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ARTICLE INFO ABSTRACT

Keywords: The interfacial instability in a two-phase mixing layers between parallel gas and liquid streams is important to
Two-phase mixing layer two-phase atomization. Depending on the inflow conditions and fluid properties, interfacial instability can
Interfacial instability be convective or absolute. The goal of the present study is to investigate the impact of gas viscosity on

Viscous effect the interfacial instability. Both interface-resolved simulations and linear stability analysis (LSA) have been

conducted. In LSA, the Orr-Sommerfeld equation is solved to analyze the spatio-temporal viscous modes.
When the gas viscosity decreases, the Reynold number (Re) increases accordingly. The LSA demonstrates that
when Re is higher than a critical threshold, the instability transitions from the absolute to the convective
(A/C) regimes. Such a Re-induced A/C transition is also observed in the numerical simulations, though the
critical Re observed in simulations is significantly lower than that predicted by LSA. The LSA results indicate
that the temporal growth rate decreases with Re. When the growth rate reaches zero, the A/C transition will
occur. The Re-induced A/C transition is observed in both confined and unconfined mixing layers and also in
cases with low and high gas-to-liquid density ratios. In the transition from typical absolute and convective
regimes, a weak absolute regime is identified in the simulations, for which the spectrograms show both the
absolute and convective modes. The dominant frequency in the weak absolute regime can be influenced by
the perturbation introduced at the inlet. The simulation results also show that the wave propagation speed can
vary in space. In the absolute instability regime, the wave propagation speed agrees well with the absolute
mode celerity near the inlet and increases to the Dimotakis speed further downstream.

1. Introduction the inviscid theory well predict the scaling relation of the most unsta-
ble wavelength and frequencies (Rangel and Sirignano, 1988; Raynal,
Two-phase mixing layers play an essential role in the spray for- 1997; Marmottant and Villermaux, 2004), the viscous stability analysis
mation through air-blast or air-assisted atomization (Lefebvre, 1980; is needed to yield accurate prediction of the magnitudes of the most
Lasheras et al., 1998; Varga et al., 2003; Lefebvre and McDonell, 2017). unstable frequency and wavelength (Fuster et al., 2013; Otto et al,,
When the parallel gas and liquid steams meet at the end of the separator 2013; Matas et al., 2015). Nevertheless, there remains discrepancy in
plate, the velocity difference triggers a shear instability on the interface. the most-unstable frequencies predicted by viscous instability analysis
The interfacial instability can be convective or absolute (Otto et al., and experiments (Otto et al., 2013).
2013), depending on the inflow conditions and the fluid properties. The Spatial-temporal linear stability analysis (LSA) has been used to
dynamic pressure ratio has been shown to be an important parameter investigate the C/A transition (Otto et al., 2013; Matas et al., 2015,
to determine the convective to absolute (C/A) transition (Fuster et al., 2018). The instability becomes absolute when the spacial branches on
2013). Previous linear stability analysis showed that the surface tension the wavenumber plane pinch, forming a saddle point (Briggs, 1964).
plays a significant role on the instability and the selection of the most ~ Two distinct absolute instabilities in a two-phase mixing layer have
unstable mode (Otto et al., 2013). The presence of the separator plate been identified. The first is related to the pinch between the shear
between the two streams will induce a velocity deficit in the inlet branch and its surface-tension counterpart (Otto et al., 2013), while the
velocity profile, which is also found to promote the C/A transition. second type arises from the pinch between the shear instability branch
Both inviscid and viscous stability analysis have been conducted, while and the confinement-controlled branch (Matas, 2015). The dominant
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wave frequency and propagation speed for the surface-tension and
confinement absolute instabilities are different: while the frequency
for the former is higher, the wave propagation speed for the former
is significantly lower than the latter. It is argued that the dominant
mechanism for confinement absolute instability is inviscid in nature,
since the interfacial wave propagation speed follows the Dimotakis
speed (Dimotakis, 1986). The frequency for the surface-tension absolute
instability has been found to be significantly higher than the interfa-
cial wave frequency measured in experiment (Otto et al., 2013), and
the lower frequency for the confinement absolute instability seemed
to agree better with experimental data (Matas, 2015). Nevertheless,
confinement absolute instability can only be observed when there is
no velocity deficit in the velocity profile (Matas, 2015). The velocity
deficit is a natural outcome of the wake of the separator plate and
will gradually diminish away from the separator plate Della Pia et al.
(2024). The discrepancy between the experiment and linear stability
theory predictions is still not fully understood. For surface-tension
absolute instability, both theoretical and experimental studies have
identified that the dynamic pressure ratio (or momentum flux ratio)
plays an essential role in the C/A transition (Matas et al., 2011; Otto
et al., 2013; Fuster et al., 2013; Della Pia et al., 2024). Since the gas-to-
liquid dynamic pressure ratio does not involve fluid viscosity or surface
tension, it remains unclear whether other parameters contribute to the
C/A transition. Otto et al. (2013) showed that the critical dynamic
pressure ratio for the C/A transition decreases with increasing surface
tension, but a detailed study on the viscous effect, characterized, for
example, by the Reynolds number, on the C/A transition is still lacking.

Detailed numerical simulation (DNS) has also been used to investi-
gate the interfacial instability in two-phase mixing layers (Fuster et al.,
2013; Agbaglah et al., 2017; Ling et al., 2017, 2019a; Bozonnet et al.,
2022). The advantage of DNS is that it allows for precise control
of inflow conditions, making direct comparison with LSA easier. For
certain ranges of parameters, previous studies showed that the domi-
nant frequencies for the interfacial height measured in DNS agree well
with LSA prediction for the surface-tension absolute instability (Fuster
et al., 2013). However, the wave propagation speed observed follows
the Dimotakis speed, which is significantly higher than the celerity
predicted by LSA (Jiang and Ling, 2021). The physical reason behind
the discrepancy remains unclear, leaving an important open question,
i.e., is viscous effect indeed important to the interfacial stability and,
if yes, to which features? To address these questions, parametric 2D
interface-resolved simulations and linear stability analysis will be per-
formed in the present study by varying the gas viscosity in a wide range.
The goal of the present study is to characterize the effect of gas viscosity
on the interfacial instability development and features, including C/A
transition, wave speed, dominant frequency, and others.

The present study on the gas viscosity effect is also motivated by
experimental and numerical studies on inlet gas turbulence modulation
of interfacial instability (Matas et al., 2015; Jiang and Ling, 2020,
2021). It was observed that when the interfacial instability lies in the
absolute regime, the dominant frequency increases with the inlet tur-
bulence intensity (Jiang and Ling, 2020). While the longitudinal shear
instability varies, the secondary transverse instability and the spray
formation downstream are also impacted (Jiang and Ling, 2021). Since
inlet gas turbulence enhances the momentum transport, this effect can
be approximately represented by a simple turbulent eddy viscosity
model (Pope, 2000). By increasing the effective gas viscosity (sum
of the gas dynamic and eddy viscosities), the linear stability analysis
recovers the increasing trend of dominant frequency with turbulence
intensity (Matas et al., 2015; Jiang and Ling, 2020). Nevertheless,
discrepancies exist in the values predicted by stability analysis and
DNS. Previous simulation results by Jiang and Ling (Jiang and Ling,
2021) seemed to show that an increase in effective viscosity seems to
cause the instability to transition to the absolute regime, though a more
detailed investigation is required to confirm this point.
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Since 3D interface-resolved simulations are too computationally
costly for a parametric study to be completed in this study, 2D sim-
ulations will be used. Some 3D flow features in a two-phase mixing
layer, such as turbulent flows (Ling et al., 2019a), interfacial wave
breakup (Agbaglah, 2021), and transverse interfacial instability (Jiang
and Ling, 2021), will not be captured in the present simulations.
Nevertheless, previous studies have demonstrated that 2D simulations
are still capable of capturing longitudinal shear instability (Fuster et al.,
2013; Bozonnet et al., 2022) when inlet turbulence is absent. Though
the focus is on the effect of gas viscosity, we will also vary the gas
and liquid stream heights at the inlet and gas density to investigate
the effects of confinement and density ratio on the influence due to
varying gas viscosity. The rest of the paper is organized as follows:
The governing equations and numerical methods for interface-resolved
simulations will be presented in Section 2. The formulation for spatial-
temporal viscous linear stability analysis and the results will be shown
in Section 3. The simulation results are presented and compared with
the LSA predictions in Section 4. Finally, conclusions will be drawn in
Section 5.

2. Simulation methods
2.1. Governing equations

The liquid-gas two-phase flow is resolved using the one-fluid ap-
proach, wherein the two phases, liquid and gas, are treated as one
fluid with material properties that change abruptly across the gas-liquid
interface. The Navier-Stokes equations for incompressible flow with
surface tension are given as

pdu+u-Vu)=-Vp+V.Q2uD)+okdn, (€D)]

V-u=0, (2)

where p, u, p, and y, represent density, velocity, pressure, and viscosity,
respectively. The strain-rate tensor is denoted by D. The surface tension
term on the right-hand side of Eq. (1) is a singular term, with the Dirac
distribution function §; localized on the interface. The surface tension
coefficient is represented by o, while x and n are the local curvature
and unit normal of the interface, respectively.

The two different phases are distinguished by the liquid volume
fraction C, and C = 0 and 1 indicate that the cells that are full of
gas and liquid, respectively. For cells with interfaces, 0 < C < 1. The
evolution of C satisfies the advection equation,

4,C+u-VC =0. ©)]

The fluid density p and viscosity u are determined by
p=Cp+(1-C)p,, C))
u=Cu+(1 -0y, 5)

where the subscripts g and ! correspond to the gas and the liquid
phases, respectively.

2.2. Numerical methods

The governing equations are solved by the finite volume method
on a staggered grid. The advection equation, Eq. (3), is solved using
a geometric volume-of-fluid (VOF) method. The interface normal is
computed following the mixed Young’s-centered method (Aulisa et al.,
2007). The Lagrangian-explicit scheme (Li, 1995) is used for the VOF
advection (Scardovelli and Zaleski, 2003). The convection term in
the momentum equation, Eq. (1), is discretized consistently with the
VOF method (Arrufat et al., 2020), and this mass-momentum consis-
tence has been shown to be crucial in capturing interfacial dynamics
when large velocity and density contrasts are present at the inter-
face (Rudman, 1998; Ling et al., 2017; Vaudor et al., 2017; Zhang
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(b) Confined Configuration
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Fig. 1. Simulation setups for (a) the confined configuration with small stream height (7 = 8) and (b) the unconfined configuration with large stream height (7 = 65).

Table 1
Physical properties & geometric parameters for all simulation cases.
Series P Py H Hy c H U, U, e S
(kg/m?3) (Pa s) (1075 Pa s) (N/m) (mm) (m/s) (mm)
A 50 5-89.5 0.8
B 1,000 50 1073 5-89.5 0.05 6.5 10 0.5 0.025 0.1
C 12.5 0.6 — 30 0.8

et al., 2020; Arrufat et al., 2020). The incompressibility condition is
incorporated using the projection method (Chorin, 1968). The pres-
sure Poisson equation is solved using PFMG multigrid solver in the
HYPRE library. The viscous term is discretized explicitly using the
second-order centered difference scheme. The interface curvature is
calculated using the height-function method (Popinet, 2009) and the
balanced continuous-surface-force method is used to discretize the
surface tension term (Renardy and Renardy, 2002; Francois et al.,
2006; Popinet, 2009). The time integration is done by a second-order
predictor—corrector method. The above numerical methods have been
implemented in the open-source solver, PARIS-Simulator. Detailed im-
plementations and validation of the code can be found in previous
studies (Tryggvason et al., 2011; Ling et al., 2015, 2017, 2019a; Arrufat
et al., 2020; Aniszewski et al., 2021).

2.3. Problem description and key dimensionless parameters

Two different configurations of two-phase mixing layers are con-
sidered in the present study, see Fig. 1. In the first configuration, see
Fig. 1(a), two parallel liquid and gas streams enter the rectangular
domain from the left. The heights of the liquid and gas streams are
small compared to the domain height. In contrast, the gas and liquid
stream heights are enlarged to half of the domain height in the second
configuration, and the domain height is also larger, see Fig. 1(b). The
purpose of increasing the stream and domain heights is to elevate the
confinement effect. The boundary conditions for the two configurations
are similar, which will be discussed later.

The liquid density p; and viscosity y; are similar to water and are
kept constant, while the gas density p, and viscosity u, are varied.
At the inlet, the two streams are separated by a separator plate, see
Fig. 1. The streams meet at the end of the separator plate. The separator
plate thickness e is taken to be §/4, where § is the gas boundary layer
thickness. According to the previous study by Fuster et al. (2013), the
effect of e on the interfacial instability becomes negligible when it is
significantly smaller than §. The gas and liquid velocities away from the
separator plate are uniform and represented by U, and U, respectively.
The fluid properties and inflow conditions are given in Table 1, chosen
to be similar to the previous studies (Ling et al., 2017, 2019a; Jiang
and Ling, 2021), except for the variation of u,.

There are two physical length scales involved in the present prob-
lem: the gas boundary layer thickness, 5, and the gas stream height
at the inlet, H. Consistent with previous studies, we have considered
the liquid boundary layer thickness and the liquid stream height to be
similar to their gas counterparts, namely 6, = §, = 6 and H, = H, =
H (Matas et al., 2011; Fuster et al., 2013; Ling et al., 2017, 2019a;
Bozonnet et al., 2022). For convenience, we will refer to 6 and H as
boundary layer thickness and stream height in the rest of the paper,
since their values for gas and liquid are the same. The ratio between H
and 6, i.e., n = H /5, characterizes the effect of confinement due to the
finite stream thickness (Bozonnet et al., 2022). When #n > 1, as in the
second configuration, 6 is the only relevant length scale, which is often
used to define the Reynolds and Weber numbers, Re = p,U,5/u, and
We = ng§5/a (Otto et al., 2013; Fuster et al., 2013). However, when
n is not sufficiently large, the confinement from the stream boundary
will influence the interfacial instability (Matas, 2015; Bozonnet et al.,
2022). Two different values of H (or ;) are considered: the confined
configuration with = 8 and the unconfined configuration with n =
64, as shown in Figs. 1(a) and (b), respectively. In the present study,
simulation series A and B have similar parameters, except that series A
is for the confined configuration, while series B is for the unconfined
one. The difference between the results from these two series can
then be used to characterize the effect of confinement. Furthermore,
simulation series C uses the same confined configuration as series A
but with a reduced p,. Therefore, comparing the results from series A
and C serves to characterize the effect of the density ratio r.

A wide range of yu, is considered in each simulation series. For
simulation series A and B with density ratio r = 0.05, u, varies from 5x
107 to 8.95 x 10~* Pa-s. Correspondingly, the viscosity ratio m = p,/u,
increases from 0.006 to 0.9, and the Reynolds number Re = p,U,6/u,
decreases from 1000 to 56, as shown in Table 2. For simulation series
C, where r = 0.0125, u, varies from 6 x 1076 to 3 x 10~ Pa-s. As a
result, m and Re vary from 0.006 to 0.3 and 2000 to 42, respectively.
The ranges of u, and Re are chosen to be broad enough to capture
both the convective and absolute regimes, with a sufficiently large
number of cases (about 10 for each series) run to identify the critical
Reynolds number (Re,) at which the A/C transition occurs. In total,
approximately 30 simulations are performed.
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Table 2
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Dimensionless parameters for all simulation cases. Simulation series A and C are for the confined configuration with a small
stream height (see Fig. 1(a)), and series B is for the unconfined configuration with a large stream height (see Fig. 1(b)).

Series M Re We r m n Configuration
20y JAA) (A 2 s I
n U7 Hy o 4 H 8
A 20 1,000 - 56 10 0.05 0.05 - 0.9 8 Confined
B 20 1,000 - 56 10 0.05 0.05 - 0.9 65 Unconfined
C 5 2000 - 42 2.5 0.0125 0.00625 - 0.3 8 Confined

2.4. Simulation setup

The computational domains and boundary conditions for the two
configurations are depicted in Fig. 1. The BC and domain size in the first
configuration (Fig. 1(a)) are identical with the previous studies (Ling
et al.,, 2017, 2019a; Jiang and Ling, 2021). The length and height of
the domain are L, = 16H and L, = 8H, respectively. The domain
is initially filled with stationary gas. A Dirichlet boundary condition
is specified for the velocity at the left surface. While the tangential
velocity components are v = w = 0, the normal component is

(U, + Uyert [”T‘y , -H <y<0,
0, 0<y<e
u(y) = (6)
Ugerf[#]erf[ﬂ;—_y], e<y<H,
0, else.

The velocities in the gas and liquid streams away from the separator
plates (0 < y < e) are uniform, equating to U, and U,, respectively.
The error function, erf, is employed to model the velocity profile in
the boundary layers adjacent to the separator plates. Small-amplitude
perturbations are introduced to the inlet liquid velocity, which can
be expressed as the sum of N sinusoidal functions with different
frequencies,

U I,
U

N

" 1 .
= 5]'18” ~N Z sm(2”fpert,kt + ¢k) 5

@)
N =

where f,,,, , and ¢, are the frequency and phase of the kth perturbation
mode and the perturbation amplitude Soort 18 the normalized perturba-
tion amplitude. Both single-mode (N = 1) and multi-mode (N = 10)
perturbations are considered. In the first configuration, the velocity
outflow boundary condition is specified on the right boundary. The
bottom surface is a slip wall, while the top is a free boundary, thorough
which allows fluid to freely enter or leave the domain. Verification
of the boundary conditions and domain size can be found in previous
study (Ling et al., 2019a).

In the second configuration shown in Fig. 1(b), the gas and liquid
streams are extended to the top and bottom of the domain. The inlet
velocity boundary condition is adjusted accordingly as

W+ Upert 2], y<o,
0,

y—(H+e)
Ug erf [T:I .

u(y) = 0<y<e, ®

y>e.

A large stream thickness H = 656 is used. Additional tests were made
confirm that # = 65 is enough to elevate the confinement effect and the
detail value of H is immaterial. Both the top and bottom boundaries are
taken as slip walls. Different from the first configuration, the pressure
outflow boundary condition is specified on the right surface. Similar
boundary conditions were used in the previous studies by Agbaglah
et al. (2017) and Bozonnet et al. (2022).

A uniform Cartesian mesh is used to discretize the domain. The
cell size Ax Ay H /256 6.25 pm is shown to be sufficient
to resolve the interfacial instability under similar parameter ranges.
Additional grid-refinement studies are performed, and the results are
shown in Appendix B, confirming that the current mesh resolution
yields mesh-independent results.

By selecting U, and ¢ as the velocity and length scales, the dimen-
sionless variables, denoted by superscript *, are defined as

= IZE * X ut

u

U,

> X ==

5

= )
All simulation cases were run to at least r* = 6000. This long time
duration ensures statistically converged results and high-resolution
frequency spectra. Simulation results for various simulation run times
are displayed in Appendix C, to verify the simulation time is sufficiently
long to obtain accurate spectra.

3. Linear stability analysis for unconfined configuration
3.1. Orr-Sommerfeld equations and numerical methods

Viscous linear stability analysis (LSA) is performed to better un-
derstand the effect of gas viscosity on interfacial instability. A spatio-
temporal analysis is conducted. For LSA, the unconfined configuration
is considered and the stream height is significantly larger than the
inlet boundary layer thickness, and thus the value 7 is immaterial to
the results. In LSA, different n were tested, the results showed that
n = 15, which was also used in the previous study (Otto et al., 2013),
is generally enough to yield results that are independent of # and the
confinement effect. The velocity profiles for parallel base liquid and gas
flows, u;4(y) and ug (), are specified following previous studies (Otto
et al., 2013; Fuster et al., 2013; Ling et al., 2019a), which is similar to
velocity boundary conditions (Eq. (8)) used in the simulation for the
unconfined configuration,

w0(y) = —Ulerf<§> +Up[1 + erf((sl)], y<0, (10)
d

Ugo(y) = Ugerf(g) + U1 - erf(%)], y>0. (11)
This velocity profile model is found to agrees very well with the
mean flow data measured in recent experiment of two-phase mixing
layers (Della Pia et al., 2024). Here, the interface is located at y = 0.
Similar to the simulations, the boundary layers of the gas and liquid
streams are modeled using error functions, and the thicknesses of which
are the same by §, = §, = 6.

It is suggested by Otto et al. (2013) that the interfacial velocity, U,
can be specified as

HeUg U
( 5 TS )‘Sd

He + 1y

U, = 12)
which will guarantee stress continuity at the interface. The effect of
the separator plate on the streamwise velocity profile, mainly the
velocity deficit created by the wake, is modeled by the correction
functions Uy[1l + erf(y/5,)], where §, is the parameter to control U,
and the deficit in the velocity profile. Since the velocity profile varies
in the streamwise directions, the selection of §, and U, is somewhat
subjective, and different values have been used in the previous studies.
In the present study, we have used §,; = 0, which will give U, = 0. The
model velocity profile corresponds to the exit of the separator plate
where the gas and liquid stream just met. If a finite 6, or U, was used,
the velocity profile would be different for different u,, in other words,
the base state will change. In the present analysis, we have excluded
the viscous effect on the base velocity profile and solely focused on the
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effect of gas viscosity on the perturbations. A systematic parametric
study for effects of 6, and U, will be relegated to our future work. It
is worth noting that the key finding of the present study remains valid
for finite U, as will be discussed later and shown in Appendix A.

The normal-mode perturbation is introduced in the form of stream
function,

v (x,3.1) = @, (p)e @, (13)

where a and @ are the complex wavenumber and frequency, respec-
tively. Substituting the perturbation in the linearized Navier-Stokes
equation, it yields the Orr-Sommerfeld equations, the dimensionless
form of which using the dimensionless variables defined in Eq. (9) are
given as

2 2 2 d’u*
[(—iw“+ia*u}‘_o>(afv—*)z—<a*>z)—L( P @) i 1,0](07

mRe \ 9(y*)? d(y*)?
=0, y<0,
2 %
P 2 o). 1( 9 *22_4*dugv0 .
[( io* +ia 14:4’0)(—60)*)2 (a*) ) Re(d(y*)z (a*) ) ia 207 @,
=0, y>0, (14)

which can be solved along with the boundary conditions for velocity
and stresses at the interface. For temporal analysis, Eq. (14) is solved
for complex frequencies ®* = ! + i®} when a real wavenumber a*
is given. In contrast, for spatial analysis, the complex wavenumber
a* = o +ia; is determined for a given real frequency . In the cur-
rent spatio-temporal analysis, both the frequency and wavenumber are
complex numbers, and the complex wavenumbers (a7, a) are solved
given complex frequencies (@, @}).

The Orr-Sommerfeld equations are discretized by a Chebyshev col-
location method, see the previous study (Otto et al., 2013) for details.
For both phases, 150 Chebyshev polynomials are used, which have been
tested to be sufficient to yield converged results.

3.2. Effect of Re on C/A transition

The spatial branches for the cases at different Re and m are shown
in Fig. 2. Other parameters, including r = 0.05, M = 20, and We =
20, are fixed. For a sufficiently large positive o}, two distinct spatial
branches appear on the «'-a plane, as seen in Fig. 2(a). The points
on a branch correspond to different w;. According to the principle
of causality, the upper and lower branches represent downstream and
upstream propagating perturbations, respectively. As ] decreases, the
branches move: typically, the upper branches move down, while the
lower one moves up. For the case with Re = 25000, m = 0.05, the upper
branch crosses the imaginary axis («; = 0) before ] reaches zero. This
indicates that there exists a certain range of «’ that is convectively
unstable (¢; < 0).

When Re decreases from 25,000 to 10,000, it can be observed
that the upper branch for the same »; moves downward, while the
lower counterpart moves up. Eventually the upper and lower branches
pinch, creating a saddle point, before ! reaches zero, as depicted
in Fig. 2(b). The appearance of the saddling point indicates that the
convective instability transitions to absolute instability (Briggs, 1964;
Huerre and Monkewitz, 1990). Conventionally, the transition from
absolute to convective regimes (A/C) is often characterized by the
dynamic pressure ratio M (Fuster et al., 2013) or the velocity difference
U, —Up/U,; +U)) (Otto et al., 2013). The present results indicate that,
with r, n, and M held constant, an A/C transition can be triggered
by just increasing the Reynolds number. This finding is supported by
numerical simulation results, which will be presented later.

Here, the variation of Re is introduced by varying the gas viscos-
ity. Yet, when the gas viscosity decreases, both Re increases and m
decreases simultaneously. In order to investigate their individual effects
on the A/C transition, additional cases for varying Re with fixed m and
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for varying m with fixed Re are studied. When Re increases from 10,000
to 25,000 with m = 0.05 fixed, the instability transitions from absolute
to convective, as seen in Figs. 2(a) and (b). In contrast, when m is
reduced from 0.05 to 0.0125, while keeping Re = 10,000 constant, the
instability remains absolute, as seen in Figs. 2(b) and (d). The results
thus indicate that Re plays a more significant role than m, and the
increase of Re is the dominant reason for the A/C transition.

3.3. Effect of Re on the saddle-point features

Although both the cases Re = 10,000 and 1000 with m = 0.05
exhibit a saddle point and thus are in the absolute instability regime,
the features of the saddle point vary as Re changes. It is observed from
Figs. 2(b) and (c) that the position of the saddle point moves to the
right, when Re decreases from 10,000, to 1000, indicating an increase
in the wavenumber for the most unstable mode, &, where () is used to
represent saddle-point features. Furthermore, the temporal growth rate
for the saddle point, &, for Re = 10,000 is much smaller than that for
Re = 1000. The variation of @; asa function of Re is shown in Fig. 3(a).
Generally, @ decreases monotonically with Re. When &} reaches zero,
the absolute instability transitions to its convective counterpart. The
critical value for transition to occur is located around Re = 10,000. The
present LSA analysis assumes the interfacial velocity U, = 0 (6, = 0).
Additional case with U, = 0.1U,; has been studied and the results are
shown in Appendix A. It is shown that the results are quite similar for
different U, and the critical Reynolds number Re,, is not sensitive to
the value of Uj,.

Moreover, when an absolute mode exhibits a small &;, it may
not dominate the concurrent convective modes. Thus, we refer to this
transition regime between the typical absolute and convective regimes
as the weak absolute instability regime, although the boundary between
absolute and weak absolute regimes is somewhat blurry. The weak
absolute instability regime can also be recognized from the numerical
simulation results, which will show other interesting features for this
regime.

The variations of the frequency @; and celerity U = &;/a; at
the saddle point are shown in Figs. 3(b) and (c), respectively. Similar
to the temporal growth rate, the frequency &’ generally decreases
with Re. Although experimental and numerical studies varying the gas
viscosity are lacking in the literature, experiments and simulations ad-
justing the inlet gas turbulence intensity (Matas et al., 2015; Jiang and
Ling, 2020, 2021) have indicated that the frequency for the absolute
mode decreases when the effective eddy viscosity increases, which are
consistent with the present results.

The variation of the celerity U} is more complex. For the density
ratio r = 0.05, a non-monotonic variation is observed, ie., U} first
decreases and then increases as Re increases. The values of U} are sig-
nificantly smaller than the normalized Dimotakis speed, U} = Up/U,,
with the same density ratio r. The Dimotakis speed U, expressed as

\/PgUg + N2

Up=+22% YV (15)

Ve

is obtained based on the assumption that the gas and liquid dynamic
pressures are in a balance in the reference frame moving with the wave
speed (Dimotakis, 1986), and therefore is an inviscid feature. For the
absolute mode determined by the present viscous stability analysis, it
is expected that the wave propagation speed will follow the celerity
U,. Former studies have shown that the wave propagation speed agrees
with the Dimotakis speed U}, as the wave amplitude grows (Lasheras
and Hopfinger, 2000; Ling et al., 2019a; Jiang and Ling, 2021). The
wave speed transition from U, to Uj will be further examined in the
next section.
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4. Simulation results

The numerical simulation results for both the confined and uncon-
fined configurations, as shown in Figs. 1(a) and (b) respectively, for the
two-phase mixing layer will be presented. We will begin with the results
for series A (confined configuration), discussing the general effect of
gas viscosity in Section 4.1, its impact on interfacial instability in
Section 4.2, and the non-linear interactions between interfacial waves
in Section 4.3. Next, we will present the results for series B (unconfined
configuration) in Section 4.4 and discuss the effect of confinement
by comparing the results for series A and B, which share identical
parameters except for stream height. Finally, we will present the results
for series C, which features a lower gas-to-liquid density ratio, in
Section 4.5. The comparison between the results for series A and C in
the confined configuration will illustrate the effect of the density ratio.

4.1. General behavior

The simulation results for different Re in series A (confined con-
figuration) are presented in Fig. 4 to qualitatively show the effect of
gas viscosity on the interfacial instability and interfacial wave devel-
opment. Based on the LSA results given above, we mainly use Re to
represent cases with different u,, since it plays a more important role
than m.

After the gas and liquid streams meet at the end of the separator
plate, shear instability induces wavy structures on the interface. The
interfacial waves propagate downstream, and their amplitudes grow
in the streamwise direction. The interfacial dynamics near the inlet
differ from those in the far field, where the wave amplitude becomes
higher than the characteristic length 6. For convenience of discussion
of the wave dynamics, we loosely define the near and far fields of the
two-phase mixing layer based on the interface wave amplitude, ie.,
the near field is for the wave amplitude & < &, while the far field is
considered to be the spatial region where & > 6. A detailed definition
of the time-averaged wave amplitude i will be given later.

Near-field interfacial instability. The focus on the near field is on the
interfacial instability. Particular attention is paid on the effect of Re on
the frequency for the most unstable mode. The qualitative difference
in the near fields for different Re can be recognized in Fig. 4. When Re

decreases, the wave amplitude grows more rapidly in space. Neverthe-
less, the important features including the dominant frequency variation
cannot be directly observed in the snapshots and spectral analysis is
required to demonstrate them.

Far-field non-linear wave dynamics. The study of the far field will be
focused on the effect of Re on non-linear wave dynamics. First of all, the
modulation of interfacial instability in the near field will influence the
spatial development and the subsequent breakup of interfacial waves
in the far field. Furthermore, as Re decreases, the gas stream becomes
more stable. As a result, the gas velocity decreases more rapidly in
space, which in turn weakens the interaction between the interfacial
wave and the interfacial wave, as can be observed in Fig. 4.

4.2. Effect of gas viscosity on the near-field interfacial instability

The results of simulation series A (confined configuration) are pre-
sented in this section to illustrate the effect of gas viscosity on the
interfacial instability in the near field.

4.2.1. Characterizing different instability regimes

The temporal evolutions of the interfacial height & for different Re
are shown in the first row of Fig. 5, and the corresponding frequency
spectra are shown in the second row. The interfacial height & is
the vertical distance from the domain bottom to the interface, which
depends on x and ¢, i.e., h(x,t). No perturbation is introduced at the
inlet for the results here, namely /;;fm = 0. The results shown are
measured at x* = 3, which is close to the inlet. It can be observed
that the wave amplitudes remain significantly lower than 6, ie., |h*| <
1. Different instability regimes can be identified. When Re = 70,
a dominant frequency, denoted as f, appears in the spectrum, at
which the interfacial height oscillates in time, see Figs. 5(a, d). The
other smaller spikes in the spectrum are located at frequencies that
are integer times of the absolute frequency and are induced by the
nonlinear effect. In contrast, for Re = 1000, the spectrum is noisy,
because the instability is convective and the dynamic system acts as a
noise amplifier. Multiple convective modes grow and their amplitudes
are sensitive to inlet conditions, see Figs. 5(c, f). There is no frequency
that dominate the whole space. For the intermediate Re = 165.5, the
instability is in the weak absolute regime, for which the spectrum shows
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Fig. 5. (a)-(c) Temporal evolutions and (d)-(f) frequency spectra of the interfacial height at x* = 3 for different Re, showcasing various instability regimes: (a) and (d) Re = 70
(absolute instability), (b) and (e) Re = 165.5 (weak absolute instability), and (c) and (f) Re = 1000 (convective instability). All cases are from series A.

both the dominant absolute mode but also the noises created by the
convective modes, see Figs. 5(b, e).

To better understand the distinctive characteristics of each regime,
we introduce perturbations to the liquid velocity at the inlet, see
Eq. (7). The spectrograms for different inlet perturbation frequencies
and amplitudes are shown in Figs. 6 and 7, respectively. To better visu-
alize the locally dominant frequency, the spectrum amplitude A(x*, f*)
is normalized by the local maximum, namely A* = A/A_,., where
A e (x*) = max[A(x*, £*)]. In Fig. 6, the perturbation amplitude is fixed
at a small value, ie., e:;m = 0.01, while the perturbation frequencies
are varied, including multi-mode perturbations in the first column with
10 different frequencies randomly distributed between et = 0.0015
and 0.015 (see Figs. 6(a, d, g)), and single-mode perturbations with

[fm = 0.005 (see Figs. 6(b, e, h)) and 0.0105 (see Figs. 6(c, f, i)) in
the second and third columns, respectively. These two frequencies are
chosen to be smaller and larger than the absolute frequency for Re = 70.
In contrast, for the results shown in Fig. 7, the perturbation frequency
is fixed at ;‘m = 0.0105, while the perturbation amplitude is varied,
ie, &,, = 0.01 (see Figs. 7(a, d, g)), 0.03 (see Figs. 7(b, e, h)), and
0.09 (see Figs. 7(c, f, i)).

4.2.2. Absolute instability regime

When the shear instability at the interface is absolutely unstable,
the system behaves like an oscillator. A dominant frequency (f; =
0.008) appears as a red horizontal line in the spectrogram, as shown
in Fig. 6(a), indicating that f; remains constant in space. Furthermore,
it is evident that f; differs from all the frequencies of the perturbations
induced at the inlet, which are represented by the white dashed lines.
This suggests that the frequency of the dominant absolute mode is
independent of the inlet perturbation frequency. The results for single-
mode perturbations shown in Figs. 6(b) and (c) are similar, in which the
dominant frequency is the same as observed in Fig. 6(a) and is different
from the perturbation frequencies.

As can be seen from the first row of Fig. 7, when the perturbation
amplitude increases from £; = 0.01 to 0.03 and 0.09, the dominant
frequency remains the same, indicating that the dominant frequency is
unaffected by the inlet perturbation amplitude. Even with the highest
perturbation amplitude &7, = 0.09, for which the perturbation mode
can be clearly seen near the inlet, the absolute mode remains dominant.
As the perturbation amplitude is large, like & = = 0.09, it induces

pert
modes of lower and higher frequencies due to the nonlinear effect. The

induced mode of low frequencies can grow spatially and become quite
significant downstream, see x* ~ 20.

4.2.3. Convective instability regime

The case Re = 1000 is in the convective regime; there is no frequency
that dominates the entire domain. Since multiple spatial modes grow,
the spectrograms are very noisy, see Figs. 6(g—i). Furthermore, since
convectively unstable systems are highly sensitive to inlet perturba-
tions, the spectrograms for Re = 1000 with multi-mode and single-mode
perturbations are different. In Fig. 6(g), all perturbation modes induced
at the inlet grow spatially. The modes induced by the perturbation
modes also grow spatially due to the nonlinear effect, making the
spectrogram even noisier. Similar noisy spectrograms are also shown
in previous study to indicate the instability is convective, see e.g,
Bozonnet et al. (2022).

Upon perturbing the inlet velocity with a low frequency of £, , =
0.005, this mode emerges near the inlet. With the continued propaga-
tion of the wave, this mode experiences growth and becomes dominant
for x* > 15, see Fig. 6(h). In contrast, for a perturbation with a high
frequency, f,,, = 0.0105, though the mode can be recognized, its
amplitude is pretty low, see Fig. 6(i). When the perturbation amplitude
for ;‘m = 0.0105 increases to ;m = 0.09, it dominates the modes of
lower frequencies. The results seem to indicate the modes within the
low-frequency range exhibit higher spatial growth rates, though the
detailed spatial growth rates are hard to measure from the simulation
results. Therefore, perturbation at a lower frequency is more effective
in destabilizing the flow.

It should be noted that even for cases in which no explicit perturba-
tions are introduced, the interference of the splitter plate with the flow
also induces small perturbations at the inlet. As these perturbations
grow spatially as well, they will also contribute to the noise observed
in the spectrogram.

4.2.4. Weak absolute instability regime

Finally, we will discuss the case Re = 165.5, which is in the
weak absolute regime. This regime is a transition from the absolute
to convective regimes and thus exhibits features of both, see Figs. 6(d—
f). On one hand, the spectrograms exhibit the absolute frequency at
fy =0.0067, which is different from the perturbation frequencies, and
the absolute mode generally dominates the whole x* range. On the
other hand, the perturbation modes other than the absolute mode grow
spatially as well, making the spectrograms somewhat noisy, similar to
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the convective instability case (Re = 1000). In this transition regime, the
temporal growth rate of the absolute mode is low, as revealed in the
LSA, see Fig. 3(a). Therefore, even though it dominates, its amplitude
may be comparable to the convective modes. For some spatial regions,
like x* = 25, the amplitude of the convective mode even exceeds that
of the absolute mode.

Another interesting feature of the weakly absolute regime can be
observed in Figs. 7(d—f), i.e., the dominant frequency decreases as the
perturbation amplitude increases. The absolute frequency f; decreases
from 0.0067 to about 0.0052 when é;jm increases from 0.01 to 0.09.
Such a variation of f; with perturbation amplitude was not observed
in the absolute instability regime (Re = 70). Since the perturbation
frequency for the cases shown in Fig. 7 is f,,, = 0.0105, when its
amplitude is high, it tends to induce a secondary mode at its half
frequency S pert & 0.005, which is quite close to the absolute frequency
without perturbation. The shift in the dominant frequency f; may be
due to the merging of the original absolute mode with the induced
mode. In general, due to the relatively low temporal growth rate and
amplitude, the absolute mode in the weak absolute regime is more

sensitive to the nonlinear effect and perturbation amplitude.

4.2.5. Variation of absolute frequency with Re
The variation of the dominant frequency f; with Re in the absolute
and weak absolute regimes is shown in Fig. 8. For the case in the

weak absolute regime, since the absolute frequency can vary with the
perturbation amplitude, here we show the value for no perturbation at
the inlet. The dominant frequencies predicted by LSA (Section 3) are
also shown for comparison.

Both simulations and LSA results indicate that the frequency de-
creases with Re. The decrease of f slows down and reaches a plateau
in the weak absolute regime before the instability transitions to the
convective regime. Furthermore, both results show that the interfacial
instability transitions from absolute to convective regimes when Re >
Re,,. Near Re,,, the dominant frequency is about f; ~ 7 X 1073, and
both simulations and LSA yield similar predictions.

The discrepancy between simulations and LSA lies in the value of
Re,,. For the simulations, Re,. =~ 165.6, which is much lower than
the prediction of LSA, which is about Re,, = 10,000. As a result,
for a given Re < Re,,, the LSA frequency is lower than the simu-
lation result. Similar underestimates of frequency by LSA have also
been reported in previous works (Matas et al., 2015). The discrepancy
between LSA and simulations is unlikely due to the confinement effect,
which will be discussed in the next section. The discrepancy is also
not due to the velocity profile of the base flow used in LSA, since Re,,
varies little when U, increases from 0 to 0.1, see Appendix A. The
difference may be related to the fact that LSA does not consider the
spatial variations of the interfacial velocity and the base flow velocity
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profile. In the full simulations, the interfacial velocity increases and the 0.014 S
velocity deficit reduces along the streamwise direction. Furthermore, o + Sim(y = 8)
the interfacial waves grow in amplitude as they propagate downstream, ’ i Sim(n = 65)
so the nonlinear wave dynamics and interaction between the wave and 0.01 °o &
the gas stream downstream will unavoidably influence the interfacial " 26 o
instability in the near field. Nevertheless, a more thorough investigation ;30'0% [+ s = o oo
is required for future work to fully confirm the reason behind the 0.006
discrepancy.

0.004
4.3. Effect of gas viscosity on far-field wave dynamics 0.002

The results of simulation series A (confined configuration) are pre- 0 107 10 104

sented to illustrate the effect of gas viscosity on far-field wave dynam- Re
ics.

Fig. 8. Variation of dominant frequency with Re for # = 8 and 65. The LSA predictions
4.3.1. Wave propagation are shown for comparison.

The propagation of interfacial waves induced by the interfacial
instability is visualized by the spatial-temporal diagrams of interfacial

height, see Fig. 9. For the case Re = 70 in the absolute regime, the where the wave amplitude remains low. The wave speed is found to
trajectories of individual waves are equally spaced in ¢*, indicating they be quite similar to the celerity U = w?/a; predicted by the LSA (see
follow the absolute frequency. The slope of the wave trajectory repre- the yellow line). As the wave propagates further downstream, the wave
sents the inverse of the wave propagation speed, which is similar for speed increases and eventually reaches a constant for x* 2 15, which
all waves shown here. It is further observed that the wave propagation is similar to the Dimotakis speed U*, indicated by the green line. The

speed varies in x*. The wave speed is lower near the inlet (x* < 10),

10
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good agreement between the wave speed and the Dimotakis speed has
been reported in previous studies (Ling et al., 2017; Jiang and Ling,
2021; Bozonnet et al., 2022), however, less attention has been paid to
the fact that the wave speed is actually lower near the inlet, though
the wave speed variation can also be recognized from the previous
results (Jiang and Ling, 2021; Bozonnet et al., 2022).

It is worth noting that the Dimotakis speed is an inviscid feature,
while the celerity U is predicted by the viscous stability analysis and
thus involves the viscous effect. The present results indicate that the
viscous effect is important in the selection of the most unstable mode
and the propagation of the interfacial wave in the near field, and the
propagation of the wave further downstream is controlled mainly by
the inviscid mechanism.

Similar observations can be made for the case Re = 165.5, which is
in the weak absolute regime. The wave speed agrees with U in the near
field and matches with U7, in the far field. Since the case Re = 1000 is
in the convective instability regime, it is difficult to identify individual
waves in the near field. Nevertheless, it is observed that the wave
propagation speed agrees well with U} in the far field where the wave
trajectories are better seen.

4.3.2. Nonlinear wave-wave interaction

As the amplitude of the interfacial waves grows spatially, the non-
linear effect intensifies. Fig. 4 shows how interfacial waves, upon
interacting with the gas stream, generate liquid sheets that extend from
wave crests and eventually break into small droplets. The detailed
droplet formation mechanisms were revealed in previous 3D simula-
tions (Ling et al., 2017, 2019b; Agbaglah, 2021; Ling and Mahmood,
2023). Upon wave breakup, the interfacial height significantly drops to
a lower value, corresponding to the remaining unbroken liquid layer
near the bottom, that is why the waves seem to “disappear” in the
spatial-temporal diagrams (see Figs. 9(a)—(c)).

Before wave breakup, a decrease in propagation speed is observed,
which is due to the flow separation downstream of the wave. As a
result, the subsequent wave may catch up and merge with the former
one. This wave-wave interaction is most profound for the case Re =

11

165.5, see Fig. 9(b). A significant outcome of this wave interaction is the
reduction of the dominant frequency in the spectrum from f;; = 0.0067
in the near field to approximately half ( f(;‘ = 0.0038) downstream
(Fig. 9(b)). This finding implies that although the wave formation
frequency near the inlet is governed by the absolute instability, the
frequency observed downstream can be significantly lower. The vari-
ation of dominant frequency spatially due to wave-wave interactions
highlights the importance to show the whole spectrogram.

In the Re = 70 case, waves merging is not observed, likely due to
the generally lower wave amplitude and minor wave speed variations.
However, nonlinear effect is still evident in the spectrogram, which
reveals secondary modes at frequencies that are integer multiples and
half of the absolute mode’s frequency (Fig. 9(d)). For Re = 1000,
where the flow exhibits convective instability, the absence of a singular
dominating mode makes it challenging to discern individual waves and
their interactions.

4.4. Effect of confinement

The results presented above are for the first configuration of the
two-phase mixing layer (Fig. 1(a)) with a small n = 8, therefore,
the effect of confinement may influence the interfacial instability and
interfacial wave development. In this section, we will present the
results for the unconfined configuration, namely series B with a large
n = 65, see Fig. 1(b). The comparison between the results for Series A
and B will thus serve to characterize the effect of confinement.

4.4.1. Spatial growth of wave amplitude

The most direct impact of confinement is on the spatial develop-
ment of the liquid stream thickness, represented by the time-average
interfacial height,

l tlr+t(lUE
/ h*(x,1)dt,
3 t

ave J 1y,

(16)

h*(x) =
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and the interfacial wave amplitude, represented by the root-mean-
square (rms) of interfacial height fluctuations

5 1 Ty Hape _ 2
Rons) =1/ 7 / (h*(x,t) = h*)" dt.
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Here, t,, and t, represent the time duration for averaging and the
transition time for the two-phase mixing layer to reach a statically
steady state. The spatial variations of h* and A, for different # and
Re are shown in Fig. 10. As the liquid stream is accelerated by the gas
counterpart and the liquid velocity increases along x, the mean liquid
stream thickness, 7*, decreases over x due to mass conservation. For
a given Re, h* for the unconfined case decreases faster and reaches a
lower value. The spatial development of h* also varies with Re and
the trends are similar for both confined and unconfined cases near the
inlet. For low Re = 70, h* decreases more rapidly in x, compared to
the case with high Re = 1000. The increase of gas viscosity enhances
the transverse momentum transport between the gas and liquid streams
and the acceleration of the liquid, which in turn leads to the more rapid
decrease of liquid stream thickness.

The spatial development of the interfacial wave amplitude h*

shows similar variation trends when Re varies. It is seen that hg‘:;
for Re = 70 increases faster in x* near the inlet, indicating that the
enhanced momentum transport also contributes to a higher spatial
growth rate of the interfacial wave. Nevertheless, an opposite trend
is observed further downstream, where h’  grows faster for Re
1000 and reaches higher values. For Re = 70, the larger gas velocity
contributes to a higher energy dissipation, the interaction between
the gas stream and interfacial wave downstream becomes weaker, see
Fig. 4. In contrast, the interfacial wave for Re = 1000 continues to grow
and has a strong interaction with the gas stream downstream, leading
to wave rolling and breakup.

It is important to note that for the confined case, the effect of
confinement is substantial when 4} is still lower than the liquid layer
thickness, H; = 8. As expected, the wave amplitude grows more rapidly

with x* and reaches higher values for the case n = 65.

a7

4.4.2. Convective-absolute instability transition

The A/C transition induced by Re observed for the confined con-
figuration is also present in the unconfined counterpart (i 65).
The different regimes, including the convective, weak absolute, and
absolute instability regimes, are clearly identified from the spatio-
temporal evolutions of the interfacial height shown in Fig. 11. For the

Re =165.5
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case Re = 70, individual wave trajectories can be clearly identified
in the near field, indicating that the instability is in the absolute
regime. Yet, different from the confined case with the same Re = 70,
more profound wave-wave interaction is observed, which is due to
faster spatial growth and the resulting elevated nonlinear effect. The
outcome of this nonlinearity is the shift of the dominant frequency,
from ( fy = 0.0072) to almost half of the dominant frequency, ( f(;‘
0.0036). The case Re = 91 is likely in the weak absolute regime, since
the spectrogram shows both the absolute mode and the noise due to
convective modes. Nonlinear wave-wave interaction is also observed
for this case. For 10 < x* < 30, the secondary mode (with frequency
about half of the absolute mode) induced by the nonlinear effect carries
comparable energy to the absolute mode. For the case Re = 1000, wave
trajectories cannot be identified in the near field and the spectrogram
is very noisy, indicating that this case is in the convective regime.

The spatial variation of the wave propagation speed for the un-
confined cases is also similar to that observed for the confined cases.
For both Re = 70 and 91, the wave speed in the near field follows
the celerity U} predicted by LSA, and the wave speed increases to
u;, further downstream. When Re increased to Re 1000, similar
to the confined domain, waves at the inlet are difficult to identify,
but the wave speed agrees well with U}, downstream. Therefore, the
viscous effect plays a significant role in the formation and propagation
of interfacial waves in the near field for both confined and unconfined
cases.

To better illustrate the effect of # on the interfacial instability, the
temporal evolutions and frequency spectra of the interfacial height at
x* = 3 for different Re are shown in Fig. 12. For each Re, the results
for different n are plotted. For the case Re = 70, both the confined
and unconfined cases are in the absolute regime, and the oscillations
of the interfacial height are very similar. The oscillation amplitude for
n = 65 is slightly larger, due to the faster spatial growth of the wave
amplitude. The dominant frequencies in the spectra are also similar,
with the frequency for # = 65 being slightly lower. This indicates that
the confinement effect on the absolute frequency is minor, for the range
of 5 considered. The spectrum for n = 65 shows a stronger nonlinear
effect, and secondary modes at half and multiple times of the frequency
of the absolute mode are stronger.

For the case Re = 121.6, while the confined case 5 = 8 is still in the
absolute regime, showing a clear dominant frequency, the unconfined
case is in the weak absolute regime, for which the amplitudes of the
convective modes are comparable to that of the absolute mode. When
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Re continues to increase to 217, while the confined case is in the
weak absolute regime, the unconfined case transitions to the convective
regime, showing a noisy spectrum. The results indicate that the A/C
transition occurs at a smaller Re,, for the unconfined configuration
when the confinement effect is reduced. It is measured that Re,,. ~ 90
for the unconfined configuration and r = 0.05, which is about 45%
lower than the confined counterpart.

4.4.3. Variation of absolute frequency over Re

The absolute frequencies f; for both the absolute and weak absolute
regimes in the confined and unconfined configurations are shown in
Fig. 8, alongside the LSA predictions for the unconfined configuration.
Interestingly, the discrepancy between the simulation results for the
unconfined configuration and the LSA predictions is greater than that
for the confined configuration. This indicates that the observed differ-
ences between the simulations and LSA predictions are not related to
the confinement effect.

Former LSA studies (Matas et al., 2015; Bozonnet et al., 2022)
show that absolute instability can be induced by the pinching between
the shear and confinement branches. Though the present cases do not
belong to that category of absolute instability, the simulation results
indicate that the confinement effect can influence the critical Re for
A/C transition.

Finally, it is observed that f; for both confined and unconfined
configurations decreases with Re. The values of £ for the unconfined
configuration are slightly lower (about 5%) than their confined coun-
terparts at the same Re. In general, for the confined configuration with
n = 8 considered, the confinement effect is mainly on changing the
critical Re. For cases in the absolute regime, the effect of confinement
on the dominant frequency is minor.

4.5. Effect of density ratio

In simulation series A, the gas-to-liquid density ratio r is fixed at
0.05, which is relatively large, compared to typical gas-liquid systems.
In the simulation series C (confined configuration), see Table 2, the
density ratio is reduced to r = 0.0125, which is one fourth of the value
for series A. The value of r is decreased by reducing the gas density
Py see Table 1, while other parameters, like 7, are kept as the same as
simulation series A. Similar to other simulation series, the gas viscosity
is varied to investigate the effect gas viscosity.

Fig. 13 show the spatio-temporal diagrams for the interfacial height
and the corresponding spectrograms for different Re and r = 0.0125.
Three distinct instability regimes can be clearly identified, and the
key features for each regime are quite similar to those for r = 0.05.
The interfacial instability for Re = 99 is absolute, and the dominant
frequency of the absolute mode is clearly seen in both the spatial-
temporal diagram and the spectrogram. Individual waves can be well
identified in Fig. 13(a). Similar to the results for r = 0.05 shown in
Fig. 9(a), the wave speed is in good agreement with the U (yellow line)
in the near field and then increases to the Dimotakis speed, U}, (green
line) downstream. The absolute mode, with a frequency f; = 0.003
dominates the whole domain, see Fig. 13(d), though secondary modes
are also present induced by nonlinear effect.

In contrast, for the case with large Re = 2000, the instability
is convective, as a result, the spectrogram is noisy. It is again diffi-
cult to identify individual waves in the spatio-temporal diagram, see
Fig. 13(c), but the wave speed in the far field agrees well with U}. For
the intermediate Re = 1000, the spectrogram shows a dominant mode
accompanied by other convective modes, which indicates the case is
in the weak absolute regime. The main effect of r on the interfacial
instability lies at the critical Re for the C/A transition. The critical value
for r = 0.0125 is about 1000, which is higher than the value 217 for
r = 0.05.

The simulation results for fy asa function for Re for r = 0.0125
and 0.05 are shown in Fig. 14. For both r = 0.05 and 0.0125, f(;‘
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decreases with Re and reaches a plateau when Re reaches the critical
value A/C transition. The values of £ are generally reduced when r
decreases from 0.05 to 0.0125. Beyond the decrease in r, the cases in
Series C also exhibit a lower dynamic pressure ratio M, compared to
the Series A, which also contributes to the lower 1y observed. The LSA
predictions for r = 0.0125 are also shown for comparison, which are
qualitatively similar to the simulation results, but the values of f;; are
again higher, similar to the cases with r = 0.05. Furthermore, the value
of Re,, predicted by the LSA varies little with r, while Re,, measured
from the simulation results increases from about 160 to 1000, when r
decreases from 0.05 to 0.0125.

5. Conclusions

The interfacial instability development in a two-phase mixing layer
between two parallel planar gas and liquid streams have been studied
through linear spatial-temporal viscous stability analysis and detailed
numerical simulations. Parametric studies were performed using both
the approaches to characterize the effect of gas viscosity on the inter-
facial instability. For the ranges of parameters considered, the absolute
instability, if it occurs, belongs to the surface-tension type of absolute
instability. The key finding of the present study is that when all other
parameters are fixed, the instability can transition from absolute to
convective (A/C) regimes when the gas viscosity decreases. As the gas
viscosity decreases, the gas Reynolds number (Re) increases and the
gas-to-liquid viscosity ratio (m) decreases. Linear stability analysis is
conducted to identify the effects of Re and m separately. The results
indicate that Re plays a more important role in the transition. When
Re increases, the temporal growth rate decreases. When Re reaches
the critical value, the temporal growth rate becomes zero and the A/C
transition occurs. The Re-induced A/C transition is also captured by the
numerical simulations and can be clearly identified on in the spatial-
temporal diagrams of the interfacial height and also the spectrograms.
This conclusion that A/C transition occurs when Re increases holds for
both confined and unconfined configurations, which the ratio between
the liquid stream height and the inlet gas boundary layer thickness #
varies from 8 to 65. The conclusion is also valid when the gas-to-liquid
density ratio varies from 0.05 to 0.125. The effects of confinement and
density ratio are shown to change the critical Re for the A/C transition.
The critical Re for n = 65 (unconfined configuration) is approximately
45% lower than that for = 8 (confined configuration). When the
gas-to-liquid density ratio r decreases from 0.05 to 0.0125, the critical
Re increases by about sixfold. As the interfacial waves induced by
the instability propagates and grow in amplitude, it is observed that
wave speed increases from the celerity determined by the absolute
mode to the Dimotakis speed. As the wave amplitude further grows
to induce flow separation in the wake of the wave crest, the wave
speed is reduced. For some cases, the subsequent wave can catch up and
merge with the former one, and the wave merging results in frequency
reduction.
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Appendix A. Effect of interfacial velocity in linear stability analy-
sis

The interfacial velocity U, is varied in the linear stability analysis
(see Section 3) to study its effect on the saddle-point feature. Fig. A.15
shows the LSA results for the temporal growth rate &; for U, /U, = 0.1
and 0. To keep U, constant when p, is varied, the value of §, needs
to be adjusted accordingly, following Eq. (12). It is observed that the
results for both U, values are similar, and »; decreases with Re. The
values for Uy /U, = 0.1 are lower than those for the same Re. When o}
reaches zero, the absolute-to-convective (A/C) transition occurs. The
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Fig. A.15. LSA results for the temporal growth rate at the saddle point, @;, as a
function of Re for different interfacial velocities Uj,.

critical Reynolds number for both U, values are similar, implying that
changes in the interfacial velocity do not affect the A/C transition and
Re,, is not sensitive to the specific value of interfacial velocity.

Appendix B. Effect of mesh resolution

The results for the grid convergence study are shown in Figs. B.16
and B.17 for both the confined and unconfined configurations, i.e., n =
8 and 65, respectively. The two mesh sizes used are referred to as M1
(4x = 12.5 pm) and M2 (4x = 6.25 pm). Since the convective cases
are more complicated and do not show any dominant frequency, we
have used an absolute case, Re = 86, for the grid refinement study.
The time evolutions and frequency spectra for the interfacial height at
two different locations are shown. It can be seen that the results for
the interfacial height oscillation amplitude and frequency for the two
meshes match well for both n = 8 and 65, indicating that the M2 mesh
is sufficient to yield grid-independent results.
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Appendix C. Effect of simulation time

Additionally, the simulation time is also varied to verify if it is long
enough to yield statistically convergence results. The time evolutions
and frequency spectra for the interfacial height at two different loca-
tions for Re = 86 and n = 8,65 are shown in Figs. C.18 and C.19. The
spectra computed based on three different time durations were shown
and it can be seen that a long duration will improve the spectrum
resolution and to identify the dominant frequency. It should be noted
that the transition time for the two-phase mixing layer to fully develop
is excluded in the calculation for the frequency spectra. The results here
show that the simulation time about r* = 6000 is sufficient.

Data availability

Data will be made available on request.
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