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A quasi steady-state model (QSM) for accurately predicting the detailed diffusion-
dominated dissolution process of polydisperse spheroidal (prolate, oblate, and spherical)
particle systems with a broad range of distributions of particle size and aspect ratio has
been developed. A rigorous, mathematics-based QSM of the dissolution of single
spheroidal particles has been incorporated into the well-established framework of
polydisperse dissolution models based on the assumption of uniform bulk concentration.
Validation against experimental results shows that this model can accurately predict the
increase in bulk concentration of polydisperse systems with various particle sizes and shape
parameters. A series of representative instances involving the dissolution of polydisperse
felodipine particles at various concentration ratios is used to demonstrate the model’s
effectiveness, rendering it a valuable tool for understanding and managing complex
systems with diverse particle characteristics.

Introduction

The modeling and characterization of dissolution processes in multiple-solid-particle systems is of great
importance to many scientific and industrial applications, from traditional drug delivery [1] and metal ore
heap leaching [2] to emerging renewable biomass energy [3] and dissolvable microrobots [4]. A full
understanding of dissolution kinetics not only enables accurate predictions of the variations of solution
concentration and particle sizes, but also carries crucial implications for controlling and optimizing the
dissolution process. For example, the dissolution characteristics of drug particles play a pivotal role in
determining and manipulating drug release and the bioavailability of active pharmaceutical ingredients.
Hence, it is vital to understand the underlying physical and chemical processes involved [5].

One of the limiting factors for particle dissolution rate is the transport of dissolved molecules from the
particle surface to the surrounding fluid, and this process relies on both molecular diffusion and the
hydrodynamics around the particle. In some applications, such as drug dissolution in the gastrointestinal
tract, the particle sizes range from a few microns to hundreds of microns [6, 7]. For such small particles,
hydrodynamic effect is relatively weak and molecular diffusion plays a dominant role in mass transfer [8].
To date, a large number of diffusion-dominated dissolution models have been developed and broadly used
in various areas [9]. Among these models, the most widely used models are the Fick’s-first-law-based
Noyes-Whitney Model and its modifications [5, 10-19]. The basic idea of these models is to establish a
linear relationship between the particle dissolution rate and the difference in concentration between particle
surface and bulk fluid. They typically incorporate a parameter known as diffusion layer thickness, which is
based on the recognition that a layer of high concentration fluid exists adjacent to the particle surface [9,
16]. For spherical particles, the diffusion layer thickness is considered to be close to the particle radius.
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These models have been shown to accurately predict the entire dissolution process of spherical particles,
but they are generally empirical or semi-empirical, lacking rigorous mathematical proof, and having limited
applicability. Beyond the empirical and semi-empirical models, some mathematical models built on
solutions of the diffusion equation of a spherical particle have been proposed, such as the infinite-domain
model [20], the finite-domain model [21], and the quasi-steady-state model [21, 22]. Wang et al.[21]
conducted a critical examination of the accuracy and efficiency of these models. They found that a relatively
simple “quasi steady-state” model (QSM) predicts both the increase in bulk concentration and the surface
flux with a high level of accuracy beyond a short initial transient period. QSM thus can be used as the basis
for developing more sophisticated dissolution models.

Currently, the major challenges in modeling the dissolution processes of real particle systems involve
the treatment of wide distributions of particle sizes and geometries. In practical applications, particle sizes
typically vary within a range, rather than being uniform [23]. Particles of different sizes have different
dissolution rates. To the best of our knowledge, the earliest polydisperse model was developed by Higuchi
and Hiestand for spherical particles[22]. Their model assumes that the diffusion layer thicknesses are
always equal to the particle radius and uses the Noyes-Whitney equation to calculate the dissolution rate of
each individual particle. However, they only considered the bulk concentration to be constant, leading to
independent dissolution of all the particles. Therefore, this model is not a real polydisperse model. Based
on Higuchi and Hiestand’s model[22], Hintz and Johnson [16] proposed a new model, in which they
calculated the bulk concentration by summing the numbers of molecules dissolving from every particle and
dividing it by the total container volume. In this model, the diffusion layer thickness, §, depends on the
particle size. For particles with a radius smaller than 30 um, & is set equal to the particle radius, while for
all larger particles, ¢ is fixed at 30 pm. This model has become the most popular tool for investigating the
polydisperse dissolution mechanisms, and has been used broadly to date [24]. The advantage of the Hintz
and Johnson’s model is that it avoids the complexity of solving the diffusion equation around each particle,
and describes the dissolution rate through a simple linear expression involving the surface area and the
difference between bulk concentration and saturation concentration. However, because species transport
around each particle is still not well understood, the diffusion layer thickness & still needs to be modeled.
Taking advantage of the easy form of the solution of the QSM, Wang et al. [25] developed a “hierarchical”
model to predict the detailed dissolution process from polydisperse collections of spherical particles of
various sizes. Since Wang et al.'s model is based on an analytical solution to the diffusional transport
equation for individual particles, it provides more physical insight, including the spatial distribution of
dissolved species around each particle. The basic idea of this model provides an important direction for
developing dissolution models for polydisperse non-spherical particles.

In nature, however, and in practical applications, more than 70% of solid particles are not regularly
spherical, and have a wide range of aspect ratio from O(0.1) to O(10) [26, 27]. Morphology has been
identified as a key factor influencing dissolution[1, 26, 27]; the assumption of spherical particles may be
one of the dominant sources of error in quantifying the dissolution process. Wang et al. [28] have extended
the QSM for spherical particles to include prolate and oblate spheroidal particles. The new model is based
on the analytical solutions of the steady-state diffusion equation in spheroidal coordinate systems.
According to the spatial distribution of molar concentration in the surrounding fluid, detailed dissolution
processes, such as the molar flux of dissolved substances and the regression rate of the particle surface, can
be obtained.

A robust and straightforward mathematical model capable of comprehensively addressing the intricate
dissolution process of a polydisperse particle system with diverse sizes and geometries is still lacking, and
the dissolution characteristics of such particle systems are still not well understood. This severely impedes
the optimization and control of particle dissolution in various applications. In this paper, we develop a
dissolution model for polydisperse spheroidal particles with distributions of both size and aspect ratio, based
on the QSM for spheroidal particles [28] and the polydisperse model for spherical particles [25]. The aspect
ratio covers a wide range of particle shapes from prolate to oblate spheroidal particles. The present study
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proposes a physics-based, easy to use, and accurate tool for research on the dissolution of a wide range of
particle systems, and offers insights into the dissolution kinetics of complex systems. This model is intended
to establish a foundation for future development of more intricate dissolution models that take into account
the hydrodynamics around the particles in such systems.

1. Mathematical model formulations

(a) Single or monodisperse particle modeling

In this study, the term “monodisperse” is used to denote a system in which all particles have the same
size and shape, and “polydisperse” is used to denote a system in which the particles have either various
sizes or various shapes or both. In terms of modeling strategy, the monodisperse model is the same as the
single particle model. For the polydisperse dissolution model, we build a collection of particles of different
sizes and shapes, in which the dissolution of each particle is partially described by a single particle
dissolution model and is coordinated by the polydisperse model. In this study we focus on spheroidal shapes
from prolate to spheric and then to oblate. The QSM for a single prolate or oblate spheroidal particle
proposed by Wang et al.[28] and the QSM for a single spherical particle proposed by Wang et al.[21] are
used to model the dissolution of each particle.

The surface of a spheroidal particle is described by

2 2 2
4 l=1 (1)
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where x, y, and z are Cartesian coordinates, a, is the equatorial radius, and by, is the polar radius. The
aspect ratio is defined as,

A= ay,/b, )

When A > 1, the particle shape is oblate spheroidal, when A < 1, the shape is prolate spheroidal, and when
A =1, the shape is spherical.

At the particle surface, the concentration of dissolved substance is the saturated concentration, which
is constant.

C=0¢ (3)

where C(x,y, z) (mol/volume) is the molar concentration of dissolved substance, and Cj is the saturated
concentration.

The molar flux of dissolved substance from the particle surface to the surrounding liquid, Ny (mol/area-
time), is defined as

Ng = =D, - VC|g “)

where D,, (area/time) is the diffusion coefficient for the dissolved substance in the fluid, and 7 is a unit
normal vector pointing outwards to the ambient fluid. The particle surface regresses with time as the
particle loses mass from its surface,

dRy,

= —Nsvm ®)

where R,, is the surface coordinate in the direction normal to the particle surface, and v,, (volume/mol) is
the specific volume of the particle.



For a given particle, the dissolution also depends on the container volume, which confines the dissolved
substance within the container. From the initial particle volume (V) and container volume (V;), the initial

solid particle concentration, Cpo (mol/volume), is calculated as

Cpo = 2% (6)

0= vmVe
In the calculation, either V. or €, can be used to specify the container volume.

According to Wang et al. [28], for each prolate or oblate particle, the release rate through the particle
surface, which is denoted by Ny (mol/time), is,

N& = —47AD,,0 (7)

where A and (2 are coefficients related to the geometry of the particle and the profile of the substance
concentration. For a prolate spheroid,

Cs—Coo

A=—7 o (8)
1 (b§+a§+ﬂ)
0= [b2-a? )

and for an oblate spheroid,

Cs—Coo
A= arctan(by,/0)-m/2 (10)

n= /ag—bg (11)

where C,, is the concentration of dissolved substance at infinity. C,, is related to the bulk concentration C,
via the container size [21].

When a,, = by, Eqn. (7) collapses into the expression for spherical particles, which is written as [21],
Ng = —4nRD,,(Cs — Cy) (12)
Equations (7) and (12) describe the release rates of spheroidal particles of different aspect ratios.

During dissolution the particle size gradually decreases. It is shown in Wang et al.[28] that the aspect
ratios of the prolate and oblate particles, A = a,(t)/b,(t), do not change over time. It is more convenient
to use the radius of a spherical particle of the same volume to represent the size of non-spherical particles.
The size of all particles can be uniformly expressed by the equivalent spherical radius,

R = (aphy)"” 3)

Then the reduction rate of R can be calculated from the release rate at the surfaces of both spherical and
non-spherical particles,

dR _ Ngv
at 4-1'[Rr;l (14)

An alternative to calculate Ny is to utilize the idea that the release of dissolved substance is realized by
the diffusion of the substance through a diffusion layer thickness at the particle surface.

N = —4mR?D,, —(C;Ef)”) (15)



where §(t) is the diffusion layer thickness defined based on the equivalent spherical particle radius. &(t)
is obtained from the QSM for spherical [21] or non-spherical particles [28].

(b) Polydisperse particle modeling

Currently, there are two major strategies for building models of polydisperse particle dissolution. In the
first, proposed by Hintz and Johnson [16], the dissolution rate of each particle is calculated by the difference
of substance concentration between the particle surface and the bulk fluid over a diffusion layer. In the
second, proposed by Wang et al. [25], the dissolution of each particle is described by the QSM within a
finite-sized container. These two strategies share a common assumption that the solution is perfectly mixed
and the bulk concentration of dissolved substance is uniform throughout. The bulk concentration is “felt”
by every particle and is used to calculate the dissolution rate of every particle. When the diffusion layer
thickness in the Hintz and Johnson’s model is obtained from the QSM, the two strategies essentially become
the same. Both strategies are currently used only for spherical or near-spherical particles, due to the lack of
a dissolution model for non-spherical particles. In this study, we take advantage of the QSM for prolate and
oblate particles and extend the aforementioned polydisperse models to those for systems with various
particle sizes and shapes. The two strategies for polydisperse dissolution are introduced in more detail
below.

Sub-container model

Here we extend the Wang et al. [25] model for spherical particles to a system with a wide range of
particle size and aspect ratio. Figure 1 shows the physical model. In a container holding n particles, the
container is broken down into as many separate sub-containers as the number of particles, and each particle
is assigned a sub-container. We assume that the sub-containers are spheroidal, with every particle
positioned at the center of its respective sub-container. The substance released by a particle remains
confined within its corresponding sub-container. The linkage among the particles is established by keeping
the bulk concentration in each sub-container the same as the bulk concentration in the whole container. The
bulk concentration in the container is,

N _ Ny+Np+.+Ni+.+N, _ YIN;

C,=—= = 16
b Y T Ve Vet AVt AV NV (16)
where Ny, N, ..., N, are the amounts of substance released from every particle, N is the total amount of
substance released from all particles, and V. 1, V.. 5, ..., V. ,, are the volume of every sub-container, with the

sum of the sub-container volumes being equal to the volume of the whole container V,. The amount of
substance released from the i-th particle is acquired by integrating the surface release rate of the particle
over time,

toarr
Ni(®) = [ Ng,(v)dr 17)
where Ng ;(7) is calculated from Eqns. (7) and (12). The bulk concentration in every sub-container is
calculated by,
N N N; Ny,
Cha =ﬁ, Cp,2 =W,22’ cos Cp i =E’ s Cp =E (18)

To keep Cp ;(t) always equal to Cp(t), the volume of each sub-container is adjusted dynamically at every
moment.
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Figure 1. Illustration of sub-container model for dissolution from a polydisperse collection of
spheroidal particles of a variety of particle sizes and aspect ratios. The dissolution of each particle is
described by the QSM of a single particle in a sub-container.

In systems comprising spherical particles, this model provides a prediction of the dissolution process
that is consistent with experimental measurement [25]. This model serves as the basic tool for analyzing
the polydisperse dissolution in this study.

Diffusion layer model

In the Hintz and Johnson diffusion layer model [16], a Noyes-Whitney type expression [29] is applied
to describe the dissolution of the particles, and a diffusion layer thickness is used to calculate the dissolution
rate,

(Cs—Cp)
st,i = _Ap,iDm;Tt)b (19)

where A, ; is the surface area and §;(t) is the diffusion layer thickness of the i-th particle. Here the bulk
concentration Cp, is also calculated by Eqn. (16). The diffusion layer thickness is obtained through
mathematical models or experimental measurements. Prior to the emergence of rigorous mathematical
models such as FDM and QSM [21], the determination of the diffusion layer thickness played a pivotal role
in a number of modeling strategies [9].

It was found that the QSM accurately predicts both the time-varying bulk concentration and the surface
flux beyond a short initial transient period [21]. A reasonable way to take advantage of the aforementioned
sub-container model is to assign each particle a sub-container, and then use the QSM to acquire the time
dependent diffusion layer thickness. With this treatment, the diffusion layer model is exactly the same as
the sub-container model. A simplified version uses the QSM for a single particle to develop a correlation
of diffusion layer thickness as a function of particle size and geometry and other determining factors, and
then incorporate the correlation into the polydisperse model of dissolution rate shown by Eqn. (19).
Obviously, both methods of the diffusion layer model will offer the same level of accuracy as the sub-
container model.

(c) Population Balance Modeling

In polydisperse systems, it is convenient to use the temporal evolution of a probability distribution
function (PDF) with respect to the equivalent spherical radius (R) and aspect ratio (A) to describe the



statistical average state of the particles. Here we define the volumetric probability distribution function of
particle radius and aspect ratio as

§(Vy,(t)
PEA(R, A, t)6REA = (o O)p_pesrasasen o0
’ AC)
and
Rmax (Amax pv
J PgA(R, A, t)dRdA =1 o

Rmin “Amin
where Py ,(R,A,t) is the volumetric PDF of particle radius and aspect ratio at time t ,
8 (V;g (t))R—>R+ SRAsA+6A 1S the volume of particles with radius between R and R + R and aspect ratio

between A and A + 84, V,(t) is the total particle volume, Ry, and Ry, 4 are the minimum and maximum
particle radii, and A,,;;, and 4,4, are the minimum and maximum particle aspect ratios, respectively.

Considering the width of the range of A for prolate spheroids (A < 1) is much smaller than that for
oblate spheroids (A > 1), we further create the PDF using the Taylor shape parameter instead of aspect
ratio, following the description of droplet morphology [30]. The Taylor shape parameter is defined as,

D =%t (22)

ap+by
The relationship between D and A is,

A-1

A 29
The corresponding volumetric PDF with respect to R and D is written as,
8(Vp(t)
P;?]D (R’ D' t)aRdD = ( p )R%R+5R,D4>D+5D (24)
! Vp(t)
and
[Rmax (Pmax pv (R D £)dRdD = 1 (25)
Rmin “Dmin R.D T
where § (Vp (I,L))R_”R+ SRD—D+8D is the particle volume in the ranges from R to R + 6R and from D to D +
éD.

The population balance model (PBM) presenting the partial differential equation of the PDF of time
and particle radius has been broadly used in the study of solid particle dissolution[31-33]. By studying the
time rate of change of particle volume in a control volume in the space of R and D, the following population
balance equation can be easily obtained,

= (PEoV) = = (PEoV 5) — 5 (PEOV, ) (26)

It is shown in Wang et al. [28] that the aspect ratios of prolate and oblate particles do not change over time,

SO Z—? = 0 and Eqn. (26) reduces to,

ae (Photy) = =5 (Pho% ) @7

(d) Volumetric PDF in Logarithm Scale of Particle Radius
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In fields such as pharmacology and crystallography, the log-normal distribution has been used for a
long time to describe the size distribution of particles; the particle distribution is described as a normal or
Gaussian function on a logarithm scale of particle size [34, 35]. Here, we define the volumetric PDF of
particle size with respect to the logarithm of equivalent spherical particle radius as,

Piogrp(logR, D, t)6(logR)SD = S(Vp(t))logR*l;il(?:)&(logR).DaD+so (28)
and
frogmax [Pmax py o o (logR, D, )d(logR)dD = 1 29)
where &(V, (1)) is the particle volume with a logarithm of radius between logR

logR—logR+6(logR),D—»D+6D
and logR + 6 (logR) and Taylor parameter between D and D + 6D.

Here we consider the simplest case, in which the dependence of Pjsz , on logR is decoupled from

that on D and the dependence on logR follows the log-normal distribution. Then volumetric PDF can be
defined separately for logR and D, which are denoted by Py, (logR, t) and P (D, t), respectively,

Pl gr(10gR, ) = [} Piygr p(logR, D, t)dD (30)

PY(D,t) = fz?jﬁﬂ" PE grp(logR, D, t)d(logR) 31)
and

Piogrp(logR, D, t) = Py gp(logR, t)Pp(D, t) (32)

A volumetric PDF with a log-normal distribution with respect to logR at t = 0 reads

1 (logR-1 R*)
Phgro(0gR) = == exp [~ L 20E] (33)

where o is the standard deviation of the distribution, and R* is the particle radius at which the maximum
Pjogr o 1s reached.

(e) Implementation of Polydisperse Dissolution Model

Given an initial Pjggp p o as a function of logR and D, Py, 4 (t) evolves from Pj; g p o With time as a
consequence of variations of the size and shape of every particle. To simplify the problem, we assume that
att =0, Pygr po follows the log-normal distribution with respect to logR for any D and is uniform over
D from Dy, iy, to Dy, for any logR,

Pllf)gR,D,O (logR,D) = Pllf)gR,O (logR)/(Dmax - Dmin) (34)

and Py 4p ¢ is described by a log-normal function given by Eqn. (33). Pjgr p o is finally written as,

1 (logR-1logR™)
Pl%gR.D,O (lOgR, D) = Wexp [ &] /(Dmax Dmin) (35)

To implement the polydisperse model, the initial volumetric PDF of particle sizes and shapes, that is,
Pjogr p,0> has to be discretized into a number of bins with respect to logR and D. An easy way is to



decompose the space of logR and D into nyogg X npp bins, and the bins have uniform bin width in logR
and D, as shown in Fig. 2. The bin widths are given as

AlogR: (logRmax — lOngin)/(nlogR -1 (36)

Ap= (Dmax — Dmin)/(np — 1) (37)

where 1,4z and nj, are the numbers of bins in logR and D, respectively. We assume that in each bin all
the particles have the same values of logR and D. The number of particles in bin (i, j) is (see Fig. 2),

Pl grD,0010gRADVp 0
Mp (i) = T3 (3%)
3

where V),  is prespecified total volume of particles. In A |

max
D

the dissolution process, n, (; ;) does not change with

|
T
|
time, yet the bin widths, A;,4z and A change due to :
“l

b - {) - -

the reduction of particle sizes in the bins. A

Based on R*, we define a dissolution time scale for
a polydisperse system, Tz;55, Which is the time scale
required for a spherical particle with radius R* to fully
dissolve at zero bulk concentration,

min

|

|

I

I

1

|

I

R*? :
1

2 v i e n
2U;,CsDim logk

logR logR, logR

Tdiss = (39)

min max

Tgiss Will be used to normalize time ¢t in the analysis.
Figure 2. Discretization of logR and D at t = 0.

2. Model validation

To validate the model, we compare the predictions of QSM for single and polydisperse particles with
experimental measurements of dissolution from polydisperse collections of felodipine drug particles in a
Couette flow viscometer [23]. The molar volume of felodipine is v, = 265 cm*/mol. The solubility of
felodipine in density-matched water in the experiment is Cs,; = 0.89 uM, which is also the saturation
concentration (C;). The diffusion coefficient of felodipine is D,,, = 6.7 X 107 cm?/s.

In the experiment, the particle shapes are random and irregular, and the initial particle size distribution
roughly follows a log-normal distribution as shown in Fig. 3. The radius at the peak in the log-normal
distribution is R* = 1.4um. The maximum and minimum particle radii are R,,;;, = 0.47um and R4, =
5.2um, respectively. Since the size distribution is given as the volume fraction of each bin against particle
radius in [23], we calculated the number of particles in each bin directly from a prespecified total volume
of particles. A simple laminar shear flow with closely linear velocity profile was created by rotating the
inner cylinder of the Couette viscometer at 5 rpm, generating a low Reynolds number laminar flow that,
together with the small size of particles, produced highly diffusion-dominated dissolution from particles
with random geometries.
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Figure 3 Initial particle size distribution measured with the Mastersizer instrument from in vitro
experiment [23].
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Figure 4. Predictions of the dissolution process using the monodisperse and polydisperse models,
compared with experimental results [23].

In Fig. 4, we compare the prediction of the time variation of bulk concentration C;, from QSM for both
monodisperse and polydisperse models with the experimental measurements. Two initial particle
concentrations are considered, C,o = 0.5 and 1.5 uM. In the monodisperse model, the particles are
assumed to be spherical and the particle radius is equal to R* in the log-normal distribution in the
experiment. In the polydisperse model, the particles are assumed to be spheroidal, with Taylor shape factor
D from -9/11 to 9/11, corresponding to aspect ratio from 1/10 to 10. The initial PDF of particle size and
shape, Pj4r p o» follows the same distribution on logR as the experiment and is uniform over D. Overall,
the predictions of the QSM are in good agreement with the experimental measurements. Comparison of the
variation of €, shows that the polydisperse model gives a better prediction than monodisperse model at
every time point, because the particle size and shape distributions in the polydisperse model are closer to
those of the particles in the experiment. The good agreement of the prediction of the polydisperse model
with experimental measurements suggests that the polydisperse model can give accurate predictions of the
dissolution process of complex systems with distributions of particle size and shape.

3. Examples of Polydisperse Dissolution

Here we select several typical cases of polydisperse dissolution of felodipine to demonstrate the ability
of the model to predict dissolution process. We assume that at t = 0, the volumetric PDF Pj; 4 p, o follows
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the log-normal distribution with respect to logR for any D and is uniform over D from D,y;,, to Dy, 4, for
any logR, as described by Eqn. (35). The Taylor shape factor D ranges from -9/11 to 9/11, corresponding
to aspect ratio from 1/10 (Prolate) to 10 (Oblate). The variance of the log-normal distribution 62 = 0.18.
The minimum and maximum particle sizes are selected so as to make

(PlvogR,D,O)R:RO min/(Pl%gR,D,O)R:R* = (PII:)gR,D,O)R:ROmax/(PlI:)gR,O)R:R* = 0.01 (40)

Here Rgmin and Ry qx are the minimum and maximum particle radii at ¢ = 0, respectively. It can be
calculated that

Romin/R* =028  and  Rgmex/R* = 3.62 (41)

Figure 5 shows the initial profile of Py, 4p o, Which is the integral of Pj5 r o over D. The distribution is
symmetric about logR".
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Figure 5. Initial particle size distribution Py, g o With respect to Ry/R".

In addition to particle size and shape, another factor determining the dissolution process is the initial
solid particle concentration Cpo. When Cp o < Cy, all particles will completely dissolve in the solution.
When €, o = Cj, all particles will completely dissolve and the solution will be saturated. When C,, o > Cs,
the particles will partially dissolve and the solution will be saturated.

We start with case of €}, o /Cs = 0.1. Figure 6 shows the variation of typical particle sizes with time for
Cp,0/Cs = 0.1. Overall, the particle sizes all decrease following a similar pattern. For the same initial size,
the radius reduction rate, |d(R/R*)/d(t/T4iss)|, of non-spherical particles (D = —9/11 and 9/11) is larger
than that of spherical particles (D =0). This has been discussed in Wang et al. [28]. For any given particle,
the reduction rate, |d(R/R*)/d(t/T4iss)|, increases with decrease in (R/R™), and approaches infinity when
(R/R™) goes to 0. For the same particle shape, that is, the same D, the reduction rate of smaller particles is
larger than that of larger particles at the same t/7;5s. These two phenomena are related to the dependence
of particle size reduction rate on particle radius [25].

In Fig. 7 we plot the evolutions of volumetric PDF, Pj; 4z p, in the space of log(R/R*) and D. When
t/Taiss = 0, the domain of particles is rectangular. P, p follows a log-normal distribution in the

direction of log(R/R™) and remains constant in the direction of D. Due to particle size reduction, the
domain of the distributions moves toward the left. In this process, the patterns of the distributions change
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Figure 7. Evolution of particle size distribution (Pj, ¢ ) in the space of log(R/R*) and D for
Cpo/Cs = 0.1.

within the domain. Because of the larger size reduction rates of particles of larger |D|, P 4g p, decreases

in the upper and lower regions and converges to the central region where |D| is small. The non-uniform
particle size reduction rate caused by the non-uniform distribution of D creates an arc curving to the left on
the right boundary of the domain. At the same time, the faster size reduction rates of smaller particles cause
the peak in the distribution of Pjg, g , to shift to the right, where it eventually reaches the right boundary.

For the €, o/Cs = 1 cases, complete dissolution requires infinite time. The calculation was stopped at
Cp/Cs = 0.99. Figure 8 shows the variation of typical particle sizes with time for €y, o/Cs = 1. For all
Taylor shape parameters, smaller particles, such as those with Ry = R* and R i, completely dissolve
within a finite range of time, yet the complete dissolution of the largest particles (Ry = R mqx) cannot be
achieved with a finite time.

Figure 9 shows the evolution of Py, 4 p, over the time period from t /7445 = 0 to 100 for €, /Cs = 1.
When t /145 = 100, C,/Cs = 0.99 is roughly reached. The non-uniform particle size reduction makes
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Py gR,p converge to the central region and move to the large particle side. At t/Tqiss = 100, about 1% of
the particle volume is left in the system, and the peak still has not reached the largest particles.

a) puL .. T T L boi
@ 0 10 20 30 40 50 (b)

t / rdiss t / tdiss

Figure 8. Variation of typical particle sizes with time for C,, o/Cs = 1. (a) All three cases with Ry =
Romax> R*, and Rg min, (b) cases with Ry = R*, and Ry 1in.
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Figure 9. Evolution of particle size distribution (Pj54g p) in the space of log(R/R ) and D for €, /Cs = 1.

When €, o/Cs = 10, only 10% of the particle volume is dissolved in the solution when the process is
complete, and the smaller particles play a more important role in the dissolution process. In Fig. 10, we plot
the variation of typical particle sizes for €, o/Cs = 10. Similar to the cases of €, /Cs = 1, it takes an
infinite amount of time to reach full saturation, so the calculations were stopped when C;, /C; = 0.99. In
this case, the size of most particles decreases only slightly. Even the smallest particles do not completely
dissolve. All particles asymptotically approach their respective final-state constant particle sizes.

Figure 11 shows the evolution ofPl’f,gR'D for Cp,/Cs = 10. When t/74;5s = 0.2, C /Cs = 0.98. As
shown in the figure, the left boundary of the domain moves to the left, with larger extensions near the upper
and bottom ends, due to the larger size reduction rates of particles of larger |D|. During the whole process,
the distribution of Pj54p 1, converges only slightly to the central region.
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Figure 11. Evolution of particle size distribution (Pj 4 p) in the space of log(R/R*) and D for
Cp0/Cs = 10.

In Fig. 12 we compare the increase in bulk concentration (Cp, o /Cs) of a polydisperse system with those
of monodisperse systems for Cp,,/Cs = 0.1, 1, and 10. The Taylor shape parameters in the three
monodisperse systems are D = —9/11, 0, and 9/11, respectively. When Cp,o/Cs = 0.1 and 1, the faster
dissolution of smaller particles and particles of large | D| in polydisperse systems makes C; /C, increase in
the initial short time period (t/74;ss < 0.2) at a rate close to that in monodisperse systems with D = —9/11
and 9/11. It’s a coincidence that the increase rate of polydisperse systems is close to that of monodisperse
systems. When we widen or narrow the initial distributions of the polydisperse particles, they will not be
close to each other.

After the initial time period, the larger particles play a more important role, which significantly reduces
the dissolution rate. As a result, the increase of C;, /C, in polydisperse systems becomes slower than in any
of the monodisperse systems. Correspondingly, the dissolution time in polydisperse systems becomes much
longer than in monodisperse systems. If a further wider initial distribution is used, the bulk concentration
will increase faster than in the current polydisperse system in the initial period and increase slower after
that. When €y, /Cs = 10, the dissolution process is dominated by smaller particles in the polydisperse
system, and the smaller particles have a larger dissolution rate. As a result, the bulk concentration increases
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at a rate close to that of monodisperse systems with D = —9/11 and 9/11. If the initial size distribution is

further widened, C;, /C, will increase even faster in the polydisperse system.
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Figure 12. Variation of bulk concentration (Cp,o/C,) with time (t/7g;55) of monodisperse and
polydisperse particles. (a) Three initial particle concentrations, Cy, o/Cs = 0.1, 1 and 10, (b) C;, o /C;s =
0.1, (¢) Cpo/Cs = 1,(d) Cpo/Cs = 10.

4. Conclusion

In this paper, we have integrated a rigorous mathematically based quasi-steady-state model of diffusion-
dominated dissolution of single spheroidal (prolate, oblate, or spherical) particles into the well-established
framework of polydisperse dissolution models based on the assumption of uniform bulk concentration, and
developed a mathematical model that can accurately predict the detailed dissolution process of systems of
spheroidal particles with a broad range of distributions of particle size and aspect ratio. Validation against
experimental results show that this model can accurately predict the increase in bulk concentration of
complex polydisperse systems with various particle sizes and shapes. Several examples of the polydisperse
dissolution of felodipine particles have been utilized to demonstrate the model’s capability to predict the
intricate and detailed dissolution process.

This model lays an important foundation for the future development of mathematical models of the
dissolution of irregularly shaped polydisperse particle systems in practical applications.
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