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A quasi steady-state model (QSM) for accurately predicting the detailed diffusion-
dominated dissolution process of polydisperse spheroidal (prolate, oblate, and spherical) 

particle systems with a broad range of distributions of particle size and aspect ratio has 

been developed. A rigorous, mathematics-based QSM of the dissolution of single 

spheroidal particles has been incorporated into the well-established framework of 

polydisperse dissolution models based on the assumption of uniform bulk concentration. 

Validation against experimental results shows that this model can accurately predict the 

increase in bulk concentration of polydisperse systems with various particle sizes and shape 

parameters. A series of representative instances involving the dissolution of polydisperse 

felodipine particles at various concentration ratios is used to demonstrate the model’s 

effectiveness, rendering it a valuable tool for understanding and managing complex 

systems with diverse particle characteristics.  

 

Introduction 

The modeling and characterization of dissolution processes in multiple-solid-particle systems is of great 

importance to many scientific and industrial applications, from traditional drug delivery [1] and metal ore 

heap leaching [2] to emerging renewable biomass energy [3] and dissolvable microrobots [4]. A full 

understanding of dissolution kinetics not only enables accurate predictions of the variations of solution 

concentration and particle sizes, but also carries crucial implications for controlling and optimizing the 

dissolution process. For example, the dissolution characteristics of drug particles play a pivotal role in 

determining and manipulating drug release and the bioavailability of active pharmaceutical ingredients. 

Hence, it is vital to understand the underlying physical and chemical processes involved [5]. 

One of the limiting factors for particle dissolution rate is the transport of dissolved molecules from the 

particle surface to the surrounding fluid, and this process relies on both molecular diffusion and the 

hydrodynamics around the particle. In some applications, such as drug dissolution in the gastrointestinal 

tract, the particle sizes range from a few microns to hundreds of microns [6, 7]. For such small particles, 

hydrodynamic effect is relatively weak and molecular diffusion plays a dominant role in mass transfer [8]. 

To date, a large number of diffusion-dominated dissolution models have been developed and broadly used 

in various areas [9]. Among these models, the most widely used models are the Fick’s-first-law-based 

Noyes-Whitney Model and its modifications [5, 10-19]. The basic idea of these models is to establish a 

linear relationship between the particle dissolution rate and the difference in concentration between particle 

surface and bulk fluid. They typically incorporate a parameter known as diffusion layer thickness, which is 

based on the recognition that a layer of high concentration fluid exists adjacent to the particle surface [9, 

16]. For spherical particles, the diffusion layer thickness is considered to be close to the particle radius. 
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These models have been shown to accurately predict the entire dissolution process of spherical particles, 

but they are generally empirical or semi-empirical, lacking rigorous mathematical proof, and having limited 

applicability. Beyond the empirical and semi-empirical models, some mathematical models built on 

solutions of the diffusion equation of a spherical particle have been proposed, such as the infinite-domain 

model [20], the finite-domain model [21], and the quasi-steady-state model [21, 22]. Wang et al.[21] 

conducted a critical examination of the accuracy and efficiency of these models. They found that a relatively 

simple “quasi steady-state” model (QSM) predicts both the increase in bulk concentration and the surface 

flux with a high level of accuracy beyond a short initial transient period. QSM thus can be used as the basis 

for developing more sophisticated dissolution models. 

Currently, the major challenges in modeling the dissolution processes of real particle systems involve 

the treatment of wide distributions of particle sizes and geometries. In practical applications, particle sizes 

typically vary within a range, rather than being uniform [23]. Particles of different sizes have different 

dissolution rates. To the best of our knowledge, the earliest polydisperse model was developed by Higuchi 

and Hiestand for spherical particles[22]. Their model assumes that the diffusion layer thicknesses are 

always equal to the particle radius and uses the Noyes-Whitney equation to calculate the dissolution rate of 

each individual particle. However, they only considered the bulk concentration to be constant, leading to 

independent dissolution of all the particles. Therefore, this model is not a real polydisperse model. Based 

on Higuchi and Hiestand’s model[22], Hintz and Johnson [16] proposed a new model, in which they 

calculated the bulk concentration by summing the numbers of molecules dissolving from every particle and 

dividing it by the total container volume. In this model, the diffusion layer thickness, 𝛿, depends on the 

particle size. For particles with a radius smaller than 30 µm,   is set equal to the particle radius, while for 

all larger particles,   is fixed at 30 µm. This model has become the most popular tool for investigating the 

polydisperse dissolution mechanisms, and has been used broadly to date [24]. The advantage of the Hintz 

and Johnson’s model is that it avoids the complexity of solving the diffusion equation around each particle, 

and describes the dissolution rate through a simple linear expression involving the surface area and the 

difference between bulk concentration and saturation concentration. However, because species transport 

around each particle is still not well understood, the diffusion layer thickness   still needs to be modeled. 

Taking advantage of the easy form of the solution of the QSM, Wang et al. [25] developed a “hierarchical” 

model to predict the detailed dissolution process from polydisperse collections of spherical particles of 

various sizes. Since Wang et al.'s model is based on an analytical solution to the diffusional transport 

equation for individual particles, it provides more physical insight, including the spatial distribution of 

dissolved species around each particle. The basic idea of this model provides an important direction for 

developing dissolution models for polydisperse non-spherical particles. 

In nature, however, and in practical applications, more than 70% of solid particles are not regularly 

spherical, and have a wide range of aspect ratio from O(0.1) to O(10) [26, 27]. Morphology has been 

identified as a key factor influencing dissolution[1, 26, 27]; the assumption of spherical particles may be 

one of the dominant sources of error in quantifying the dissolution process.  Wang et al. [28] have extended 

the QSM for spherical particles to include prolate and oblate spheroidal particles. The new model is based 

on the analytical solutions of the steady-state diffusion equation in spheroidal coordinate systems. 

According to the spatial distribution of molar concentration in the surrounding fluid, detailed dissolution 

processes, such as the molar flux of dissolved substances and the regression rate of the particle surface, can 

be obtained.  

A robust and straightforward mathematical model capable of comprehensively addressing the intricate 

dissolution process of a polydisperse particle system with diverse sizes and geometries is still lacking, and 

the dissolution characteristics of such particle systems are still not well understood. This severely impedes 

the optimization and control of particle dissolution in various applications. In this paper, we develop a 

dissolution model for polydisperse spheroidal particles with distributions of both size and aspect ratio, based 

on the QSM for spheroidal particles [28] and the polydisperse model for spherical particles [25]. The aspect 

ratio covers a wide range of particle shapes from prolate to oblate spheroidal particles. The present study 



3 
 

proposes a physics-based, easy to use, and accurate tool for research on the dissolution of a wide range of 

particle systems, and offers insights into the dissolution kinetics of complex systems. This model is intended 

to establish a foundation for future development of more intricate dissolution models that take into account 

the hydrodynamics around the particles in such systems. 

 

1. Mathematical model formulations 

(a) Single or monodisperse particle modeling 

In this study, the term “monodisperse” is used to denote a system in which all particles have the same 

size and shape, and “polydisperse” is used to denote a system in which the particles have either various 

sizes or various shapes or both. In terms of modeling strategy, the monodisperse model is the same as the 

single particle model. For the polydisperse dissolution model, we build a collection of particles of different 

sizes and shapes, in which the dissolution of each particle is partially described by a single particle 

dissolution model and is coordinated by the polydisperse model. In this study we focus on spheroidal shapes 

from prolate to spheric and then to oblate. The QSM for a single prolate or oblate spheroidal particle 

proposed by Wang et al.[28] and the QSM for a single spherical particle proposed by Wang et al.[21] are 

used to model the dissolution of each particle. 

The surface of a spheroidal particle is described by 

𝑥2+𝑦2

𝑎𝑝
2 +

𝑧2

𝑏𝑝
2 = 1         (1) 

where 𝑥, 𝑦, and 𝑧 are Cartesian coordinates, 𝑎𝑝 is the equatorial radius, and 𝑏𝑝 is the polar radius. The 

aspect ratio is defined as, 

𝛬 = 𝑎𝑝 𝑏𝑝⁄          (2) 

When 𝛬 > 1 , the particle shape is oblate spheroidal, when 𝛬 < 1, the shape is prolate spheroidal, and when 

𝛬 = 1, the shape is spherical.  

At the particle surface, the concentration of dissolved substance is the saturated concentration, which 

is constant. 

𝐶 = 𝐶𝑠          (3) 

where 𝐶(𝑥, 𝑦, 𝑧) (mol/volume) is the molar concentration of dissolved substance, and 𝐶𝑠 is the saturated 

concentration.  

The molar flux of dissolved substance from the particle surface to the surrounding liquid, 𝑁𝑆
" (mol/area-

time), is defined as 

𝑁𝑆
" = −𝐷𝑚𝑛⃗ ∙ ∇𝐶|𝑠        (4) 

where 𝐷𝑚 (area/time) is the diffusion coefficient for the dissolved substance in the fluid, and 𝑛⃗  is a unit 

normal vector pointing outwards to the ambient fluid. The particle surface regresses with time as the 

particle loses mass from its surface, 

𝑑𝑅𝑛

𝑑𝑡
= −𝑁𝑆

"𝑣𝑚         (5) 

where 𝑅𝑛 is the surface coordinate in the direction normal to the particle surface, and 𝑣𝑚 (volume/mol) is 

the specific volume of the particle. 
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For a given particle, the dissolution also depends on the container volume, which confines the dissolved 

substance within the container. From the initial particle volume (𝑉𝑝0) and container volume (𝑉𝑐), the initial 

solid particle concentration, 𝐶𝑝0 (mol/volume), is calculated as 

𝐶𝑝0 ≡
𝑉𝑝0

𝑣𝑚𝑉𝑐
         (6) 

In the calculation, either 𝑉𝑐 or 𝐶𝑝0 can be used to specify the container volume. 

According to Wang et al. [28], for each prolate or oblate particle, the release rate through the particle 

surface, which is denoted by 𝑁𝑠
′ (mol/time), is, 

𝑁𝑆
′ = −4𝜋𝐴𝐷𝑚𝛺        (7) 

where 𝐴 and 𝛺 are coefficients related to the geometry of the particle and the profile of the substance 

concentration. For a prolate spheroid, 

𝐴 =
𝐶𝑠−𝐶∞

ln(
𝑏𝑝+𝑎𝑝−𝛺

𝑏𝑝+𝑎𝑝+𝛺
)
         (8) 

𝛺 = √𝑏𝑝
2 − 𝑎𝑝

2         (9) 

and for an oblate spheroid, 

𝐴 =
𝐶𝑠−𝐶∞

arctan(𝑏𝑝 𝛺⁄ )−𝜋 2⁄
        (10) 

𝛺 = √𝑎𝑝
2 − 𝑏𝑝

2         (11) 

where 𝐶∞ is the concentration of dissolved substance at infinity. 𝐶∞ is related to the bulk concentration 𝐶𝑏 

via the container size [21].  

When 𝑎𝑝 = 𝑏𝑝, Eqn. (7) collapses into the expression for spherical particles, which is written as [21], 

𝑁𝑆
′ = −4𝜋𝑅𝐷𝑚(𝐶𝑠 − 𝐶∞)       (12) 

Equations (7) and (12) describe the release rates of spheroidal particles of different aspect ratios. 

During dissolution the particle size gradually decreases. It is shown in Wang et al.[28] that the aspect 

ratios of the prolate and oblate particles, 𝛬 = 𝑎𝑝(𝑡) 𝑏𝑝(𝑡)⁄ , do not change over time. It is more convenient 

to use the radius of a spherical particle of the same volume to represent the size of non-spherical particles. 

The size of all particles can be uniformly expressed by the equivalent spherical radius, 

𝑅 = (𝑎𝑝
2𝑏𝑝)

1/3
         (13) 

Then the reduction rate of 𝑅 can be calculated from the release rate at the surfaces of both spherical and 

non-spherical particles, 

𝑑𝑅

𝑑𝑡
=

𝑁𝑆
′𝑣𝑚

4𝜋𝑅2          (14) 

An alternative to calculate 𝑁𝑆
′ is to utilize the idea that the release of dissolved substance is realized by 

the diffusion of the substance through a diffusion layer thickness at the particle surface. 

𝑁𝑆
′ = −4𝜋𝑅2𝐷𝑚

(𝐶𝑠−𝐶𝑏)

𝛿(𝑡)
        (15) 
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where 𝛿(𝑡) is the diffusion layer thickness defined based on the equivalent spherical particle radius. 𝛿(𝑡) 

is obtained from the QSM for spherical [21] or non-spherical particles [28]. 

 

(b) Polydisperse particle modeling 

Currently, there are two major strategies for building models of polydisperse particle dissolution. In the 

first, proposed by Hintz and Johnson  [16], the dissolution rate of each particle is calculated by the difference 

of substance concentration between the particle surface and the bulk fluid over a diffusion layer. In the 

second, proposed by Wang et al. [25], the dissolution of each particle is described by the QSM within a 

finite-sized container. These two strategies share a common assumption that the solution is perfectly mixed 

and the bulk concentration of dissolved substance is uniform throughout. The bulk concentration is “felt” 

by every particle and is used to calculate the dissolution rate of every particle. When the diffusion layer 

thickness in the Hintz and Johnson’s model is obtained from the QSM, the two strategies essentially become 

the same. Both strategies are currently used only for spherical or near-spherical particles, due to the lack of 

a dissolution model for non-spherical particles. In this study, we take advantage of the QSM for prolate and 

oblate particles and extend the aforementioned polydisperse models to those for systems with various 

particle sizes and shapes. The two strategies for polydisperse dissolution are introduced in more detail 

below. 

Sub-container model 

Here we extend the Wang et al. [25] model for spherical particles to a system with a wide range of 

particle size and aspect ratio. Figure 1 shows the physical model. In a container holding 𝑛 particles, the 

container is broken down into as many separate sub-containers as the number of particles, and each particle 

is assigned a sub-container. We assume that the sub-containers are spheroidal, with every particle 

positioned at the center of its respective sub-container. The substance released by a particle remains 

confined within its corresponding sub-container. The linkage among the particles is established by keeping 

the bulk concentration in each sub-container the same as the bulk concentration in the whole container. The 

bulk concentration in the container is, 

𝐶𝑏 =
𝑁

𝑉𝑐
=

𝑁1+𝑁2+ ...+𝑁𝑖+ ...+𝑁𝑛

𝑉𝑐,1+𝑉𝑐,2+ ...+𝑉𝑐,𝑖+ ...+𝑉𝑐,𝑛
=

∑ 𝑁𝑖
𝑛
1

∑ 𝑉𝑐,𝑖
𝑛
1

     (16) 

where 𝑁1, 𝑁2, …, 𝑁𝑛 are the amounts of substance released from every particle, 𝑁 is the total amount of 

substance released from all particles, and 𝑉𝑐,1, 𝑉𝑐,2, …, 𝑉𝑐,𝑛 are the volume of every sub-container, with the 

sum of the sub-container volumes being equal to the volume of the whole container 𝑉𝑐. The amount of 

substance released from the i-th particle is acquired by integrating the surface release rate of the particle 

over time, 

𝑁𝑖(𝑡) = ∫ 𝑁𝑆,𝑖
′ (𝜏)𝑑𝜏

𝑡

0
        (17) 

where 𝑁𝑆,𝑖
′ (𝜏) is calculated from Eqns. (7) and (12). The bulk concentration in every sub-container is 

calculated by, 

𝐶𝑏,1 =
𝑁1

𝑉𝑐,1
, 𝐶𝑏,2 =

𝑁2

𝑉𝑐,2
, …, 𝐶𝑏,𝑖 =

𝑁𝑖

𝑉𝑐,𝑖
, …, 𝐶𝑏,𝑛 =

𝑁𝑛

𝑉𝑐,𝑛
    (18) 

To keep 𝐶𝑏,𝑖(𝑡) always equal to 𝐶𝑏(𝑡), the volume of each sub-container is adjusted dynamically at every 

moment.  
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In systems comprising spherical particles, this model provides a prediction of the dissolution process 

that is consistent with experimental measurement [25]. This model serves as the basic tool for analyzing 

the polydisperse dissolution in this study. 

 

Diffusion layer model 

In the Hintz and Johnson diffusion layer model [16], a Noyes-Whitney type expression [29] is applied 

to describe the dissolution of the particles, and a diffusion layer thickness is used to calculate the dissolution 

rate, 

𝑁𝑆,𝑖
′ = −𝐴𝑝,𝑖𝐷𝑚

(𝐶𝑠−𝐶𝑏)

𝛿𝑖(𝑡)
        (19) 

where 𝐴𝑝,𝑖 is the surface area and 𝛿𝑖(𝑡) is the diffusion layer thickness of the i-th particle. Here the bulk 

concentration 𝐶𝑏  is also calculated by Eqn. (16). The diffusion layer thickness is obtained through 

mathematical models or experimental measurements. Prior to the emergence of rigorous mathematical 

models such as FDM and QSM [21], the determination of the diffusion layer thickness played a pivotal role 

in a number of modeling strategies [9]. 

It was found that the QSM accurately predicts both the time-varying bulk concentration and the surface 

flux beyond a short initial transient period [21]. A reasonable way to take advantage of the aforementioned 

sub-container model is to assign each particle a sub-container, and then use the QSM to acquire the time 

dependent diffusion layer thickness. With this treatment, the diffusion layer model is exactly the same as 

the sub-container model. A simplified version uses the QSM for a single particle to develop a correlation 

of diffusion layer thickness as a function of particle size and geometry and other determining factors, and 

then incorporate the correlation into the polydisperse model of dissolution rate shown by Eqn. (19). 

Obviously, both methods of the diffusion layer model will offer the same level of accuracy as the sub-

container model. 

 

(c) Population Balance Modeling 

In polydisperse systems, it is convenient to use the temporal evolution of a probability distribution 

function (PDF) with respect to the equivalent spherical radius (𝑅) and aspect ratio (𝛬) to describe the 

Particle size 

Figure 1. Illustration of sub-container model for dissolution from a polydisperse collection of 

spheroidal particles of a variety of particle sizes and aspect ratios. The dissolution of each particle is 

described by the QSM of a single particle in a sub-container. 
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statistical average state of the particles. Here we define the volumetric probability distribution function of 

particle radius and aspect ratio as 

𝑃𝑅,𝛬
𝑣 (𝑅, 𝛬, 𝑡)𝛿𝑅𝛿𝛬 ≡

𝛿(𝑉𝑝(𝑡))
𝑅→𝑅+𝛿𝑅,𝛬→𝛬+𝛿𝛬

𝑉𝑝(𝑡)
     (20) 

and 

∫ ∫ 𝑃𝑅,𝛬
𝑣 (𝑅, 𝛬, 𝑡)𝑑𝑅𝑑𝛬

𝛬𝑚𝑎𝑥

𝛬𝑚𝑖𝑛

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
= 1      (21) 

where 𝑃𝑅,𝛬
𝑣 (𝑅, 𝛬, 𝑡)  is the volumetric PDF of particle radius and aspect ratio at time 𝑡 , 

𝛿(𝑉𝑝(𝑡))𝑅→𝑅+𝛿𝑅,𝛬→𝛬+𝛿𝛬
 is the volume of particles with radius between 𝑅 and 𝑅 + 𝛿𝑅 and aspect ratio 

between 𝛬 and 𝛬 + 𝛿𝛬, 𝑉𝑝(𝑡) is the total particle volume, 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 are the minimum and maximum 

particle radii, and 𝛬𝑚𝑖𝑛 and 𝛬𝑚𝑎𝑥 are the minimum and maximum particle aspect ratios, respectively. 

Considering the width of the range of 𝛬 for prolate spheroids (𝛬 < 1) is much smaller than that for 

oblate spheroids (𝛬 > 1), we further create the PDF using the Taylor shape parameter instead of aspect 

ratio, following the description of droplet morphology [30]. The Taylor shape parameter is defined as, 

𝐷 =
𝑎𝑝−𝑏𝑝

𝑎𝑝+𝑏𝑝
         (22) 

The relationship between 𝐷 and 𝛬 is, 

𝐷 =
𝛬−1

𝛬+1
         (23) 

The corresponding volumetric PDF with respect to 𝑅 and 𝐷 is written as,  

𝑃𝑅,𝐷
𝑣 (𝑅, 𝐷, 𝑡)𝛿𝑅𝛿𝐷 ≡

𝛿(𝑉𝑝(𝑡))
𝑅→𝑅+𝛿𝑅,𝐷→𝐷+𝛿𝐷

𝑉𝑝(𝑡)
     (24) 

and 

∫ ∫ 𝑃𝑅,𝐷
𝑣 (𝑅, 𝐷, 𝑡)𝑑𝑅𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
= 1      (25) 

where 𝛿(𝑉𝑝(𝑡))𝑅→𝑅+𝛿𝑅,𝐷→𝐷+𝛿𝐷
 is the particle volume in the ranges from 𝑅 to 𝑅 + 𝛿𝑅 and from 𝐷 to 𝐷 +

𝛿𝐷. 

The population balance model (PBM) presenting the partial differential equation of the PDF of time 

and particle radius has been broadly used in the study of solid particle dissolution[31-33]. By studying the 

time rate of change of particle volume in a control volume in the space of 𝑅 and 𝐷, the following population 

balance equation can be easily obtained, 

𝜕

𝜕𝑡
(𝑃𝑅,𝐷

𝑣 𝑉𝑝) = −
𝜕

𝜕𝑅
(𝑃𝑅,𝐷

𝑣 𝑉𝑝
𝑑𝑅

𝑑𝑡
) −

𝜕

𝜕𝐷
(𝑃𝑅,𝐷

𝑣 𝑉𝑝
𝑑𝐷

𝑑𝑡
)     (26) 

It is shown in Wang et al. [28] that the aspect ratios of prolate and oblate particles do not change over time, 

so 
𝑑𝐷

𝑑𝑡
= 0 and Eqn. (26) reduces to, 

𝜕

𝜕𝑡
(𝑃𝑅,𝐷

𝑣 𝑉𝑝) = −
𝜕

𝜕𝑅
(𝑃𝑅,𝐷

𝑣 𝑉𝑝
𝑑𝑅

𝑑𝑡
)       (27) 

 

(d) Volumetric PDF in Logarithm Scale of Particle Radius 



8 
 

In fields such as pharmacology and crystallography, the log-normal distribution has been used for a 

long time to describe the size distribution of particles; the particle distribution is described as a normal or 

Gaussian function on a logarithm scale of particle size [34, 35]. Here, we define the volumetric PDF of 

particle size with respect to the logarithm of equivalent spherical particle radius as, 

𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 (𝑙𝑜𝑔𝑅, 𝐷, 𝑡)𝛿(𝑙𝑜𝑔𝑅)𝛿𝐷 ≡

𝛿(𝑉𝑝(𝑡))
𝑙𝑜𝑔𝑅→𝑙𝑜𝑔𝑅+𝛿(𝑙𝑜𝑔𝑅),𝐷→𝐷+𝛿𝐷

𝑉𝑝(𝑡)
   (28) 

and 

∫ ∫ 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 (𝑙𝑜𝑔𝑅, 𝐷, 𝑡)𝑑(𝑙𝑜𝑔𝑅)𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

𝑙𝑜𝑔𝑅𝑚𝑎𝑥

𝑙𝑜𝑔𝑅𝑚𝑖𝑛
= 1    (29) 

where 𝛿(𝑉𝑝(𝑡))𝑙𝑜𝑔𝑅→𝑙𝑜𝑔𝑅+𝛿(𝑙𝑜𝑔𝑅),𝐷→𝐷+𝛿𝐷
 is the particle volume with a logarithm of radius between 𝑙𝑜𝑔𝑅 

and 𝑙𝑜𝑔𝑅 + 𝛿(𝑙𝑜𝑔𝑅) and Taylor parameter between 𝐷 and 𝐷 + 𝛿𝐷. 

Here we consider the simplest case, in which the dependence of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  on 𝑙𝑜𝑔𝑅 is decoupled from 

that on 𝐷 and the dependence on 𝑙𝑜𝑔𝑅 follows the log-normal distribution. Then volumetric PDF can be 

defined separately for 𝑙𝑜𝑔𝑅 and 𝐷, which are denoted by 𝑃𝑙𝑜𝑔𝑅
𝑣 (𝑙𝑜𝑔𝑅, 𝑡) and 𝑃𝐷

𝑣(𝐷, 𝑡), respectively, 

 𝑃𝑙𝑜𝑔𝑅
𝑣 (𝑙𝑜𝑔𝑅, 𝑡) ≡ ∫ 𝑃𝑙𝑜𝑔𝑅,𝐷

𝑣 (𝑙𝑜𝑔𝑅, 𝐷, 𝑡)𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
     (30) 

𝑃𝐷
𝑣(𝐷, 𝑡) ≡ ∫ 𝑃𝑙𝑜𝑔𝑅,𝐷

𝑣 (𝑙𝑜𝑔𝑅, 𝐷, 𝑡)𝑑(𝑙𝑜𝑔𝑅)
𝑙𝑜𝑔𝑅𝑚𝑎𝑥

𝑙𝑜𝑔𝑅𝑚𝑖𝑛
    (31) 

and  

𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 (𝑙𝑜𝑔𝑅, 𝐷, 𝑡) = 𝑃𝑙𝑜𝑔𝑅

𝑣 (𝑙𝑜𝑔𝑅, 𝑡)𝑃𝐷
𝑣(𝐷, 𝑡)     (32) 

A volumetric PDF with a log-normal distribution with respect to 𝑙𝑜𝑔𝑅 at 𝑡 = 0 reads 

𝑃𝑙𝑜𝑔𝑅,0
𝑣 (𝑙𝑜𝑔𝑅) =

1

√2𝜋𝜎2
𝑒𝑥𝑝 [−

(𝑙𝑜𝑔𝑅−𝑙𝑜𝑔𝑅∗)2

2𝜎2 ]     (33) 

where 𝜎 is the standard deviation of the distribution, and 𝑅∗ is the particle radius at which the maximum 

𝑃𝑙𝑜𝑔𝑅,0
𝑣  is reached. 

 

(e) Implementation of Polydisperse Dissolution Model 

Given an initial 𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣  as a function of 𝑙𝑜𝑔𝑅 and 𝐷, 𝑃𝑙𝑜𝑔𝑅

𝑣 (𝑡) evolves from 𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣  with time as a 

consequence of variations of the size and shape of every particle. To simplify the problem, we assume that 

at 𝑡 = 0, 𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣  follows the log-normal distribution with respect to 𝑙𝑜𝑔𝑅 for any 𝐷 and is uniform over 

𝐷 from 𝐷𝑚𝑖𝑛 to 𝐷𝑚𝑎𝑥 for any 𝑙𝑜𝑔𝑅, 

𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣 (𝑙𝑜𝑔𝑅, 𝐷) = 𝑃𝑙𝑜𝑔𝑅,0

𝑣 (𝑙𝑜𝑔𝑅)/(𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛)    (34) 

and 𝑃𝑙𝑜𝑔𝑅,0
𝑣  is described by a log-normal function given by Eqn. (33). 𝑃𝑙𝑜𝑔𝑅,𝐷,0

𝑣  is finally written as, 

𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣 (𝑙𝑜𝑔𝑅, 𝐷) =

1

√2𝜋𝜎2
𝑒𝑥𝑝 [−

(𝑙𝑜𝑔𝑅−𝑙𝑜𝑔𝑅∗)2

2𝜎2 ] /(𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛)  (35) 

To implement the polydisperse model, the initial volumetric PDF of particle sizes and shapes, that is, 

𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣 , has to be discretized into a number of bins with respect to 𝑙𝑜𝑔𝑅 and 𝐷. An easy way is to 
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decompose the space of 𝑙𝑜𝑔𝑅 and 𝐷 into 𝑛𝑙𝑜𝑔𝑅 × 𝑛𝐷 bins, and the bins have uniform bin width in 𝑙𝑜𝑔𝑅 

and 𝐷, as shown in Fig. 2. The bin widths are given as 

∆𝑙𝑜𝑔𝑅= (𝑙𝑜𝑔𝑅𝑚𝑎𝑥 − 𝑙𝑜𝑔𝑅𝑚𝑖𝑛)/(𝑛𝑙𝑜𝑔𝑅 − 1)     (36) 

∆𝐷= (𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛)/(𝑛𝐷 − 1)       (37)  

where 𝑛𝑙𝑜𝑔𝑅 and 𝑛𝐷 are the numbers of bins in 𝑙𝑜𝑔𝑅 and 𝐷, respectively. We assume that in each bin all 

the particles have the same values of 𝑙𝑜𝑔𝑅 and 𝐷. The number of particles in bin (𝑖, 𝑗) is (see Fig. 2), 

𝑛𝑝,(𝑖,𝑗) =
𝑃𝑙𝑜𝑔𝑅,𝐷,0

𝑣 ∆𝑙𝑜𝑔𝑅∆𝐷𝑉𝑝,0
4

3
𝜋𝑅3

  (38) 

where 𝑉𝑝,0 is prespecified total volume of particles. In 

the dissolution process, 𝑛𝑝,(𝑖,𝑗) does not change with 

time, yet the bin widths, ∆𝑙𝑜𝑔𝑅 and ∆𝐷 change due to 

the reduction of particle sizes in the bins. 

Based on 𝑅∗, we define a dissolution time scale for 

a polydisperse system, 𝜏𝑑𝑖𝑠𝑠, which is the time scale 

required for a spherical particle with radius 𝑅∗ to fully 

dissolve at zero bulk concentration, 

𝜏𝑑𝑖𝑠𝑠 =
𝑅∗2

2𝑣𝑚𝐶𝑠𝐷𝑚
    (39) 

𝜏𝑑𝑖𝑠𝑠 will be used to normalize time 𝑡 in the analysis. 

 

2. Model validation 

To validate the model, we compare the predictions of QSM for single and polydisperse particles with 

experimental measurements of dissolution from polydisperse collections of felodipine drug particles in a 

Couette flow viscometer [23]. The molar volume of felodipine is 𝑣𝑚 = 265 cm3/mol. The solubility of 

felodipine in density-matched water in the experiment is 𝐶𝑠𝑜𝑙 = 0.89 μM, which is also the saturation 

concentration (𝐶𝑠). The diffusion coefficient of felodipine is 𝐷𝑚 = 6.7 × 10−6 cm2/s. 

In the experiment, the particle shapes are random and irregular, and the initial particle size distribution 

roughly follows a log-normal distribution as shown in Fig. 3. The radius at the peak in the log-normal 

distribution is 𝑅∗ = 1.4𝜇𝑚. The maximum and minimum particle radii are 𝑅𝑚𝑖𝑛 = 0.47𝜇𝑚 and 𝑅𝑚𝑎𝑥 =
5.2𝜇𝑚, respectively. Since the size distribution is given as the volume fraction of each bin against particle 

radius in [23], we calculated the number of particles in each bin directly from a prespecified total volume 

of particles. A simple laminar shear flow with closely linear velocity profile was created by rotating the 

inner cylinder of the Couette viscometer at 5 rpm, generating a low Reynolds number laminar flow that, 

together with the small size of particles, produced highly diffusion-dominated dissolution from particles 

with random geometries.  

Figure 2. Discretization of 𝑙𝑜𝑔𝑅 and 𝐷 at 𝑡 = 0. 
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In Fig. 4, we compare the prediction of the time variation of bulk concentration 𝐶𝑏 from QSM for both 

monodisperse and polydisperse models with the experimental measurements. Two initial particle 

concentrations are considered, 𝐶𝑝0 = 0.5  and 1.5  μM. In the monodisperse model, the particles are 

assumed to be spherical and the particle radius is equal to 𝑅∗  in the log-normal distribution in the 

experiment. In the polydisperse model, the particles are assumed to be spheroidal, with Taylor shape factor 

𝐷 from -9/11 to 9/11, corresponding to aspect ratio from 1/10 to 10. The initial PDF of particle size and 

shape, 𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣 , follows the same distribution on 𝑙𝑜𝑔𝑅 as the experiment and is uniform over 𝐷. Overall, 

the predictions of the QSM are in good agreement with the experimental measurements. Comparison of the 

variation of 𝐶𝑏 shows that the polydisperse model gives a better prediction than monodisperse model at 

every time point, because the particle size and shape distributions in the polydisperse model are closer to 

those of the particles in the experiment. The good agreement of the prediction of the polydisperse model 

with experimental measurements suggests that the polydisperse model can give accurate predictions of the 

dissolution process of complex systems with distributions of particle size and shape.  

 

3. Examples of Polydisperse Dissolution 

Here we select several typical cases of polydisperse dissolution of felodipine to demonstrate the ability 

of the model to predict dissolution process. We assume that at 𝑡 = 0, the volumetric PDF 𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣  follows 

Figure 4. Predictions of the dissolution process using the monodisperse and polydisperse models, 

compared with experimental results [23]. 

Figure 3 Initial particle size distribution measured with the Mastersizer instrument from in vitro 

experiment [23]. 
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the log-normal distribution with respect to 𝑙𝑜𝑔𝑅 for any 𝐷 and is uniform over 𝐷 from 𝐷𝑚𝑖𝑛 to 𝐷𝑚𝑎𝑥 for 

any 𝑙𝑜𝑔𝑅, as described by Eqn. (35). The Taylor shape factor 𝐷 ranges from -9/11 to 9/11, corresponding 

to aspect ratio from 1/10 (Prolate) to 10 (Oblate).  The variance of the log-normal distribution 𝜎2 = 0.18. 

The minimum and maximum particle sizes are selected so as to make 

(𝑃𝑙𝑜𝑔𝑅,𝐷,0
𝑣 )

𝑅=𝑅0,𝑚𝑖𝑛
(𝑃𝑙𝑜𝑔𝑅,𝐷,0

𝑣 )
𝑅=𝑅∗⁄ = (𝑃𝑙𝑜𝑔𝑅,𝐷,0

𝑣 )
𝑅=𝑅0,𝑚𝑎𝑥

(𝑃𝑙𝑜𝑔𝑅,0
𝑣 )

𝑅=𝑅∗⁄ = 0.01 (40) 

Here 𝑅0,𝑚𝑖𝑛  and 𝑅0,𝑚𝑎𝑥  are the minimum and maximum particle radii at 𝑡 = 0, respectively. It can be 

calculated that  

𝑅0,𝑚𝑖𝑛 𝑅∗⁄ = 0.28 and 𝑅0,𝑚𝑎𝑥 𝑅∗⁄ = 3.62   (41) 

Figure 5 shows the initial profile of 𝑃𝑙𝑜𝑔𝑅,0
𝑣 , which is the integral of 𝑃𝑙𝑜𝑔𝑅,𝐷,0

𝑣  over 𝐷. The distribution is 

symmetric about 𝑙𝑜𝑔𝑅∗. 

In addition to particle size and shape, another factor determining the dissolution process is the initial 

solid particle concentration 𝐶𝑝,0. When 𝐶𝑝,0 < 𝐶𝑠, all particles will completely dissolve in the solution. 

When 𝐶𝑝,0 = 𝐶𝑠, all particles will completely dissolve and the solution will be saturated. When 𝐶𝑝,0 > 𝐶𝑠, 

the particles will partially dissolve and the solution will be saturated.  

We start with case of 𝐶𝑝,0/𝐶𝑠 = 0.1. Figure 6 shows the variation of typical particle sizes with time for 

𝐶𝑝,0/𝐶𝑠 = 0.1. Overall, the particle sizes all decrease following a similar pattern. For the same initial size, 

the radius reduction rate, |𝑑(𝑅/𝑅∗)/𝑑(𝑡 𝜏𝑑𝑖𝑠𝑠⁄ )|, of non-spherical particles (𝐷 = −9/11 and 9/11) is larger 

than that of spherical particles (𝐷 =0). This has been discussed in Wang et al. [28]. For any given particle, 

the reduction rate, |𝑑(𝑅/𝑅∗)/𝑑(𝑡 𝜏𝑑𝑖𝑠𝑠⁄ )|, increases with decrease in (𝑅/𝑅∗), and approaches infinity when 

(𝑅/𝑅∗) goes to 0. For the same particle shape, that is, the same 𝐷, the reduction rate of smaller particles is 

larger than that of larger particles at the same 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ . These two phenomena are related to the dependence 

of particle size reduction rate on particle radius [25].  

In Fig. 7 we plot the evolutions of volumetric PDF, 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 , in the space of 𝑙𝑜𝑔(𝑅/𝑅∗) and 𝐷. When 

𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 0 , the domain of particles is rectangular. 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  follows a log-normal distribution in the 

direction of 𝑙𝑜𝑔(𝑅/𝑅∗) and remains constant in the direction of 𝐷. Due to particle size reduction, the 

domain of the distributions moves toward the left. In this process, the patterns of the distributions change 

Figure 5. Initial particle size distribution 𝑃𝑙𝑜𝑔𝑅,0
𝑣  with respect to 𝑅0 𝑅∗⁄ . 
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within the domain. Because of the larger size reduction rates of particles of larger |𝐷|, 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 , decreases 

in the upper and lower regions and converges to the central region where |𝐷| is small. The non-uniform 

particle size reduction rate caused by the non-uniform distribution of 𝐷 creates an arc curving to the left on 

the right boundary of the domain. At the same time, the faster size reduction rates of smaller particles cause 

the peak in the distribution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  to shift to the right, where it eventually reaches the right boundary.  

For the 𝐶𝑝,0/𝐶𝑠 = 1 cases, complete dissolution requires infinite time. The calculation was stopped at 

𝐶𝑏/𝐶𝑠 = 0.99. Figure 8 shows the variation of typical particle sizes with time for 𝐶𝑝,0/𝐶𝑠 = 1. For all 

Taylor shape parameters, smaller particles, such as those with 𝑅0 = 𝑅∗ and 𝑅0,𝑚𝑖𝑛, completely dissolve 

within a finite range of time, yet the complete dissolution of the largest particles (𝑅0 = 𝑅0,𝑚𝑎𝑥) cannot be 

achieved with a finite time. 

Figure 9 shows the evolution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  over the time period from 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 0 to 100 for 𝐶𝑝,0/𝐶𝑠 = 1. 

When 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 100, 𝐶𝑏/𝐶𝑠 = 0.99 is roughly reached. The non-uniform particle size reduction makes 

Figure 7. Evolution of particle size distribution (𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 ) in the space of 𝑙𝑜𝑔(𝑅/𝑅∗) and 𝐷 for 

𝐶𝑝,0/𝐶𝑠 = 0.1.  

Figure 6. Variation of typical particle sizes with time for 𝐶𝑝,0/𝐶𝑠 = 0.1. (a) All three cases with 𝑅0 =

𝑅0,𝑚𝑎𝑥, 𝑅∗, and 𝑅0,𝑚𝑖𝑛, (b) cases with 𝑅0 = 𝑅∗, and 𝑅0,𝑚𝑖𝑛.  

(a) (b) 
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𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  converge to the central region and move to the large particle side. At 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 100, about 1% of 

the particle volume is left in the system, and the peak still has not reached the largest particles. 

When 𝐶𝑝,0/𝐶𝑠 = 10, only 10% of the particle volume is dissolved in the solution when the process is 

complete, and the smaller particles play a more important role in the dissolution process. In Fig. 10, we plot 

the variation of typical particle sizes for 𝐶𝑝,0/𝐶𝑠 = 10. Similar to the cases of 𝐶𝑝,0/𝐶𝑠 = 1, it takes an 

infinite amount of time to reach full saturation, so the calculations were stopped when 𝐶𝑏/𝐶𝑠 = 0.99. In 

this case, the size of most particles decreases only slightly. Even the smallest particles do not completely 

dissolve. All particles asymptotically approach their respective final-state constant particle sizes. 

Figure 11 shows the evolution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  for 𝐶𝑝,0/𝐶𝑠 = 10. When 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ = 0.2, 𝐶𝑏/𝐶𝑠 ≈ 0.98. As 

shown in the figure, the left boundary of the domain moves to the left, with larger extensions near the upper 

and bottom ends, due to the larger size reduction rates of particles of larger |𝐷|. During the whole process, 

the distribution of 𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣  converges only slightly to the central region.  

Figure 9. Evolution of particle size distribution (𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 ) in the space of 𝑙𝑜𝑔(𝑅/𝑅 ∗) and 𝐷 for 𝐶𝑝,0/𝐶𝑠 = 1.  

Figure 8. Variation of typical particle sizes with time for 𝐶𝑝,0/𝐶𝑠 = 1. (a) All three cases with 𝑅0 =

𝑅0,𝑚𝑎𝑥, 𝑅∗, and 𝑅0,𝑚𝑖𝑛, (b) cases with 𝑅0 = 𝑅∗, and 𝑅0,𝑚𝑖𝑛.  

(a) (b) 
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In Fig. 12 we compare the increase in bulk concentration (𝐶𝑏,0/𝐶𝑠) of a polydisperse system with those 

of monodisperse systems for 𝐶𝑝,0/𝐶𝑠 = 0.1 , 1, and 10. The Taylor shape parameters in the three 

monodisperse systems are 𝐷 = −9/11, 0, and 9/11, respectively. When 𝐶𝑝,0/𝐶𝑠 = 0.1 and 1, the faster 

dissolution of smaller particles and particles of large |𝐷| in polydisperse systems makes 𝐶𝑏/𝐶𝑠 increase in 

the initial short time period (𝑡 𝜏𝑑𝑖𝑠𝑠⁄ < 0.2) at a rate close to that in monodisperse systems with 𝐷 = −9/11 

and 9/11. It’s a coincidence that the increase rate of polydisperse systems is close to that of monodisperse 

systems. When we widen or narrow the initial distributions of the polydisperse particles, they will not be 

close to each other.  

After the initial time period, the larger particles play a more important role, which significantly reduces 

the dissolution rate. As a result, the increase of 𝐶𝑏/𝐶𝑠 in polydisperse systems becomes slower than in any 

of the monodisperse systems. Correspondingly, the dissolution time in polydisperse systems becomes much 

longer than in monodisperse systems. If a further wider initial distribution is used, the bulk concentration 

will increase faster than in the current polydisperse system in the initial period and increase slower after 

that. When 𝐶𝑝,0/𝐶𝑠 = 10, the dissolution process is dominated by smaller particles in the polydisperse 

system, and the smaller particles have a larger dissolution rate. As a result, the bulk concentration increases 

Figure 11. Evolution of particle size distribution (𝑃𝑙𝑜𝑔𝑅,𝐷
𝑣 ) in the space of 𝑙𝑜𝑔(𝑅/𝑅∗) and 𝐷 for 

𝐶𝑝,0/𝐶𝑠 = 10.  

Figure 10. Variation of typical particle sizes with time for 𝐶𝑝,0/𝐶𝑠 = 10  
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at a rate close to that of monodisperse systems with 𝐷 = −9/11 and 9/11. If the initial size distribution is 

further widened, 𝐶𝑏/𝐶𝑠 will increase even faster in the polydisperse system.  

 

4. Conclusion 

In this paper, we have integrated a rigorous mathematically based quasi-steady-state model of diffusion-

dominated dissolution of single spheroidal (prolate, oblate, or spherical) particles into the well-established 

framework of polydisperse dissolution models based on the assumption of uniform bulk concentration, and 

developed a mathematical model that can accurately predict the detailed dissolution process of systems of 

spheroidal particles with a broad range of distributions of particle size and aspect ratio. Validation against 

experimental results show that this model can accurately predict the increase in bulk concentration of 

complex polydisperse systems with various particle sizes and shapes. Several examples of the polydisperse 

dissolution of felodipine particles have been utilized to demonstrate the model’s capability to predict the 

intricate and detailed dissolution process.  

This model lays an important foundation for the future development of mathematical models of the 

dissolution of irregularly shaped polydisperse particle systems in practical applications.  

 

(b) (a) 

(c) (d) 

Figure 12. Variation of bulk concentration (𝐶𝑝,0/𝐶𝑠) with time (𝑡 𝜏𝑑𝑖𝑠𝑠⁄ ) of monodisperse and 

polydisperse particles.  (a) Three initial particle concentrations, 𝐶𝑝,0/𝐶𝑠 = 0.1, 1 and 10, (b) 𝐶𝑝,0/𝐶𝑠 =

0.1, (c) 𝐶𝑝,0/𝐶𝑠 = 1, (d) 𝐶𝑝,0/𝐶𝑠 = 10. 
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