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A quasi steady-state model (QSM) for accurately predicting the detailed diffusion-
dominated dissolution process of polydisperse spheroidal (prolate, oblate, and spherical) 

particle systems was presented Part I of this study. In the present paper, the dissolution 

characteristics of typical polydisperse spheroidal particle systems have been extensively 

investigated. The effects of the distributions of particle size and shape have been studied 

by examining the detailed dissolution processes, such as the size reduction rates of 

individual particles, the increase in bulk concentration, and the dissolution time of the 

polydisperse systems. Some important factors controlling the dissolution process, 

including initial particle concentration, smallest and largest particle sizes, and the smallest 

and largest Taylor shape parameters, have been identified.  

 

1. Introduction 

The modeling and characterization of dissolution processes in polydisperse particle systems are of great 

importance to many scientific and industrial applications, such as drug delivery [1], metal ore heap leaching 

[2], renewable biomass energy [3], and dissolvable microrobots [4]. A full understanding of the dissolution 

kinetics is vital to uncovering the underlying physical and chemical mechanism involved [5]. 

The dissolution process relies on both molecular diffusion and the hydrodynamics around the particle. 

In many applications, such as drug dissolution in the gastrointestinal tract, the particle sizes range from a 

few microns to hundreds of microns [6,7]. For such small particles, hydrodynamic effect is relatively weak 

and molecular diffusion plays a dominant role in mass transfer [8]. To date, a large number of diffusion-

dominated dissolution models have been developed and widely applied in various areas [9-19]. These 

models typically incorporate a parameter known as diffusion layer thickness, which is based on the 

recognition that a layer of high concentration fluid exists adjacent to the particle surface [9,14]. These 

models have been shown to accurately predict the entire dissolution process of spherical particles, but they 

are generally empirical or semi-empirical, lacking rigorous mathematical proof, and having limited 

applicability. In nature and practical applications, more than 70% of solid particles are not regularly 

spherical, and have a wide range of aspect ratio from O(0.1) to O(10) [20, 21]. Morphology has been 

identified as a key factor influencing the dissolution process [1, 20, 21]. Nevertheless, most existing models 

cannot appropriately handle the non-spherical particles. They usually apply a spherical-particle-based 

model and introduce a shape factor as an empirical correction, devoid of rigorous mathematical 

substantiation[22, 23]. These major modeling limitations have hindered the accurate prediction on the 

polydisperse dissolution of non-spherical particles and, consequently, a comprehensive understanding of 

the underlying dissolution mechanisms remains elusive. 
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Understanding the dissolution process of spheroidal particles, including prolate, oblate, and spherical 

shapes, is a significant stride in revealing the dissolution mechanisms of non-spherical particles. Wang et 

al. [24] extended the Quasi-Steady-State Model (QSM) for spherical particles to include prolate and oblate 

spheroidal particles, employing analytical solutions to the steady-state diffusion equation in spheroidal 

coordinate systems. This extension enables the examination of detailed dissolution characteristics, 

including the molar flux of dissolved substances and the regression rate of the particle surface, based on the 

spatial distribution of molar concentration in the surrounding fluid. This model of a single spheroidal 

particle establishes the crucial foundation for subsequent polydisperse dissolution models. 

In Part I of this study [25], we integrated a rigorous mathematically-based QSM model for diffusion-

dominated dissolution of single spheroidal (prolate, oblate, or spherical) particles into the well-established 

framework of polydisperse dissolution models, and developed a mathematical model that can accurately 

predict the detailed dissolution process in systems of spheroidal particles with a broad particle size and 

aspect ratio distributions. Verification against experimental results shows that this model can accurately 

predict the increase in bulk concentration of polydisperse systems with various particle sizes and shape 

parameters. In Part II, we leverage this model to systematically investigate the dissolution of polydisperse 

systems, aiming to identify the effects of particle size and shape distribution, as well as the initial particle 

concentration, on detailed dissolution processes such as individual particle size reduction, bulk 

concentration increase, and overall dissolution time of the entire polydisperse systems. 

 

2. Research design 

To identify the dissolution physics, we use the parameters of a commonly-used drug for hypertension, 

felodipine. The molar volume of felodipine is 𝑣𝑚 = 265 cm3/mol. The solubility of felodipine in water is 

𝐶𝑠𝑜𝑙 = 0.89 μM, which is also the saturation concentration (𝐶𝑠). The diffusion coefficient of felodipine is 

𝐷𝑚 = 6.7 × 10−6 cm2/s [26].  

In this study, we consider a polydisperse system with continuous distributions of size and aspect ratio 

of spheroidal particles. In fields such as pharmacology and crystallography, the log-normal distribution has 

been used for a long time to describe the size distribution of particles; the particle distribution is described 

as a normal or Gaussian function on a logarithm scale of particle size [27, 28]. The volumetric probability 

distribution function (PDF) of particle size with respect to the logarithm of equivalent spherical particle 

radius is defined as, 

𝑃𝑙𝑜𝑔𝑅
𝑣 (𝑙𝑜𝑔𝑅, 𝑡)𝛿(𝑙𝑜𝑔𝑅) =

𝛿(𝑉𝑝(𝑡))
𝑙𝑜𝑔𝑅→𝑙𝑜𝑔𝑅+𝛿(𝑙𝑜𝑔𝑅)

𝑉𝑝(𝑡)
    (1) 

and  

∫ 𝑃𝑙𝑜𝑔𝑅
𝑣 (𝑙𝑜𝑔𝑅, 𝑡)𝑑(𝑙𝑜𝑔𝑅)

𝑙𝑜𝑔𝑅𝑚𝑎𝑥

𝑙𝑜𝑔𝑅𝑚𝑖𝑛
= 1      (2) 

where 𝑃𝑙𝑜𝑔𝑅
𝑣 (𝑡) is the volumetric PDF of particle size at time 𝑡, 𝛿(𝑉𝑝(𝑡))

𝑙𝑜𝑔𝑅→𝑙𝑜𝑔𝑅+𝛿(𝑙𝑜𝑔𝑅)
 is the particle 

volume in the range from 𝑙𝑜𝑔𝑅 to 𝑙𝑜𝑔𝑅 + 𝛿(𝑙𝑜𝑔𝑅), 𝑉𝑝(𝑡) is the total particle volume, and 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 

are the minimum and maximum particle radius, respectively. The log-normal form of the volumetric PDF 

of particle size with respect to 𝑙𝑜𝑔𝑅 at 𝑡 = 0 is given as,  

𝑃𝑙𝑜𝑔𝑅,0
𝑣 (𝑙𝑜𝑔𝑅) =

1

√2𝜋𝜎2
𝑒𝑥𝑝 [−

(𝑙𝑜𝑔𝑅−𝑙𝑜𝑔𝑅∗)2

2𝜎2 ]     (3) 
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where 𝜎 is the standard deviation of the distribution, and 𝑅∗ is the particle radius at which the maximum 

𝑃𝑙𝑜𝑔𝑅,0
𝑣  is reached. Based on 𝑅∗, we define a dissolution time scale, 𝜏𝑑𝑖𝑠𝑠, which is the time scale required 

for a spherical particle with radius 𝑅∗ to fully dissolve at zero bulk concentration, 

𝜏𝑑𝑖𝑠𝑠 =
𝑅∗2

2𝑣𝑚𝐶𝑠𝐷𝑚
         (4) 

𝜏𝑑𝑖𝑠𝑠 will be used to normalize time 𝑡 in the following analysis.  

In this study, we consider a narrow distribution with 𝜎2 = 0.02 and a wide distribution with 𝜎2 = 0.18. 

Two initial distributions start at a minimum particle radius and end at a maximum radius. The minimum 

and maximum particle sizes are selected so as to make 

(𝑃𝑙𝑜𝑔𝑅,0
𝑣 )

𝑅=𝑅0,𝑚𝑖𝑛
(𝑃𝑙𝑜𝑔𝑅,0

𝑣 )
𝑅=𝑅∗⁄ = (𝑃𝑙𝑜𝑔𝑅,0

𝑣 )
𝑅=𝑅0,𝑚𝑎𝑥

(𝑃𝑙𝑜𝑔𝑅,0
𝑣 )

𝑅=𝑅∗⁄ = 0.01 (5) 

Here 𝑅0,𝑚𝑖𝑛  and 𝑅0,𝑚𝑎𝑥  are the minimum and maximum particle radii at 𝑡 = 0, respectively. It can be 

calculated that for the narrow distribution, 

(𝑅0,𝑚𝑖𝑛 𝑅∗⁄ )
𝑛𝑎𝑟𝑟𝑜𝑤

= 0.65 and (𝑅0,𝑚𝑎𝑥 𝑅∗⁄ )
𝑛𝑎𝑟𝑟𝑜𝑤

= 1.54  (6) 

and for the wide distribution, 

 (𝑅0,𝑚𝑖𝑛 𝑅∗⁄ )
𝑤𝑖𝑑𝑒

= 0.28 and (𝑅0,𝑚𝑎𝑥 𝑅∗⁄ )
𝑤𝑖𝑑𝑒

= 3.62  (7) 

The distribution is symmetric about 𝑙𝑜𝑔𝑅∗ . Figure 1 

shows the initial profile of 𝑃𝑙𝑜𝑔𝑅,0
𝑣  of the narrow and 

wide distributions that will be investigated in this study. 

Obviously, the particle sizes in the narrow distribution 

are more uniform than in the wide distribution. Thus, the 

dissolution characteristics of the narrow distribution are 

between those of the monodisperse and wide 

distribution.  

In the polydisperse system considered in this study, 

the aspect ratio of the spheroidal particles continuously 

ranges from 1/10 for prolate particles to 10 for oblate 

particles in the initial distribution of 𝛬 . The Taylor 

deformation parameter, 𝐷, is used instead of 𝛬 to define 

the PDF. The relationship between 𝐷 and 𝛬 is, 

𝐷 =
𝛬−1

𝛬+1
         (8) 

When 𝛬 = 1/10, 𝐷 = −9/11, and when 𝛬 = 10, 𝐷 = 9/11. For spherical particles, 𝐷 = 0. The width of 

the range of 𝐷 of prolate particles (𝐷 < 0) is equal to that of oblate particles (𝐷 > 0).  

The volumetric PDF in the space of 𝑙𝑜𝑔𝑅 and 𝐷, which is denoted by 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 (𝑙𝑜𝑔𝑅, 𝐷, 𝑡), is defined 

as,  

𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 (𝑙𝑜𝑔𝑅, 𝐷, 𝑡)𝛿(𝑙𝑜𝑔𝑅)𝛿𝐷 =

𝛿(𝑉𝑝(𝑡))
𝑙𝑜𝑔𝑅→𝑙𝑜𝑔𝑅+𝛿(𝑙𝑜𝑔𝑅),𝐷→𝐷+𝛿𝐷

𝑉𝑝(𝑡)
   (9) 

Figure 1. Initial narrow and wide particle 

size distributions considered in this study. 
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where 𝛿(𝑉𝑝(𝑡))
𝑙𝑜𝑔𝑅→𝑙𝑜𝑔𝑅+𝛿(𝑙𝑜𝑔𝑅),𝐷→𝐷+𝛿𝐷

 is the particle volume in the range from 𝑙𝑜𝑔𝑅  to 𝑙𝑜𝑔𝑅 +

𝛿(𝑙𝑜𝑔𝑅) and from 𝐷 to 𝐷 + 𝛿𝐷, 𝐷𝑚𝑎𝑥 = 9/11 and 𝐷𝑚𝑖𝑛 = −9/11. Based on the definition, we have the 

following relationship, 

∫ 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 (𝑙𝑜𝑔𝑅, 𝐷, 𝑡)𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
= 𝑃𝑙𝑜𝑔𝑅

𝑣 (𝑙𝑜𝑔𝑅, 𝑡)     (10) 

To simplify the problem, we assume that at 𝑡 = 0, 𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣   is uniform over 𝐷 from 9/11 to 9/11 for 

any 𝑙𝑜𝑔𝑅, 

𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣 (𝑙𝑜𝑔𝑅, 𝐷) = 𝑃𝑙𝑜𝑔𝑅,0

𝑣 (𝑙𝑜𝑔𝑅)/(𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛)    (11) 

and 𝑃𝑙𝑜𝑔𝑅,0
𝑣 (𝑙𝑜𝑔𝑅) is described by a log-normal function given by Eqn. (3). 𝑃𝑙𝑜𝑔𝑅,𝐷,0

𝑣  is finally written as, 

𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣 (𝑙𝑜𝑔𝑅, 𝐷) =

1

√2𝜋𝜎2
𝑒𝑥𝑝 [−

(𝑙𝑜𝑔𝑅−𝑙𝑜𝑔𝑅∗)2

2𝜎2 ] /(𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛)  (12) 

For systems with a uniform particle size, the volumetric PDF with respect to Taylor shape parameter 

𝑃𝐷
𝑣(𝑡) is defined as,  

𝑃𝐷
𝑣(𝐷, 𝑡)𝛿𝐷 =

𝛿(𝑉𝑝(𝑡))
𝐷→𝐷+𝛿𝐷

𝑉𝑝(𝑡)
       (13) 

where 𝛿(𝑉𝑝(𝑡))
𝐷→𝐷+𝛿𝐷

 is the particle volume in the range from 𝐷 to 𝐷 + 𝛿𝐷. When 𝑡 = 0, 

𝑃𝐷,0
𝑣 (𝐷) =

1

(𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛)
        (14) 

For the details of the implementation of the polydisperse model, please see Wang et al. [25]. 

 

2.   Analysis of Dissolution Process 

(a) Effect of initial particle size distribution for a given shape factor 

In a polydisperse particle system, the size reduction rate and mass release rate of particles of different 

sizes and shapes are different, so the time variation of bulk concentration is different from that of the 

monodisperse system. We first examine the effect of particle size distribution on the polydisperse particle 

dissolution. In order to do this, we construct several polydisperse spheroidal particle systems, in which the 

particle size follows the narrow and wide distributions shown in Fig. 1. In each system, all the particles 

have the same shape, which is represented by the Taylor shape factor 𝐷. Three typical particle shapes with 

𝐷 = −9/11, 0 and 9/11 are selected, corresponding to a prolate, a spherical, and an oblate particle, 

respectively. The purpose is to find out the general effect of particle size distribution with different particle 

shapes. We use three representative initial particle concentrations, 𝐶𝑝,0/𝐶𝑠 = 0.1, 1, and 10, to study the 

detailed dissolution process under various conditions, corresponding to scenarios where particles 

completely dissolve, particles completely dissolve and the solution is saturated, and particles partially 

dissolve and the solution is saturated. 

We begin the analysis with three cases with Taylor shape factors 𝐷 = −9/11, 0, and 9/11, respectively, 

a narrow particle size distribution, and an initial particle concentration of 𝐶𝑝,0/𝐶𝑠 = 0.1. It is shown in Fig. 

S1 of supplementary materials that the particle sizes all decrease following a similar pattern. For the same 

initial size, the radius reduction rate, |𝑑(𝑅/𝑅∗)/𝑑(𝑡 𝜏𝑑𝑖𝑠𝑠⁄ )|, of non-spherical particles (𝐷 = −9/11 and 
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9/11) is larger than that of spherical particles (𝐷 =0). This has been discussed in Wang et al. [24]. For any 

given particle, the reduction rate, |𝑑(𝑅/𝑅∗)/𝑑(𝑡 𝜏𝑑𝑖𝑠𝑠⁄ )| , increases with decrease in (𝑅/𝑅∗) , and 

approaches infinity when (𝑅/𝑅∗) goes to 0. For the same particle shape, that is, the same 𝐷, the reduction 

rate of smaller particles is larger than that of larger particles at the same 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ . These two phenomena are 

related to the dependence of particle size reduction rate on particle radius. In a polydisperse system, the 

mass release rate at the particle surface for both spherical and non-spherical particles can be written in a 

unified form as, 

𝑁𝑆,𝑖
′ = −4𝜋𝑅2𝐷𝑚

(𝐶𝑠−𝐶𝑏)

𝛿𝑖(𝑡)
       (15) 

According to [24] and [29], 𝛿𝑖(𝑡) is linearly proportional to the equivalent spherical radius, with the 

proportional factor being a function of particle shape, 

𝛿𝑖(𝑡) = 𝑓(𝐷)𝑅         (16) 

where 𝑓(𝐷) is a function of the Taylor shape parameter of the particle. From the discussion in Wang et al. 

[24] it is known that 𝑓(𝐷) < 1 for spheroidal particles, and 𝑓(𝐷) increases with increase in 𝐷 when 𝐷 < 0 

and decreases with increase in 𝐷 when 𝐷 > 0. Substituting Eqns. (15) and (16) into the equation for particle 

radius reduction rate, Eqn. (14) in Part I [25], yields 

𝑑𝑅

𝑑𝑡
= −

𝐷𝑚(𝐶𝑠−𝐶𝑏)𝑣𝑚

𝑓(𝐷)𝑅
        (17) 

Therefore, for the same 𝐶𝑏, the magnitude of 𝑑𝑅/𝑑𝑡 is inversely proportional to 𝑅. For a given particle, the 

effect of increasing 𝐶𝑏 on |𝑑𝑅/𝑑𝑡| is overridden by the effect of decreasing 𝑅 when 𝐶𝑝,0/𝐶𝑠 = 0.1.  

The particle size reduction in a polydisperse system will lead to change in the volumetric PDF of 

particle size, that is, 𝑃𝑙𝑜𝑔𝑅
𝑣 (𝑡). In Fig. 2 we show the time evolution of the profiles of 𝑃𝑙𝑜𝑔𝑅

𝑣 (𝑡) against 𝑅 𝑅∗⁄  

for the cases of 𝐷 = −9/11 , 0 and 9/11 with a narrow initial distribution and an initial particle 

concentration 𝐶𝑝,0/𝐶𝑠 = 0.1. As the figure shows, the profiles of 𝑃𝑙𝑜𝑔𝑅
𝑣 (𝑡) of the three cases evolve in a 

similar pattern, yet with an obvious difference in the rate of evolution. Throughout the evolution all of the 

particles decrease continuously in size, which causes the profile to shift in the direction of small particle 

size. Since the size reduction rate |𝑑𝑅/𝑑𝑡| of the smaller particles is larger than that of larger particles, the 

profile gradually becomes wider, and the peak of the profile becomes lower. Due to the faster size reduction 

rate, smaller particles of the same volume lose volume faster than larger particles, which makes the peak of 

the profile move towards the largest particles. After some time, the peak reaches the largest particles and 

the largest particles acquire the maximum 𝑃𝑙𝑜𝑔𝑅
𝑣  in the profile. Since the smaller particles lose volume at a 

faster rate, the volume fraction of larger particles increases with time, and 𝑃𝑙𝑜𝑔𝑅
𝑣  of the largest particles 

increases as the particles decrease in size. Compared with spherical particles (𝐷 = 0), prolate and oblate 

particles (𝐷 = −9/11 and 9/11) of the same size dissolve faster, so the profiles of 𝑃𝑙𝑜𝑔𝑅
𝑣 (𝑡) evolve faster, 

as shown in the figure.  

Equations (15) - (17) suggest that a smaller particle has a larger size reduction rate than a larger particle 

in the same container. It is important, therefore, to consider the contribution of particles of different sizes 

to the overall increase of bulk concentration 𝐶𝑏. Hence, we define a PDF of mass release rate in terms of 

particle size for systems of particles with the same shape, 

𝑃𝑙𝑜𝑔𝑅
𝑁 (𝑡)𝛿(𝑙𝑜𝑔𝑅) =

𝛿(𝑁𝑆
′ )

𝑙𝑜𝑔𝑅→𝑙𝑜𝑔𝑅+𝛿(𝑙𝑜𝑔𝑅)

𝑁𝑆,𝑡𝑜𝑡
′ (𝑡)

     (18) 
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where 𝛿(𝑁𝑆
′)𝑙𝑜𝑔𝑅→𝑙𝑜𝑔𝑅+𝛿(𝑙𝑜𝑔𝑅) is the mass release rate from particles in the range from 𝑙𝑜𝑔𝑅 to 𝑙𝑜𝑔𝑅 +

𝛿(𝑙𝑜𝑔𝑅), and 𝑁𝑆,𝑡𝑜𝑡
′ (𝑡) is the total mass release rate from all particles in the system. It is shown in Fig. S2 

of supplementary materials that smaller particles have a larger 𝑃𝑙𝑜𝑔𝑅
𝑁  than larger particles of the same 𝑃𝑙𝑜𝑔𝑅

𝑣 . 

In a broader sense, an unweighted dissolution rate of particles of a certain size can be defined as the total 

dissolution rate of a reference volume of particles of this size, 

𝑀𝑆
′(𝑅) =

𝑉𝑟𝑒𝑓
4

3
𝜋𝑅3

𝑁𝑆,𝑖
′ = −

𝑉𝑟𝑒𝑓
4

3
𝜋𝑅3

4𝜋𝑅2𝐷𝑚
(𝐶𝑠−𝐶𝑏)

𝑓(𝐷)𝑅
= −3𝑉𝑟𝑒𝑓𝐷𝑚

(𝐶𝑠−𝐶𝑏)

𝑓(𝐷)𝑅2   (19) 

where 𝑉𝑟𝑒𝑓 is the reference volume, and 𝑁𝑆,𝑖
′  denotes the mass release rate of a single particle with a radius 

of 𝑅. Equation (19) suggests that in a polydisperse system, the smaller particles make a larger unweighted 

contribution to the total mass release rate. 

Compared with a narrow distribution, a wide distribution has a smaller minimum particle size and a 

larger maximum size. Differences in particle size mean some differences in the dissolution process. Here 

we consider three systems with particles of the same shape in each system. The Taylor shape parameters of 

the three systems are 𝐷 = −9/11, 0, and 9/11, respectively. The particle size distributions in these systems 

(a) (b) 

Figure 2. Evolution of particle size distribution (𝑃𝑙𝑜𝑔𝑅
𝑣 ) with a narrow initial distribution for a given 

aspect ratio for 𝐶𝑝,0/𝐶𝑠 = 0.1. (a) spherical (𝐷 = 0), (b) prolate (𝐷 = −9/11), and (c) (𝐷 = 9/11). The 

solid dots indicate the smallest and largest particles in each distribution. 

(c) 
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follow the wide distribution shown in Fig. 1. The initial concentration of solid particles is 𝐶𝑝,0/𝐶𝑠 = 0.1. It 

is shown in Fig. S3 of Supplementary Materials that the particles decrease in size in a pattern similar to that 

of the particles in a narrow distribution, shown in Fig. S1. The sizes of non-spherical (𝐷 = −9/11 and 9/11) 

particles decrease faster than those of spherical particles (𝐷 = 0), and smaller particles decrease in size 

faster than larger particles of the same shape.   

When the initial particle size distribution is changed from narrow to wide, the difference in particle size 

reduction rate between the smaller and larger particles is magnified, which leads to the differences in the 

evolution of volumetric PDF of particle size 𝑃𝑙𝑜𝑔𝑅
𝑣 . In Fig. 3 we plot the time evolution of the profiles of 

𝑃𝑙𝑜𝑔𝑅
𝑣 (𝑡) against 𝑅 𝑅∗⁄  for three cases of 𝐷 = −9/11, 0 and 9/11 with a wide initial distribution and an 

initial particle concentration 𝐶𝑝,0/𝐶𝑠 = 0.1. The profiles of three different 𝐷 of the wide distribution evolve 

in a similar pattern. Compared with the narrow distribution, the decrease in the minimum particle size and 

the increase in the maximum size in the initial distribution make the smaller particles dissolve at an even 

faster rate relative to the larger particles. As a result, the profile of 𝑃𝑙𝑜𝑔𝑅
𝑣  shifts as a whole towards the larger 

particle side in the initial period of time (𝑡 𝜏𝑑𝑖𝑠𝑠⁄ ≲ 6 for 𝐷 = 0). This trend is opposite that of the narrow 

distribution, in which the relatively uniform particle sizes make the profile of 𝑃𝑙𝑜𝑔𝑅
𝑣  shift toward the smaller 

particle side. Due to the larger size reduction rate of smaller particles, the peak of the profile moves toward 

the largest particles, which also decrease in size. At a certain moment, the peak reaches the largest particles 

and then moves to the smaller particle side with the particle size reduction. The change of 𝑃𝑙𝑜𝑔𝑅
𝑣  of the 

largest particles can be divided into stages. In the first stage, the faster size reduction rates of smaller 

Figure 3. Evolution of particle size distribution (𝑃𝑙𝑜𝑔𝑅
𝑣 ) with a wide initial distribution for a given aspect 

ratio for 𝐶𝑝,0/𝐶𝑠 = 0.1. (a) spherical (𝐷 = 0), (b) prolate (𝐷 = −9/11), and (c) (𝐷 = 9/11)  

(a) (b) 

(c) 
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particles significantly increase the volume fraction of larger particles, so (𝑃𝑙𝑜𝑔𝑅
𝑣 )𝑚𝑎𝑥 increases with time. 

After a critical time point (for example, 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ ≈ 14 𝑓𝑜𝑟 𝐷 = 0), the scale of 𝑙𝑜𝑔𝑅 is expanded as 

particle size approaches zero, which overrides the effect of increased volume fraction on 𝑃𝑙𝑜𝑔𝑅
𝑣 . As a result, 

(𝑃𝑙𝑜𝑔𝑅
𝑣 )𝑚𝑎𝑥  becomes decreasing with time. This phenomenon can also be observed in the dissolution 

process with a narrow initial distribution.  

It is shown in Fig. S4 of Supplementary Materials that smaller particles make a larger contribution to 

the increase in bulk concentration than larger particles of the same 𝑃𝑙𝑜𝑔𝑅
𝑣 , which is the same as that of a 

narrow distribution shown in Fig. S2.  

When 𝐶𝑝,0/𝐶𝑠 = 1, that is, when the solid particles have completely dissolved and the solution is 

saturated, the dissolution exhibits different characteristics than at 𝐶𝑝,0/𝐶𝑠 = 0.1. According to Eqns. (15) 

and (17), when the bulk concentration 𝐶𝑏 is close to 1, the mass release rate from the particle surface 𝑁𝑆,𝑖
′  

and the particle size reduction rate 𝑑𝑅/𝑑𝑡 are close to 0. This makes it take an infinite amount of time for 

the particles to completely dissolve, which is theoretically impossible to actually achieve. This is confirmed 

by the variation of particle sizes in systems of spherical particles for 𝐶𝑝,0/𝐶𝑠 = 1, shown in Fig. S5 of 

Supplementary Materials. For both narrow and wide initial distributions, smaller particles, such as those 

with 𝑅0 = 𝑅∗ and 𝑅0,𝑚𝑖𝑛, completely dissolve within a finite range of time, yet the complete dissolution of 

the largest particles cannot be achieved with a finite time. It has been shown in Figs. S1 and S3 that the 

dissolution process of non-spherical particles (𝐷 ≠ 0) is similar to that of spherical particles (𝐷 = 0), so 

we only discuss the cases of spherical particles here. The corresponding evolution of volumetric particle 

size distribution, 𝑃𝑙𝑜𝑔𝑅
𝑣 , are shown in Fig. 4. Since complete dissolution cannot be reached, we stopped the 

calculations when 𝐶𝑏/𝐶𝑠 = 0.99. That is, only 1% of the initial particle volume is left in the solution. 

Within this time range, the evolution of the profiles of 𝑃𝑙𝑜𝑔𝑅
𝑣  demonstrates similar characteristics to the 

initial period of the case of 𝐶𝑝,0/𝐶𝑠 = 0.1. For the narrow distribution, the profile shifts towards the small 

particle side as a whole, accompanied by a broadening of the distribution and a decrease in the peak. For 

the wide distribution, the profile shifts towards the large particle side as a whole, accompanied by an 

increase in the peak. These phenomena are caused by the difference in particle size reduction rate in the 

distribution.  

Figure 4. Evolution of particle size distribution (𝑃𝑙𝑜𝑔𝑅
𝑣 ) of spherical particles for 𝐶𝑝,0/𝐶𝑠 = 1. (a) Narrow, 

and (b) wide initial distributions. 

(a) (b) 
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When 𝐶𝑝,0/𝐶𝑠 = 10 , the fraction of solid particles exceeds that which is required to saturate the 

solution. 90% of the initial particle volume will be left at saturation. It is shown in Fig. S6 of Supplementary 

Materials that it takes an infinite amount of time to reach full saturation, so the calculations were stopped 

when 𝐶𝑏/𝐶𝑠 = 0.99. For both narrow and wide distributions, even the smallest particles do not completely 

dissolve. All particles asymptotically approach their respective final-state constant particle sizes. The 

corresponding evolution of volumetric particle size distribution, 𝑃𝑙𝑜𝑔𝑅
𝑣 , is shown in Fig. 5. For this high 

initial particle concentration, the profiles of 𝑃𝑙𝑜𝑔𝑅
𝑣  do not change very much from that of 𝑡 = 0. The trend 

of slight changes is similar to the cases of 𝐶𝑝,0/𝐶𝑠 = 1, which are analyzed above.  

The nonuniform dissolution of polydisperse collections of particles discussed above result in different 

patterns of increase in the bulk concentration 𝐶𝑏. Here we only consider the systems with a wide initial 

particle size distribution, because of the prominent features caused by non-uniform dissolution, and 

compare the increase in 𝐶𝑏 with those of monodisperse systems. In Fig. 6 we compare the variation of 𝐶𝑏 

with time (𝑡 𝜏𝑑𝑖𝑠𝑠⁄ ) between polydisperse and monodisperse systems for prolate (𝐷 = −9/11), spherical 

(𝐷 = 0), and oblate (𝐷 = 9/11) particles. In each system the Taylor shape parameters are the same for all 

particles. Three initial particle concentrations, 𝐶𝑝,0/𝐶𝑠 = 0.1, 1 and 10 are considered. The difference in 

the increase of 𝐶𝑏 among different particle shapes is discussed in Wang et al. [24]. Here we focus on the 

difference between polydisperse and monodisperse systems.  

For the cases of 𝐶𝑝,0/𝐶𝑠 = 0.1 and 1, all particles will completely dissolve, given sufficient time. 

Figures 6(b) and (c) therefore exhibits similar trends of increase in 𝐶𝑏 . In an initial short period, the 

nondimensional bulk concentrations 𝐶𝑏/𝐶𝑠  in polydisperse systems increase faster than those in 

monodisperse systems of the same particle shape (represented by Taylor shape parameter 𝐷). The reason 

is that the smaller particles in polydisperse systems have larger size reduction rates than particles in 

monodisperse systems, as shown in Eqn. (17). Under the condition of the same bulk concentration and the 

same volume of particles, the collection of smaller particles has a larger total mass release rate. This larger 

mass release rate of small particles makes the bulk concentration in polydisperse systems increase faster 

than in monodisperse systems. After the initial period, most of the small particles have dissolved, and the 

increase in 𝐶𝑏  is primarily dominated by the dissolution of larger particles. The larger particles in 

polydisperse systems have smaller size reduction rates than particles in monodisperse systems (Eqn. (17)). 

As discussed above, the larger particles have a smaller mass release rate, which makes the bulk 

concentration in polydisperse systems increase slower than in monodisperse systems. At the same time, the 

Figure 5. Evolution of particle size distribution (𝑃𝑙𝑜𝑔𝑅
𝑣 ) of spherical particles for 𝐶𝑝,0/𝐶𝑠 = 10. (a) 

Narrow, and (b) wide initial distributions. 

(a) (b) 
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time required to completely dissolve the particles or reach 𝐶𝑝,0/𝐶𝑠 = 0.99 is significantly increased, as 

shown in the figure. When 𝐶𝑝,0/𝐶𝑠 = 10, the fraction of particles far exceeds that which would saturate the 

solution. The dissolution of the smaller particles in the polydisperse systems is sufficient to saturate the 

solution, so the time required for polydisperse systems to reach 𝐶𝑝,0/𝐶𝑠 = 0.99 is shorter than the time for 

monodisperse systems of the same particle shape, as shown in Fig. 6(d). 

In addition to the bulk concentration 𝐶𝑏, the dissolution time of the systems is critical. Here we define 

the dissolution time (T) as the time required for all particles in a polydisperse system to completely dissolve 

when 𝐶𝑝,0 𝐶𝑠⁄ < 1, or the time it takes for the bulk concentration (𝐶𝑏 𝐶𝑠⁄ ) to reach 0.99 when 𝐶𝑝,0 𝐶𝑠⁄ ≥ 1. 

Figure 7 illustrates the normalized dissolution time 𝑇 𝜏𝑑𝑖𝑠𝑠⁄  versus initial particle concentration 𝐶𝑝,0 𝐶𝑠⁄  for 

both monodisperse and polydisperse systems with narrow and wide distributions in the range from 

𝐶𝑝,0 𝐶𝑠⁄ = 10−2 to 102. Within each system, all particles have the same Taylor shape parameter 𝐷. Three 

𝐷 are considered: 𝐷 = −9/11, 0, and 9/11, corresponding to prolate, spherical, and oblate particles. As 

shown in the figure, a singular point with 𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ≫ 1 exists at 𝐶𝑝,0 𝐶𝑠⁄ = 1. For every case, 𝑇 𝜏𝑑𝑖𝑠𝑠⁄  

monotonically increases with the increase in 𝐶𝑝,0 𝐶𝑠⁄  when 𝐶𝑝,0 𝐶𝑠⁄ < 1, and monotonically decreases with 

the increase in 𝐶𝑝,0 𝐶𝑠⁄  when 𝐶𝑝,0 𝐶𝑠⁄ > 1. According to the curve variation, four regimes of 𝐶𝑝,0 𝐶𝑠⁄  can 

be identified. In Regime I (𝐶𝑝,0 𝐶𝑠⁄ < 10−1), the initial particle concentration (𝐶𝑝,0 𝐶𝑠⁄ ) is small, which 

makes the bulk concentration (𝐶𝑏 𝐶𝑠⁄ ) also low throughout the dissolution process. The dissolution time is 

Figure 6 Variation of bulk concentration (𝐶𝑝,0/𝐶𝑠) with time (𝑡 𝜏𝑑𝑖𝑠𝑠⁄ ) between monodisperse and 

polydisperse models for prolate (𝐷 = −9/11), spherical (𝐷 = 0) and oblate (𝐷 = 9/11) particles. (a) 

Three initial particle concentrations, 𝐶𝑝,0/𝐶𝑠 = 0.1, 1 and 10, (b) 𝐶𝑝,0/𝐶𝑠 = 0.1, (c) 𝐶𝑝,0/𝐶𝑠 = 1, (d) 

𝐶𝑝,0/𝐶𝑠 = 10. The vertical lines indicate where the particles have completely dissolved or 𝐶𝑏/𝐶𝑠 = 0.99 

is reached. 

(a) (b) 

(d) (c) 
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close to that of the largest particles of a system in an infinitely-large medium, since the dissolution of the 

largest particles is the limiting factor in the dissolution time of a polydisperse system. For a monodisperse 

system with spherical particles (𝐷 = 0), it is 𝑇 𝜏𝑑𝑖𝑠𝑠⁄ = 1. In this regime 𝑙𝑜𝑔(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) is roughly constant 

for all cases. In Regime II (10−1 < 𝐶𝑝,0 𝐶𝑠⁄ ≤ 1), the effect of 𝐶𝑏 appears, which reduces the dissolution 

rate and increases the dissolution time. As a result, log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) increases with the increase in log(𝐶𝑝,0 𝐶𝑠⁄ ), 

and reaches its maximum at 𝐶𝑝,0 𝐶𝑠⁄ = 1. When 𝐶𝑝,0 𝐶𝑠⁄ > 1, the solution is saturated in the end and 

𝑙𝑜𝑔(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) decreases with the increase in log(𝐶𝑝,0 𝐶𝑠⁄ ), because of the increase in volume fraction of 

solid particles. In Regime III (1 ≤ 𝐶𝑝,0 𝐶𝑠⁄ ≤ 2), 𝐶𝑝,0 𝐶𝑠⁄  is close to 1 and some nonlinear features due to 

non-uniform particle sizes are exhibited, so the curves are not straight. In Regime IV (𝐶𝑝,0 𝐶𝑠⁄ > 2), the 

curves demonstrate some linear features and log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) changes roughly linearly with log(𝐶𝑝,0 𝐶𝑠⁄ ). All 

curves have roughly the same slope, which is expected to be determined by the initial particle size 

distribution, as well as material properties such as 𝑣𝑚𝐶𝑠. It should be pointed out that we only roughly 

divide the entire range of 𝐶𝑝,0 𝐶𝑠⁄  into four regimes based on the characteristics of curve variations. The 

locations of the boundaries between different regimes are not very strict and they should be adjusted 

according to the applications. 

For all cases, log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) of systems with spherical particles is larger than that of systems of non-

spherical particles for each log(𝐶𝑝,0 𝐶𝑠⁄ ) . Wang et al. [24] showed that, for monodisperse systems, 

log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) increases with increase in 𝐷 when 𝐷 < 0 (prolate particles), and log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) decreases with 

increase in 𝐷 when 𝐷 > 0 (oblate particles). This conclusion is also valid for polydisperse systems.  

The initial particle size distribution also plays a role in determining the dissolution time. When 

𝐶𝑝,0 𝐶𝑠⁄ < 1, the dissolution time 𝑇 𝜏𝑑𝑖𝑠𝑠⁄  of a polydisperse system is limited by the dissolution of the 

largest particles. Since (𝑅0,𝑚𝑎𝑥)
𝑤𝑖𝑑𝑒

> (𝑅0,𝑚𝑎𝑥)
𝑛𝑎𝑟𝑟𝑜𝑤

> (𝑅0,𝑚𝑎𝑥)
𝑚𝑜𝑛𝑜

, where (𝑅0,𝑚𝑎𝑥)
𝑤𝑖𝑑𝑒

, 

(𝑅0,𝑚𝑎𝑥)
𝑛𝑎𝑟𝑟𝑜𝑤

, and (𝑅0,𝑚𝑎𝑥)
𝑚𝑜𝑛𝑜

 are the largest equivalent spherical radii in systems with wide, narrow, 

and monodisperse distributions, respectively, we have (log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ))
𝑤𝑖𝑑𝑒

> (log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ))
𝑛𝑎𝑟𝑟𝑜𝑤

>

(log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ))
𝑚𝑜𝑛𝑜

 for the same 𝐷 at any given log(𝐶𝑝,0 𝐶𝑠⁄ ), as shown in the figure. When 𝐶𝑝,0 𝐶𝑠⁄  is 

slightly greater than 1, this relationship is still valid, because the largest particles still play an important 

role. However, further increase in 𝐶𝑝,0 𝐶𝑠⁄  changes the relationship. Since the smaller particles have larger 

size reduction rates, as shown by Eqn. (17), in the case of the same particle volume, the collection of smaller 

particles has a larger mass release rate, as shown by Eqn. (19). The increase in 𝐶𝑝,0 𝐶𝑠⁄  makes the volume 

of solid particles exceed that required to saturate the solution, thus reducing the volume fraction of larger 

particles dissolved into the solution. On the other hand, the increase in 𝐶𝑝,0 𝐶𝑠⁄  enhances the importance of 

the dissolution of smaller particles in the dissolution process. When 𝐶𝑝,0 𝐶𝑠⁄  is large enough, for example, 

Figure 7. Variation of 

dissolution time 

(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) with initial 

concentration of solid 

particles (𝐶𝑝,0/𝐶𝑠) for 

monodisperse and 

polydisperse particles 

with given aspect ratios.  
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𝐶𝑝,0 𝐶𝑠⁄ > 3 , the dissolution is primarily dominated by smaller particles in the systems. Since 

(𝑅0,𝑚𝑖𝑛)
𝑤𝑖𝑑𝑒

< (𝑅0,𝑚𝑖𝑛)
𝑛𝑎𝑟𝑟𝑜𝑤

< (𝑅0,𝑚𝑖𝑛)
𝑚𝑜𝑛𝑜

, where (𝑅0,𝑚𝑖𝑛)
𝑤𝑖𝑑𝑒

, (𝑅0,𝑚𝑖𝑛)
𝑛𝑎𝑟𝑟𝑜𝑤

, and 

(𝑅0,𝑚𝑖𝑛)
𝑚𝑜𝑛𝑜

,  are the smallest equivalent spherical radii in systems with  wide, narrow, and monodisperse 

distributions, respectively, (log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ))
𝑤𝑖𝑑𝑒

< (log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ))
𝑛𝑎𝑟𝑟𝑜𝑤

< (log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ))
𝑚𝑜𝑛𝑜

 for the 

same 𝐷 at any given log(𝐶𝑝,0 𝐶𝑠⁄ ), as shown in the figure. 

From the above analysis, it can be seen that the particle size distribution causes a very complex 

dependence of the dissolution time (𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) on the initial particle concentration 𝐶𝑝,0 𝐶𝑠⁄ . 

 

(b) Effect of Taylor shape parameter distribution with a same particle size 

To study the effect of the Taylor shape parameter of spheroidal particles, we examine the dissolution 

processes of several systems with the same initial equivalent spherical radius 𝑅0 = 𝑅∗ and a uniform initial 

volumetric PDF with respect to Taylor shape parameter, given by Eqn. (14). Here we consider three systems 

with initial particle concentrations 𝐶𝑝,0 𝐶𝑠⁄ = 0.1, 1, and 10.  

According to Eqn. (17), the particle size reduction rate, | 𝑑𝑅 𝑑𝑡⁄ |, decreases with increase in 𝐷 when 

𝐷 < 0, and increases with increase in 𝐷 when 𝐷 > 0, for a given 𝐶𝑏. Therefore, the equivalent spherical 

radius of non-spherical particles (𝐷 = −9/11 and 9/11) decreases faster than that of spherical particles 

(𝐷 = 0) for all 𝐶𝑝,0 𝐶𝑠⁄ , as shown in Fig. S7 of Supplementary Materials. When 𝐶𝑝,0 𝐶𝑠⁄ = 0.1, all particles 

completely dissolve. When 𝐶𝑝,0 𝐶𝑠⁄ = 10, no particle completely dissolves and the solution is saturated in 

the end. When 𝐶𝑝,0 𝐶𝑠⁄ = 1, the solution cannot be fully saturated within a finite range of time because of 

the decreased particle size reduction rate as 𝐶𝑏  approaches 𝐶𝑠 . Although most non-spherical particles 

completely dissolve, the spherical particles do not.  

The particles of different 𝐷  have different mass release and size reduction rates, and this causes 

different evolution of the PDFs of particle volume (𝑃𝐷
𝑣) and mass release rate (𝑃𝐷

𝑁) with respect to Taylor 

shape parameter 𝐷. For systems with particles of the same size, 𝑃𝐷
𝑁 is defined as, 

𝑃𝐷
𝑁(𝑡)𝛿𝐷 =

𝛿(𝑁𝑆
′ )

𝐷→𝐷+𝛿𝐷

𝑁𝑆,𝑡𝑜𝑡
′ (𝑡)

       (20) 

where 𝛿(𝑁𝑆
′)𝐷→𝐷+𝛿𝐷 is the mass release rate of particles in the range from 𝐷 to 𝐷 + 𝛿𝐷. Figure 8 shows 

the evolution of 𝑃𝐷
𝑣 and 𝑃𝐷

𝑁 for 𝐶𝑝,0 𝐶𝑠⁄ = 0.1, 1, and 10. For all initial particle concentrations, the evolution 

of 𝑃𝐷
𝑣 demonstrates a similar pattern. Because the particle size reduction rate increases with increase in |𝐷|, 

the initial horizontal straight line of 𝑃𝐷
𝑣 gradually decreases at both ends where |𝐷| is larger. At the same 

time, the middle area of the line where |𝐷| is small bulges upwards. With the faster size reduction and 

complete dissolution of particles of larger |𝐷|, the upward bulge becomes narrower and the peak gets higher, 

until all particles are completely dissolved or the solution is saturated. As shown in the figure, the evolution 

of 𝑃𝐷
𝑁 of different 𝐶𝑝,0 𝐶𝑠⁄  demonstrates a similar pattern. According to Wang et al. [24], particles of larger 

|𝐷| have higher mass release rates (for the same particle size and bulk concentration). Therefore 𝑃𝐷
𝑁 is 

higher at both ends of the profile where |𝐷| is larger at the beginning (𝑡 = 0), forming a concave shape. 

With the faster dissolution of particles of larger |𝐷|, the two ends of the profile fall and the middle rises, 

forming an upward bulge. As time goes on, the upward bulge becomes narrower and the peak rises. 

Comparison of the profiles of 𝑃𝐷
𝑣 and 𝑃𝐷

𝑁 shows that 𝑃𝐷
𝑁 has a wider profile, suggesting that the particles of 
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larger |𝐷| have a fraction of mass release rate (𝑃𝐷
𝑁) greater than their volume fraction (𝑃𝐷

𝑣). For systems of 

𝐶𝑝,0 𝐶𝑠⁄ = 10, the profiles of both 𝑃𝐷
𝑣 and 𝑃𝐷

𝑁 do not change obviously over time, but the evolution of the 

profiles presents the same trends as for 𝐶𝑝,0 𝐶𝑠⁄ = 0.1 and 1. 

In Fig. 9, we compare the increase in bulk concentration (𝐶𝑏/𝐶𝑠) of polydisperse collections of particles 

of the same size but with a distribution of Taylor shape parameter, with monodisperse collections of 

particles. Three shape parameters 𝐷 = −9/11, 0, and 9/11 are considered for the monodisperse collections. 

It is not surprising that for all 𝐶𝑝,0 𝐶𝑠⁄ , the bulk concentration of polydisperse particles is higher than that 

Figure 8. Evolution of particle size distribution (𝑃𝐷
𝑣) and mass release rate distribution (𝑃𝐷

𝑁) with respect 

to particle shape factor (𝐷), in polydisperse systems of the same particle size. (a) 𝐶𝑝,0/𝐶𝑠 =

0.1, (b) 𝐶𝑝,0/𝐶𝑠 = 1, (c) 𝐶𝑝,0/𝐶𝑠 = 10. Left column: 𝑃𝐷
𝑣, and right column 𝑃𝐷

𝑁. 

(a) 

(b) 

(c) 
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of monodisperse spherical particles (𝐷 = 0), but lower than that of monodisperse non-spherical particles 

(𝐷 = −9/11 and 9/11), at almost every moment. Since for the particles of smaller |𝐷|, the mass release 

rates are close to that of spherical particles (𝐷 = 0) [24], the curves of 𝐶𝑏/𝐶𝑠 of polydisperse particles are 

close to the curves of monodisperse spherical particles, as shown in the figure. 

Figure 10 shows the variation of dissolution time (𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) of polydisperse collections of particles of 

the same size and three monodisperse collections of particles of different Taylor shape parameters (𝐷 =

−9/11, 0, and 9/11). The initial particle concentration 𝐶𝑝,0 𝐶𝑠⁄  ranges from 𝐶𝑝,0 𝐶𝑠⁄ = 10−2 to 102. It can 

be seen in the figure that when 𝐶𝑝,0 𝐶𝑠⁄ < 1, 𝑙𝑜𝑔(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) of the polydisperse particles is very close to that 

of the monodisperse spherical particles. When 𝐶𝑝,0 𝐶𝑠⁄  is close to 1, 𝑙𝑜𝑔(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) of the polydisperse 

particles is even larger than that of the monodisperse spherical particles. The faster dissolution of non-

spherical particles does not decrease the dissolution time (𝑙𝑜𝑔(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ )) of the polydisperse systems, 

because the faster increase in bulk concentration caused by the dissolution of non-spherical particles of 

larger |𝐷| in the initial period of time suppresses the dissolution of spherical and nearly spherical particles. 

The dissolution of spherical and nearly spherical particles thus has to occur at relatively high bulk 

concentration, which causes the increase in 𝑙𝑜𝑔(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) of the systems. When 𝐶𝑝,0 𝐶𝑠⁄ > 1, the solution 

is saturated more by non-spherical particles of larger |𝐷|. Therefore, the dissolution time 𝑙𝑜𝑔(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) of 

polydisperse particles is lower than that of monodisperse spherical particles, but higher than monodisperse 

non-spherical particles. 

Figure 9. Variation of bulk concentration (𝐶𝑏/𝐶𝑠) of monodisperse collections of particles and 

polydisperse collections of particles of the same size but with a distribution of 𝐷. (a) Three initial particle 

concentrations: 𝐶𝑝,0/𝐶𝑠 = 0.1, 1 and 10, (b) 𝐶𝑝,0/𝐶𝑠 = 0.1, (c) 𝐶𝑝,0/𝐶𝑠 = 1, (d) 𝐶𝑝,0/𝐶𝑠 = 10. 

(a) (b) 

(c) (d) 
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(c) Dissolution with initial particle distribution in both particle size and shape factor 

For systems of spheroidal particles of various sizes and shapes, dissolution is influenced by the 

distributions of size and shape. Here we consider an ideal case, in which the initial particle volumetric PDF 

with respect to the logarithm of equivalent spherical radius 𝑙𝑜𝑔𝑅 and Taylor shape parameter 𝐷 is described 

by Eqn. (12). From the above discussion we have concluded that for particles of the same shape, smaller 

particles have larger size reduction rates, and for particles of the same size, particles of larger |𝐷| have 

larger size reduction rates. These two conclusions are also valid in the present complex systems. For brevity, 

the particle size reduction rate will not be discussed in this section. Three initial particle concentrations, 

𝐶𝑝,0/𝐶𝑠 = 0.1, 1, and 10, are analyzed as examples of completely dissolved, exactly dissolved, and partially 

dissolved systems. 

For systems with distributions of both particle size and particle shape, the PDF of mass release rate 

𝑃𝑙𝑜𝑔𝑅,𝐷
𝑁  is defined as, 

𝑃𝑙𝑜𝑔𝑅,𝐷
𝑁 (𝑡)𝛿(𝑙𝑜𝑔𝑅)𝑑𝐷 =

𝑑(𝑁𝑆
′ )

𝑙𝑜𝑔𝑅→𝑙𝑜𝑔𝑅+𝛿(𝑙𝑜𝑔𝑅),𝐷→𝐷+𝛿𝐷

𝑁𝑆,𝑡𝑜𝑡
′ (𝑡)

    (21) 

where (𝑁𝑆
′)𝑙𝑜𝑔𝑅→𝑙𝑜𝑔𝑅+𝛿(𝑙𝑜𝑔𝑅),𝐷→𝐷+𝛿𝐷  is the mass release rate of particles in the range from 𝑙𝑜𝑔𝑅  to 

𝑙𝑜𝑔𝑅 + 𝛿(𝑙𝑜𝑔𝑅) and from 𝐷 to 𝐷 + 𝛿𝐷.  

We start with a particle system with 𝐶𝑝,0/𝐶𝑠 = 0.1 and a wide initial particle size distribution. In Fig. 

11 we plot the evolutions of volumetric PDF, 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 , and PDF of mass release rate, 𝑃𝑙𝑜𝑔𝑅,𝐷

𝑁 , in the space 

of 𝑙𝑜𝑔(𝑅/𝑅∗) and 𝐷, in the initial short period of time (from 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 0 to 0.08). When 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 0, the 

domain of particles is rectangular. 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  follows a log-normal distribution in the direction of 𝑙𝑜𝑔(𝑅/𝑅∗) 

and remains constant in the direction of 𝐷. We have shown above that smaller particles have a greater mass 

release rate in the case of the same particle volume. This makes the distribution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑁  shift towards the 

small particle side relative to the distribution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 , as shown in Fig. 11(b). Since particles of larger 

|𝐷| have a larger mass release rate, peaks of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑁  are reached at the upper and lower ends of the 

distribution. After the dissolution starts, the motion of the boundaries of the iso-contours describes the 

changes in 𝑙𝑜𝑔(𝑅/𝑅∗) and 𝐷 of the particles at the boundaries of the particle domain. As noted by Wang 

et al. [24], the Taylor shape parameters of the particles do not change during the dissolution process, so the 

particles only participate in the movement to the left in the figure, that is, towards the small particle side. 

Due to the larger size reduction rates of the particles of smaller 𝑙𝑜𝑔(𝑅/𝑅∗) and larger |𝐷|, the upper and 

Figure 10. Variation of dissolution time 

(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) of monodisperse collections of 

particles and polydisperse collections of 

particles of the same size but with a 

distribution of Taylor shape parameter. 
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lower ends of the left side of the domain extend to the left faster than the other areas, as shown in the figure. 

When 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 0.08, all particles on the left boundary of the initial distribution have decreased in size to 

𝑙𝑜𝑔(𝑅/𝑅∗) < −5. The distributions of larger magnitudes of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  and 𝑃𝑙𝑜𝑔𝑅,𝐷

𝑁  do not change much in this 

period. 

Figure 12 shows the evolution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 , and 𝑃𝑙𝑜𝑔𝑅,𝐷

𝑁  over a long period of time. Due to particle size 

reduction, the whole domain of the distributions moves toward the left. In this process, the patterns of the 

distributions change within the domain. Because of the larger size reduction rates of particles of larger |𝐷|, 

the volumetric PDF, 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 , decreases in the upper and lower regions and converges to the central region 

where |𝐷| is small. The non-uniform particle size reduction rate caused by the non-uniform distribution of 

𝐷 creates an arc curving to the left on the right boundary of the domain. At the same time, the faster size 

reduction rates of smaller particles cause the peak in the distribution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  to shift to the right, where 

it eventually reaches the right boundary. This is similar to the evolution of 𝑃𝑙𝑜𝑔𝑅
𝑣  in systems in which all 

particles have the same shape (see Fig. 3). In the PDF of mass release rate, 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑁 , the faster dissolution 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55P
v

logR, D(a) 

(b) 

Figure 11. Initial evolution of particle size distribution (𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 ) and mass release rate distribution 

(𝑃𝑙𝑜𝑔𝑅,𝐷
𝑁 ) in the space of 𝑙𝑜𝑔(𝑅/𝑅 ∗) and 𝐷 for 𝐶𝑝,0/𝐶𝑠 = 0.1. (a) 𝑃𝑙𝑜𝑔𝑅,𝐷

𝑣 , and (b) 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑁 . 
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rates of particles of larger |𝐷| make the peaks at the upper and lower boundaries of the initial distribution 

disappear quickly, and the distribution converges to the central region where |𝐷| is small. Due to the fast 

dissolution rates of smaller particles, the peak around 𝐷 = 0 shifts to the large particle side in a fashion 

similar to that seen with 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 . 

For the cases with a narrow initial particle size distribution, the evolution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  and 𝑃𝑙𝑜𝑔𝑅,𝐷

𝑁  is 

similar to those with a wide distribution, except that the peaks of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  and 𝑃𝑙𝑜𝑔𝑅,𝐷

𝑁  monotonically move 

to the left, like the evolution of 𝑃𝑙𝑜𝑔𝑅
𝑣  in the systems of the same particle shape (Fig. 2). We will not go into 

detail on this topic here. 

For the 𝐶𝑝,0/𝐶𝑠 = 1 cases, complete dissolution requires infinite time. The calculation was stopped at 

𝐶𝑏/𝐶𝑠 = 0.99. Figure 13 shows the evolution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  in a system with a wide initial particle size 

distribution over the time period from 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 0 to 100 for 𝐶𝑝,0/𝐶𝑠 = 1. When 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 100, 𝐶𝑏/𝐶𝑠 =

0.99 is roughly reached. The non-uniform particle size reduction makes 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  converge to the central 

Figure 12. Long-period evolution of particle size distribution (𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 ) and mass release rate distribution 

(𝑃𝑙𝑜𝑔𝑅,𝐷
𝑁 ) in the space of 𝑙𝑜𝑔(𝑅/𝑅∗) and 𝐷 for 𝐶𝑝,0/𝐶𝑠 = 0.1. (a) 𝑃𝑙𝑜𝑔𝑅,𝐷

𝑣 , and (b) 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑁 . 

(a) 

(b) 
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region and move to the large particle side. At 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 100, about 1% of the particle volume is left in the 

system, and the peak still has not reached the largest particles. This is similar to the cases with particles of 

the same shape (Fig. 4(b)).  

When 𝐶𝑝,0/𝐶𝑠 = 10, only 10% of the particle volume is dissolved in the solution when the process is 

complete, and the smaller particles play a more important role in the dissolution process. Figure 14 shows 

the evolution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  of a system with a wide initial size distribution for 𝐶𝑝,0/𝐶𝑠 = 10. When 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ =

0.2, 𝐶𝑏/𝐶𝑠 ≈ 0.98. As shown in the figure, the left boundary of the domain moves to the left, with larger 

extensions near the upper and bottom ends, due to the larger size reduction rates of particles of larger |𝐷|. 

During the whole process, the distribution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  converges only slightly to the central region.  

In Fig. 15 we compare the increase in bulk concentration (𝐶𝑏,0/𝐶𝑠) of a polydisperse system with those 

of monodisperse systems for 𝐶𝑝,0/𝐶𝑠 = 0.1 , 1, and 10. The Taylor shape parameters in the three 

monodisperse systems are 𝐷 = −9/11, 0, and 9/11, respectively. A wide initial particle size distribution is 

used in the polydisperse systems. When 𝐶𝑝,0/𝐶𝑠 = 0.1 and 1, the faster dissolution of smaller particles and 

particles of large |𝐷|  in polydisperse systems makes 𝐶𝑏/𝐶𝑠  increase in the initial short time period 

(𝑡 𝜏𝑑𝑖𝑠𝑠⁄ < 0.2) at a rate close to that in monodisperse systems with 𝐷 = −9/11 and 9/11. It’s a coincidence 

that the increase rate of polydisperse systems is close to that of monodisperse systems. When we widen or 

narrow the initial distributions of the polydisperse particles, they will not be close to each other.  

Figure 13. Evolution of 

particle size distribution 

(𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 ) in the space of 

𝑙𝑜𝑔(𝑅/𝑅 ∗) and 𝐷 for 

𝐶𝑝,0/𝐶𝑠 = 1.  

Figure 14. Evolution of 

particle size distribution 

(𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 ) in the space of 

𝑙𝑜𝑔(𝑅/𝑅∗) and 𝐷 for 

𝐶𝑝,0/𝐶𝑠 = 10.  



19 
 

After the initial time period, the larger particles play a more important role, which significantly reduces 

the dissolution rate. As a result, the increase of 𝐶𝑏/𝐶𝑠 in polydisperse systems becomes slower than in any 

of the monodisperse systems. Correspondingly, the dissolution time in polydisperse systems becomes much 

longer than in monodisperse systems. If a further wider initial distribution is used, the bulk concentration 

will increase faster than in the current polydisperse system in the initial period and increase slower after 

that. When 𝐶𝑝,0/𝐶𝑠 = 10, the dissolution process is dominated by smaller particles in the polydisperse 

system, and the smaller particles have a larger dissolution rate. As a result, the bulk concentration increases 

at a rate close to that of monodisperse systems with 𝐷 = −9/11 and 9/11. If the initial size distribution is 

further widened, 𝐶𝑏/𝐶𝑠 will increase even faster in the polydisperse system.  

In Fig. 16, we compare the dissolution time, 𝑇 𝜏𝑑𝑖𝑠𝑠⁄ , of polydisperse systems of both narrow and wide 

distributions with the dissolution time of monodisperse systems of different Taylor shape parameters, over 

the range from 𝐶𝑝,0/𝐶𝑠 = 10−2 to 102. When 𝐶𝑝,0/𝐶𝑠 < 1, the dissolution time of the polydisperse systems 

is dominated by the largest particles in the systems. Because (𝑅0,𝑚𝑎𝑥)
𝑤𝑖𝑑𝑒

> (𝑅0,𝑚𝑎𝑥)
𝑛𝑎𝑟𝑟𝑜𝑤

>

(𝑅0,𝑚𝑎𝑥)
𝑚𝑜𝑛𝑜

, we have (log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ))
𝑤𝑖𝑑𝑒

> (log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ))
𝑛𝑎𝑟𝑟𝑜𝑤

> (log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ))
𝑚𝑜𝑛𝑜

 for each 

𝐶𝑝,0 𝐶𝑠⁄ . When 𝐶𝑝,0 𝐶𝑠⁄  is slightly greater than 1, this relationship is still valid, because the largest particles 

still play an important role. However, when 𝐶𝑝,0 𝐶𝑠⁄  is further increased, so that the smaller particles play 

a more important role in the dissolution (𝐶𝑝,0 𝐶𝑠⁄ > 3 in the figure), the relationship will be changed. 

Because (𝑅0,𝑚𝑖𝑛)
𝑤𝑖𝑑𝑒

< (𝑅0,𝑚𝑖𝑛)
𝑛𝑎𝑟𝑟𝑜𝑤

, the dissolution time of the polydisperse systems of a wide initial 

Figure 17. Evolution of particle size distribution (𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 ) in the space of 𝑙𝑜𝑔(𝑅/𝑅 ∗) and 𝐷 for 

𝐶𝑝,0/𝐶𝑠 = 10.  

(b) (a) 

(c) (d) 

Figure 15. Variation of bulk concentration (𝐶𝑝,0/𝐶𝑠) with time (𝑡 𝜏𝑑𝑖𝑠𝑠⁄ ) of monodisperse and 

polydisperse particles.  (a) Three initial particle concentrations, 𝐶𝑝,0/𝐶𝑠 = 0.1, 1 and 10, (b) 𝐶𝑝,0/𝐶𝑠 =

0.1, (c) 𝐶𝑝,0/𝐶𝑠 = 1, (d) 𝐶𝑝,0/𝐶𝑠 = 10. 
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size distribution becomes smaller than that of a narrow distribution for each 𝐶𝑝,0 𝐶𝑠⁄ . It is apparent that the 

dissolution time of polydisperse systems is smaller than that of monodisperse spherical particle systems. 

Nevertheless, the comparison of 𝑇 𝜏𝑑𝑖𝑠𝑠⁄  between polydisperse systems and monodisperse systems of non-

spherical particles depends on the initial size distribution of the polydisperse systems and the Taylor shape 

parameters of the monodisperse systems. 

 

3. Conclusion 

Using the polydisperse dissolution model developed in Part I of this study, we conducted a systematic 

investigation into the dissolution characteristics of typical polydisperse spheroidal particle systems. The 

effects of the distributions of particle size and shape have been studied by examining detailed dissolution 

processes, such as the size reduction rates of individual particles, the increase in bulk concentration, and 

the dissolution time of the polydisperse systems. Some important factors controlling the dissolution details, 

including initial particle concentration, the smallest and largest particle sizes, and the smallest and largest 

Taylor shape parameters of particle shapes, have been identified.  

The diversity of particle sizes and shapes in polydisperse systems causes non-uniform dissolution, in 

terms of mass release rate and particle size reduction rate of individual particles, leading to completely 

different dissolution characteristics from monodisperse systems. Notably, under conditions of the same 

bulk concentration and particle volume, smaller particles have larger size reduction rates and greater mass 

release rates. Under the condition of the same particle size, particles with a larger deviation from spherical 

shape (represented by the absolute value of the Taylor shape parameter) have larger size reduction rates 

and greater mass release rates. Governed by these two principles, when the initial particle concentration is 

lower than the saturation concentration, particles of smaller sizes and larger deviation from spherical shape 

dominate the initial stage of the dissolution process, while particles of larger sizes and smaller deviation 

from spherical shape take over in the later stage. When the initial particle concentration is higher than the 

saturation concentration, the overall dissolution process is primarily dominated by particles of smaller sizes 

and greater deviation from spherical shape throughout. The distribution of particle sizes and shapes, 

especially the minimum and maximum particle sizes and Taylor shape parameters, play an important role 

in determining the detailed dissolution process.  

These principles and findings establish a crucial foundation for actively managing the dissolution of 

polydisperse particle systems. They can be adapted for use in a broad spectrum of irregular particle systems 

with appropriate adjustment. 

Figure 16. Variation of 

dissolution time 

(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) with initial 

concentration of solid 

particles (𝐶𝑝,0/𝐶𝑠) 

between monodisperse 

and polydisperse 

particles.  
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