

two vectors σ(W (x + δ)) and W (x + δ) − 1/
√
2π are the same, and (ii) on the indices

belonging to the set B(x)/∆B(x,δ) the vector σ(W (x+δ))−σ(Wx) takes value 0. Also,
(iii) both sets ∆A(x,δ) and ∆B(x,δ) have cardinality at most Cd

2
3 . We can thus write:

θTσ(W (x+ δ)) − θTσ(Wx)

= ∑
ℓ∈A(x)

θℓ(σ(⟨wℓ,x+ δ⟩) − σ(⟨wℓ,x⟩)) + ∑
ℓ∈B(x)

θℓ(σ(⟨wℓ,x+ δ⟩) − σ(⟨wℓ,x⟩))(B.5)

+ ∑
ℓ∈C(x)

θℓ(σ(⟨wℓ,x+ δ⟩) − σ(⟨wℓ,x⟩)).

We first bound the second and third terms. Using the fact that ∣σ(a+ b) −σ(b)∣ ≤ ∣a∣ we obtain
for the third term that:

∣ ∑
ℓ∈C(x)

θℓ(σ(⟨wℓ,x+ δ⟩) −σ(⟨wℓ,x⟩))∣ ≤ ∑
ℓ∈C(x)

∣θℓ∣∣⟨wℓ,δ⟩∣
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≤ ∣∣θ∣∣∞
√
∣C(x)∣ ∥Wδ∥ℓ2

≤ C
d

1
2

(Cd 2
3 log(d)) 1

2Cε

≤C ′d− 1
6 log(d),(B.6)

where we have use the result of Lemma B.1 to bound the size of the set C(x) (and hence the
above holds with the probability given in that lemma). For the second term we have
(B.7)
∣ ∑
ℓ∈B(x)

θℓ(σ(⟨wℓ,x+δ⟩)−σ(⟨wℓ,x⟩))∣ ≤ ∑
ℓ∈∆B(x,δ)

∣θℓ∣ ∣⟨wℓ,δ⟩∣ ≤ ∣∣θ∣∣∞
√
∣∆B(x,δ)∣ ∥Wδ∥ℓ2 ≤C

′d−
1
6 .

Finally, in a similar manner as above we can bound

(B.8) ∣ ∑
ℓ∈∆A(x,δ)

θℓ(σ(⟨wℓ,x+ δ⟩) − σ(⟨wℓ,x⟩)∣ ≤ ∣∣θ∣∣∞
√
∣∆A(x,δ)∣ ∥Wδ∥ℓ2 ≤C

′d−
1
6 .

By plugging(B.6), (B.7), and (B.8) into (B.5) we have shown that

θTσ(W (x+ δ)) − θTσ(Wx) = ∑
ℓ∈A(x)/∆A(x,δ)

θℓ(σ(⟨wℓ,x+ δ⟩) − σ(⟨wℓ,x⟩)) +C ′d−
1
6 log(d)

= ∑
ℓ∈A(x)/∆A(x,δ)

θℓ(⟨wℓ,x+ δ⟩ − ⟨wℓ,x⟩) +C ′d−
1
6 log(d)

= ∑
ℓ∈A(x)/∆A(x,δ)

θℓ⟨wℓ,δ⟩ +C ′d−
1
6 log(d),(B.9)

where the second equality follows form the definition of the set ∆A(x,δ).
As a final step, we define the set A+(x) = {ℓ ∶ ⟨wℓ,x⟩ > 0}. Note that A(x) ⊆A+(x) and

A+(x)/A(x) ⊆C(x). As a result ∣A+(x)/A(x)∣ ≤Cd 2
3 log(d). We thus obtain

∑
ℓ∈A(x)/∆A(x,δ)

θℓ⟨wℓ,δ⟩ = ∑
ℓ∈A+(x)

θℓ⟨wℓ,δ⟩ − ∑
ℓ∈(A+(x)/A(x))∪∆A(x,δ)

θℓ⟨wℓ,δ⟩

= ∑
ℓ∈A+(x)

θℓ⟨wℓ,δ⟩ +C ′d−
1
6 log(d),(B.10)

where the last relations follows from the fact that ∣(A+(x)/A(x)) ∪∆A(x,δ)∣ ≤ ∣C(x)∣ +
∣∆A(x,δ)∣ =O(d 2

3 log(d)). By plugging (B.10) into (B.9) we have

θTσ(W (x+ δ)) − θTσ(Wx) = ∑
ℓ∈A+(x)

θℓ⟨wℓ,δ⟩ +Cd−
1
6 log(d)

= ∑
ℓ∶⟨wℓ,x⟩>0

θℓ⟨wℓ,δ⟩ +C ′d−
1
6 log(d)

= θTdiagI(Wx > 0)Wδ +C ′d− 1
6 log(d),

which is the result of (B.1).

B.1. Proof of Lemma B.1 Define the random variables µℓ ∶=wT
ℓ x for ℓ = 1, . . . ,N . Note

that since x is gaussian and ∥wℓ∥ℓ2 = 1, then µℓ ∼N(0,1). Also, note that µℓ’s are correlated
with each other and each pair (µℓ,µk) is a jointly-gaussian random variable with correlation
ρℓ,k ∶= E[µℓ,µk] =wT

ℓ wk. Define zℓ = 1{µℓ ∈ [−d−
1
3 , d−

1
3 ]}. Note that E[zℓ] ≤ cd−

1
3 .
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Define the event E ∶= {∣wT
ℓ wk∣ ≤ d−1/2

√
C log(d), ∀ℓ,k ∈ [N]}. Since wℓ ∼i.i.d Unif(Sd−1),

it is easy to see that P(E) ≥ 1−N2d−C . We also have

P(µℓ = 1,µk = 1) = ∫
µ∈[−d−

1
3 ,d−

1
3 ]
f(µℓ = µ)P(µk ∈ [−d−

1
3 , d−

1
3 ] ∣ µℓ = µ)dµ,

where f denotes pdf of µℓ. Now, given µℓ = µ, the distribution of µk is N(µρℓ,k,(1− ρ2ℓ,k)). It
is easy to see that on the event E , for ∣µ∣ ≤ d− 1

3 we have

P(µk ∈ [−d−
1
3 , d−

1
3 ] ∣ µℓ = µ) ≤ cd−

1
3 ,

and thus

E[zℓzk] =P(µℓ = 1,µk = 1) ≤ cd−
1
3 ∫

µ∈[−d−
1
3 ,d−

1
3 ]
f(µℓ = µ)dµ ≤ cd−

2
3 .

Let us now consider the average z̄ = 1
N ∑

N
ℓ=1 zℓ. We have

E[∣z̄ −E[z̄]∣2] = E[z̄2] −E[z̄]2 ≤ E[z̄2] ≤ 1

N2

N

∑
ℓ,k=1

E[zℓzk] ≤ cd−
2
3 ,

and thus we obtain via the Chebyshev’s inequality that

P{∣z̄ −E[z̄]∣ ≥ d− 1
3 log(d); E} ≤ c

(log(d))2 .

Now, by noticing that ∣C(x)∣/N = z̄, and E[z̄] ≤ cd− 1
3 , along with the assumption that N,d

grows proportionally we obtain

P{∣C(x)∣ ≥Cd× d− 1
3 log(d); E} ≤ c

(log(d))2 .

Finally, we have

P{∣C(x)∣ ≥Cd 2
3 log(d)} ≤ c

log(d)2 +P(Ec) ≤ c

(log(d))2 +N
2d−C .

B.2. Proof of Proposition 6.2 Recall the loss L(θ) given by

L(θ) ∶= max
∥δi∥ℓ2≤ε

1

2n

n

∑
i=1
(yi − θTσ(W (xi + δi))

2 + ζ
2
θTΩθ ,

and θ̂ = argminL(θ). Bounding ∥θ̂∥
ℓ2

is straightforward. By optimality of θ̂ and comparing

the loss at θ̂ and 0 we get

ζ

2
θ̂TΩθ̂ ≤L(0) = 1

2n

n

∑
i=1
y2i <C,

with probability at least 1− e−cn, for absolute constants c,C > 0. Since Ω ⪰ I , this implies that
∥θ∥ℓ2 ≤C0 for sufficiently large C0.

To bound ∥θ̂∥
ℓ∞

we just need to bound any given entry of θ̂, e.g. its last entry, with high
probability. By symmetry, all the entries have the same marginal distribution. Consequently,
each entry of θ̂ can be analyzed in the same way and ∥θ̂∥

ℓ∞
can then be controlled by using

the union bound.
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With a slight abuse of notation, we consider a (N + 1) dimensional version of the above
optimization over [θ;u] and denote the last coordinate of the optimal solution by û. Let

λ ∶=
√
log(d)
d and

Ω = ( Ω̃ λ1
λ1T λ+ 1) ,

where Ω̃ is of size N and 1 = (1,1, . . . ,1) ∈RN . The last coordinate û can be expressed as

û = argmin
u

min
θ
[ 1

2n

n

∑
i=1

max
∥δi∥ℓ2≤ε

(yi − θTσ(W (xi + δ∗i ) −uσ(wT
N+1(xi + δ∗i )))

2

+ ζ
2
(θTΩ̃θ + 2λ(1Tθ)u+ (λ+ 1)u2)] .(B.11)

We next define f(u) as the objective function of u in (B.11). We proceed by deriving a lower
bound for f(u).

Let θ∗ be the optimal θ if we set u = 0 and denote by δ
/u
i the maximizing δi, when u = 0.

Note that δ/ui is in general a function of θ. In addition, define

ℓ([θ,u]) = 1

2n

n

∑
i=1
(yi − θTσ(W (xi + δ/ui ) −uσ(w

T
N+1(xi + δ

/u
i )))

2
,

Q([θ,u]) = ζ
2
(θTΩ̃θ + 2λ(1Tθ)u+ (λ+ 1)u2) .

Since the pointwise maximum of convex functions is convex, the function ℓ(⋅) is convex and
hence we have

ℓ([θ;u]) ≥ ℓ([θ∗; 0]) + ⟨∇θℓ([θ,u])∣[θ∗;0],θ − θ∗⟩ +∇uℓ([θ,u])∣[θ∗;0]u.(B.12)

For quadratic function Q([θ;u]) we have

Q([θ;u]) = ζ
2
θT
∗ Ω̃θ∗ + ζθT

∗ Ω̃(θ − θ∗) +
ζ

2
(θ − θ∗)TΩ̃(θ − θ∗) +

ζ

2
(2λu1Tθ + (λ+ 1)u2)

=Q([θ∗; 0]) + ζ (θT
∗ Ω̃(θ − θ∗) +λ(1Tθ∗)u) +

ζ

2
{(θ − θ∗)TΩ̃(θ − θ∗)(B.13)

+ (λ+ 1)u2 + 2λu1T(θ − θ∗)} .(B.14)

Combining (B.12) and (B.13) we get

L([θ;u]) ≥ ℓ([θ;u]) +Q([θ;u])

≥ L([θ∗; 0]) + ⟨∇θℓ([θ,u])∣[θ∗;0] + ζθT
∗ Ω̃,θ − θ∗⟩ + (∇uℓ([θ,u])∣[θ∗;0] + ζλ1Tθ∗)u

+ ζ
2
{(θ − θ∗)TΩ̃(θ − θ∗) + (λ+ 1)u2 + 2λu1T(θ − θ∗)} .

(B.15)

Here, the first inequality holds since L(⋅) involves maximization over δi, while in definition of
ℓ(⋅) we consider δ/ui . Though, note that L([θ∗,0]) = ℓ([θ∗; 0]) +Q([θ∗; 0]) because when
u = 0, δ/ui are the maximizing perturbations by definition. We used this observation in the
second inequality above.
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We argue that the second term in the right-hand side is zero. To see this, first write the
partial derivative ∇θℓ as

∇θℓ([θ,u])

= − 1
n

n

∑
i=1
(yi − θTσ(W (xi + δ/ui ) −uσ(w

T
N+1(xi + δ

/u
i )))×

( ∂
∂θ
[θTσ(W (xi + δ/ui )] +u

∂

∂θ
σ(wT

N+1(xi + δ
/u
i ))) .

(Note that δ/ui is a function of θ.) Therefore,

∇θℓ([θ,u])∣[θ∗;0] = −
1

n

n

∑
i=1
(yi − θT

∗ σ(W (xi + δ
/u
i ))(

∂

∂θ
[θTσ(W (xi + δ/ui )]∣[θ∗;0]

) .

(B.16)

By using the first-order optimality condition for θ∗ we have

∇θℓ([θ,u])∣[θ∗;0] + ζθT
∗ Ω̃

= − 1
n

n

∑
i=1
(yi − θT

∗ σ(W (xi + δ
/u
i ))(

∂

∂θ
[θTσ(W (xi + δ/ui )]∣[θ∗;0]

) + ζθT
∗ Ω̃ = 0 .

Using the above relation in (B.15) we arrive at

L([θ;u]) ≥ L([θ∗; 0]) + (∇uℓ([θ,u])∣[θ∗;0] + ζλ1Tθ∗)u

+ ζ
2
{(θ − θ∗)TΩ̃(θ − θ∗) + (λ+ 1)u2 + 2λu1T(θ − θ∗)} .

Therefore, by minimizing the both sides over θ we obtain

f(u) =min
θ
L([θ;u])

≥ f(0) + (∇uℓ([θ,u])∣[θ∗;0] + ζλ1Tθ∗)u

+min
θ

ζ

2
{(θ − θ∗)TΩ̃(θ − θ∗) + (λ+ 1)u2 + 2λu1T(θ − θ∗)}

= f(0) + (∇uℓ([θ,u])∣[θ∗;0] +λ1Tθ∗)u+
ζ

2
u2(1+λ−λ21TΩ̃−11).(B.17)

By definition of Ω̃, it has 1 as an eigenvector with eigenvalue 1+λd. So,

1+λ−λ21TΩ̃−11 ≥ 1+λ− λ2d

1+λd > 1 .(B.18)

By optimality of û, we have f(û) ≤ f(0), which together with (B.17) and (B.18) imply that

∣û∣ ≤ 2
ζ
∣∇uℓ([θ,u])∣[θ∗;0] + ζλ1Tθ∗∣ .(B.19)

We next bound the terms on the right-hand side separately. We have

λ1Tθ∗ ≤ λ∥1∥ℓ2 ∥θ∗∥ℓ2 ≤
√

log(d)
d
∥θ∗∥ℓ2 .

By optimality of θ∗ (when we set u = 0) and comparing it with 0 we get

ζ

2
θT
∗ Ω̃θ∗ ≤

1

2n

n

∑
i=1
y2i <C ,
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with probability at least 1− e−cn.
Sine Ω̃ ⪰ I , this implies that λ1Tθ∗ =OP(

√
log(d)/d).

To bound the other term, recall that by definition ∂
∂uδ

/u
i = 0 and so ∇uℓ([θ,u])∣[θ∗;0] is

given by

∇uℓ([θ,u])∣[θ∗;0] =
1

n

n

∑
i=1
(yi − θT

∗ σ(W (xi + δ
/u
i ))σ(w

T
N+1(xi + δ

/u
i )) .(B.20)

To simplify the notation define mi ∶= 1√
n
(yi − θT

∗ σ(W (xi + δ
/u
i )) and X = [x1∣ . . . ∣xn]T.

Consider the following event:

E ∶= {∥m∥ℓ2 ≤C,
1√
d
∥X∥ ≤C} ,

where m = (m1, . . . ,mn)T and C > 0 is a sufficiently large constant. We show that E is a high
probability event. To see this, first observe that

∥m∥2ℓ2 =
1

n

n

∑
i=1
(yi − θT

∗ σ(W (xi + δ
/u
i ))

2
≤ 1

n

n

∑
i=1
y2i ,(B.21)

where the inequality follows from optimality of θ∗ and comparing the loss value L([θ∗; 0])
with L([0; 0]). Therefore,

P(∥m∥ℓ2 >C) ≤P( 1√
n
∥y∥ℓ2 >C) ≤ e

−C′n ,

for absolute constants C,C′ (depending on the noise variance τ2). Also, given that X has i.i.d
standard normal entries we have

P( 1√
d
∥X∥ >C) ≤ 2e−cn .

Putting the last two bounds together we obtain P(Ec) ≤ 3e−cn.
Let F be the σ-algebra generated by an arbitrary X,W ,y in E . Clearly, mi are measurable

with respect to F . Also, wN+1 is drawn independently from F and hence conditioned on
that wT

N+1xi ∼N(0,1). Since E[σ(G)] = 0 for G ∼N(0,1), we have E[σ(wT
N+1xi)∣F] = 0.

To bound ∇uℓ([θ,u])∣[θ∗;0] we view that as a function of wN+1 and condition on F . We then
have

E [∇uℓ([θ,u])∣[θ∗;0]∣F] =
1√
n

n

∑
i=1
miE[σ(wT

N+1xi)∣F] = 0 .

Also this is a Lipschitz continuous function of wN+1 with a Lipschitz factor at most
C√
d
∥Xm∥ℓ2 ≤

1√
ψ2

1√
d
∥X∥∥m∥ℓ2 ≤

C2

√
ψ2

∶=C0. Since wN+1 is chosen uniformly at random
from the unit sphere, we can apply the concentration bound for Lipschitz function (see e.g. [92,
Theorem 5.1.4]), which implies that

P(∇uℓ([θ,u])∣[θ∗;0] > t) ≤ 2e−c
′dt2 .(B.22)

Choosing t =C
√

log(d)
d and using this bound in (B.19) we get

∣û∣ ≤C ′
√

log(d)
d

,

with probability at least 1−4e−cn−2d−c′C2

. The result follows by choosing C > 0 large enough
so that c′C2 > 1 and union bounding over the N coordinates of θ̂, along with the assumption
that N,n,d grow at the same order.
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B.3. Proof of Proposition 6.3 We know from the result of Proposition 6.1, or more
precisely the equations (B.1)-(B.2) in its proof, that with probability 1− od(1) we have

sup
θ∈Cθ
∣ max
∥δ∥ℓ2≤ε

∣y − θTσ(W (x+ δ))∣ − (∣y − θTσ(Wx)∣ + ε∥W Tdiag (I(Wx > 0)) θ∥
ℓ2
)∣ =αd,

where αd =O ( log(d)d1/6
).

One can thus write from (6.1) and (6.5) that for any θ ∈ Cθ

∣L(θ) −
○
L(θ)∣ ≤α2

d +αd
1

n

n

∑
i=1

max
∥δi∥ℓ2≤ε

∣yi − θTσ(W (xi + δi))∣

≤α2
d +αd

1

n

n

∑
i=1
∣yi − θTσ(Wxi)∣ +αd ∥θ∥ℓ2 ∣∣W ∣∣ε

≤α2
d +αd

1

n

n

∑
i=1
∣yi − θTσ(Wxi)∣ + c1αd,

where c1 > 0 is an absolute constant. The second inequality follows from the fact that the
ReLU function is 1-Lipschitz, and the third inequality follows from θ ∈ Cθ as well as the fact
that ∣∣W ∣∣ is bounded.

We will now show that

(B.23) sup
θ∈Cθ

1

n

n

∑
i=1
∣yi − θTσ(Wxi)∣ =Od,P(d

1
12 ).

It is easy to see that proving the above relation will finish the proof as αd =O ( log(d)d1/6
).

Fix a θ such that ∥θ∥ℓ2 ≤C . Recall that (xi, yi) are generated i.i.d. according to the the
distribution (2.1). Since the random variables ∣yi − θTσ(Wxi)∣ are sub-gaussian (see e.g.
(D.93) in Lemma D.9), we can write

(B.24) P( 1
n

n

∑
i=1
∣yi − θTσ(Wxi)∣ ≥ d

1
12) ≤ c2e−c2 d

7
6
,

for an absolute constant c2 > 0.
Now, to prove (B.23), we use an ϵ-net argument. Consider a 1-net of the set {θ ∶ ∥θ∥ℓ2 ≤

C}. We know that such a 1-net S exists with size at most ∣S∣ ≤ 2c3d where c3 > 0 is an
absolute constant. Let θ1 ∈ S be a vector in this net, and consider another vector θ2 in the
1-neighborhood of θ1 – i.e. ∥θ1 − θ2∥ℓ2 ≤ 1. We can write

∣ 1
n

n

∑
i=1
∣yi − θT

1 σ(Wxi)∣ −
1

n

n

∑
i=1
∣yi − θT

2 σ(Wxi)∣∣ ≤
1

n

n

∑
i=1
∣(θ1 − θ2)Tσ(Wxi)∣

= 1

n
∥(θ1 − θ2)TM∥ℓ1

≤ 1√
n
∣∣M ∣∣ ∥θ1 − θ2∥ℓ2

≤ 1√
n
∣∣M ∣∣,(B.25)

where the matrix M is defined as M = [σ(Wx1) ∣σ(Wx2) ∣⋯ ∣σ(Wxn)]. Now, since the
random vectors σ(Wxi) are independently generated and sub-gaussian (see (D.93)), we can
conclude that

(B.26) P(∣∣M ∣∣ ≥ c4
√
n) ≤ c5e−c5d,
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for absolute constants c4, c5 > 0 (recall that d, n, and N grow proportionally as per Assump-
tion 1). As a result, from (B.25) and (B.26), we have

P
⎛
⎝

sup
θ1,θ2∶∥θ1−θ2∥ℓ2≤1

∣ 1
n

n

∑
i=1
∣yi − θT

1 σ(Wxi)∣ −
1

n

n

∑
i=1
∣yi − θT

2 σ(Wxi)∣∣ ≥ c4
⎞
⎠
≤ c5e−c5d.

(B.27)

Now, by using (B.24) and (B.27), and a union bound argument over S , we obtain:

P
⎛
⎝

sup
θ∶∥θ∥ℓ2≤C

1

n

n

∑
i=1
∣yi − θTσ(Wxi)∣ ≥ d

1
12 + c4

⎞
⎠
≤P(sup

θ∈S

1

n

n

∑
i=1
∣yi − θTσ(Wxi)∣ ≥ d

1
12)+ c5e−c5d

≤ c2ec3d−c2d
7
6 + c5e−c5d =O(e−c5d).

The claim (B.23) now follows because Cθ ⊆ {θ ∶ ∥θ∥ℓ2 ≤C}.

APPENDIX C: PROOFS OF STEP 2: CONCENTRATION OF THE ADVERSARIAL
EFFECTS

C.1. Proof of Proposition 6.4 Recall the high probability event EW given by (6.2). We
also define the event Ex ∶= {∥xi∥ℓ2 ≤

√
5d, ∀i ∈ [n]}. Since xi ∼ N(0,Id), ∥xi∥2ℓ2 ∼ χ

2
d is a

chi-squared distribution with d degrees of freedom. Using chi-squared distribution tail bound
(see e.g. [49, lemma 1]) along with a union bound over i ∈ [n], we obtain P(Ex) ≥ 1−ne−d.
Since d and n grow proportionally as per Assumption 1, both of the events EW and Ex are
high probability events, and so it suffices to prove the claim 6.7 on the event EW ∩ Ex.

To prove the proposition, we first state the following lemma which establishes a deviation
bound for a fixed θ ∈ Cθ and fixed i ∈ [n].
Lemma C.1 For any fixed θ ∈ Cθ and fixed i ∈ [n], the following holds :

Pxi
{∣ηi(θ)2 −E[ηi(θ)2]∣ ≥ γ; EW ∩ Ex} ≤

c log6(d)
dγ2

,

for some absolute constant c > 0.

Proof of Lemma C.1 is given in Section C.2.
Fix θ ∈ Cθ and recall our notation νi(θ;γ) ∶= I(∣ηi(θ)2 −E[ηi(θ)2]∣ > γ). Given that xi are

i.i.d, the random variables νi ∈ {0,1} are also i.i.d. Bernoulli random variables. Therefore,

P
⎛
⎝
1

n

n

∑
i=1
νi(θ;γ) ≥

1√
log(dγ2)

⎞
⎠
=P
⎛
⎝
n

∑
i=1
νi(θ;γ) ≥

n√
log(dγ2)

⎞
⎠

≤
n

∑
ℓ= n
√

log(dγ2)

(n
ℓ
)E[ν1(θ;γ)]ℓ(1−E[ν1(θ;γ)])n−ℓ

≤ E[ν1(θ;γ)]
n

√

log(dγ2)

n

∑
ℓ= n
√

log(dγ2)

(n
ℓ
)

≤ 2n (c log
6(d)

dγ2
)

n
√

log(dγ2)

≤ (2c log6(d))n e−n
√
log(dγ2) ,(C.1)

where the last step follows from Lemma C.1 by which E[ν1(θ;γ)] ≤ c log6(d)/(dγ2) on the
event EW ∩ Ex.
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Note that the above bound was for a fixed θ ∈ Cθ . In order to prove claim 6.7 we use an
ε-net argument. We write

sup
θ∈Cθ

1

n

n

∑
i=1
νi(θ;γ) ≤ sup

∥θ∥ℓ2≤C0

1

n

n

∑
i=1
νi(θ;γ)

= sup
∥θ∥ℓ2=C0

1

n

n

∑
i=1
νi(θ;γ)

= sup
θ∈Sd−1

1

n

n

∑
i=1
νi(θ; γ

C2
0

) ,(C.2)

where the first step follows from definition of Cθ; the second step follows from a simple
scaling argument, and the third step follows from definition of η2i (θ) and νi(θ;γ). We recall
that Sd−1 denotes the unit (d− 1)-dimensional sphere.

Next consider a ε-net N of Sd−1 for ε = c0γ. By [91, Lemma 5.2] we can choose the net N
so that ∣N ∣ ≤ (1+ 2

c0γ
)d. We use the lemma below to relate the quantity νi(θ;γ) for θ ∈ Sd−1

to a θ ∈N .

Lemma C.2 For θ ∈ Sd−1 choose θ̃ ∈ N which approximates θ as ∥θ − θ̃∥
ℓ2
≤ c0γ. On the

event EW we have the following for all i ∈ [n]:

νi(θ;γ) = 1 Ô⇒ νi(θ̃;γ(1− 2c0
√
ψ1,d − 2c0C)) = 1 .(C.3)

We refer to Section C.3 for the proof of Lemma C.2.
Continuing from (C.2) and using Lemma C.2 we get

sup
θ∈Cθ

1

n

n

∑
i=1
νi(θ;γ) ≤ sup

θ∈Sd−1

1

n

n

∑
i=1
νi(θ; γ

C2
0

)

≤ sup
θ̃∈N

1

n

n

∑
i=1
νi(θ̃; γ

C2
0

(1− 2c0
√
ψ1,d − 2c0C)) .(C.4)

Let γ̃ ∶= γ
C2

0

(1− 2c0
√
ψ1,d − 2c0C). By choosing the constant c0 small enough we have γ̃ ≥ 0.

Using (C.1) along with union-bounding over the net N we get

P
⎛
⎝
sup
θ̃∈N

1

n

n

∑
i=1
νi(θ̃; γ̃) ≥

1√
log(dγ̃2)

⎞
⎠
≤ (1+ 2

c0γ
)
d

(2c log6(d))n e−n
√
log(dγ̃2) .

Since n and d grow proportionally and also γ, γ̃ are of same order, the above event is a
high probability event if log(1/γ) = o(

√
log(d)) or equivalently if 1

γ = e
o(
√
log(d)). The result

follows by combining the above bound with (C.4).

C.2. Proof of Lemma C.1 We decompose the step function as

I(z > 0) = µ0 +µ1z +µ∗φ(z) ,
where for G ∼N(0,1),

µ0 ∶= E[I(G > 0)] = 1
2
, µ1 = E[GI(G > 0)] = 1√

2π
, µ2∗ ∶= E[I(G > 0)]−µ20−µ21 =

1

4
− 1

2π
.

Here, φ(z) is the nonlinear component of the step function which is orthogonal to the constant
and linear components in the following sense: E[φ(G)] = 0 and E[Gφ(G)] = 0. We write

I(⟨wℓ,xi⟩ > 0) =
1

2
+ 1√

2π
⟨wℓ,xi⟩ +µ∗uℓi, where: uℓi ∶=φ(⟨wℓ,xi⟩) ,(C.5)
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noting that ⟨wℓ,xi⟩ and ⟨wk,xi⟩ are jointly Gaussian with

E(⟨wℓ,xi⟩2) = E(⟨wk,xi⟩2) = 1, E(⟨wℓ,xi⟩⟨wk,xi⟩) = ⟨wk,wℓ⟩ .
Therefore, we have (see e.g., [15, Table 1])

E[I(⟨wℓ,xi⟩ > 0)I(⟨wk,xi⟩ > 0)] =
π − cos−1(⟨wk,wℓ⟩)

2π

= 1
4
+ 1

2π
⟨wℓ,wk⟩ +O(⟨wℓ,wk⟩3)

= 1
4
+ 1

2π
⟨wℓ,wk⟩ +O (d−3/2 log3(d)) .(C.6)

To bound the correlation of variables uℓi,uki, we write

µ2∗E[uℓiuki] = E[{I(⟨wℓ,xi⟩ > 0) −
1

2
− 1√

2π
⟨wℓ,xi⟩}{I(⟨wk,xi⟩ > 0) −

1

2
− 1√

2π
⟨wk,xi⟩}]

= E[I(⟨wℓ,xi⟩ > 0)I(⟨wk,xi⟩ > 0)] +E[(1
2
+ 1√

2π
⟨wℓ,xi⟩)(

1

2
+ 1√

2π
⟨wk,xi⟩)]

−E[I(⟨wℓ,xi⟩ > 0)(
1

2
+ 1√

2π
⟨wk,xi⟩)] −E[I(⟨wk,xi⟩ > 0)(

1

2
+ 1√

2π
⟨wℓ,xi⟩)].

(C.7)

The first term above is calculated in (C.6). For the second term, we have

E[(1
2
+ 1√

2π
⟨wℓ,xi⟩)(

1

2
+ 1√

2π
⟨wk,xi⟩)] =

1

4
+ ⟨wℓ,wk⟩

2π
.(C.8)

For the third term we write

E[I(⟨wℓ,xi⟩ > 0)(
1

2
+ 1√

2π
⟨wk,xi⟩)] =

1

4
+ 1√

2π
E[I(⟨wℓ,xi⟩ > 0)⟨wk,xi⟩]

= 1
4
+ 1√

2π
E[⟨wk,xi⟩∣⟨wℓ,xi⟩ > 0]P(⟨wℓ,xi⟩ > 0)

(a)= 1

4
+ 1

2
√
2π
⟨wℓ,wk⟩

ϕ(0)
1−Φ(0)

= 1
4
+ 1

2π
⟨wℓ,wk⟩ .(C.9)

Here (a) follows from lemma below.

Lemma C.3 For Z1, Z2 ∼N(0,1) with E[Z1Z2] = ρ we have

E[Z1∣Z2 > z] = ρ
ϕ(z)

(1−Φ(z)) ,

where ϕ(z) = 1√
2π
e−z

2/2is the density of standard normal and Φ(z) = ∫
z
−∞ϕ(t)dt is its CDF.

Using Equations (C.6), (C.8) and (C.9) in (C.7) we obtain

E[uℓiuki] =O (d−3/2 log3(d)) .(C.10)

Substituting for the sign function I(⟨wℓ,xi⟩ > 0) from (C.5) we get

W Tdiag(I(Wxi > 0)) θ =W Tdiag(θ)I(Wxi > 0)

=W Tdiag(θ)(1
2
1+µ∗ui +

1√
2π

Wxi) ,(C.11)
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with ui = (uℓi)Nℓ=1. To lighten the notation, we use the shorthand hi ∶=W Tdiag(θ)(121 +
µ∗ui). We next decompose ηi(θ)2 into three terms as follows:

ηi(θ)2 =
1

2π
∥W Tdiag(θ)Wxi∥

2

ℓ2
+ ∥hi∥2ℓ2 +

√
2

π
⟨hi,W Tdiag(θ)Wxi⟩.(C.12)

We next provide deviation bounds for each of these terms by putting which together we obtain
the desired claim.

We start by the first term in (C.12). Note that since θ ∈ Cθ , we have the following bounds
conditioned on the event EW :

∥W Tdiag(θ)WW Tdiag(θ)W ∥ ≤ ∥W ∥4 ∥θ∥2ℓ∞ =O (d
−1 log(d)) ,

∥W Tdiag(θ)WW Tdiag(θ)W ∥
F
≤
√
min(d,N)∥W Tdiag(θ)WW Tdiag(θ)W ∥ =O(d−0.5) .

Therefore, by applying Hanson-Wright’s inequality [72] we get

P{∣∥W Tdiag(θ)Wxi∥
2

ℓ2
−E[∥W Tdiag(θ)Wxi∥

2

ℓ2
]∣ > γ log(d); EW } ≤ 2e−cγ

2d ,

(C.13)

for an absolute constant c > 0.
For the second term we bound variation in the vector hi itself from which we obtain a

deviation bound on its norm ∥hi∥ℓ2 . We write

E[∥hi −E[hi]∥2ℓ2 ] = µ
2
∗E[∥W Tdiag(θ)ui∥

2

ℓ2
]

=∑
ℓ,k

⟨wℓ,wk⟩θℓθk E[uℓiuki] ≤∑
i,j

C
1√
d
∥θ∥2ℓ∞ d

−1.5 log3(d) =O (d−1 log4(d)) ,(C.14)

where we used the assumption θ ∈ Cθ along with (C.10). We write hi = E[hi] + δ and define
the event Eδ ∶= {∥δ∥ℓ2 ≤ γ}. Therefore by using Markov’s inequality along with (C.14) we

obtain P(Eδ) ≥ 1− c log
4(d)
dγ2 . Furthermore,

∥hi∥2ℓ2 = ∥E[hi]∥
2
ℓ2
+ ∥δ∥2ℓ2 + 2⟨δ,E[hi]⟩.(C.15)

On the event EW , we have ∥E[hi]∥ℓ2 =
1
2
∥W Tdiag(θ)1∥

ℓ2
≤ 1

2 ∥W ∥∥θ∥∞
√
N ≤C

√
log(d),

and so ∣⟨δ,E[hi]⟩∣ ≤C ∥δ∥ℓ2 . Hence, on the event EW ∩ Eδ ,

∣ ∥hi∥2ℓ2 − ∥E[hi]∥
2
ℓ2
∣ ≤ γ2 + 2C

√
log(d)γ =O (γ

√
log(d)) .

This implies that ∥E[hi]∥2ℓ2 = E[∥hi∥2ℓ2] +O(γ log(d)), and therefore

∣ ∥hi∥2ℓ2 −E[∥hi∥2ℓ2]∣ =O (γ
√
log(d)) .(C.16)

We next proceed to the third term in (C.12).

⟨hi,W Tdiag(θ)Wxi⟩ = ⟨E[hi],W Tdiag(θ)Wxi⟩ + ⟨δ,W Tdiag(θ)Wxi⟩

= 1
2
⟨W Tdiag(θ)1,W Tdiag(θ)Wxi⟩ + ⟨δ,W Tdiag(θ)Wxi⟩ .(C.17)

Note that on the event EW the first term above is a Lipschitz continuous function of the
Gaussian vector xi with Lipschitz constant

L = ∥1Tdiag(θ)WW Tdiag(θ)W ∥
ℓ2
≤
√
N ∥θ∥2ℓ∞ ∥W ∥

3 =O (log(d)/
√
d) .
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By Gaussian isoperimetry [50], we have

P(∣⟨W T diag(θ)1,W T diag(θ)Wxi⟩ −E[⟨W T diag(θ)1,W T diag(θ)Wxi⟩]∣ ≥ γ log(d); EW ) ≤ 2e−cγ
2d ,

(C.18)

for some constant c > 0. For the second term of (C.17), note that on the event Eδ ∩ EW ∩ Ex,

∣⟨δ,W Tdiag(θ)Wxi⟩∣ ≤ ∥δ∥ℓ2 ∥W
Tdiag(θ)Wxi∥ℓ2 ≤ ∥δ∥ℓ2 ∥W ∥

2 ∥θ∥ℓ∞ ∥xi∥ℓ2 =O(γ log(d)) .
(C.19)

Combining (C.18) and (C.19) with the decomposition (C.17) we get that on the event Eδ ∩
EW ∩ Ex,

∣⟨hi,W Tdiag(θ)Wxi⟩ −E[⟨hi,W Tdiag(θ)Wxi⟩]∣ =O(γ log(d)) ,(C.20)

with probability at least 1− 2e−cγ2d. Putting together the deviation bounds for the three terms,
given by (C.13), (C.16) and (C.20), we arrive at

P(∣ηi(θ)2 −E[ηi(θ)2]∣ >Cγ log(d); EW ∩ Ex) ≤ 4e−cγ
2d + c log

4(d)
dγ2

=O( log
4(d)
dγ2

) .

Note that the above relation holds for any γ > 0. The result of the lemma now follows by
letting γ←Cγ log(d).

C.3. Proof of Lemma C.2 Define the matrix

A ∶= diag(I(Wxi > 0))WW Tdiag(I(Wxi > 0)) .

By triangle inequality we have

∣ηi(θ)2 − ηi(θ̃)2∣ = ∣⟨Aθ,θ⟩ − ⟨Aθ̃, θ̃⟩∣

= ∣⟨Aθ,θ − θ̃⟩ + ⟨A(θ − θ̃), θ̃⟩∣

≤ ∥A∥∥θ∥ℓ2 ∥θ − θ̃∥ℓ2 + ∥A∥∥θ − θ̃∥ℓ2 ∥θ̃∥ℓ2 ≤ 2c0γ ∥A∥ ,

where in the last step we used the fact that θ, θ̃ ∈ Sd−1 and ∥θ − θ̃∥
ℓ2
≤ c0γ. So it suffices to

bound ∥A∥. By definition, the matrix A is obtained by selecting a subset of rows and columns
of WW T and replacing them with zeros. Therefore, ∥A∥ ≤ ∥WW T∥ ≤

√
ψ1,d +C , on the

event EW .
Since the above bound in Lemma C.2 holds for any vector xi, a similar bound also

holds if the terms are replaced by their expectation with respect to xi, whence we obtain
∣E[ηi(θ)2] −E[ηi(θ̃)2]∣ ≤ 2c0γ(

√
ψ1,d +C).

By definition of νi(θ;γ) we have

νi(θ;γ) = 1 Ô⇒ ∣ηi(θ)2 −E[ηi(θ)2]∣ ≥ γ

Ô⇒ ∣ηi(θ̃)2 −E[ηi(θ̃)2]∣ + ∣(ηi(θ)2 −E[ηi(θ)2]) − (ηi(θ̃)2 −E[ηi(θ̃)2])∣ ≥ γ

Ô⇒ ∣ηi(θ̃)2 −E[ηi(θ̃)2]∣ ≥ γ − 2c0γ(
√
ψ1,d +C)

Ô⇒ νi(θ̃;γ(1− 2c0
√
ψ1,d − 2c0C)) = 1 .(C.21)
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C.3.1. Proof of Lemma C.3 The conditional distribution of Z1 given Z2 is

Z1∣Z2 = z2 ∼N(ρz2,(1− ρ2)) .

Therefore, E[Z1∣Z2 = z2] = ρz2 and so

E[Z1∣Z2 > z] = E[Z1∣Z2 = z2]P(Z2 = z2∣Z2 > z)dz2 = ρE[Z2∣Z2 > z].

Using the properties of the expectation of a truncated normal distribution, we have

E[Z2∣Z2 > z] =
ϕ(z)

(1−Φ(z)) ,

which completes the proof.

C.4. Proof of Lemma 6.6 By (6.6) it suffices to show that

sup
θ∈Cθ

∣
○○
L(θ) −

○
L(θ)∣

1+min(
○
L(θ),

○○
L(θ))

= od,P(1) .

To lighten the notation we define the shorthand αi ∶= ∣yi−θTσ(Wxi)∣+ε∥W TdiagI(Wxi > 0) θ∥ℓ2
and so

○
L(θ) = 1/(2n)∑ni=1α2

i +
ζ
2θ

TΩθ. We write
○○
L(θ) = 1/(2n)∑ni=1(αi + βi)2 + ζ

2θ
TΩθ

with

βi ∶= ε∥Jθ∥ℓ2 − ε∥W
TdiagI(Wxi > 0) θ∥ℓ2 .

Since for any two positive values a,b we have ∣a− b∣ ≤
√
∣a2 − b2∣, we can write

∣βi∣ ≤ ε(∥W TdiagI(Wxi > 0) θ∥
2

ℓ2
− ∥Jθ∥2ℓ2)

1/2
= [ηi(θ)2 −E[ηi(θ)2]]1/2 .(C.22)

Note that on the event EW , ∥W ∥ is bounded and so ∥W TdiagI(Wxi > 0)∥ is also bounded.
Since θ ∈ Cθ , we have ∥θ∥ℓ2 =O(1), which along with Lemma F.3 imply that maxi∈[n] ∣ηi(θ)∣
and maxi∈[n] ∣E[ηi(θ)]∣ are both Od,P(1). Therefore: (i) defining β = (β1, . . . ,βn), we have
∥β∥ℓ2 =Od,P(1); (ii) Using (C.22) along with Corollary 6.5, we get 1

n ∣{i ∶ ∣βi∣ >
1√

log(d)
}∣ =

od,P(1).
From the above we can deduce that 1

n ∥β∥
2
ℓ2
= od,P(1). We also define α = (α1, . . . ,αn).

For any θ ∈ Cθ we have

∣
○○
L(θ) −

○
L(θ)∣ = ∣ 1

2n

n

∑
i=1
(αi + βi)2 −

n

∑
i=1
α2
i ∣

=
∥β∥2ℓ2
2n
+ 1

n
∣
n

∑
i=1
αiβi∣

≤
∥β∥2ℓ2
2n
+ 1

n
∥β∥ℓ2 ∥α∥ℓ2

≤
∥β∥2ℓ2
2n
+
∥β∥ℓ2√
n

∥α∥ℓ2√
n

≤
∥β∥2ℓ2
2n
+
∥β∥ℓ2
2
√
n
(1+

∥α∥2ℓ2
n
)
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≤
∥β∥2ℓ2
2n
+
∥β∥ℓ2
2
√
n
+
∥β∥ℓ2√
n

○
L(θ)

= od,P(1)(1+
○
L(θ)),

where the last step holds because
∥β∥ℓ2√

n
= od,P(1).

By a similar argument, we also get

∣
○○
L(θ) −

○
L(θ)∣ ≤ od,P(1)(1+

○○
L(θ)) .

Combining these two bounds we get ∣
○○
L(θ) −

○
L(θ)∣ ≤ od,P(1)(1+min(

○
L(θ),

○○
L(θ))) .

We next proceed to the second part. By optimality of θ̂ and
○○
θ we have

○○
L(θ̂) <

○○
L(0) = 1

n

n

∑
i=1
y2i =Od,P(1), L(θ̂) < L(0) =

1

n

n

∑
i=1
y2i =Od,P(1).(C.23)

As shown in Proposition 6.2, θ̂ ∈ Cθ with high probability. Likewise we have θ̂∗ ∈ Cθ , with
high probability (this follows from Lemma D.7 for the special case of k = n in that lemma.)

Therefore using the first part of the current lemma,

∣
○○
L(θ̂) −L(θ̂)∣ = od,P(1), ∣

○○
L(θ̂∗) −L(θ̂∗)∣ = od,P(1) .

We therefore obtain

0 ≤L(θ̂∗) −L(θ̂) < (L(θ̂∗) −
○○
L(θ̂∗)) + (

○○
L(θ̂∗) −

○○
L(θ̂))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

+(
○○
L(θ̂) −L(θ̂)) ≤ od,P(1) .

Since L(θ) is ζ
2 -strongly convex we have

∥θ̂∗ − θ̂∥
ℓ2
≤ od,P(1)/ζ → 0, as d→∞ .

C.5. Proof of Lemma 6.7 We define

○
AR(θ) ∶= E[(∣y − θTσ(Wx)∣ + εtest ∥W TdiagI(Wx > 0) θ∥

ℓ2
)
2
] .

As an immediate result of Proposition 6.1, we have supθ∈Cθ
∣
○
AR(θ) −AR(θ)∣ = od(1). There-

fore, it suffices to show that

sup
θ∈Cθ

∣
○○
AR(θ) −

○
AR(θ)∣√

○
AR(θ)

= od,P(1) .(C.24)

By expanding the terms in
○
AR(θ) and invoking our notation ηi(θ) = ∥W TdiagI(Wx > 0) θ∥

ℓ2
,

we have
○
AR(θ) = E[(y − θTσ(Wx))2] + ε2testE[ηi(θ)2] + 2εtestE [∣y − θTσ(Wx)∣ ηi(θ)] .

Likewise we have
○○
AR(θ) = E[(y − θTσ(Wx))2] + ε2test ∥Jθ∥

2
ℓ2
+ 2εtestE[∣y − θTσ(Wx)∣] ∥Jθ∥ℓ2 .
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Recall that by definition of J we have E[ηi(θ)2] = ∥Jθ∥2ℓ2 . Hence,

∣
○
AR(θ) −

○○
AR(θ)∣ = 2εtest ∣E[∣y − θTσ(Wx)∣ (ηi(θ) −

√
E[ηi(θ)2])] ∣

≤ 2εtestE [(y − θTσ(Wx))2]1/2E[(ηi(θ) −
√

E[ηi(θ)2])2]
1/2

≤ 2εtest
√

○
AR(θ)E[(ηi(θ) −

√
E[ηi(θ)2])2]

1/2
.(C.25)

To bound the right-hand side, note that for any two positive values a,b we have (a − b)2 ≤
∣a2 − b2∣. Therefore,

E[(ηi(θ) −
√

E[ηi(θ)2])2] ≤ E[∣ηi(θ)2 −E[ηi(θ)2]∣] .(C.26)

Also recall that for any non-negative random variable Z , we have E[Z] = ∫
∞
0 P(Z ≥ z)dz.

Therefore,

E[∣ηi(θ)2 −E[ηi(θ)2]∣] = E[∣ηi(θ)2 −E[ηi(θ)2]∣;EW ∩ Ex] +P((EW ∩ Ex)c)

∫
∞

0
P(∣ηi(θ)2 −E[ηi(θ)2]∣ ≥ γ)dγ +P((EW ∩ Ex)c)

≤ ∫
∞

0
min( c

dγ2
,1)dγ + cexp(− log2(d)/c) +ne−d(C.27)

where the inequality follows from Lemma C.1. Next, we have

∫
∞

0
min(c log

6(d)
dγ2

,1)dγ = ∫
√
c log6(d)/d

0
dγ +∫

∞
√
c log6(d)/d

c log6(d)
dγ2

dγ

=
√

c log6(d)
d

+ c log
6(d)
d

¿
ÁÁÀ d

c log6(d)
= 2
√

c log6(d)
d

.(C.28)

Combining Eqs. (C.26), (C.27) and (C.28) we arrive at

E[(ηi(θ) −
√

E[ηi(θ)2])2] ≤ 2
√

c log6(d)
d

+cexp(− log2(d)/c)+ne−d = od(log3(d)d−1/2) .

Using the above bound in (C.25) we get that uniformly over θ ∈ Cθ ,

∣
○
AR(θ) −

○○
AR(θ)∣ ≤

√
○
AR(θ) od,P(1) .

This completes the proof of claim (C.24).

APPENDIX D: PROOFS OF STEP 3: THE GAUSSIAN EQUIVALENCE PROPERTY

D.1. Proof of Proposition 6.8 As proved in [30, Theorem 2], under the assumptions
of Proposition 6.8, (θTσ(Wx),βTx0) converges in distribution to (θTf ,βTx). We first

show that
○○
AR(θ) =

○○
ARnl(θ)+od(1). Recalling the definition of

○○
ARnl(θ) given by (6.18), and

plugging for y = βTx+ ξ, we write
○○
ARnl(θ) = E[(∣βTx− θTf + ξ∣ + ε∥Jθ∥ℓ2)

2]

= E[(βTx− θTf + ξ)2] + ε∥Jθ∥ℓ2 E [∣βTx− θTf + ξ∣] + ε2 ∥Jθ∥2ℓ2(D.1)
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Therefore,
○○
ARnl(θ) can be written in terms of the first and second moment of random

variable ∣βTx− θTf + ξ∣ which converges in distribution to ∣βTx− θTσ(Wx) + ξ∣. To

show that
○○
ARnl(θ) −

○○
AR(θ) → 0 as d →∞, we need to show that the first and second

moments of ∣βTx− θTf + ξ∣ converge respectively to the first and second moments of
∣βTx− θTσ(Wx) + ξ∣. As an application of [7, Corollary of Theorem 25.12], it suffices
to show that ∣βTx− θTf + ξ∣ has bounded third moment. To show this, note that by Holder’s
inequality, ∣a+ b+ c∣3 ≤ 3(∣a∣3 + ∣b∣3 + ∣c∣3). Furthermore, E[∣ξ∣3] = 2, E[∣βTx∣3] = 2∥β∥3ℓ2 = 2.
Hence,

E[∣βTx− θTf + ξ∣3] ≤ 3(16+E[∣θTf ∣3]) .(D.2)

By using the Holder’s inequality again we have

E[∣θTf ∣3] = E
⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR

1√
2π

1Tθ + 1

2
θTWx+

√
1

4
− 1

2π
θTu

RRRRRRRRRRR

3⎤⎥⎥⎥⎥⎦

≤ 3
⎛
⎝

1
√
2π

3
(1Tθ)3 + 1

4
∥W Tθ∥3

ℓ2
+ 2(1

4
− 1

2π
)3/2 ∥θ∥3ℓ2

⎞
⎠
.(D.3)

Now note that by our assumption
○○
ARnl(θ) is bounded, which in conjunction with charac-

terization (6.20) implies that ∥θ∥ℓ2 , 1Tθ and ∥W Tθ − 2β∥2
ℓ2

are bounded as d→∞. This

also implies that ∥W Tθ∥2
ℓ2
≤ (∥W Tθ −β∥

ℓ2
+ ∥β∥ℓ2)

2 ≤ (∥W Tθ −β∥
ℓ2
+ 1)2 is bounded.

Putting these together, we obtain that E[∣βTx− θTf + ξ∣3] is bounded, which completes the

argument for showing that
○○
ARnl(θ) =

○○
AR(θ) + od(1).

We next prove the characterization (6.20). Note that

y − θTf = ξ +βTx− 1

2
θTWx−

√
1

4
− 1

2π
θTu

= ξ + ⟨β − 1

2
W Tθ,x⟩ −

√
1

4
− 1

2π
θTu

∼N(0,M(θ)2) ,(D.4)

with

M(θ)2 = τ2 + ∥1
2
W Tθ −β∥

2

ℓ2

+ (1
4
− 1

2π
)∥θ∥2ℓ2 .

We then write
○○
ARnl(θ) = E[(∣y − θTf ∣ + εtest ∥Jθ∥ℓ2)

2]

= E[(y − θTf)2] + 2εtest ∥Jθ∥ℓ2 E [∣y − θTf ∣] + ε2test ∥Jθ∥
2
ℓ2

=M(θ)2 + ε2test ∥Jθ∥
2
ℓ2
+ 2
√

2

π
εtestM(θ)∥Jθ∥ℓ2 ,(D.5)

using the first and second moment of folded normal distribution.
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D.2. Proof of Theorem 6.9 Before stating the proof, we remark that our proof is an
adaptation of the powerful machinery developed [39]; however, since our individual adversarial
losses have an additional term ε∥Jθ∥ℓ2 , there are some additional details in the proofs which
we provide in the following. Also, since our activation function is not odd, we will use the
CLT-type result of [30] instead of the one provided in [39].

Recall that we are seeking to analyze the asymptotic values of the following quantities:

ΦA ∶=min
θ

1

n

n

∑
i=1
(∣yi − θTσ(Wxi)∣ + ε∥Jθ∥ℓ2)

2 +λ∥θ∥2ℓ2 +λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,

ΦB ∶=min
θ

1

n

n

∑
i=1
( ∣yi − θTfi ∣ + ε ∥Jθ∥ℓ2 )

2 + λ∥θ∥2ℓ2 +λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,

To simplify our notation, and without loss of generality, we absorb the value ϵ into J and,
with a slight abuse of notation, consider J ←Ð ϵJ (and hence the eigenvalues of the matrix J
depend on ϵ). Hence, above the quantities of interest become

ΦA ∶=min
θ

1

n

n

∑
i=1
(∣yi − θTσ(Wxi)∣ + ∥Jθ∥ℓ2)

2 +λ∥θ∥2ℓ2 +λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,

ΦB ∶=min
θ

1

n

n

∑
i=1
( ∣yi − θTfi ∣ + ∥Jθ∥ℓ2 )

2 + λ∥θ∥2ℓ2 +λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,

For technical reasons, we first need to make the objectives smooth. We thus define g(x) =√
x+ γ, and define the smoothed loss

(D.6) ℓ(θ;r, y) = (θTr − y)2 + ∥Jθ∥2ℓ2 + 2g ((θ
Tr − y)2 ∥Jθ∥2ℓ2) ,

Note that when γ = 0, we have ℓ(θ;σ(Wxi), yi) = (∣yi − θTσ(Wxi)∣ + ∥Jθ∥ℓ2)
2

and

ℓ(θ;fi, yi) = (∣yi − θTfi + ∥Jθ∥ℓ2)
2
.

In the following, we consider an arbitrary but fixed value γ > 0, and with some abuse of
notation, we let

ΦA ∶=min
θ

1

n

n

∑
i=1
ℓ(θ;σ(Wxi), yi) +λ∥θ∥2ℓ2 +λw ∥

1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,

ΦB ∶=min
θ

1

n

n

∑
i=1
ℓ(θ;fi, yi) + λ∥θ∥2ℓ2 +λw ∥

1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,

For these quantities ΦA,ΦB , we show then show in the following that the statement of the
Theorem is true. Then, the result of the Theorem for the original losses – i.e. when γ = 0 –
follows simply by taking the limit γ→ 0 (note that this limit is taken after the limit d→∞;
also, note that supx≥0{g(x) −x} =

√
γ).

We will use the Lindeberg’s leave-one-out technique. In a nutshell, we start with the
quantity ΦB , and through n consecutive steps, we reach to the quantity ΦA. In the k-th step,
we will replace the feature vector fk with σ(Wxk). We will then show that each of these
replacements has a negligible effect (i.e. on(1)/n) on our quantities of interest, leading to the
proof of the theorem.

Let us now proceed with the details. The proof has multiple steps which will be put together
in Section D.2.6 to obtain the proof of the theorem.

We begin by defining
(D.7)

Φk =min
θ

1

n

k

∑
i=1
ℓ(θ;σ(Wxi)i, yi)+

1

n

n

∑
i=k+1

ℓ(θ;fi, yi)+λ∥θ∥2ℓ2+λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,
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Roughly speaking, our goal is to show that for all k ∈ [n], we have Φk ≈Φk−1 + on(1)/n. To
make this entirely rigorous, we need to define several new quantities and understand their
relations. For k ∈ [n] let

(D.8)

R−k(θ) =
1

n

k−1
∑
i=1
ℓ(θ;σ(Wxi), yi)+

1

n

n

∑
i=k+1

ℓ(θ;fi, yi)+λ∥θ∥2ℓ2+λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,

and

(D.9) Rk(θ,r) =
1

n
ℓ(θ;r, yk) +R−k(θ).

Let us denote the minimizers of the above two objectives by

(D.10) θ∗−k = argmin
θ
R−k(θ), and θ∗k(r) = argmin

θ
Rk(θ,r)

and

(D.11) Φ−k =min
θ
R−k(θ),

and

(D.12) Φk(r) =min
θ
Rk(θ,r).

It will also be convenient to work with approximate versions of the term Rk(θ,r) in (D.9).
Hence, we define below we define Rk(θ,r) which is essentially obtained by Taylor-expanding
the term R−k(θ) in (D.9).

(D.13) Sk(θ,r) =Φ−k +
1

2
(θ − θ∗−k)TH−k(θ − θ∗−k) +

1

n
ℓ(θ;r, yk),

where H−k is the Hessian of R−k(θ) at θ∗−k, i.e.

(D.14) H−k =∇2R−k(θ) ∣θ=θ∗
−k
.

Finally, we denote the minimizer of S(θ,r) by

(D.15) θ̃k(r) = argmin
θ
Sk(θ,r),

and

(D.16) Ψk(r) =min
θ
Sk(θ,r).

Simplification of Notation. We note from (D.7) that in our analysis the feature vectors are
either ri =ai or ri = bi; i.e. we can write Φk as

(D.17) Φk =min
θ

1

n

n

∑
i=1
ℓ(θ;ri, yi) +λ∥θ∥2ℓ2 +λw ∥

1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2,

where the feature vectors ri they are generated according to one of the following distributions

(D.18) ri = σ(Wxi) or ri = fi ∶= µ1Wxi +µ2ui,

It will be sometimes easier in our analysis to use (D.17), i.e. use ri for both σ(Wxi) and fi,
but we will keep in mind that for i ≤ k we have ri = fi and for i > k we have ri = σ(Wxi).
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Details of the Gradient and Hessian of ℓ. In the following, we will need to work out the first
and second derivatives of the loss function ℓ, given in (D.6), at multiple points. In order to
present the derivations more compactly, let us denote

(D.19) h(θ;r, y) ∶= (θTr − y)2 ∥Jθ∥2ℓ2 ,
and provide the details for the derivatives of the loss function ℓ here. Given how the function
h is defined, we can write

ℓ(θ;r, y) = (θTr − y)2 + ∥Jθ∥2ℓ2 + 2g (h(θ;r, y))

Using the notation ∇ for gradient w.r.t. θ, and ∇2 for hessian w.r.t. θ, we can write

(D.20) ∇ℓ(θ;r, y) = 2(θTr − y)r + 2JTJθ + 2∇h(θ;r, y)g′ (h(θ;r, y))
and
(D.21)
∇2ℓ(θ;r, y) = 2(rrT +JTJ +∇2h(θ;r, y)g′ (h(θ;r, y)) +∇h(θ;r, y)(∇h(θ;r, y))T g′′ (h(θ;r, y)) ,

where

(D.22) ∇h(θ;r, y) = 2((θTr − y)∥Jθ∥2ℓ2 r + (θ
Tr − y)2JTJθ) ,

and
(D.23)
∇2h(θ;r, y) = 2(∥Jθ∥2ℓ2 rr

T + 2(θTr − y)rθTJTJ + 2(θTr − y)JTJθrT + (θTr − y)2JTJ) .

D.2.1. Some properties of the minimizers in (D.10) In this section, we will analyze some
of the properties of the vector θ∗−k and its relation with θ̃−k(r), for k ∈ [n]. We first show
some basic properties of the vectors θ∗−k and θ∗k(r).
Lemma D.1 Fix k ∈ [n]. The following hold with absolute constants c,C > 0:

(a) The vector θ∗−k is bounded in the ℓ2 norm:

(D.24) P(∥θ∗−k∥ℓ2 ≥ v +C) ≤ cexp(−nv
2/c) .

(b) The vector θ∗k(r) is bounded in the ℓ2 norm:

(D.25) P(∥θ∗k(r)∥ℓ2 ≥ v +C) ≤ cexp(−nv
2/c) .

(c) For an independently generated vector r we have

(D.26) P(∣rTθ∗−k(r)∣ ≥ v) ≤ cexp(−v/c).
(d) We also have

(D.27) ∣1Tθ∗−k∣ ≤C
√

d

log(d) ,

with probability at least 1− ce−cn.

The proof of this lemma is provided in Section D.2.7. We now show that the distance between
the two minimizers θ∗−k and θ̃k(r) is of order O(1/

√
d).

Lemma D.2 Fix k ∈ [n]. Assuming that r is generated independently from θ∗−k and according
to one of the distributions in (D.18). Then, there exist absolute constants c, c′ > 0 such that

(D.28) P(∥θ̃−k(r) − θ∗−k∥ℓ2 ≥
v√
d
) ≤ cexp(−vc

′

/c) .
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Proof We start by noting that since θ̃k(r) is the minimizer of (D.13):

(D.29) θ̃k(r) = argmin
θ
{S(θ) ∶= 1

2
(θ − θ∗−k)TH−k(θ − θ∗−k) +

1

n
ℓ(θ;r, yk)}

Observe that (i) the function S is λ-strongly convex due to the fact that R−k(θ) is strongly-
convex, and thus its Hessian H−k is a PSD matrix with smallest eigenvalue lower-bounded
by λ; (ii) S(θ) ≥ 0 for any θ, as H−k is a PSD matrix and ℓ is always positive-valued. As a
result, we can write

(D.30) ∥θ̃k(r) − θ∗−k∥
2

ℓ2
≤ 1

λ
S(θ∗−k)

We can then write from (D.6) that

S(θ∗−k) =
1

n
ℓ(θ∗−k;r, yk)

≤ 1

n
Cmax{1,(θ∗−k

T
r − y)2,∥Jθ∗−k∥

2
ℓ2
},

where C > 0 is an absolute constant. The proof now follows from the result of Lemma D.1
and the fact that ∣∣J ∣∣ is bounded, as well as the fact that d and n grow in proportion to each
other.

Given the above lemma, we can analyze the behavior of Ψk(r), defined in (D.16), in more
detail.

Lemma D.3 Fix k ∈ [n]. We have
(D.31)

Ψk(r) =Φ−k+
1

n
min
τ1

⎧⎪⎪⎨⎪⎪⎩

1

2n
(∂ℓ̃(τ1,0)

∂τ1
r + ∂ℓ̃(τ1,0)

∂τ2
p)

T

H−1
−k (

∂ℓ̃(τ1,0)
∂τ1

r + ∂ℓ̃(τ1,0)
∂τ2

p)+ ℓ̃(τ1,0)
⎫⎪⎪⎬⎪⎪⎭
+e,

where (i) we have pT = 2θ∗−k
TJTJ ; (ii) the function ℓ̃(τ1, τ2) is defined as

(D.32) ℓ̃(τ1, τ2) ∶= ρ1 + ρ2 + ρ3τ1 + τ21 + τ2 + g ((ρ1 + ρ3τ1 + τ21 )(ρ2 + τ2)) ,

with ρ1 = (θ∗−k
Tr−yk)2, ρ2 = ∥Jθ∗−k∥

2

ℓ2
, and ρ3 = 2(θ∗−k

Tr−yk); and (iii) the value e satisfies

P(∣e∣ ≥ v

d
3
2

) ≤ cexp(−vc
′

/c) ,

for absolute constants c, c′ > 0.
Furthermore, assuming that τ∗1 is the minimizer of the optimization problem in (D.31), we

have

(D.33) θ̃ − θ∗−k =
1

n
(β1H−1

−kr + β2H−1
−kp) + e,

where β1,β2 depend only on τ∗1 , as well as rTθ∗−k, and ∥Jθ∗−k∥ℓ2 ; and

(D.34) P(max{d 3
2 ∥e∥ℓ2 , ∣β1∣, ∣β2∣,∥p∥ℓ2} ≥ v) ≤ cexp(−v

c′/c).

Proof In the following, to simplify notation, we use θ̃ instead of θ̃k(r). We have from (D.13)
and (D.16) that

(D.35) Ψk(r) =Φ−k +min
θ
{1
2
(θ − θ∗−k)TH−k(θ − θ∗−k) +

1

n
ℓ(θ;r, yk)} .
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We now decompose the term 1
nℓ(θ;r, yk) (see (D.6)) according to the following set of simple

relations:

θTr − y = θ∗−k
T
r − y + (θ − θ∗−k)Tr,

∥Jθ∥2ℓ2 = ∥Jθ
∗
−k∥

2
ℓ2
+ 2θ∗−k

T
JTJ(θ − θ∗−k) + (θ − θ∗−k)TJTJ(θ − θ∗−k),

(θTr − y)2 = (θ∗−k
T
r − y)2 + 2(θ∗−k

T
r − y)rT(θ − θ∗−k) + (θ − θ∗−k)TrrT(θ − θ∗−k),

As a result, it is easy to obtain the following:

1

n
ℓ(θ;r, yk) =

1

n
{ρ1 + ρ2 + ρ3(rT(θ − θ∗−k)) + (rT(θ − θ∗−k))2 +pT(θ − θ∗−k)}

+ 1

n
∥J(θ − θ∗−k)∥

2
ℓ2

+ 1

n
g ((ρ1 + ρ3(rT(θ − θ∗−k)) + (rT(θ − θ∗−k))2)(ρ2 +pT(θ − θ∗−k) + ∥J(θ − θ∗−k)∥

2
ℓ2
)) ,

where the parameters ρj , j = 1,2,3, and the vector p are defined in the following:

ρ1 = (θ∗−k
T
r − yk)2,(D.36)

ρ2 = ∥Jθ∗−k∥
2
ℓ2
,

ρ3 = 2(θ∗−k
T
r − yk),

pT = 2θ∗−k
T
JTJ .

We note that none of these quantities depend on the optimization variable θ and hence can be
considered as constants w.r.t. the minimization procedure in (D.35).

It will be convenient to consider the following variables:

(D.37) τ1 = rT(θ − θ∗−k), and τ2 = pT(θ − θ∗−k), and τ3 = ∥J(θ − θ∗−k)∥
2
ℓ2
.

As a result, we can write
1

n
ℓ(θ;r, yk) =

1

n
{ρ1 + ρ2 + ρ3τ1 + τ21 + τ2 + τ3 + g ((ρ1 + ρ3τ1 + τ21 )(ρ2 + τ2 + τ3))}

∶= 1

n
ℓ̃(τ1, τ2, τ3).(D.38)

Now, from (D.35), we can write the following equation for θ̃ (as it is the minimizer):

(D.39) H−k(θ̃ − θ∗−k) = −
1

n
( ∂ℓ̃
∂τ1

r + ∂ℓ̃

∂τ2
p+ ∂ℓ̃

∂τ3
JTJ(θ̃ − θ∗−k)) ,

where the partial derivatives are evaluated at τ1, τ2, τ3 when θ = θ̃. Consequently, we have

(D.40) θ̃ − θ∗−k = −
1

n
( ∂ℓ̃
∂τ1

H−1
−kr +

∂ℓ̃

∂τ2
H−1
−kp+

∂ℓ̃

∂τ3
H−1
−kJ

TJ(θ̃ − θ∗−k)) ,

Using the above relation, we can derive a few useful properties. First, given how ρj’s are
defined in (D.36), and by using Lemma D.1, and since g(x) =√x+ γ has uniformly bounded
first and second derivative, and by using the fact that the operator norm of J is bounded, it is
easy to show that for absolute constants c, c′ we have

P(max{∣ ∂ℓ̃
∂τ1
∣ , ∣ ∂ℓ̃
∂τ2
∣ , ∣ ∂ℓ̃
∂τ3
∣} ≥ v) ≤ cexp(−vc

′

/c),(D.41)
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where in the above relation the partial derivatives are evaluated at τ1, τ2, τ3, when θ = θ̃.
Second, by using Lemma D.2, and the fact that the norm of the matrix J is bounded, as

well as the fact that the operator norm of H−1
−k is upper-bounded by 1/λ, we have for absolute

constants c, c′ that

(D.42) P(∥ 1
n
H−1
−kJ

TJ(θ̃ − θ∗−k)∥
ℓ2

≥ v

d
3
2

) ≤ cexp(−vc
′

/c).

Third, from the definition of p in (D.36), and by using Lemma D.1 as well as (D.40) we
obtain for absolute constants c, c′ that

(D.43) P(pT(θ̃ − θ∗−k) ≥
v

d
1
2

) ≤ cexp(−vc
′

/c).

The above relation shows that the value of τ2, evaluated at θ = θ̃, is of order O(d− 1
2 ).

Fourth, we can write using Lemma D.2 that

(D.44) P(∥J(θ̃ − θ∗−k)∥ℓ2 ≥
v

d
1
2

) ≤ cexp(−vc
′

/c),

which essentially results in τ3, evaluated at θ = θ̃, to be of the order O(d−1).
Finally, we note that for each of the partial derivatives we can write

(D.45) P(∣∂ℓ̃(τ1, τ2, τ3)
∂τj

− ∂ℓ̃(τ1,0,0)
∂τj

∣ ≥ v

d
1
2

) ≤ cexp(−vc
′

/c),

for j = 1,2,3 and for τj’s that are evaluated at θ = θ̃.
Using the above five properties, we can conclude that

(D.46) θ̃ − θ∗−k = −
1

n
(∂ℓ̃(τ1,0,0)

∂τ1
H−1
−kr +

∂ℓ̃(τ1,0,0)
∂τ2

H−1
−kp)+ e,

and

(D.47)
1

n
ℓ̃(τ1, τ2, τ3) =

1

n
ℓ̃(τ1,0,0) + e′,

where τ1, τ2, τ3 are computed from (D.37) at θ = θ̃, and

P(max{∥e∥ℓ2 , ∣e
′∣} ≥ v

d
3
2

) ≤ cexp(−vc
′

/c).

As a result, by defining

ℓ̃(τ1, τ2) ∶= ℓ̃(τ1, τ2,0),
where ℓ̃ is given in (D.38), and by plugging the solution (D.46) into the optimization in (D.35),
we obtain
(D.48)

Ψk(r) =Φ−k+
1

n
min
τ1

⎧⎪⎪⎨⎪⎪⎩

1

2n
(∂ℓ̃(τ1,0)

∂τ1
r + ∂ℓ̃(τ1,0)

∂τ2
p)

T

H−1
−k (

∂ℓ̃(τ1,0)
∂τ1

r + ∂ℓ̃(τ1,0)
∂τ2

p)+ ℓ̃(τ1,0)
⎫⎪⎪⎬⎪⎪⎭
+e,

where

P(∣e∣ ≥ v

d
3
2

) ≤ cexp(−vc
′

/c).
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D.2.2. Bounding ∥θ̃(r) − θ∗(r)∥
ℓ2

Lemma D.4 Fix k ∈ [n]. There exist absolute constants b, c, c′ > 0 such that for any v ≥ 0

(D.49) P
⎛
⎝
∥θ̃k(r) − θ∗k(r)∥ℓ2 ≥ v

(log(d))b

d

⎞
⎠
≤ cexp(−v

c′

c
)+ cexp(−(log(d))2/c)

Proof To simplify notation, in this lemma we use θ∗ instead of θ∗k(r) and θ̃ instead of θ̃k(r).
Also, we define

q(θ) = λ∥θ∥2ℓ2 +λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2

Due to the the fact that R(θ,r) is λ-strongly convex, we can write

(D.50) ∥θ∗ − θ̃∥
ℓ2
≤ 1

λ
∥∇θR(θ̃,r)∥ℓ2

Consequently, we will bound the right-hand-side in the above relation. By using the fact
that θ∗−k is the minimizer of the function R−k, we can write

(D.51) ∇θR(θ̃,r) =∇θR(θ̃,r) −∇θR−k(θ∗−k).
From (D.9) and (D.51) we have

∇θR(θ̃,r) =∇R−k(θ̃) +
1

n
∇ℓ(θ̃;r, yk) −∇R−k(θ∗−k)

= 1

n
∑
t≠k
(∇ℓ(θ̃;rt, yt) −∇ℓ(θ∗−k;rt, yt)) +∇q(θ̃) −∇q(θ∗−k) +

1

n
∇ℓ(θ̃;r, yk),

By using the fact that θ̃ is the minimizer of (D.13), we can write

∇θR(θ̃,r) =
1

n
∑
t≠k
(∇ℓ(θ̃;rt, yt) −∇ℓ(θ∗−k;rt, yt)) −H−k(θ̃ − θ∗−k) +∇q(θ̃) −∇q(θ∗−k)

Now, from (D.14), we obtain

∇θR(θ̃,r) =
1

n
∑
t≠k
∇ℓ(θ̃;rt, yt) −∇ℓ(θ∗−k;rt, yt) −∇2ℓ(θ∗−k;rt, yt)(θ̃ − θ∗−k),(D.52)

where in the above we have used the fact that, since q is a quadratic function, we have
∇q(θ̃) −∇q(θ∗−k) −∇2q(θ∗−k)(θ̃ − θ∗−k) = 0. We will now analyze each of the terms above.
We first bound the first term (i.e. the sum involving the derivatives of ℓ). We will use the
following simple relations for any choice of r, y:

θ̃Tr − y = θ∗−k
T
r − y + (θ̃ − θ∗−k)Tr,

∥J θ̃∥2
ℓ2
= ∥Jθ∗−k∥

2
ℓ2
+ 2θ∗−k

T
JTJ(θ̃ − θ∗−k) + (θ̃ − θ∗−k)TJTJ(θ̃ − θ∗−k),

(θ̃Tr − y)2 = (θ∗−k
T
r − y)2 + 2(θ∗−k

T
r − y)rT(θ̃ − θ∗−k) + (θ̃ − θ∗−k)TrrT(θ̃ − θ∗−k),

and

h(θ̃;r, y) −h(θ∗−k;r, y) = (θ̃Tr − y)2 ∥J θ̃∥2
ℓ2
− (θ∗−k

T
r − y)2 ∥Jθ∗−k∥

2
ℓ2

=∇h(θ∗−k;r, y)T(θ̃ − θ∗−k) + e(r, y)

= 2(∥Jθ∗−k∥
2
ℓ2
rT + (θ∗−k

T
r − y)2JTJθ∗−k

T)(θ̃ − θ∗−k) + e(r, y),
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where the error term e(r, y) can be written as

e(r, y) = (θ̃ − θ∗−k)T∇2
θh(θ;r, y) ∣θ=θ(r,y) (θ̃ − θ∗−k),

and θ(r, y) = ζθ∗−k + (1− ζ)θ̃ for some ζ ∈ [0,1] which depends on r and y.
We will also use the Taylor expansion:

g′ (h(θ̃;r, yt)) = g′ (h(θ∗−k;rt, yt)) + g′′ (h(θ∗−k;rt, yt))(h(θ̃;rt, yt) −h(θ∗−k;rt, yt))

+ 1

2
g′′′(vt)(h(θ̃;rt, yt) −h(θ∗−k;rt, yt))

2
,

where vt is a number between h(θ̃;rt, yt) and h(θ∗−k;rt, yt).
From (D.20) and (D.21) we will decompose:

∇ℓ(θ̃;rt, yt) −∇ℓ(θ∗−k;rt, yt) −∇2ℓ(θ∗−k;rt, yt)(θ̃ − θ∗−k) =Term1 +Term2 −Term3,

where the terms are given in (D.53), (D.55), and (D.56). We will bound each of these terms in
the following. We have

Term1 = 2(∇h(θ̃;rt, yt) −∇h(θ∗−k;rt, yt))g′(h(θ∗−k;rt, yt))(D.53)

where

∇h(θ̃;rt, yt) −∇h(θ∗−k;rt, yt)

= 2((θ̃Trt − yt)∥Jθ̃∥
2

ℓ2
rt + (θ̃Trt − yt)2JTJθ̃ − (θ∗−k

T
rt − yt)∥Jθ∗−k∥

2
ℓ2
rt + (θ∗−k

T
rt − yt)2JTJθ∗−k)

And thus,

∇h(θ̃;rt, yt) −∇h(θ∗−k;rt, yt)
(D.54)

= 2((θ̃ − θ∗−k)Trt ∥Jθ∗−k∥
2
ℓ2
+ (θ̃Trt − yt)(2θ∗−k

T
JTJ(θ̃ − θ∗−k) + (θ̃ − θ∗−k)TJTJ(θ̃ − θ∗−k)))rt

+ 2((θ̃Trt − y)2JTJ(θ̃ − θ∗−k) + (2(θ̃Trt − yt)rT(θ̃ − θ∗−k) + (θ̃ − θ∗−k)TrtrTt (θ̃ − θ∗−k))JTJθ̃)
We also have

Term2 = 2∇h(θ̃;rt, yt)g′′ (h(θ∗−k;rt, yt))(h(θ̃;rt, yt) −h(θ∗−k;rt, yt))(D.55)

= 2∇h(θ̃;rt, yt)g′′ (h(θ∗−k;rt, yt))(∇h(θ∗−k;rt, yt)T(θ̃ − θ∗−k) + e(rt, yt)) ,
and

Term3 =2(∇2h(θ∗−k;rt, yt)g′ (h(θ∗−k;rt, yt)) +∇h(θ∗−k;rt, yt)(∇h(θ∗−k;rt, yt))Tg′′ (h(θ∗−k;rt, yt)))(θ̃ − θ∗−k)

− 1

2
g′′′(vt)(h(θ̃;rt, yt) −h(θ∗−k;rt, yt))

2
,

(D.56)

After some straight-forward steps, we can write

Term1 +Term2 −Term3

(D.57)

= 4g′ (h(θ∗−k;rt, yt))(2rTt (θ̃ − θ∗−k)θ∗−k
T
JTJ(θ̃ − θ∗−k)rt

+ 2rTt (θ̃ − θ∗−k)((θ∗−k
T
rt − yt)JTJ(θ̃ − θ∗−k) + rTt (θ̃ − θ∗−k)JTJθ̃)
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+ (2(θ∗−k
T
rt − yt)rTt (θ̃ − θ∗−k) + (θ̃ − θ∗−k)TrtrTt (θ̃ − θ∗−k))JTJ(θ̃ − θ∗−k))

+ (rTt (θ̃ − θ∗−k))2JTJθ̃ + ∥J(θ̃ − θ∗−k)∥
2

ℓ2
rt)

+ 2g′′ (h(θ∗−k;rt, yt))((∇h(θ̃;rt, yt) −∇h(θ∗−k;rt, yt))(θ̃ − θ∗−k)T∇h(θ∗−k;rt, yt) +∇h(θ̃;rt, yt)e(rt, yt))

− 1

2
g′′′(vt)(h(θ̃;rt, yt) −h(θ∗−k;rt, yt))

2
.

The relation (D.57) has itself three different terms. We will now simplify and bound each of
the terms above. However, we remark that all the three terms will be bounded in a similar way.
Let’s consider the first term in the right-hand-side of (D.57). The first part of this term is:

4g′ (h(θ∗−k;rt, yt)) × 2rTt (θ̃ − θ∗−k)θ∗−k
T
JTJ(θ̃ − θ∗−k)rt,

which can be rewritten as

8g′ (h(θ∗−k;rt, yt)θ∗−k
T
JTJ(θ̃ − θ∗−k)rtrTt (θ̃ − θ∗−k).

Now, by using the fact that the first derivatives of the function g is uniformly bounded, and by
some straight-forward usages of the Cauchy-Schwartz inequality, we can easily rewrite the
above part as

α1,tp
T (θ̃ − θ∗−k)rtrTt (θ̃ − θ∗−k),

where the vector p = θ∗−k
TJTJ does not depend on t, and α1,t is a constant. We can further

write:

∣α1,t∣ ≤C and ∥p∥ℓ2 ≤ ∥J∥
2
ℓ2
∥θ∗−k∥ℓ2 ≤ ∥J∥

4
ℓ2
+ ∥θ∗−k∥

2
ℓ2
,

where C is an absolute constant.
Let us now consider the second part of the first term in (D.57), which is:

4g′ (h(θ∗−k;rt, yt)) × 2rTt (θ̃ − θ∗−k)(θ∗−k
T
rt − yt)JTJ(θ̃ − θ∗−k).

We can rewrite this part as

8g′ (h(θ∗−k;rt, yt))×(θ∗−k
T
rt−yt)JTJ(θ̃−θ∗−k)Trt(θ̃−θ∗−k) =α2,tA(θ̃−θ∗−k)Trt(θ̃−θ∗−k),

where, the matrix A is the same for all t, and

∣α2,t∣ ≤C ∣θ∗−k
T
rt − yt∣ and ∥A∥ℓ2 ≤ ∥J∥

2
ℓ2
.

In a similar way, one can inspect all the parts of the first term in (D.57) and show that they
take the form of one of the following:

●α1,tp
T
1 (θ̃ − θ∗−k)rtrTt (θ̃ − θ∗−k),

●α2,tA1 (θ̃ − θ∗−k)Trt(θ̃ − θ∗−k),

●α3,tp2(θ̃ − θ∗−k)TrtrTt (θ̃ − θ∗−k),

●α4,t (θ̃ − θ∗−k)TA2(θ̃ − θ∗−k)rt,

●α5,t ((θ̃ − θ∗−k)Trt)2p3,(D.58)

where p1,p2,p3,A1,A2 do not depend on t, and we have
(D.59)
∣αj,t∣ ≤C(1+(θ∗−k

T
rt−y)2) and max{∣γ∣,∥p1∥ℓ2 ,∥p2∥ℓ2 ,∥p3∥ℓ2 ,∥A1∥ℓ2 ,∥A2∥ℓ2} ≤C(1+∥J∥

2
ℓ2
).
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We will now consider the second term in the right-hand-side of (D.57) which can be expanded
using (D.22) and (D.54). Again, one can inspect all the parts and show that they take one of
the forms in the following (in addition to the forms presented in (D.58)):

●α3,t (θ̃ − θ∗−k)rtrTt (θ̃ − θ∗−k)(θ̃ − θ∗−k)Tp3,(D.60)

●α4,t (rTt (θ̃ − θ∗−k))2rt,

●α5,tp
T
4 (θ̃ − θ∗−k)rtrTt (θ̃ − θ∗−k),

where, for some positive constant C and even integer D we have
(D.61)
∣αj,t∣ ≤C(1+(θ∗−k

T
r−y)D+(θ̃Tr−y)D) and max{∥p3∥ℓ2 ,∥p4∥ℓ2} ≤C(1+∥J∥

D
ℓ2
+∥θ∗−k∥

D
ℓ2
).

A similar bounding can be done for the third term in (D.57).
We now claim that the sum of each of the terms in (D.58) and (D.60) over t is at most of

order O(polylog (n)/n). Let’s consider the first term in (D.58). We can write

1

n
∥∑
t

α1,tp
T
1 (θ̃ − θ∗−k)rtrTt (θ̃ − θ∗−k)∥

ℓ2

≤ 1

n
sup
t
{∣α1,t∣} ∣pT

1 (θ̃ − θ∗−k)∣∥∑
t≠k

rtr
T
t ∥

ℓ2

∥θ̃ − θ∗−k∥ℓ2

= sup
t
{∣α1,t∣} ∣pT

1 (θ̃ − θ∗−k)∣∥
1

n
∑
t≠k

rtr
T
t ∥

ℓ2

∥θ̃ − θ∗−k∥ℓ2

Now, from Lemma D.5 it should be clear why the above quantity is small. Informally, and ne-
glecting the polylog factors, the lemma asserts that with high probability the terms supt{∣α1,t∣},
and ∥ 1n∑t≠k rtr

T
t ∥ℓ2 are all O(1); but the term ∣pT

1 (θ̃ − θ∗−k)∣, is O(1/n) as p1 is a fixed vec-

tor (independent of t), and ∥θ̃ − θ∗−k∥ℓ2 is O(n− 1
2 ). As a result, the whole expression is

O(n− 3
2 ). Formally, it is easy to conclude from Lemma D.5 that for a given k ∈ [d]:

P
⎛
⎝
1

n
∥∑
t

α1,tp
T
1 (θ̃ − θ∗−k)rrT(θ̃ − θ∗−k)∥

ℓ2

≥ v (log(d))
b

d
3
2

⎞
⎠
≤ cexp(−vc

′

/c) + cexp(−(log(d))2/c) ,

(D.62)

for some absolute constants c, c′, c′′ > 0.
Let’s now consider the second term in (D.58). We can write

∥ 1
n
∑
t

α2,tA1 (θ̃ − θ∗−k)Trt(θ̃ − θ∗−k)∥
ℓ2

= ∥A1∥ℓ2 ∥θ̃ − θ
∗
−k∥ℓ2 ∥(θ̃ − θ

∗
−k)T

1

n
∑
t≠k
α2,trt∥

ℓ2

= ∥A1∥ℓ2 ∥θ̃ − θ
∗
−k∥ℓ2 ∥(θ̃ − θ

∗
−k)T ×

1

n
∑
t≠k
α2,trt∥

ℓ2

.

Now, note from the first part of Lemma D.5 that the norm of the vector 1
n∑t≠kα2,tr

T
t is w.h.p.

O(1). Also, this vector is independent from r, and hence from the second part of Lemma D.5
we obtain that w.h.p. ∥(θ̃ − θ∗−k)T × 1

n∑t≠kα2,trt∥ℓ2 is O(n− 1
2 ). Consequently, by noting that

∥θ̃ − θ∗−k∥ℓ2 is w.h.p O(n− 1
2 ) we obtain that the whole expression is w.h.p. O(n− 3

2 ). The
formal expression would be like the probabilistic expression given in (D.62).

Similarly, for the term α4,t (rTt (θ̃ − θ∗−k))2rt we can write

∥ 1
n
∑
t≠k
α4,t (rTt (θ̃ − θ∗−k))2rt∥

ℓ2

≤ sup
t
{(rTt (θ̃ − θ∗−k))2}∥

1

n
∑
t≠k
α4,t rt∥

ℓ2

.(D.63)
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Now, by part (e) of Lemma D.5 we can easily conclude that

P(sup
t
{(rTt (θ̃ − θ∗−k))2} ≥ (log(d))b) ≤ cexp(−(log(d))2/c) ,

for absolute constants b, c > 0 that are suitably chosen. A similar conclusion can be made for
supt{∣α4,t∣} from (D.61) and part (g) of Lemma D.5–i.e.

P(sup
t
{∣α4,t∣} ≥ (log(d))b) ≤ cexp(−(log(d))2/c) .

As a result, by using the above bounds, as well as (D.63), and part (a) of Lemma D.5 we
obtain

P
⎛
⎝
∥ 1
n
∑
t≠k
α4,t (rTt (θ̃ − θ∗−k))2rt∥

ℓ2

≥ v (log(d))
b

d

⎞
⎠
≤ cexp(−vc

′

/c) + cexp(−(log(d))2/c) ,

In a similar way as the above, we can show that the sum of all the terms in (D.58) and (D.60)
over t have similar bounds. As a result, going back to (D.52), we have shown that the sum can
be bounded to give the desired result as in the lemma.

Lemma D.5 For some absolute constants b, c, c′ > 0 we have:

(a)

P
⎛
⎝
∥ 1
n
∑
t≠k

rtr
T
t ∥

ℓ2

≥ v
⎞
⎠
≤ cexp(−vc

′

/c).

(b) Given any sequence of numbers {αt}nt=1 such that ∣αt∣ ≤ 1, we have

P
⎛
⎝
∥ 1
n
∑
t≠k
αtrt∥

ℓ2

≥ v
⎞
⎠
≤ ce−v

c′/c.

(c) Given a vector u, with ∥u∥ℓ2 = 1, we can write

P(∣uTr∣ ≥ v) ≤ ce−v/c.
(d) Given a vector u, with ∥u∥ℓ2 = 1, which is independent from r, we have

P(∣uT(θ̃ − θ∗−k)∣ ≥
v

n
) ≤ ce−v/c.

(e) For r generated according to either of the distributions in (D.18), we have

P(∥r∥ℓ2 ≥ v
√
n) ≤ cexp(−v2/c).

(f) We further have

P(∣rTt (θ̃ − θ∗−k)∣ ≥
v√
n
) ≤ ce−v/c.

(g) For a given even integer D > 0 we have:

P(max{(θ∗−k
T
r − y)D,(θ̃Tr − y)D,∥θ∗−k∥

D
ℓ2
} ≥ v) ≤ ce−v

c′/c.

As a corollary, we have

P(max{(θ∗−k
T
r − y)D,(θ̃Tr − y)D,∥θ∗−k∥

D
ℓ2
} ≥ (log(d))b) ≤ cexp{−(log(d))2/c} .

Proof of this lemma is provided in Section D.2.7.
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D.2.3. Bounding ∣rTθ̃(r)∣
Lemma D.6 There exist absolute constants c, c′ > 0 such that for every k ∈ [n] and v ≥ 0 we
have

(D.64) P(∣rTθ̃(r)∣ ≥ v) ≤ cexp(−vc
′

/c),
and

(D.65) P(∣rTθ∗k(r)∣ ≥ v) ≤ cdexp(−vc
′

/c) + cexp(−(log(d))2/c).
Proof This lemma can also be proven similarly to [39] (see Section D.3 in [39]). There are,
however, some small differences that we will mention the details here.

For the first part, the proof proceeds in two steps. In this first step, we use Lemma D.1 to
obtain

(D.66) P(∣rTθ∗−k∣ ≥ v) ≤ cexp(−v/c).

We will now bound the term ∣rT(θ̃(r) − θ∗−k(r))∣. We can write:

P(∣rT(θ̃(r) − θ∗−k)∣ ≥ v) =P(∣ 1√
d
rT ×

√
d(θ̃(r) − θ∗−k(r))∣ ≥ v)

≤P(∥θ̃(r) − θ∗−k∥ℓ2 ≥
√
v

d
) +P(∥r∥ℓ2 ≥

√
vd)

Now, the first term above can be bounded using Lemma D.2, and the second can be bounded
from Lemma D.5, and thus the proof of the lemma follows.

The proof of the second part is similar to the first part (and we use Lemma D.4).

D.2.4. Bounding ∥θ∗−k∥ℓ∞
Lemma D.7 Let θ∗−k be the minimizer of R−k defined in (D.8). There exist absolute constants
c0, c1, c∞ > 0 such that for any k ∈ [n]:

(D.67) P
⎧⎪⎪⎨⎪⎪⎩
∥θ∗−k∥ℓ∞ ≥ c∞

√
log(d)
d

⎫⎪⎪⎬⎪⎪⎭
≤ 5d−c0 + 3e−c1n

Proof For convenience we remind the definition of θ∗−k given by θ∗−k = argminθR−k(θ)
where
(D.68)

R−k(θ) =
1

n

k−1
∑
i=1
ℓ(θ;ai, yi)+

1

n

n

∑
i=k+1

ℓ(θ;bi, yi)+λ∥θ∥2ℓ2+λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
√
log(d)
d

(1Tθ)2,

and

ℓ(θ;r, y) = (θTr − y)2 + ∥Jθ∥2ℓ2 + 2g ((θ
Tr − y)2 ∥Jθ∥2ℓ2) ,

with g(x) =√x+ γ.
We use a similar strategy as in the proof of Proposition 6.2. Specifically we first bound the

last coordinate of θ∗−k. Next, by symmetry we conclude that the same bound holds for all of
its coordinates and control its ℓ∞ norm by union bounding.

With a slight abuse of notation, we consider a (N + 1) dimensional version of the above
optimization over [θ;u] and denote the last coordinate of the optimal solution by û. We define

ri =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ(Wxi) if i ≤ k − 1,
0 if i = k,
fi if k ≤ i ≤ n.
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Also define e = [a1, . . . , ak−1, bk+1, . . . , bn] with ai = σ(wT
N+1xi) and bi = µ1wT

N+1xi +µ2zi
(with zi ∼N(0,1) independent of xi). From (D.68), û can be expressed as

û = argmin
u

min
θ
R−k([θ;u])

where

R−k([θ;u]) =
1

n

n

∑
i=1
(θTri +uei − yi)2 + ∥Jθ +uh∥2ℓ2 + 2g ((θ

Tri +uei − yi)2 ∥Jθ +uh∥2ℓ2)

+λ∥θ∥2ℓ2 +λu
2 +λw ∥

1

2
W Tθ +wN+1u−β∥

2

ℓ2

+λs
√
log(d)
d

(1Tθ +u)2,(D.69)

Here h ∈RN+1 is the last column of the (N + 1)-dimensional matrix J . Namely,

h ∶=
⎡⎢⎢⎢⎢⎣

(WwN+1)⊙ (π−cos
−1(WwN+1)

2π )
1
2

⎤⎥⎥⎥⎥⎦
.(D.70)

Let f(u) denote the objective function of u above, i.e., f(u) =minθR−k([θ;u]). We also
let θ∗ be the minimizing θ in this objective if we set u = 0, i.e., θ∗ =minθR−k([θ; 0]).

Following a similar argument in the proof of Proposition 6.2, we can obtain a lower bound
on f(u) by considering a second-order Taylor expansion of f(u) around [θ∗,0] and using
the strong-convexity of the loss function to arrive at the following upper bound on û:

∣û∣ ≤ 1

λ+λw
∣∇uR−k([θ;u])∣[θ∗;0]∣ .(D.71)

Calculating ∇uR−k([θ;u])∣[θ∗;0] we have

∇uR−k([θ;u])∣[θ∗;0] =
1

n

n

∑
i=1
[2(θT

∗ ri − yi)ei + 2hTJθ∗

+ 2√
(θT
∗ ri − yi)2 ∥Jθ∗∥

2
ℓ2
+ γ
((θT

∗ ri − yi)∥Jθ∗∥
2
ℓ2
ei + (θT

∗ ri − yi)2hTJθ∗)]

+ 2λwwT
N+1(

1

2
W Tθ∗ −β) + 2λs

√
log(d)
d

1Tθ∗ .

(D.72)

We treat each of these terms separately.
Define the event

E ∶= { 1
n

n

∑
i=1
y2i <C,

1√
d
∥X∥ ≤C, ∥W ∥ ≤C} .

Using the concentration bounds for the operator norm of Gaussian matrices and also the tail
bound for chi-square random variables, we have that P(E) ≥ 1− 3e−cn for some constant c > 0.

Note that by optimality of θ∗, we have R−k([θ∗; 0]) ≤R−k([0; 0]) = 1
n∑

n
i=1 y

2
i from which

we get ∥θ∗∥ℓ2 ≤C and ∥12W
Tθ∗ −β∥ℓ2 ≤C , on the event E . Therefore,

2λs

√
log(d)
d

∣1Tθ∗∣ ≤ 2λs
√
log(d)
d

∥θ∗∥ℓ2 ∥1∥ℓ2 ≤C
√

log(d)
d

.(D.73)
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Also note that wN+1 is drawn independently from W , θ∗ and β. Since wN+1 ∼Unif(Sd−1),
given 1

2W
Tθ∗ − β the conditional distribution of wT

N+1(12W
Tθ∗ − β) converges to

N(0, 1d ∥
1
2W

Tθ∗ −β∥
2

ℓ2
) form which we obtain

∣wT
N+1(

1

2
W Tθ∗ −β)∣ ≤

√
2c′

log(d)
d
∥1
2W

Tθ∗ −β∥ℓ2 <C
√

2c′
log(d)
d

,(D.74)

with probability at least 1− d−c′ .
We next focus on the terms in the right-hand side of (D.72), which involve ei. This part can

be written as 1√
n∑

n
i=1miei with

mi =
1√
n

⎡⎢⎢⎢⎢⎢⎣
2(θT

∗ ri − yi) +
2√

(θT
∗ ri − yi)2 ∥Jθ∗∥

2
ℓ2
+ γ
(θT
∗ ri − yi)∥Jθ∗∥

2
ℓ2

⎤⎥⎥⎥⎥⎥⎦
.

Note that

∣mi∣ ≤
2√
n
(∣θT
∗ ri − yi∣ + ∥Jθ∗∥ℓ2) .

By optimality of θ∗, on the event E we have

∥m∥2ℓ2 ≤R−k([θ∗; 0]) ≤R−k([0; 0]) =
1

n

n

∑
i=1
y2i <C .

Observe that wN+1 is independent from {mi}i∈[n] (recall that θ∗ does not depend on wN+1
by its definition.) Following the same strategy in the proof of Proposition 6.2, we only consider
the randomness in wN+1 and condition on everything else. Write 1√

n∑
n
i=1miei as a function

of wN+1 as follows:

V (wN+1) ∶=
1√
n

k−1
∑
i=1
miσ(wT

N+1xi) +
1√
n

n

∑
i=k+1

mi(µ1wT
N+1xi +µ2zi) .(D.75)

Observe that the (conditional) expectation E[V (wN+1)∣W ,X] = 0. In addition, V (⋅) is a Lip-
schitz function with Lipschitz factor at most C√

d
∥Xm∥ℓ2 . Therefore, using the concentration

bound for Lipschitz function on unit sphere (see e.g. [92, Theorem 5.1.4]), we obtain

P(∣V (wN+1)∣ ≥ t) ≤P(∣V (wN+1)∣ ≥ t;E) +P(Ec)

≤ 2e−c
′dt2 + 3e−cn .

Choosing t =C
√

log(d)
d , we get

P
⎛
⎝
∣V (wN+1)∣ ≥C

√
log(d)
d

⎞
⎠
≤ 2d−c

′C2

+ 3e−cn .(D.76)

The remaining terms in (D.72) can be rearranged and written as AhTJθ∗, with

A ∶= 2
⎛
⎜
⎝
1+ 1

n

n

∑
i=1

(θ∗ri − yi)2√
(θT
∗ ri − yi)2 ∥Jθ∗∥

2
ℓ2
+ γ

⎞
⎟
⎠
.
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We next bound A > 0:

∣A∣ < 2(1+ 1

n

n

∑
i=1

∣θ∗ri − yi∣
∥Jθ∗∥ℓ2

)

2
⎛
⎝
1+ 1

∥Jθ∗∥ℓ2
( 1
n

n

∑
i=1
(θT
∗ ri − yi)2)

1/2⎞
⎠

< 2(1+ 1

∥Jθ∗∥ℓ2
(R−k([θ∗; 0]))1/2)

≤ 2(1+ 1

∥Jθ∗∥ℓ2
(R−k([0; 0]))1/2)

= 2
⎛
⎝
1+ 1

∥Jθ∗∥ℓ2
( 1
n

n

∑
i=1
y2i )

1/2⎞
⎠
.

Using Lemma F.3, on the event E , the right-hand side of the above equation is of order one
(A <C , for some constant C > 0).

We next bound hTJθ∗. Using the relation 1
2π (π − cos

−1(ρ)) = 1
4 +

ρ
2π +O(ρ

3), we define
h̃ as follows

h̃ ∶= [
1
4WwT

n+1
1
2

] .

Recalling h given by (D.70), we have ∥h− h̃∥
ℓ2
=O(1/

√
d). On the event E , we have ∥θ∗∥ℓ2 =

O(1). Also by invoking Lemma F.3, on event E , we have ∥J∥ =O(1). Hence,

∣hTJθ∗ − h̃TJθ∗∣ ≤O(1/
√
d) .(D.77)

We henceforth focus on bounding h̃TJθ∗. Recall that wN+1 is independent of W and θ∗.
Viewing h̃TJθ∗ as a function of wN+1, it has zero expectation (w.r.t wN+1 conditioned on θ∗
and W ). In addition, it is a Lipschitz function with Lipschitz factor at most 1

4
∥W TJθ∗∥ℓ2 ,

which is O(1) on the event E . Next, by employing the concentration bound for Lipschitz
functions on unit sphere (see e.g. [92, Theorem 5.1.4]), we obtain

P(∣h̃TJθ∗∣ ≥ t) ≤P(∣h̃TJθ∗∣ ≥ t;E) +P(Ec)

≤ 2e−c
′dt2 + 3e−cn .

Choosing t =C
√

log(d)
d , and invoking (D.77) we get

P
⎛
⎝
A ∣hTJθ∗∣ ≥C

√
log(d)
d

⎞
⎠
≤ 2d−c

′C2

+ 3e−cn .(D.78)

Combining the bounds (D.73) to (D.78) into (D.71) we get

∣û∣ ≤C ′ log(d)√
d

,

with probability at least 4d−c
′C2 + 3e−cn + d−c′ .

The result follows by union bounding over the N coordinates of θ̂, along with the assump-
tion that N,n,d grow at the same order. (Note that the event E is common across all these
bounds and so we count its complement probability once.)
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D.2.5. Bounding the Difference of Φk,Φk−1 with Ψk(r)
Lemma D.8 We have

(D.79) max{E[(Ψk(σ(Wxk)) −Φ−k)2],(Ψk(fk) −Φ−k)2} ≤
polylog (d)

d2
,

and

(D.80) max{E[(Ψk(σ(Wxk)) −Φk−1)2],(Ψk(fk) −Φk)2} ≤
polylog (d)

d3

Proof To prove (D.79), we note from (D.13) that

Ψk(r) −Φ−k =min
θ
Sk(θ,r) ≤Sk(θ∗−k,r)

= 1

n
ℓ(θ∗−k;r, yk)

≤ C
n
(1+ ∣yk∣ + ∥Jθ∗−k∥ℓ2 + r

Tθ∗−k)
2
,

where C is an absolute constant. Consequently, by using Lemma D.1 and the fact that ∥J∥ is
bounded, we obtain (D.79).

To prove (D.80), we adapt the proof of Lemma 1 in [39] to our setting. In the following we
use

q(θ) = λ∥θ∥2ℓ2 +λw ∥
1

2
W Tθ −β∥

2

ℓ2

+λs
log(d)
d
(1Tθ)2

We start with writing the Taylor expansion of Rk(θ,r), defined in (D.9), around the point
θ∗−k. Note that θ∗−k is the minimizer of R−k(θ), and hence

Rk(θ,r) =R−k(θ∗−k) +
1

n
ℓ(θ;r, yk) +

1

2n
∑
t≠k
(θ − θ∗−k)T∇2ℓ(θ′;rt, yt)(θ − θ∗−k)

+ 1

2
(θ − θ∗−k)T∇2q(θ′)(θ − θ∗−k)

where θ′ can be written as

(D.81) θ′ =ωθ∗−k + (1−ω)θ,
for some ω ∈ [0,1]. As a result, we can write using the definition (D.13)

Rk(θ,r)−Sk(θ,r)

= 1
2
(θ − θ∗−k)T [

1

n
∑
t≠k
∇2ℓ(θ′;rt, yt) −∇2ℓ(θ∗−k;rt, yt)](θ − θ∗−k),(D.82)

where we have noted that, since q is a quadratic function, we have ∇2q(θ∗−k) =∇2q(θ′).
Let us now consider the sum involving the terms of the form

(θ − θ∗−k)T (∇2ℓ(θ′;rt, yt) −∇2ℓ(θ∗−k;rt, yt))(θ − θ∗−k).(D.83)

We can now use the expansion in (D.21) to bound the above term. A straight-forward calcula-
tion, similar to what was done in the proof of Lemma D.4, shows that the above term involves
several terms, among which the dominant term has the following form:

αt(θ − θ∗−k)T (rtrTt (rTt (θ′ − θ∗−k)))(θ − θ∗−k) =αt (rTt (θ − θ∗−k))
2 (rTt (θ′ − θ∗−k)) =αtω (rTt (θ − θ∗−k))

3
,

(D.84)
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where αt satisfies (noting that the derivatives of g are uniformly bounded):

(D.85) P(∣αt∣ ≥ v) ≤ cexp(−vc
′

/c),
for absolute constants c, c′ > 0. A straight-forward calculation (similar to what is done in the
proof of Lemma D.4) shows that all the other terms in the expansion of (D.83) are in absolute
value less than the term given in (D.84). As a result, one can write

∣1
2
(θ − θ∗−k)T [

1

n
∑
t≠k
∇2ℓ(θ′;rt, yt) −∇2ℓ(θ∗−k;rt, yt)](θ − θ∗−k)∣ ≤

1

n
∑
t≠k
∣αt∣ ∣rTt (θ − θ∗−k)∣

3
,

Using the above bound, we can now bound (D.82) as

∣Rk(θ,r) −Sk(θ,r)∣ ≤
1

n
∑
t≠k
∣αt∣ ∣rTt (θ − θ∗−k)∣

3
.(D.86)

The rest of the proof follows almost line-by-line according to the proof of Lemma 1 in [39].
Let B = {θ∗k(r)} ∪ {θ̃k(r)}. By using the definitions (D.12) and (D.16), we have

∣Φk(r) −Ψk(r)∣ = ∣min
θ∈B

Rk(θ,r) −min
θ∈B

Sk(θ,r)∣

≤max
θ∈B
∣Rk(θ,r) −Sk(θ,r)∣

We thus obtain using (D.86) that

∣Φk(r) −Ψk(r)∣ ≤C
1

n
∑
t≠k
∣αt∣ (∣rTt (θ∗k(r) − θ̃k(r))∣

3 + ∣rTt (θ̃k(r) − θ∗−k)∣
3)

Let us now bound each of the terms above. We have
1

n
∑
t≠k
∣αt∣ ∣rTt (θ∗k(r) − θ̃k(r))∣

3 ≤ ∥θ∗k(r) − θ̃k(r)∥
3

ℓ2

1

n
∑
t≠k
∣αt∣ ∥rt∥3ℓ2 .

Now, from Lemma D.3, up to negligible O( polylog(n)
n ) terms, we have

rTt (θ̃k(r) − θ∗−k) =
1

n
β1r

T
t H

−1
−kr +

1

n
β2r

T
t H

−1
−kp.

Now, using the above relations, and the inequality (∑ni=1 ∣ai∣)2 ≤ n∑ni=1 a2i , as well as the
Holder’s inequality, we can write

∣Φk(r) −Ψk(r)∣2 ≤C ′′ ∥θ∗k(r) − θ̃k(r)∥
6

ℓ2
( 1
n
∑
t≠k
∣αt∣2 ∥rt∥6ℓ2)

+ C
′′

n
∑
t≠k
∣αt∣2
⎛
⎝
∣β1

rTt H
−1
−kr

n
∣
6

+ ∣β2
rTH−1

−kp

n
∣
6⎞
⎠

+O(polylog(n)
n4

),

where C ′′ > 0 is an absolute constant. Now, from Lemma D.4, parts (c) and (e) of Lemma D.5,
and (D.34), and (D.85), we obtain for any integer D > 0 that

E[∥θ∗k(r) − θ̃k(r)∥
2D

ℓ2
] ≤CD

polylog(n)
n2D

,

P(∥rt∥2Dℓ2 ≥ n
D(log(n))b) ≤ cexp(−(log(d))2/c) ,

P(∣αt∣2D ≥ (log(n))b) ≤ cexp(−(log(d))2/c) ,

P(max{∣β1∣2D, ∣β2∣2D} ≥ (log(n))b) ≤ cexp(−(log(d))2/c) ,
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for suitably chosen absolute constants b, c,CD > 0. Finally, since the matrix H−1
−k has bounded

norm, and rt and r are independent sub-gaussian random vectors, we obtain

E
⎡⎢⎢⎢⎢⎣
∣rtH

−1
−kr

n
∣
2D⎤⎥⎥⎥⎥⎦
≤CD

polylog(n)
nD

and E
⎡⎢⎢⎢⎢⎣
∣rtH

−1
−kp

n
∣
2D⎤⎥⎥⎥⎥⎦
≤ E

⎡⎢⎢⎢⎢⎢⎣

RRRRRRRRRRRR

∥rt∥ℓ2 ∥H
−1
−k∥ℓ2 ∥p∥ℓ2
n

RRRRRRRRRRRR

2D⎤⎥⎥⎥⎥⎥⎦
≤CD

polylog(n)
nD

.

By using the above relations, the following result now follows in a straight-forward manner
using the Holder’s inequality:

E[∣Φk(r) −Ψk(r)∣2] ≤
polylog(n)

n3
.

And the result follows since d and n grow in proportion to each other.

D.2.6. Putting things together To prove Theorem 6.9, we consider any test function
ϕ ∶ R→ R which is uniformly bounded in terms of its value as well as its first and second
derivatives. We will show that

(D.87) ∣E[φ(ΦA)] −E[φ(ΦB)]∣ =
polylog(d)

d
1
2

+ od(1).

Using this result, one immediately obtains the theorem (see Sections 2.3 and 2.4 of [39]). As a
result, in the rest of this section we focus on proving the above relation for any test function
φ. In order to prove this result, we use the so-called Lindeberg’s method: We consider the
quantities Φk defined in (D.7), and show for any k ∈ [n] that

(D.88) ∣E[φ(Φk)] −E[φ(Φk−1)]∣ =
polylog(d)

d
3
2

+ od(1)
d

.

The above bound immediately results in (D.87) via a telescopic sum over k. It thus remains to
prove (D.88).

Using the Taylor expansion, we can write

φ(Φk) =φ(Φ−k) +φ′(Φ−k)(Φk −Φ−k) +
1

2
φ′′(α)(Φk −Φ−k)2,

where α is a number between Φ−k and Φk . Using the above expansion, and a similar expansion
for Φk−1, we obtain
(D.89)

∣E[φ(Φk)] −E[φ(Φk−1)]∣ ≤ ∣∣φ′∣∣∞ ∣E[Φk −Φk−1]∣+
1

2
∣∣φ′′∣∣∞ ((Φk −Φ−k)2 + (Φk−1 −Φ−k)2) ,

where ∣∣φ′∣∣∞ and ∣∣φ′′∣∣∞ are the maximum (absolute) values of the first and second derivative
of φ.

By using Lemma D.8 we obtain that

∣E[Φk −Φk−1]∣ ≤ ∣E[Ψk(fk) −Ψk(σ(Wxk)]∣ +E[∣Φk −Ψk(fk)∣] +E[∣Ψk(σ(Wxk)) −Φk−1∣]

≤ ∣E[Ψk(fk) −Ψk(σ(Wxk))]∣ +
polylog (d)

d
3
2

,

where the last step follows simply from (D.80). Also, from (D.79) and (D.80), we can conclude
that

E[(Φk −Φ−k)2] ≤ 2E[(Φk −Ψk(fk))2] + 2E[(Φ−k −Ψk(fk))2] ≤
polylog(d)

d2
,
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and similarly

E[(Φk−1 −Φ−k)2] ≤
polylog(d)

d2
.

Finally, the only term that is left to be analyzed is ∣E[Ψk(fk)−Ψk(σ(Wxk))]∣, for which
we use Lemma D.3, D.7, as well as a CLT-type result from [30]. We note the following three
facts:

(i) The quantity rTθ∗−k converges in distribution to a gaussian with the same mean and
variance when r is generated according to the distributions in (D.18). This is due to the
CLT-type theorem given in [30, Theorem 2]. More precisely, we have shown in Lemma D.7
that with probability 1 − cd−c we have: ∥θ∗−k∥ℓ∞ is at most C

√
(log(d))/d, where c,C

are absolute constants. Also, according to part (e) of Lemma D.1, we have ∣1Tθ∗−k∣ ≤
C ′
√
d/(log(d)), where C ′ is an absolute constant.

Now, let us define θ′ = θ∗−k/
√
log(d). Note that, with high probability (as specified

above), we have ∥θ′∥ℓ∞ ≤C/
√
d and ∣1Tθ′∣ ≤C ′

√
d/(log(d)). According to [30, Theorem

2], for a and b generated according (D.18), and fixing θ′, the random variables aTθ′ and
bTθ′ have the same mean and variance, and we have

dMS (aTθ′,bTθ′) ≤C ′′ ∥θ′∥ℓ∞
⎛
⎝
∣1Tθ′∣
√
d
+ 1√

d

⎞
⎠
,

where C ′′ > 0 is an absolute constant, and dMS is the so-called maximum-sliced distance,
and dMS (aTθ′,bTθ′) defines the distance between the distributions of aTθ′ and bTθ′. As
a result, since θ∗−k = θ′ ×

√
log(d), we obtain that

dMS (aTθ∗−k,b
Tθ∗−k) ≤C ′′

√
log(d)∥θ′∥ℓ∞

⎛
⎝
∣1Tθ′∣
√
d
+ 1√

d

⎞
⎠
=O
⎛
⎝

1√
log(d)

⎞
⎠
.

(ii) Consider the result of Lemma D.3. From Lemma D.1, the norm of the vector θ∗−k is
bounded by an absolute constant with probability at least 1−exp(−cn). Hence, since the ma-
trix J is also of bounded operator norm, then the norm of the vector p given in Lemma D.3
is bounded by an absolute constant. Also, the quantity ∥Jθ∗−k∥ℓ2 is bounded by an absolute
constant. Given fixed matrix H−1 with bounded norm, and a fixed vector p with bounded
norm, the quantity 1

nr
TH−1p is, with probability at least 1−cexp(−(log(d))2/c), of order

O(polylog(d)/d) according to Lemma D.9. Hence, in the formula (D.31), the overall contri-
bution of the terms which include 1

nr
TH−1

−kp or 1
np

TH−1
−kp is of order O(polylog(d)/d2).

Therefore, neglecting these terms adds an additional error of at most O(polylog(d)/d2) in
computing E[Ψ(r)] −Φ−k. Consequently, from the result of Lemma D.3 we can write

(D.90)

E[Ψk(r)] =Φ−k +
1

n
E
⎡⎢⎢⎢⎢⎣
min
τ1

⎧⎪⎪⎨⎪⎪⎩

rTH−1
−kr

2n
(∂ℓ̃(τ1,0)

∂τ1
)
2

+ ℓ̃(τ1,0)
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
+O(polylog(d)

d
3
2

) ,

where ℓ̃(τ1, τ2) is given in (D.32).
(iii) Given a matrix H , the value 1

nr
TH−1

−kr concentrates on the same quantity if r is
generated from either of the distributions in (D.18). More precisely, from [39, Lemma 13]
(or [56, Lemma 1]) we obtain

P(∣ 1
n
rTH−1

−kr −E[ 1
n
rTH−1

−kr]∣ ≥ c
log(d)√

d
) ≤ 1− cexp(−(log(d)2)),
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for r being generated according to either of the distributions in (D.18), and c > 0 being an
absolute constant. Also, we have that

∣E[ 1
n
σ(Wx)TH−1

−kσ(Wx)] −E[ 1
n
fTH−1

−kf]∣ =
1

n
Trace(H−1

−k(Σs −Σf)) ,

where Σ2 = E[σ(Wx)σ(Wx)T] and E[ffT], and the last inequality follows from
Lemma D.10. As a result, we obtain

P(∣ 1
n
σ(Wxk)TH−1

−kσ(Wxk) −
1

n
E [fTH−1

−kf]∣ ≥ c
(log(d))3/2√

d
) ≤ 1− cexp(−(log(d)2)),

P(∣ 1
n
fTH−1

−kf −
1

n
E [fTH−1

−kf]∣ ≥ c
log(d)√

d
) ≤ 1− cexp(−(log(d)2)),

Let us now put all the above facts together to bound ∣E[Ψk(fk)−Ψk(σ(Wxk))]∣. Consider
the function ℓ̃(τ1, τ2) given in (D.32). This function depends on r only through θ∗−kr. Using
fact (i) above, we know that θ∗−kr will asymptotically have the same (gaussian) distribution
for both r ∼ fk and r ∼ σ(Wxk). Also, it is easy to conclude using part (c) of Lemma D.1
that all of the moments of random variable θ∗−kr are bounded (i.e. E[∣θ∗−kr∣D] ≤CD for an
absolute constant CD > 0). Further, in fact (ii) we have argued that ∥Jθ∗−k∥ℓ2 is bounded with

probability 1 − eexp(−cn). Also, from fact (iii) above, we know that the term 1
nr

TH−1
−kr

concentrates sharply on the same value for r being either fk or σ(Wxk). Putting all these
together, and using [7, Corollary of Theorem 25.12], we obtain that

Er=fk

⎡⎢⎢⎢⎢⎣
min
τ1

⎧⎪⎪⎨⎪⎪⎩

rTH−1
−kr

2n
(∂ℓ̃(τ1,0)

∂τ1
)
2

+ ℓ̃(τ1,0)
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

− Er=σ(Wxk)

⎡⎢⎢⎢⎢⎣
min
τ1

⎧⎪⎪⎨⎪⎪⎩

rTH−1
−kr

2n
(∂ℓ̃(τ1,0)

∂τ1
)
2

+ ℓ̃(τ1,0)
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
= od(1),

and therefore from (D.90) we obtain

∣E[Ψk(fk) −Ψk(σ(Wxk))]∣ ≤
od(1)
d

,

for an absolute constant C > 0, and hence we obtain (D.88).

D.2.7. Proofs of the Auxiliary Lemmas Here we provide the proofs of some of the auxiliary
lemmas used in our analysis.

Proof of Lemma D.1. We will prove part (b) here, but part (a) will have the exact same proof.
Let θ∗ be the minimizer of Rk(θ,r). We can write

Rk(θ∗,r) ≤Rk(0,r),

as θ∗ is the minimizer.
On the one hand we have

Rk(0,r) =
1

n

n

∑
i=1
y2i + ∥β∥

2
ℓ2
,
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and thus for any v ≥ 0:

(D.91) P(Rk(0,r) ≥ v + ∥β∥2ℓ2 + 2E[y21]) ≤ c1 exp(−nv2/c1) ,

for an absolute constant c1 > 0.
On the other hand, since R(θ,r) is λ-strongly convex, and R(θ,r) ≥ 0, we can write

∥θ∗∥2ℓ2 ≤
1

λ
R(0,r),

which together with (D.91) gives use the result.
To prove part (c), we note that r is generated independently from θ∗−k. We can thus write:

P(∣rTθ∗−k∣ ≥ v) ≤P(∥θ∗−k∥ℓ2 ≥
√
v) +P(∣rTθ∗−k∣ ≥ v∣ ∥θ∗−k∥ℓ2 <

√
v)

≤ c2e−v/c2 +P(∣rTθ∗−k∣ ≥ v∣ ∥θ∗−k∥ℓ2 <
√
v)

≤ c′e−v/c
′

.

where the second step follows from part (a) of the lemma (with c2 chosen to be sufficiently
large); and the last step follows from the independence of r and θ∗−k as well as Lemma D.9.

Also, the proof of part (d) follows simply because

λs
d

log(d)(1
Tθ∗−k)2 ≤R−k(θ∗−k) ≤R−k(0) =

1

n
∑
i≠k
y2i + ∥β∥

2
ℓ2
,

where 0 is the all-zero vector. By using a bound similar to (D.91) for R−k(0) we obtain the
result.

Proof of Lemma D.5. Part (a) is exactly Lemma 12 in [39]. For part (b), consider the matrix R
whose columns are rt’s, i.e. R = [r1∣r2∣⋯∣rn]. Since rt’s are zero-mean sub-gaussian vectors
(see Lemma D.9), we know that its operator norm satisfies:

P(∣∣R∣∣ ≥ c1
√
d+ v) ≤ cexp(−v2/c).

Also, define the vector α = [αt]Tt≠k. Note that ∥α∥ℓ2 ≤
√
n. We have

P
⎛
⎝
∥ 1
n
∑
t≠k
αtrt∥

ℓ2

≥ v + c1
⎞
⎠
=P(∥ 1

n
Rα∥

ℓ2

≥ v + c1) =P(∣∣R∣∣ ≥ v
√
n+ c1

√
n) .

Given the above relation, and the fact that d and n grow proportionally, the result of the second
part of the lemma follows easily.

Part (c) follows from Lemma D.9. Also, part(d) follows from part (c) as well as Lemma D.2
(specifically (D.33)) and the fact that the operator norm of the matrix H−1

−k is upper-bounded
by 2/λ.

Part (e) follows from the fact that r is a random sub-gaussian vector (see Lemma D.9). We
refer to [91] for bounds on the ℓ2 norm of random sub-gaussian vectors.

To prove part (e), we use (D.33) to write

P(∣rTt (θ̃(r) − θ∗−k)∣ ≥
v√
n
) ≤P( 1

n
(∣β1rTt H−1

−kr∣ + ∣β2rTt H−1
−kp∣) + ∣rTt e∣ ≥

v√
n
) ,

≤P( 1
n
∣β1rTt H−1

−kr∣ ≥
v

3
√
n
)+P( 1

n
∣β2rTt H−1

−kp∣ ≥
v

3
√
n
)+P(∣rTt e∣ ≥

v

3
√
n
)(D.92)
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We will now bound each of the terms above. For the first term we have

P( 1
n
∣β1rTt H−1

−kr∣ ≥
v

3
√
n
)

≤P(∥rt∥ℓ2 ≥
√
vn) +P( 1

n
∣β1rTt H−1

−kr∣ ≥
v

3
√
n
, ∥rt∥ℓ2 <

√
vn)

≤ c1 exp(−vc2/c1) +P( 1
n
∣β1rTt H−1

−kr∣ ≥
v

3
√
n
, ∥rt∥ℓ2 <

√
vn) ,

where the last step follows from part (e) and appropriately selecting c1, c2 > 0. Now, note
that the vector r is generated independently from rt and H−k. As a result, to bound the
second term in the RHS of the above relation, we notice that, assuming ∥rt∥ℓ2 <

√
vn, we

have ∥β1rTt H−1
−k∥ℓ2 ≤C ∣β1∣

√
vn. Hence, we can write

P( 1
n
∣β1rTt H−1

−kr∣ ≥
v

3
√
n
, ∥rt∥ℓ2 <

√
vn)

≤P(∣β1∣ ≥ v
1
4 ) +P( 1

n
∣β1rTt H−1

−kr∣ ≥
v

3
√
n
, ∥rt∥ℓ2 <

√
vn , ∣β1∣ < v

1
4)

≤ c3 exp(−vc4/c3) +P( 1
n
∣β1rTt H−1

−kr∣ ≥
v

3
√
n
, ∥rt∥ℓ2 <

√
vn , ∣β1∣ < v

1
4)

≤ c3 exp(−vc4/c3) + c5 exp(−vc6/c5),

where the second inequality follows from (D.34) and by suitably choosing c3, c4 > 0. The
third inequality follows from sub-gaussianity of r, see Lemma D.9, and the fact that, given
∣β1∣ < v1/4 and ∥rt∥ℓ2 ≤

√
vn, the random vector u = β1rtH−1

−k satisfies ∥u∥ℓ2 ≤Cv
3/4√n and

is independently generated from r. Hence, we can bound the second term in the RHS of the
above relation by using Lemma D.9 and appropriate choices of c5, c6 > 0.

The second and third terms in (D.92) can be bounded similarly as the first term but in an
easier manner. The second term follows by writing ∣rTt p∣ ≤ ∥rt∥ℓ2 ∥p∥ℓ2 , and noticing that
∥p∥ℓ2 is upper-bounded by a constant since the norm of J is bounded and the norm of θ∗−k is
bounded (see Lemma D.3 and Lemma D.1). Hence, using a similar (but simpler) argument as
above, we can write

P( 1
n
∣β2rTt H−1

−kp∣ ≥
v

3
√
n
) ≤ c7 exp(−vc8/c7),

for absolute constants c7, c8 > 8.
Finally, the third term in the RHS of (D.92) can be bounded by writing ∣rTt e∣ ≤ ∥rt∥ℓ2 ∥e∥ℓ2 ,

and noticing that ∥e∥ℓ2 is small according to (D.34). And, using similar steps as above, we
reach to a similar upper bound.

Part (g) follows from Lemma D.1 and Lemma D.6.

Lemma D.9 [Analogous to Lemma 8 in [39]] Assume that a = σ(Wx) and b = µ1Wx+µ2u,
where x and u are generated independently from the normal distribution. Also, let Σ = E[bbT],
i.e. Σ = µ21WW T +µ22I. Then, there exists an absolute constant c > 0 such that:

(D.93) P(∣aTβ∣ ≥ v) ≤ 2exp(− v2

c∥β∥2ℓ2 ∣∣W ∣∣2
),
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and

(D.94) P(∣bTβ∣ ≥ v) ≤ 2exp(− v2

c∥β∥2ℓ2 ∣∣Σ∣∣
),

for a fixed vector β ∈Rd and any v ≥ 0. Here, ∣∣W ∣∣ (resp. ∣∣Σ∣∣) denotes the operator norm of
W (resp. Σ).

Proof We will be using the following well-known relation: For a L-Lipschitz continuous
function f and x ∼N(0,I) we have

(D.95) P(∣f(x) −E[f(x)]∣ ≥ v) ≤ 2exp(− v
2

4L2
).

Now, note that since σ is the shifted Relu function, it is easy to see that the function f(x) =
βTσ(Wx) is ∥β∥ℓ2 ∣∣W ∣∣-Lipschitz continuous. Therefore, we obtain the result using the
relation (D.95) and the fact that x is distributed according to the normal distribution.

The proof of the second part can similarly be done by noting that b =Σ1/2b̃ where b̃ is
distributed according to the standard normal distribution.

Lemma D.10 Let H ∈ RN×N be such that ∣∣H ∣∣ ≤ C for an absolute constant C > 0. Let
Σs = E[σ(Wx)σ(Wx)T] and Σf = E[ffT]. We have

(D.96) ∣ 1
n
Trace{H(Σs −Σf)}∣ ≤

c(log(d))3/2√
d

.

with probability at least 1− cexp(−(log(d))2/c) where c > 0 is an absolute constant.

Proof We first bound each element of the matrix Σs −Σf . Recall that the k-th element of the
vector f is distributed according to

µ1w
T
k x+µ2uk,

where uk is independently generated from N(0,1) and µ1 = 1
2 ,µ2 =

√
1
4 −

1
2π . As a result, the

(ℓ,k)-th element of the matrix Σf is

(D.97) E[(µ1wT
k x+µ2uk)(µ1wT

ℓ x+µ2uℓ)] = µ21wT
kwℓ +µ22I{k = ℓ}.

Note that ⟨wℓ,x⟩ and ⟨wk,x⟩ are jointly Gaussian with

E[(wT
ℓ x)2] = E[(wT

k x)2] = 1, E[(wT
ℓ x)(wT

k x)] =wT
kwℓ .

Therefore, we have (see e.g., [15, Table 1])

E[σ(wT
ℓ x)σ(wT

k x)] =

√
1− (wT

kwℓ)2 + (π − cos−1(wT
kwℓ))(wT

kwℓ)
2π

− 1

2π

= 1
4
wT
ℓ wk + (

1

4
− 1

2π
)I{k = ℓ} +O((wT

ℓ wk)3)

= µ21wT
ℓ wk +µ22I{k = ℓ} +O

⎛
⎝
( log(d)

d
)

3
2⎞
⎠
,(D.98)

where the last step follows from the fact that with probability at least 1− cexp(−(log(d))2/c)
we have for all k, ℓ, such that k ≠ ℓ, we have ∣wT

ℓ wk∣ ≤ log(d)
d . As a result, from (D.97) and

(D.98) we obtain

∣(Σs −Σf)k,ℓ∣ =O
⎛
⎝
( log(d)

d
)

3
2⎞
⎠
.
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Hence, the ℓ2 norm of each column of the matrix Σs −Σf is of order O((log(d))3/2/d).
Now, since ∣∣H ∣∣ ≤C , then the ℓ2 norm of each row of H is at most C . Thus, by a simple
application of the Cauchy-Schwarz inequality we obtain the result of the lemma.

D.3. Proof of Proposition 6.10 Let us first show that θ̂∗, θ̂∗nl fall in C−θ with high
probability for any ζ > 0. We prove the result for θ̂∗, and remark that the proof is exactly the
same for θ̂∗nl. Consider the objective

R(θ) ∶= 1

2n

n

∑
i=1
(∣yi − θTσ(Wxi)∣ + ε∥Jθ∥ℓ2)

2 + ζ
2
θTΩθ.

On the one hand we have

R(0) = 1

n

n

∑
i=1
y2i

where 0 is the all-zero vector. Thus for any v ≥ 0:

(D.99) P(Rk(0) ≥ v + 2E[y21]) ≤ c1 exp(−nv2/c1) ,
for an absolute constant c1 > 0.

On the other hand, since R(θ) is ζ-strongly convex, and R(θ) ≥ 0, we can write

∥θ̂∗∥2
ℓ2
≤ 1
ζ
R(0,r),

which together with (D.99) proves that ∥θ̂∗∥
ℓ2

is bounded above by a constant C with proba-
bility at least 1− eexp(−cn).

To bound ∣1Tθ̂∗∣ we note that

ζ
d

log(d)(1
Tθ̂∗)2 ≤R(θ̂∗) ≤R(0) = 1

n
∑
i≠k
y2i ,

By using the bound to (D.99) we obtain with probability 1 − cexp(−cn) that ∣1Tθ̂∗∣ ≤
C
√
d/(log(d)). Finally, the fact that ∥θ̂∗∥

ℓ∞
is with high probability of order

√
(log(d))/d

follows in exactly the same manner as the proof of Lemma D.7 and hence we do not repeat
the proof here.

We now show that M(θ̂∗) −M(θ̂∗nl) → 0 in probability. To do so, we use the argument
given in [1, Theorem 4]. Assume that M(θ̂∗) and M(θ̂∗nl) converge to different values, say
MA and MB . Define M = (MA +MB)/2 and consider the following optimization problems

Φ̄A ∶= min
θ∶M(θ)≤M

1

2n

n

∑
i=1
(∣yi − θTσ(Wxi)∣ + ε∥Jθ∥ℓ2)

2 + ζ
2
θTΩθ ,

Φ̄B ∶= min
θ∶M(θ)≤M

1

2n

n

∑
i=1
(∣yi − θTfi∣ + ε∥Jθ∥ℓ2)

2 + ζ
2
θTΩθ .

Note that the values Φ̄A and Φ̄B must be different. Now, using the minimax theorem, and
since the above objectives are ζ-strongly convex, we can write

Φ̄A = sup
λ>0
−λM +min

θ

1

2n

n

∑
i=1
(∣yi − θTσ(Wxi)∣ + ε∥Jθ∥ℓ2)

2 + ζ
2
θTΩθ +λM(θ) ,

Φ̄B = sup
λ>0
−λM +min

θ

1

2n

n

∑
i=1
(∣yi − θTfi∣ + ε∥Jθ∥ℓ2)

2 + ζ
2
θTΩθ +λM(θ) .
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Now, from the result of Theorem 6.9 we know that for any λ > 0 the values inside the min
converge to the same value. As a result, the quantities Φ̄A and Φ̄B should converge to the
same value (according to [1, Lemma 1]) which is a contradiction with the claim that M(θ̂∗)
and M(θ̂∗nl) converge to different values (i.e. MA and MB , respectively). A similar argument
can be applied to show that ∥Jθ̂∗∥

ℓ2
− ∥Jθ̂∗nl∥ℓ2 → 0, in probability.

APPENDIX E: PROOFS OF STEP 4: ANALYSIS OF THE GAUSSIAN NOISY LINEAR
MODEL VIA CONVEX GAUSSIAN MINIMAX FRAMEWORK

By the Gaussian equivalence property, we henceforth focus on optimization (6.23) and

provide a precise characterization of
○○
ARnl(θ̂∗nl).

Before proceeding, we will discuss another representation of the model using a few change
of variables. Recall from (6.15) that f ∶= µ01 + µ1Wx + µ2u. For our activation function
σ(v) = vI(v ≥ 0) − 1/

√
2π, we have µ0 = 0, µ1 = 1/2 and µ2 =

√
1
4 −

1
2π . It is clear that f ∼

N(0,Σ) with Σ ∶= µ21WW T +µ22I . Also the data generative model (2.1) can be written as:

yi = ⟨fi,θ0⟩ +wi, with wi ∼N(0,σ2) ,(E.1)

for proper choices of σ2 and θ0. Indeed in both models (2.1) and (E.1), (yi,fi) ∈RN+1 is a
centered Gaussian vector. By matching their covariances we obtain

Σ = µ21WW T +µ22I ,

θ0 = µ1Σ−1Wβ ,

σ2 = τ2 + ∥β∥2ℓ2 −µ
2
1β

TW TΣ−1Wβ .

(E.2)

We next rewrite the objective of optimization (6.23) using this change of variable and also
plug in for yi from (E.1) to obtain

Lnl(θ) =
1

2n

n

∑
i=1
(∣⟨fi,θ0 − θ⟩ +wi∣ + ε∥Jθ∥ℓ2)

2 + ζ
2
θTΩθ.(E.3)

We will use a powerful extension of a classical Gaussian process inequality due to Gordon [33]
known as Convex Gaussian Minimax Theorem (CGMT) [88] to derive a precise asymptotic
characterization of ARnl(θ̂∗nl). A similar proof technique has been used in [46] to understand
the effect of adversarial training on linear regression models. Indeed, for the particular case of
µ1 = 0,µ2 = 1 (so Σ = I) and J = I , the loss function (E.4) reduces to that studied in [46].

The CGMT analysis will output a deterministic scalar optimization which depends on ζ .
We need to calculate the solution of this optimization at ζ → 0. However, as we discuss in our
derivation, the objective of this optimization is strongly convex (in minimizing variables) and
concave (in maximizing variables). Therefore, by continuity of its solution in the coefficients
of the objective, we directly calculate the solution by setting ζ = 0 in the loss Lnl(θ), bringing
us to the following restatement of the loss (with a slight abuse of notation):

Lnl(θ) =
1

2n

n

∑
i=1
(∣⟨fi,θ0 − θ⟩ +wi∣ + ε∥Jθ∥ℓ2)

2
.(E.4)

Consider a change of variable of the form fi =Σ1/2gi with gi ∼N(0,I) and z =Σ1/2(θ−θ0).
Also define

ℓ(v;θ) ∶= 1
2
(∣v∣ + ε∥Jθ∥ℓ2)

2
.
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Then, optimization problem (E.4) can be equivalently written in the form

min
z∈RN ,v∈Rn

1

n

n

∑
i=1
ℓ(vi;θ0 +Σ−1/2z) subject to v =w −Gz.(E.5)

By writing the dual of this optimization problem (with dual variable u√
d

) we get

min
z∈RN ,v∈Rn

max
u∈Rn

1√
d
{uTGz −uTw +uTv}+ 1

n

n

∑
i=1
ℓ(vi;θ0 +Σ−1/2z)

= min
z∈RN ,v∈Rn

max
u∈Rn

1√
d
{uTGz −uTw +uTv}+ ℓ̄(v;z),(E.6)

where

ℓ̄(v;z) ∶= 1

n

n

∑
i=1
ℓ(vi;θ0 +Σ−1/2z)

= 1

2n
∥v∥2ℓ2 +

ε

n
∥v∥ℓ1 ∥J(θ0 +Σ

−1/2z)∥
ℓ2
+ ε

2

2
∥J(θ0 +Σ−1/2z)∥

2

ℓ2
.

The minimax optimization (E.6) is in a form that we can apply the CGMT framework.
Formally, the CGMT framework concerns problems of the form

min
z∈Sz

max
u∈Su

uTGz +ψ(z,u),(E.7)

with G a matrix with i.i.d standard normal entries and shows that this problem is asymptotically
equivalent to the following problem:

min
z∈Sz

max
u∈Su

∥z∥ℓ2 g
Tu+ ∥u∥ℓ2 h

Tz +ψ(z,u),(E.8)

where g and h are independent Gaussian vectors with i.i.d. N(0,1) entries and ψ(z,u) is
convex in z and concave in u. Here, the sets Sz and Su are compact sets. We refer to [88,
Theorem 3] for precise statements regarding the equivalence of (E.7) and (E.8).

Following [88] we shall refer to problems of the form (E.7) as the Primal Problem (PO)
and refer to problems of the form (E.8) as the Auxiliary Problem (AO).

As described above the CGMT framework requires the minimization/maximization to be
over compact sets. This technical issue can be avoided by a common trick in this literature
where one introduces “artificial” boundedness constraint which do not effect the optimal
solution. Specifically, following [88] we can add constraints of the form Sz = {z∣ ∥z∥ℓ2 ≤Kα}
and Su = {u ∶ ∥u∥ℓ2 ≤Kβ} for sufficiently large constants Kα and Kβ without changing the
optimal solution of (E.6) in a precise asymptotic sense. We leave out a detailed argument here
and refer to [46, Appendix B] for similar arguments. This allows us to replace (E.6) with

min
z∈Sz,v∈Rn

max
u∈Su

1√
d
{uTGz −uTw +uTv}+ ℓ̄(v;z).(E.9)

Observe that the above loss function has a bilinear term uTGz, with Gij ∼N(0,1) indepen-
dently, plus a function of the form

ψ(z,v,u) ∶= 1√
d
{−uTw +uTv}+ ℓ̄(v;z) ,

which is jointly convex in (z,v) and concave in u.
Therefore the corresponding AO problem takes the following form

min
z∈Sz,v

max
u∈Su

1√
d
{∥z∥ℓ2 g

Tu+ ∥u∥ℓ2 h
Tz −uTw +uTv}+ ℓ̄(v;z) .(E.10)

This concludes the derivation of the AO problem.
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E.1. Scalarization of the AO problem We next simplify the AO problem by considering
this problem in the asymptotic regime. We start by maximizing over u. Write u = βũ with
ũ ∈ Sn−1 and 0 ≤ β ≤Kβ . Using this decomposition we have

max
u∈Su

∥z∥ℓ2 g
Tu+ ∥u∥ℓ2 h

Tz −uTw +uTv

= max
0≤β≤Kβ

max
ũ∈Sn−1

β ∥z∥ℓ2 g
T ũ+ βhTz − βũTw + βũTv

= max
0≤β≤Kβ

max
ũ∈Sn−1

βũT (∥z∥ℓ2 g −w + v) + βh
Tz

= max
0≤β≤Kβ

β ∥∥z∥ℓ2 g −w + v∥ℓ2 + βh
Tz.

After substituting the above into AO problem (E.10), it reads

min
z∈Sz,v

max
0≤β≤Kβ

β√
d
∥∥z∥ℓ2 g −w + v∥ℓ2 +

β√
d
hTz + ℓ̄(v;z).

We next aim to simplify the minimization over v and z, but a hurdle is that they are coupled
through the term ℓ(v;z). To address this technical issue, we consider the conjugate of ℓ̄(v;z)
in with respect to z. That is,

ℓ̄(v;z) = sup
q

qTz − ℓ̃(v;q).

The AO problem then can be written as

min
z∈Sz,v

max
0≤β≤Kβ ,q

β√
d
∥∥z∥ℓ2 g −w + v∥ℓ2 +

β√
d
hTz + qTz − ℓ̃(v;q).(E.11)

In the above optimization the order of minimization and maximization can be flipped using
the Sion’s theorem and the fact that the original PO problem is convex/concave in the min/max
parameters. The argument only uses the convexity of the loss ℓ(v;q) and we refer to [86,
Appendix A.2.4] for a detailed argument. This brings us to

max
0≤β≤Kβ ,q

min
z∈Sz,v

β√
d
∥∥z∥ℓ2 g −w + v∥ℓ2 +

β√
d
hTz + qTz − ℓ̃(v;q).

We optimize over the direction and norm of z (∥z∥ℓ2 =α) to get

max
0≤β≤Kβ ,q

min
0≤α≤Kα,v

β√
d
∥αg −w + v∥ℓ2 −α∥

β√
d
h+ q∥

ℓ2

− ℓ̃(v;q).(E.12)

Note that ℓ̃(v;q) is convex in q and so the AO objective (E.12) is clearly jointly concave
in q and β. Also since ℓ̄ is jointly convex in (v,z), then −ℓ̄(v;z) is jointly concave in (v,z).
Also qTz is jointly concave in (v,z). Therefore, qTz − ℓ̄(v;z) is jointly concave in (v,z)
and based on the partial maximization rule we can conclude that ℓ̃(v;q) should be concave
in v. The other terms are also trivially jointly convex in α,v so that overall the objective is
jointly convex in α,v. Therefore, by virtue of Sion’s min-max Theorem [76]) we can change
the order of the mins and maxs as we please and rewrite the AO problem as

min
0≤α≤Kα,v

max
0≤β≤Kβ ,q

β√
d
∥αg −w + v∥ℓ2 −α∥

β√
d
h+ q∥

ℓ2

− ℓ̃(v;q).

To continue we shall calculate the conjugate function ℓ̃. This is the subject of the next
lemma.
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Lemma E.1 The conjugate of

ℓ̄(v;z) ∶= 1

2n

n

∑
i=1
(∣vi∣ + ε∥J(θ0 +Σ−1/2z)∥ℓ2)

2
,

with respect to the variable z is given by

ℓ̃(v;q) ∶= sup
z

qTz − ℓ̄(v;z) = −⟨Σ1/2θ0,q⟩ +
1

2
(1
ε
∥Σ1/2J−1q∥

ℓ2
− 1

n
∥v∥ℓ1 )

2

+
− 1

2n
∥v∥2ℓ2 .

We refer to Section E.5 for the proof of this lemma. Plugging in for ℓ̃ from Lemma E.1 in the
AO problem we arrive at

min
0≤α<Kα,v

max
0≤β≤Kβ ,q

β√
d
∥αg −w + v∥ℓ2 −α∥

β√
d
h+ q∥

ℓ2

+ ⟨Σ1/2θ0,q⟩ −
1

2
(1
ε
∥J−1Σ1/2q∥

ℓ2
−
∥v∥ℓ1
n
)
2

+
+ 1

2n
∥v∥2ℓ2 .(E.13)

Optimization over q: To simplify the AO problem further, we next focus on maximization
over q. Consider the change of variable q̃ ∶= J−1Σ1/2q and keep only the terms in the AO
objective which involve q.

max
q
−α∥ β√

d
h+ q∥

ℓ2

+ ⟨Σ1/2θ0,q⟩ −
1

2
(1
ε
∥J−1Σ1/2q∥

ℓ2
−
∥v∥ℓ1
n
)
2

+

=max
q̃
−α∥ β√

d
h+Σ−1/2Jq̃∥

ℓ2

+ ⟨θ0,Jq̃⟩ −
1

2
(1
ε
∥q̃∥ℓ2 −

∥v∥ℓ1
n
)
2

+

= max
q̃,0≤τq

− α

2τq
∥ β√

d
h+Σ−1/2Jq̃∥

2

ℓ2

− ατq
2
+ ⟨θ0,Jq̃⟩ −

1

2
(1
ε
∥q̃∥ℓ2 −

∥v∥ℓ1
n
)
2

+

= max
q̃,0≤τq

− α

2τq
∥ β√

d
h+Σ−1/2Jq̃ − τq

α
Σ1/2θ0∥

2

ℓ2

+ τq
2α
∥Σ1/2θ0∥

2

ℓ2
− ⟨ β√

d
h,Σ1/2θ0⟩

− ατq
2
− 1

2
(1
ε
∥q̃∥ℓ2 −

∥v∥ℓ1
n
)
2

+

We next maximize over q̃ by introducing a new dummy variable γ for ∥q̃∥ℓ2 . This brings us to
the following problem

min
q̃,0≤γ

α

2τq
∥ β√

d
h+Σ−1/2Jq̃ − τq

α
Σ1/2θ0∥

2

ℓ2

+ 1

2
(1
ε
γ −
∥v∥ℓ1
n
)
2

+
(E.14)

subject to ∥q̃∥ℓ2 = γ .

We continue by the following lemma and refer to Section E.5 for its proof.

Lemma E.2 Let H ∈ Rd×d be invertible and r ∈ Rd, c0, c1 ∈ R. Consider the following opti-
mization problem:

min
q̃,0≤γ

c0
2
∥Hq̃ − r∥2ℓ2 +

1

2
(1
ε
γ − c1)

2

+
(E.15)

s.t. ∥q̃∥ℓ2 = γ
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Define

Q(H,r, γ) = sup
λ≥0

λ

2
(rT(HHT +λI)−1r − γ2) .(E.16)

Then, the optimal objective value of (E.15) is given by

min
γ≥0

c0Q(H,r, γ) + 1

2
(1
ε
γ − c1)

2

+
.

Using Lemma E.2, the optimal value of (E.14) is given by

min
γ≥0

α

τq
Q(Σ−1/2J , τq

α
Σ1/2θ0 −

β√
d
h, γ) + 1

2
(γ
ε
−
∥v∥ℓ1
n
)
2

+
.

Therefore, by substituting in (E.12) the AO optimization can be simplified as

min
0≤α<Kα,v

max
0≤β≤Kβ ,0≤γ,τq

β√
d
∥αg −w + v∥ℓ2 −

α

τq
Q(Σ−1/2J , τq

α
Σ1/2θ0 −

β√
d
h, γ)

+ τq
2α
∥Σ1/2θ0∥

2

ℓ2
− ⟨ β√

d
h,Σ1/2θ0⟩ −

ατq

2
− 1

2
(γ
ε
−
∥v∥ℓ1
n
)
2

+
+ 1

2n
∥v∥2ℓ2 .(E.17)

Before proceeding further with our simplification of the AO problem, let us state the following
lemma which is used to discuss the convexity-concavity of the objective and justification of
changing the order of maximization and minimization. We refer to Section E.5 for its proof.

Lemma E.3 The function

f(γ,β, τq) ∶=
1

τq
Q(Σ−1/2J , τq

α
Σ1/2θ0 −

β√
d
h, γ),

is jointly convex in the variables (γ, β√
d
, τq).

As a result this lemma, the objective (E.17) is jointly concave in (γ,β, τq). Also recall that
since ℓ̃ was concave the objective (E.12) was jointly convex in (α,v). Since maximization
(with respect to direction of q̃) preserves convexity (pointwise maximum of convex functions
is convex), therefore the objective (E.17) is jointly convex in (α,v).

Therefore, by another use of Sion’s min-max theorem, we can change the order of min and
max in (E.17) and write it equivalently as

max
0≤β≤Kβ ,0≤γ,τq

min
0≤α<Kα,v

β√
d
∥αg −w + v∥ℓ2 −

α

τq
Q(Σ−1/2J , τq

α
Σ1/2θ0 −

β√
d
h, γ)

+ τq
2α
∥Σ1/2θ0∥

2

ℓ2
− 1√

d
⟨βh,Σ1/2θ0⟩ −

ατq

2
− 1

2
(γ
ε
−
∥v∥ℓ1
n
)
2

+
+ 1

2n
∥v∥2ℓ2 .(E.18)

We next focus on minimization over v. Keeping only the terms in (E.17) that depend on v
we have

min
v

β√
d
∥αg −w + v∥ℓ2 +

1

2n
∥v∥2ℓ2 −

1

2
(γ
ε
−
∥v∥ℓ1
n
)
2

+

= min
τg≥0,v

β

2nτg
∥αg −w + v∥2ℓ2 +

βτgn

2d
+ 1

2n
∥v∥2ℓ2 −

1

2n2
(nγ
ε
− ∥v∥ℓ1)

2

+
.(E.19)
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Recall the definition of the Moreau envelope function of a function f at a point x with
parameter µ,

ef(x;ρ) ≡min
v

1

2ρ
∥x− v∥2ℓ2 + f(v) .

and define

f(v;γ) ∶= 1
2
∥v∥2ℓ2 −

1

2n
(n
ε
γ − ∥v∥ℓ1)

2
+ .(E.20)

Note that f(v;γ) is convex in v (since −ℓ̃(v;q) was convex in v). Thus, (E.19) can be
rewritten in the more compact form

min
τg≥0

1

n
ef (w −αg;

τg

β
) + βτg

2

n

d
.(E.21)

We next invoke the result of [46, Lemma 6.3] which gives a characterization of the Moreau
envelope function ef(x;µ).
Lemma E.4 ([46, Lemma 6.3]) Consider the function f given by (E.20). Then,

ef(x;ρ) =
1

2(ρ+ 1) ∥x∥
2
ℓ2
+min
ν≥0

Gn(x;ρ,γ,ν),

where

Gn(x;ρ,γ,ν) =
1

2ρ(ρ+ 1) ∥x− ST(x;ν)∥
2
ℓ2
− 1

2n
(n
ε
γ − 1

1+ ρ ∥ST(x;ν)∥ℓ1)
2

+
,(E.22)

and ST(x;ν) is the soft-thresholding function defined as

[ST(x;ν)]i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xi −λ, if xi ≥ λ,
0 if ∣xi∣ ≤ λ,
xi +λ if xi ≤ −λ,

for each coordinate i. Furthermore, ef(x;τ) is strictly convex in x.

Using this characterization in (E.19) we get

min
v

β√
d
∥αg −w + v∥ℓ2 +

1

2n
∥v∥2ℓ2 −

1

2
(γ
ε
−
∥v∥ℓ1
n
)
2

+

=min
τg≥0

1

n
ef (w −αg;

τg

β
) + βτg

2

n

d

=min
τg≥0

βτg

2

n

d
+ 1

n

β

2(τg + β)
∥w −αg∥2ℓ2 +

1

n
min
ν≥0

Gn(w −αg;
τg

β
,γ,ν) .(E.23)

Next by plugging (E.23) in (E.18) we arrive at the following AO formulation:

max
0≤β≤Kβ ,0≤γ,τq

min
0≤α<Kα,0≤τg,ν

− α
τq
Q(Σ−1/2J , τq

α
Σ1/2θ0 −

β√
d
h, γ) + τq

2α
∥Σ1/2θ0∥

2

ℓ2
− ατq

2

− 1√
d
⟨βh,Σ1/2θ0⟩ +

βτg

2

n

d
+ β

2(τg + β)
1

n
∥w −αg∥2ℓ2(E.24)

+ 1

n
Gn(w −αg;

τg

β
,γ,ν) .(E.25)

Recall that the problem (E.19) was jointly convex in (v,α, τg) and (E.18) jointly concave
in (β,γ, τq). Since partial minimization preserves convexity we therefore conclude that
the objective (E.24) is jointly convex in (α,τg) and jointly concave in (β,γ, τq) (after the
minimization over ν ≥ 0 has been carried out).
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E.2. Convergence analysis of the AO problem

E.2.1. Pointwise convergence We next derive the pointwise limit of the AO objective in
the asymptotic regime that N/d→ψ1 and n/d→ψ2, as n→∞.

Recalling the definition of θ0 from (E.2) we have

∥Σ1/2θ0∥
2

ℓ2
= µ21 ∥Σ−1/2Wβ∥

2

ℓ2
=
µ21 ∥β∥

2
ℓ2

d
trace(W TΣW ) ,

where we used the fact that the distribution of W is rotationally invariant. By our assumption
∥β∥ℓ2 → 1. Let 0 ≤ s1, . . . , sN denote the eigenvalues of WW T. By invoking the definition of
Σ from (E.2) we have

∥Σ1/2θ0∥
2

ℓ2
=
ψ1µ

2
1 ∥β∥

2
ℓ2

N
trace(W TΣ−1W )

=
ψ1µ

2
1 ∥β∥

2
ℓ2

N

d

∑
i=1

si
µ21si +µ22

=
ψ1µ

2
1 ∥β∥

2
ℓ2

N

d

∑
i=1

1

µ21
(1− µ22/µ21

si +µ22/µ21
)→ψ1(1+

µ22
µ21
S( − µ

2
2

µ21
;ψ1)) ,(E.26)

in probability where S(z) = ∫ ρ(s)
z−s ds is the Stieltjes transform of the spectral density ρ of the

matrix WW T. The formula for S(z) is given in Proposition F.2 and since it is a function of
ψ1, we make this dependence clear in the notation and write S(z;ψ1) henceforth.

Since for our activation µ1 = 1
2 and µ2 =

√
1
4 −

1
2π , this simplifies to

∥Σ1/2θ0∥
2

ℓ2
→ψ1 (1+ (1−

2

π
)S( 2

π
− 1;ψ1)) ,(E.27)

in probability. This together with (E.2) implies that

σ2 = τ2 + ∥β∥2ℓ2 − ∥Σ
−1/2θ0∥

2

ℓ2
→ τ2 + 1−ψ1 (1+ (1−

2

π
)S( 2

π
− 1;ψ1)) .(E.28)

We next note that since ∥Σ1/2θ0∥ℓ2 =O(1), for h ∼N(0,I) we have

1√
n
⟨h,Σ1/2θ0⟩ → 0,(E.29)

in probability, as n→∞. In addition, since g ∼N(0,In) and w ∼N(0,σ2In), we have

1

n
∥αg −w∥2ℓ2 →α

2 +σ2 ,(E.30)

in probability.
We next proceed by calculating the limit of the Q function. By definition,

Q(Σ−1/2J , τq
α
Σ1/2θ0 −

β√
d
h, γ)

= sup
λ≥0

λ

2
[(τq
α
Σ1/2θ0 −

β√
d
h)T(Σ−1/2J2Σ−1/2 +λI)−1(τq

α
Σ1/2θ0 −

β√
d
h) − γ2]

= sup
λ≥0

λ

2
[(τq
α
Σθ0 −

β√
d
Σ1/2h)T(J2 +λΣ)−1(τq

α
Σθ0 −

β√
d
Σ1/2h) − γ2] .

(E.31)
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We compute the limit of the right hand side for any fixed value of λ ≥ 0. First note that since
∥(Σ−1/2J2Σ−1/2 +λI)−1∥ =Op(1) and by invoking (E.29), the cross terms vanish in the
limit and we have

lim
n→∞
(τq
α
Σ1/2θ0 −

β√
d
h)T(Σ−1/2J2Σ−1/2 +λI)−1(τq

α
Σ1/2θ0 −

β√
d
h)

= lim
n→∞

τ2q

α2
θ0Σ

1/2(Σ−1/2J2Σ−1/2 +λI)−1Σ1/2θ0 + lim
n→∞

β2

d
hT(Σ−1/2J2Σ−1/2 +λI)−1h.

(E.32)

We treat each term separately. Plugging for θ0 from (E.2) we have

lim
n→∞

τ2q

α2
θ0Σ

1/2(Σ−1/2J2Σ−1/2 +λI)−1Σ1/2θ0 = lim
n→∞
(µ1τq
α
)2βTW T(J2 +λΣ)−1Wβ

= lim
n→∞
(µ1τq
α
)2 1
d
trace(W T(J2 +λΣ)−1W ) ,(E.33)

where in the last step we used the fact that the distribution of W is rotationally invariant and
∥β∥ℓ2 → 1.

Similarly since h ∼N(0,IN) we have

lim
n→∞

β2

d
hT(Σ−1/2J2Σ−1/2 +λI)−1h = lim

n→∞

β2

d
⟨Σ1/2(J2 +λΣ)−1Σ1/2,hhT⟩

= lim
n→∞

β2

d
trace(Σ1/2(J2 +λΣ)−1Σ1/2).(E.34)

Combining (E.33) and (E.34) into (E.32) we get

lim
n→∞
(τq
α
Σ1/2θ0 −

β√
d
h)T(Σ−1/2J2Σ−1/2 +λI)−1(τq

α
Σ1/2θ0 −

β√
d
h)

= lim
n→∞

trace{(J2 +λΣ)−1((µ1τq
α
)
2 1

d
WW T + β

2

d
Σ)} ,(E.35)

where we used that trace(AB) = trace(BA) for any two matrices A and B.
To calculate the limit on the right-hand side of (E.35), we use Proposition F.3 on the

spectrum of inner product kernel random matrices.
Since ∥W ∥ =Op(1) we also have ∥(µ1τq

α )
2 1
dWW T + β2

d Σ∥ =Op(1) and as an immediate

corollary of Proposition F.3, in (E.35) we can replace J2 with K since they have the same
spectrum. This brings us to

lim
n→∞
(τq
α
Σ1/2θ0 −

β√
d
h)T(Σ−1/2J2Σ−1/2 +λI)−1(τq

α
Σ1/2θ0 −

β√
d
h)

= lim
n→∞

trace{(K +λΣ)−1((µ1τq
α
)
2

⋅ 1
d
WW T + β

2

d
Σ)}

= lim
n→∞

1

d
trace{((1

4
+λµ21)WW T + (1

4
+λµ22)I)

−1
((
µ21τ

2
q

α2
+ β2µ21)WW T + β2µ22I)} .

(E.36)

Note that the latter only depends on the spectral density of WW T and can be written in terms
of its Stieltjes transform.
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By law of large numbers and with simple algebraic manipulations it is easy to see that for
any constants b0, b1, c0, c1 we have

1

N

N

∑
i=1

b0si + b1
c0si + c1

→ b0
c0
+
b0
c1
c0
− b1
c0

S(−c1/c0;ψ1) ,(E.37)

with S(t;ψ1) representing the Stieltjes transform of the spectral density of WW T.
Using this with (E.36) we obtain

lim
n→∞
(τq
α
Σ1/2θ0 −

β√
d
h)T(Σ−1/2J2Σ−1/2 +λI)−1(τq

α
Σ1/2θ0 −

β√
d
h)

= 4ψ1

1+ 4λµ21
(
µ21τ

2
q

α2
+ β2µ21) +

4ψ1

1+ 4λµ21
{(
µ21τ

2
q

α2
+ β2µ21)(

1+ 4λµ22
1+ 4λµ21

) − β2µ22}S( −
1+ 4λµ22
1+ 4λµ21

;ψ1).

(E.38)

By combining (E.38) and (E.31) we get

lim
n→∞

Q(Σ−1/2J , τq
α
Σ1/2θ0 −

β√
n
h, γ)

= sup
λ≥0

λ

2
[ 4ψ1

1+ 4λµ21
(
µ21τ

2
q

α2
+ β2µ21) +

4ψ1

1+ 4λµ21
{(
µ21τ

2
q

α2
+ β2µ21)(

1+ 4λµ22
1+ 4λµ21

) − β2µ22}S( −
1+ 4λµ22
1+ 4λµ21

;ψ1) − γ2] .

(E.39)

Plugging for µ1 = 1
2 and µ2 =

√
1
4 −

1
2π we have

lim
n→∞

Q(Σ−1/2J , τq
α
Σ1/2θ0 −

β√
n
h, γ) = F(τq

α
,β,ψ1, γ),(E.40)

with the definition

F(a,b,ψ1, γ) ∶= sup
λ≥0

λψ1

2(1+λ) {a
2 + b2 + (a2(1− 2

π

λ

1+λ) +
2b2

π(1+λ))S(
2

π

λ

1+λ − 1;ψ1)}−
λ

2
γ2 .

(E.41)

By the change of variable λ̃ = λ
1+λ , the function F can be written as

F(a,b,ψ1, γ) ∶= sup
0≤λ̃<1

λ̃ψ1

2
{a2 + b2 + (a2(1− 2

π
λ̃) + 2(1− λ̃)b2

π
)S( 2

π
λ̃− 1;ψ1)}−

λ̃

2(1− λ̃)
γ2 .

(E.42)

We next proceed to characterize the limit of 1
nGn(w −αg;

τg
β , γ,ν). To this end, we recall the

result of [46, Lemma 6.4].

Lemma E.5 Let u ∈Rn be a Gaussian random vector distributed as N(0,ω2In). Then,

lim
n→∞

1

2nρ(ρ+ 1) ∥u− ST(u;ν)∥
2
ℓ2
= ω2

2ρ(ρ+ 1)
⎛
⎝
⎛
⎝
1−
√

2

π

ν

ω
e−

ν2

2ω2
⎞
⎠
⎞
⎠
,

(E.43)

lim
n→∞

1

2n2
(n
ε
γ − 1

1+ ρ ∥ST(u;ν)∥ℓ1)
2

+
= ω2

2(ρ+ 1)2
⎛
⎝
γ(ρ+ 1)
εω

+ ν
ω
⋅ erfc( 1√

2

ν

ω
)−
√

2

π
e−

ν2

2ω2
⎞
⎠

2

+

.

(E.44)
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Therefore, by (E.22) we have

lim
n→∞

1

n
Gn(u;ρ,γ,ν) =

ω2

2ρ(ρ+ 1)
⎛
⎝
⎛
⎝
1−
√

2

π

ν

ω
e−

ν2

2ω2
⎞
⎠
+( ν

2

ω2
− 1)erfc( 1√

2

ν

ω
)
⎞
⎠

− ω2

2(ρ+ 1)2
⎛
⎝
γ(ρ+ 1)
εω

+ ν
ω
⋅ erfc( 1√

2

ν

ω
)−
√

2

π
e−

ν2

2ω2
⎞
⎠

2

+

.

Furthermore,

min
ν≥0

lim
n→∞

1

n
Gn(u;ρ,γ,ν)

=G(ω;ρ,γ) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if γ(ρ+ 1) ≤
√

2
πεω

ω2

2ρ(ρ+1) (erf (
ν∗( γ(ρ+1)

εω
,ρ)

√
2

)− γ(ρ+1)
εω ν∗ (γ(ρ+1)εω , ρ)) if γ(ρ+ 1) >

√
2
πεω

where ν∗(a,ρ) is the unique solution to

a− 1

ρ
ν − ν ⋅ erf ( ν√

2
)−
√

2

π
e−

ν2

2 = 0 .

Combining (E.27), (E.29), (E.30), (E.40), and Lemma E.5, we obtain the following scalarized
AO problem:

max
0≤β≤Kβ ,0≤γ,τq

min
0≤α<Kα,0≤τg

− α
τq
F(τq
α
,β,ψ1, γ) +

τq

2α
(τ2 + 1− σ2) − ατq

2

+ βτg
2
ψ2 +

β

2(τg + β)
(σ2 +α2) +G(

√
σ2 +α2;

τg

β
,γ) ,(E.45)

where σ2 = τ2 + 1−ψ1 (1+ (1− 2
π)S(

2
π − 1;ψ1)).

We conclude this part by a lemma on the convexity-concavity of the above scalarized AO
problem and the uniqueness of the solution to the AO problem.

Lemma E.6 (Strict convexity and uniqueness of the solution) The objective function (E.45)
is strictly jointly convex in (α,τg) and jointly concave in (β,γ, τq). Also the solution (α∗, τg∗β∗ )
to this problem is unique.

We defer the proof of Lemma E.6 to Section E.5. This concludes the proof of Theorem 4.2(a).

E.2.2. Uniform convergence In Section E.2.1 we showed that the objective function in
(E.24) converges point-wise to the objective function in (E.45). However, for our goal we need
to show that the minimax solutions of the converging sequence of the objectives in (E.24)
converges to the minimax solution of the AO objective in (E.45), denoted byR(α,τg,β,γ, τq).
Convexity/concavity of R plays a crucial role here since it is being used to conclude local

uniform convergence from the point-wise convergence.
This can be shown by following similar arguments as in [86, Lemma A.5] that is essentially

based on a result known as “convexity lemma” in the literature (see e.g. [54, Lemma 7.75]) by
which point-wise convergence of convex functions, of a finite number of variables, implies
uniform convergence in compact subsets. Since the argument here is general, we leave out a
detailed discussion and refer to [86, Lemma A.5].
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E.3. Proof of Theorem 4.2(b) In Proposition 6.8 we gave a characterization of
○○
ARnl. We

first provide an alternative characterization in terms of the equivalent model of (E.2).
Recall the key quantity a from Proposition 6.8, given by

a2 = τ2 + ∥1
2
W Tθ −β∥

2

ℓ2

+ (1
4
− 1

2π
)∥θ∥2ℓ2 .(E.46)

We claim that a2 = σ2 + ∥Σ1/2(θ − θ0)∥
2

ℓ2
. To see this, we expand this expression as follows:

σ2 + ∥Σ1/2(θ − θ0)∥
2

ℓ2
= σ2 + ⟨θ,Σθ⟩ + ⟨θ0,Σθ0⟩ − 2⟨θ0,Σθ⟩

= σ2 +µ21 ∥W Tθ∥2
ℓ2
+µ22 ∥θ∥

2
ℓ2
+µ21βTW TΣ−1Wβ − 2µ1⟨W ,β,θ⟩

= σ2 + ∥µ1W Tθ −β∥2
ℓ2
− ∥β∥2ℓ2 +µ

2
2 ∥θ∥

2
ℓ2
+µ21βTW TΣ−1Wβ

= τ2 + ∥µ1W Tθ −β∥2
ℓ2
+µ22 ∥θ∥

2
ℓ2
,

where we used the definition of Σ, θ0 and σ2 as per (E.2). The claim follows by recalling that

for the shifted Relu activation, µ1 = 1
2 and µ2 =

√
1
4 −

1
2π .

By the above characterization of quantity a we obtain

a2 = σ2 + ∥Σ1/2(θ − θ0)∥
2

ℓ2
.(E.47)

We next note that by definition of the variables in the AO problem, we have z =Σ1/2(θ − θ0)
and α = ∥z∥ℓ2 . Therefore,

lim
n→∞
∥Σ1/2(θ − θ0)∥ℓ2 =α∗ .

Invoking the limit of σ2 given by (E.28), we get

lim
n→∞

a2 = τ2 + 1−ψ1 (1+ (1−
2

π
)S( 2

π
− 1)) +α2

∗ .(E.48)

We next characterize limn→∞ ∥Jθ∥ℓ2 . We will use the same AO problem to calculate this
quantity.

Recall that ẑ = Σ1/2(θ̂∗nl − θ0) satisfies the following relation with q∗ the optimizer
in (E.13):

q∗ = argmax
q

qTẑ − ℓ̃(v;q) ,

where ℓ̃(v;q) is the convex conjugate of ℓ̄(v;z). Since conjugate of a conjugate function is
the function itself we then have

ẑ = argmax
z

qT∗ z − ℓ̄(v;z)

= argmax
z

qT∗ z −
1

2n
∥v∥2ℓ2 −

ε

n
∥v∥ℓ1 ∥J(θ0 +Σ

−1/2z)∥
ℓ2
− ε

2

2
∥J(θ0 +Σ−1/2z)∥

2

ℓ2
.

(E.49)

We consider two cases:
Case 1: ∥J(θ0 +Σ−1/2ẑ)∥ℓ2 ≠ 0. Setting derivative with respect to ẑ to zero we obtain

q∗ −
ε

n
∥v∥ℓ1

Σ−1/2J2(θ0 +Σ−1/2ẑ)
∥J(θ0 +Σ−1/2ẑ)∥ℓ2

− ε2Σ−1/2J2(θ0 +Σ−1/2ẑ) = 0 .
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By rearranging the terms we write it as

J(θ0 +Σ−1/2ẑ) =
⎛
⎝
ε

n

∥v∥ℓ1
∥J(θ0 +Σ−1/2ẑ)∥ℓ2

+ ε2
⎞
⎠

−1

J−1Σ1/2q∗ .

By taking the ℓ2 norm of both sides and then solving for ∥J(θ0 +Σ−1/2ẑ)∥ℓ2 , we get

∥J(θ0 +Σ−1/2ẑ)∥ℓ2 =
1

ε2
∥J−1Σ1/2q∗∥ℓ2 −

1

nε
∥v∥ℓ1 .(E.50)

Case 2: ∥J(θ0 +Σ−1/2ẑ)∥ℓ2 = 0. In this case, ẑ = −Σ1/2θ0 and by comparing the objective
function of (E.49) at the optimal solution under case 1 and case 2, it is easy to verify that case
2 happens only when the right-hand side in (E.50) becomes negative. Therefore, the two cases
can be combined together in the following form:

⟨θ̂∗nl,J2θ̂∗nl⟩ = ∥J(θ0 +Σ−1/2ẑ)∥
2

ℓ2
= ( 1

ε2
∥J−1Σ1/2q∗∥ℓ2 −

1

nε
∥v∥ℓ1)

2

+
.(E.51)

So in order to get the asymptotic value of the left hand side we can work with the right-hand
side with v and γ = ∥J−1Σ1/2q∗∥ℓ2 the optimal solutions of the AO problem.

In Lemma E.4 (which is a restatement of [46, Lemma 6.3]), the Moreau envelop function
ef(x, ρ) was characterized. Following the proof of [46, Lemma 6.3], we can verify that the
optimal v is given by

v = 1

1+ τg
β

ST(w −αg;ν) .

Therefore, by invoking the relation (E.44) we have

lim
n→∞

1

n2
(n
ε
γ − ∥v∥ℓ1)

2

+
= ω2

(ρ+ 1)2
⎛
⎝
γ(ρ+ 1)
εω

+ ν∗ ⋅ erfc(
1√
2
ν∗)−

√
2

π
e−ν

2
∗

⎞
⎠

2

+

,

with ω =
√
α2 + σ2, ρ = τgβ , ν∗ = ν∗(γ(ρ+1)εω , ρ) and ν∗(a,µ) the unique solution to the follow-

ing equation:

a− 1

ρ
ν − ν ⋅ erf ( ν√

2
)−
√

2

π
e−

ν2

2 = 0 .

Plugging the above relation into (E.51) we obtain

lim
n→∞
⟨θ̂∗nl,J2θ̂∗nl⟩ = lim

n→∞
( 1
ε2
γ − 1

nε
∥v∥ℓ1)

2

+

= 1

ε2n2
lim
n→∞
(n
ε
γ − ∥v∥ℓ1)

2

+

= ω2

ε2(ρ+ 1)2
⎛
⎝
γ(ρ+ 1)
εω

+ ν∗ ⋅ erfc(
1√
2
ν∗)−

√
2

π
e−ν

2
∗

⎞
⎠

2

+

= ω2

ε2(ρ+ 1)2 (
γ(ρ+ 1)
εω

+ ρ+ 1
ρ

ν∗ −
γ(ρ+ 1)
εω

)
2

+

= ω2

ε2(ρ+ 1)2 (
1+ ρ
ρ

ν∗)
2

+
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= ω
2ν2∗
ε2ρ2

= (α
2
∗ + σ2)ν2∗
ε2ρ2

= β
2ν2∗(α2

∗ + σ2)
ε2τ2g

.(E.52)

Now by recalling the characterization (6.20) along with (E.52) and (E.47) we get the desired
result of (4.6).

E.4. Proof of Proposition 5.1 Recall the objective R(α,τg,β,γ, τq). We start by consid-
ering the change of variable γ̃ = γ/ε. Note that the term −λ/(1−λ)γ2 = −λ/(1−λ)ε2γ̃2 will
be dropped as it is zero. We next argue that ν∗ = 0. The reason is that if the indicator in the
objective is inactive then the corresponding term is void, which is equivalent to ν∗ = 0. If the

indicator is active, since the problem is maximization over γ, we deduce that γ(τg+β)
εβ
√
α2+σ2

=
√

2
π ,

which by the equation defining ν∗ implies that ν∗ = 0. Next, by straightforward calculation,
and using definition of Stieltjes transform S, we have that the expression inside sup0≤λ<1
is increasing in λ and so we have that the optimal λ→ 1. Using these values, the objective
reduces to

R(α,τg,β, τq) =
τq

2α
(τ2 + 1− σ2) − ατq

2
+ βτg

2
ψ2 +

β

2(τg + β)
(σ2 +α2)

− ψ1

2
{τq
α
+ α
τq
β2 + τq

α
(1− 2

π
)S( 2

π
− 1;ψ1)} .

Using the definition

σ2 = τ2 + 1−ψ1(1+ (1−
2

π
)S( 2

π
− 1;ψ1)),

we can further simplify the objective as

R(α,τg,β, τq) = −
ψ1

2

β2α

τq
− ατq

2
+ βτg

2
ψ2 +

β

2(τg + β)
(σ2 +α2) .

Optimization over τq can be done easily resulting in τq = β
√
ψ1, which gives

R(α,τg,β) = −αβ
√
ψ1 +

βτg

2
ψ2 +

β

2(τg + β)
(σ2 +α2) .

Writing the stationary condition for α,τg,β we arrive at the following system of equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

τg + β
=
√
ψ1,

ψ2 =
σ2 +α2

(τg + β)2
,

−α
√
ψ1 +

τgψ2

2
+ τg

2

σ2 +α2

(τg + β)2
= 0 .

(E.53)

Solving the above system of equations we obtain α2 = σ2ψ1/(ψ2 −ψ1). Recalling that ν∗,
using Theorem 4.2 (b) we get the standard risk of the estimator to be

SR(θ̂) =α2
∗ +σ2 = σ2(

ψ2

ψ2 −ψ1
).
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E.5. Proofs of the Auxiliary Lemmas

E.5.1. Proof of Lemma E.1 We start by considering the following related but different
function

ℓ0(v;z) =
1

2n

n

∑
i=1
(∣vi∣ + ε∥z∥ℓ2 )

2

.

As shown in the proof of Lemma 6.1 in [46], the conjugate of this function is given by

ℓ∗0(v;q) =
1

2
(
∥q∥ℓ2
ε
−
∥v∥ℓ1
n
)
2

+
− 1

2n
∥v∥2ℓ2 .

Note that ℓ̄(v;z) = ℓ0(v;J(θ0 +Σ−1/2z)). We next use the result that if f(x) = g(Ax+x0)
then the conjugate of f can be written in terms of the conjugate of g as follows:

f∗(y) = −⟨A−1x0,y⟩ + g∗(A−Ty) .

Using this result with x0 =Jθ0 and A =JΣ−1/2 we obtain

ℓ̃(v;q) = −⟨Σ1/2θ0,q⟩ +
1

2
(1
ε
∥J−1Σ1/2q∥

ℓ2
−
∥v∥ℓ1
n
)
2

+
− 1

2n
∥v∥2ℓ2

E.5.2. Proof of Lemma E.2 Consider a slightly different optimization than (E.15) where
the equality constraint is replaced by the inequality constraint ∥q̃∥ℓ2 ≤ γ:

min
q̃,0≤γ

c0
2
∥Hq̃ − r∥2ℓ2 +

1

2
(1
ε
γ − c1)

2

+
(E.54)

s.t. ∥q̃∥ℓ2 ≤ γ .

Due to this change, (E.54) is now a convex optimization. Denote by OPT1 the optimal
objective value of the original problem (E.15) and by OPT2 the optimal objective value of
the modified problem (E.54). We argue that OPT1 =OPT2. Clearly OPT1 ≥OPT2 because
(E.54) has a larger feasible set. Now suppose that this inequality is strict (OPT1 >OPT2)
and let (q̃∗, γ∗) be a solution to (E.54). Then we should have ∥q̃∗∥ℓ2 < γ∗. Consider the point
(q̃∗,∥q̃∗∥ℓ2) which is a feasible point for both optimization problems and so the objective
value at this point is at least OPT1 and therefore strictly larger than OPT2. But this is a

contradiction because (1εγ − c1)
2

+
is non-decreasing in γ ≥ 0.

To characterize OPT2, we first focus on the minimization over q̃. The corresponding
Lagrangian with Lagrange multiplier λc0

2 reads

sup
λ≥0

min
q̃

c0
2
∥Hq̃ − r∥2ℓ2 −

λc0
2
(γ2 − ∥q̃∥2ℓ2) .

Solving the inner minimization, we have q̃∗ = (HTH + λI)−1HTr and the dual problem
becomes

sup
λ≥0

c0
2
∥Hq̃∗ − r∥2ℓ2 −

λc0
2
(γ2 − ∥q̃∗∥2ℓ2)

= sup
λ≥0

c0
2
q̃T∗ [HT(Hq̃∗ − r) +λq̃∗] −

c0
2
rT(Hq̃∗ − r) −

λc0
2
γ2

= sup
λ≥0
−c0
2
rT(Hq̃∗ − r) −

λc0
2
γ2
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= sup
λ≥0
−c0
2
rT(H(HTH +λI)−1HT − I)r − λc0

2
γ2

= sup
λ≥0

λc0
2

rT(c0HTH +λI)−1r − λc0
2
γ2

= c0Q(H,r, γ) .(E.55)

By the Slater’s condition the duality gap is zero and hence by next minimizing over γ ≥ 0, we
obtain that the optimal value of (E.54) is given by

min
γ≥0

c0Q(H,r, γ) + 1

2
(1
ε
γ − c1)

2

+
.

E.5.3. Proof of Lemma E.3 We first show that the function

g(γ,β) =Q(Σ−1/2J , 1
α
Σ1/2θ0 −

β√
d
h, γ)

is jointly convex in (γ,β). By the change of variable λ̃ = λγ, θ̃ =Σ1/2θ0/α, H =Σ−1/2J ,
this function can be written as

g(γ,β) = sup
λ̃≥0

λ̃

2γ
((θ̃ − β√

d
h)T(HHT + λ̃

γ
I)−1(θ̃ − β√

d
h) − γ2)

= sup
λ̃≥0

λ̃

2
((θ̃ − β√

d
h)T(γHHT + λ̃I)−1(θ̃ − β√

d
h) − γ) .

We show that for any fixed λ̃ ≥ 0 the inner function above is jointly convex in (γ,β) and since
the pointwise maximum of convex functions is also convex, we conclude that g(γ,β) is jointly
convex in (γ,β).

The Hessian of the inner function reads

1

2
∇2

β
√

d
,γ
[(θ̃ − β√

d
h)T(γHHT + λ̃I)−1(θ̃ − β√

d
h) − γ] = [A C

C B
] ,

where

A ∶=hT(γHHT + λ̃I)−1h

B ∶= ∥(γHHT + λ̃I)−1/2HHT(γHHT + λ̃I)−1(θ̃ − β√
d
h)∥

2

ℓ2

C ∶=hT(γHHT + λ̃I)−1HHT(γHHT + λ̃I)−1(θ̃ − β√
d
h) .

Here we repeatedly used the identity ∂K−1

∂γ = −K
−1 ∂K

∂γ K
−1, for a matrix K .

To lighten the notation, we set M ∶= (γHHT + λ̃I)−1 and v ∶= θ̃ − β√
d
h. Using these

shorthands the determinant of the Hessian is equal to

∥M1/2h∥
2

ℓ2
∥M1/2HHTMv∥

2

ℓ2
− (hTMHHTMv)2 ≥ 0,

using the Cauchy–Schwarz inequality. This completes the proof of g(γ,β) being jointly
convex in (γ,β).
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Next note that its perspective function is given by

τqg(γ/τq,β/τq) = τqQ(Σ−1/2J ,
1

α
Σ1/2θ0 −

β

τq
√
d
h,

γ

τq
)

= 1

τq
Q(Σ−1/2J , τq

α
Σ1/2θ0 −

β√
d
h, γ),

and therefore is jointly convex in (γ,β, τq).

E.5.4. Proof of Lemma E.6 As we discussed after (E.24), the objective function in (E.24)
is jointly convex in (α,τg) and jointly concave in (β,γ, τq). Since convexity/concavity is
preserved by point-wise limits, the objective (E.45) is jointly convex in (α,τg) and jointly
concave in (β,γ, τq). To prove strict convexity in (α,τg), note that in our derivation we
wrote (E.19) (the part of the objective E.18 that involves v) in terms of the Moreau envelope
1
nef (w −αg;

τg
β ), cf. (E.21). As d→∞, its limit goes to the expected Moreau envelope. By

using the result of [86, Lemma 4.4] the expected Moreau envelope of a function is strictly
convex in R>0×R>0 without requiring any strong or strict convexity assumption on the function
itself. Therefore, the objective (E.24) (and so objective of (E.45) after taking point-wise limit)
is jointly strictly convex in (α,τg).

To prove the uniqueness, note that max0≤β,γ,τqR(α,τg,β,γ, τq) is strictly convex
in (α,τg). This follows from the fact that if f(x,y) is strictly convex in x, then
maxy f(x,y) is also strictly convex in x. We next use [86, Lemma C.5] to conclude that
minτg>0max0≤β,γ,τqR(α,τg,β,γ, τq) is strictly convex in α ≥ 0.Therefore, its minimizer over
α ≥ 0 is unique. By a similar argument, we show that τg∗β∗ is unique. Consider the change of
variable τg → τ̃g = τgβ . Then part of the objective (E.24) that depends on τ̃g can be written as

β2τ̃g

2

n

d
+ 1

2(τ̃g + 1)
1

n
∥w −αg∥2ℓ2 +

1

n
Gn(w −αg; τ̃g, γ,ν) =

β2τ̃g

2

n

d
+ 1

n
ef (w −αg; τ̃g) ,

using (E.19). As explained above, this converges to the expected Moreau envelope, which
is strictly convex in τ̃g . Following by the same reasoning for α, one can show that
minα>0max0≤β,γ,τqR(α, τ̃g,β,γ, τq) is strictly convex in τ̃g > 0.Therefore, its minimizer
over τ̃g > 0 is unique.

APPENDIX F: SOME USEFUL LEMMAS

Here we state some of the technical lemmas that are used in deriving our analytical results.
The first lemma is about the Stieltjes transform of the Marchenko-Pastur distribution.

Definition F.1 The Stieltjes transform Sρ(z) of a measure of density ρ on a real interval I is
the function of the complex variable z defined outside I by the formula

Sρ(z) = ∫
I

ρ(t)dt
z − t z ∈C/I .

Lemma F.2 Suppose that W ∈ RN×d has rows drawn independently from unit sphere. As
N,d→∞ and N/d→ ψ1, the spectral density of WW T converges (in weak topology in
distribution) to the Marchenko-Pastur distribution with Stieltjes transform given by

S(z;ψ1) =
1−ψ1 − z −

√
(1−ψ1 − z)2 − 4ψ1z

−2ψ1z
,

for z < 0.
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Proof We refer to [2, page 52] for the proof of this proposition.

The next lemma is about the spectrum of matrix J given by

J = (WW T)⊙ (π − cos
−1(WW T)
2π

))
1/2

.(F.1)

Lemma F.3 Suppose that W ∈RN×d has rows chosen randomly and independently of data
form the unit sphere, Unif(Sd−1). Let J be given by (F.1) and suppose thatN/d→ψ1 ∈ (0,∞),
as n→∞. Then, the matrix J2 can (in probability) be approximated consistently in operator
norm by the matrix K given by

K = 1
4
(WW T + I).

In other words, ∥J2 −K∥→ 0, in probability, when n→∞.

Proof The claim follows from the result of [26, Theorem 2.1] about the spectrum of inner
product kernel random matrices, specialized to matrix J2. Specifically, let f(z) = z(π −
cos−1(z))/(2π). Then J2

ij = f(wT
i wj). By employing [26, Theorem 2.1], the kernel matrix

J2 can (in probability) be approximated consistently in operator norm by the matrix K , given
by

K = f(0)11T + f ′(0)WW T + (f(1) − f(0) − f ′(0))I .

For our specific f we have f(0) = 0, f(1) = 1/2, f ′(0) = 1/4.
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